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ABSTRACT

We consider a bounded container filled by three immiscible fluids and a solid
object, presumably floating at one or more of the interfaces. Fluids are modeled
by Caccioppoli sets. The energy in our model is assumed to come from gravity,
adhesion energy, and surface tension. We shall use the theory of functions of
bounded variation to show that the energy functional attains a minimum for

some configurations of the fluids and solid.

Vil



I. INTRODUCTION

We consider a bounded cylindrical container G := € x [0, p|, where Q C R? is
bounded and simply connected. Suppose that G is filled with three fluids, which

we denote by the sets E;, 7 = 1,2,3, and a rigid object B.

E.

E

Figure I.1: A typical example of the problem we consider.

The density of each fluid is given by p; and the density of the solid by py. The
interface between each fluid is assumed to be governed by surface tension. If we
denote the surface tension between fluids 4, j by «;;, then we will consider the
“surface tension coefficient” of each fluid by

1
oy = 5(0&1']' + i — Oéjk), (Il)

for i, 5,k = 1,2, 3 mutually distinct. The energy of the system is assumed to

come from the following:



e g, the gravitational constant,

e the adhesion energy between fluid 7 and the boundary 0G of the container,

given by f;,

e the adhesion energy between fluid ¢ and the surface B of the solid, given

by 7;.

We study the energy functional in the case where each fluid region is represented
by a Caccioppoli set: each fluid’s characteristic function is of bounded variation.
Let B(c, R) := {y = ¢+ Rx : x € B}, where ¢ € R?® denotes a translation, and

R = R(d,0) € SO(3) describes a rotation with respect to some axis, with unit
vector d, about some angle 6. The quantities ¢, R are restricted by requiring that
the floating body is contained in G. Throughout it shall be assumed that B(c, R)
is a closed set. Then E; C G\B(c, R) is measurable, so we denote V; = L3(E;) to
be the volume of each fluid. We also define £ = {E}, Ey, E5}. Lastly, we shall use

the notation (z',z,) for z € R®. The energy functional is then

+ gpi / TP, dx
AN\B(ce,R)

oB B(c,R)

Fle, R, E) = (ai/ Dog,
( ) Z Q\B(C,R)| .

i=1 (1.2)
o0

where

/ |‘D¢Ez’ ‘= Ssup {/ ¢E2 div(g) dx : ge CCI(Q\B(C? R);Rg)v ”9”00 < 1}
O\B(c,R) O\B(c,R)

denotes the total variation of ¢p,. The integrals over €2 and 9B denote the area

of the wetted part of the container and the solid respectively. We prove that



there is a minimizing configuration (B(c, R), F) to F in the class

C:={(¢, R, E):ceR* R e SO(3) such that B(c, R) C (, 3)
I3

E; € Q\B(c, R) measurable with £*(E) = V;}.

Chapter two is dedicated to listing definitions used throughout the text. In the
following three chapters, we dedicate a chapter each to three papers that studied
previous versions of our problem, giving an occasional exposition on the details
of their proofs. Chapter three considers Emmer’s lemma [2], which is
fundamental to every case we study here. We will then proceed to study
Emmer’s proof in the case where G is filled with two fluids and no solids.
Chapter four considers Massari’s proof [3] where G is filled with three fluids.
Finally, chapter five addresses the proof given by Bemelmans, Galdi, and Kyed
[1] for the case when G is filled with two fluids and one solid.

In the final chapter, we will consider our problem. The proof given will use a
combination of all three previous proofs. The first step is to establish a lower
bound on F(c, R, E), then form a minimizing sequence (¢;, R;, E;) C C. We then
show that (c;, R;, E;) is bounded in the sense that

lcj| + |R;| + | Ejl| Bvic) < ¢ € R, and thus form a convergent subsequence. To
complete the proof, we show that F is lower semicontinuous with respect to our

subsequence, ensuring that it converges in C.



II. DEFINITIONS

Before we begin, we first list some definitions that are important in approaching

these problems. The main definition here is the following:

Definition 11.0.1 Let f : R — R. Then f is lower semicontinuous at p € R
if for any € > 0 there exists 6 > 0 so that if |x — p| < 6, then f(z) > f(p) —e.
Alternatively,

liminf f(z) > f(p). (IL.1)

T—p

When dealing with our boundary, we need to place some restrictions on it. The
two we use are the interior sphere condition and the Lipschitz condition. The

latter is the stronger of the two.

Definition 11.0.2 Let Q2 C R" be open. Then ) has the interior sphere
condition if for all y € OS) there exists x € Q,r > 0 such that the open ball
B(z, p) satisfies B(x,p) C ,y € 0B(x, p).

Definition 11.0.3 A function f : R — R is Lipschitz if there exists a positive

L such that for all x,y € R,

|f(z) = f(y)| < L]z —yl. (IL.2)

We call f locally Lipschitz if for every x € R there exists a neighborhood U of

x so that f{U s Lipschitz.

We also need to place restrictions on the functions we integrate. We require them

to be of bounded variation:



Definition I1.0.4 Let 2 C R" be open, f € L' (). The total variation of f is

V(£.0) = sup { / £ (@) div(9(a))dz : 6 € CH LR, ¢l iy < 1} . 3)

where C! is the set of continuously differentiable vector functions of compact

support.

Definition I1.0.5 Let Q C R™ be open, u € L'(Q). Then u has bounded
variation if its total variation is finite. We write BV () for the space of

functions of bounded variation.

Lastly, we occasionally use the Hausdorff integral on our functions of bounded

variation:

Definition I1.0.6 Letn € N, A C R"! be open, f: A — R, a:R* = R, and
S = graph(f). The Hausdorff integral of a is defined by

/S o dH" = / a(y, ()1 + DI Q)P dy. (11.4)

where y € R*, and Df is the gradient of f.



1I1I. EMMER

Emmer|2] considered a two-fluid problem in a bounded container. His results are

presented here. We begin with the energy given by

01/ \/1+|Du|2dx+gp/u2dx+02/ wdH" 1, (II1.1)
Q Q G

with o1 being the surface tension of the fluid, g the gravitational constant, p the
density of the fluid, and o, the adhesion energy. Note that the first integral gives
the surface area of the fluid. We normalize the equation, dividing by oy, to

obtain our desired functional

.F(u):/\/1+|Du|2dx+/</u2dx+a/ wdH" (I11.2)
Q Q o0

with u : Q — R representing the surface height, x € R* the capillary constant,

a € R the surface tension. We shall prove that there is a minimizing element u
for F, under the restriction that u is measurable with £"(u) =V, with V being
the volume of the fluid.

Emmer’s original paper [2] is written in Italian. An English-translated version of
the proof is given in Massari and Miranda’s book [4]. We will use the proof given

there as our reference.

Lemma IT1.0.1 Let {¢;} be a partition of unity and take u; = ¢;u. Let

A CR™ 1 be open, and ¢; : A — R be Lipschitz such that

0Q N spt(¢p;) C graph(v;). Let 6 > 0 such that {x € Q|z’ € A, |z, —¥;(x)| <}
={xeQa' € A,—6 <z, —j(x) <0}. Then fort € (0,6) we have

luj| dH™ ' < V1+ L2 [ |Duyl +/ |u | dH™ (I11.3)
o0 Q4 St



where L is the Lipschitz constant of 1,

Q={xeQa’ e A, —t <z, —1;(x) <0},
(I1L.4)

Spi={xeQa’ e A —t=u,—;(x)}

Proof. Let y : Q — 0Q by y(x) = projoa(x), and z : Q@ — S; by z(z) = projs,(x).
Let f(y) = |“J'Ha§z’ f(z) = |“J'Hst’ and interpolate between f(y) and f(z) by

g(t) = f((1 —t)z + ty), so that g(t) describes the line segment connecting y(x)
and z(z) for any given x. Applying the Fundamental Theorem of Calculus (using

g(0) and g(1)), we obtain
f0) = 12) = [ DfG+tly =)t (s
0
Now integrate (II1.5) over A:

/Af(y) ~ f(2)da :/A Uol Df(z+t(y — z))dt} da. (I1L6)

Using the definition of €2;, and the fact that 0f) is Lipschitz, we obtain

1
/U Df(z+t(y—z))dt] dxg/ Duy|\/1+ | Dyl do
A 0 Q
<V1+L? | |Duj|dz.
Q¢

(L1L.7)

On the other hand, we use the definition of the Hausdorff integral on the left

hand side of (IIL.6) to obtain

[ 1= e = [ swae [ e = [ - o ar
(IIL.8)



We now have

/ | dH™ —/ lu; | dH* P < V14 L2 [ |Duyl, (111.9)
o0 S Q

from which we obtain (III.3). "

Integrate (II1.3) with respect to t € (0,4) to obtain
4] luj| dH™ ' < 6V1+ L2 | |Duyl +/ \u;| dz, (IT1.10)
oQ Qs Qs
then adding with respect to j and using the Product Rule, we get

lu|dH" ' < V1+ L2 | |Du|l+c [ |u|da, (I11.11)
N Qs Qs

with ¢ = (ZJ max|Dq§j\> +2/0. Since ¢; is assumed to be a partition of unity,
then for any x € Q we can form a neighborhood U of = were ¢;(z) = 0 for all but

finite j. Additionally, 6 > 0. Therefore, ¢ < oc.
Lemma II1.0.2 If 1 —|a|V1+ L? > 0, then F is bounded below in BV ().

Proof. Notice (II1.11) is of the form |z| < p, which is equivalent to —p < z < p.

Therefore, (II1.11) is equivalent to

—la|V1+ LQ/]Du\ - ]a\c/]u\ dx < a/ wdH" !
Q Q o)

(IIL.12)
< \a]\/1+L2/|Du\ + \a|c/|u]dx
Q Q

Using the left inequality of (II1.12), together with the fact that



|Du| < /1 + |Dul?, we obtain
}“(u):/\/1+|Du|2dx+/<;/u2d:c+a/ wdH™
0 Q B

Q

> (1—|a|\/1+L2)/\/1+|Du|2dm+/€/u2dx—]a|c/\u|dx
Q Q Q

2,2
> (1 — la]v1+ L2) / V1+|Dul?dx — CL2—Cmeas(Q) + g / u? dz
Q k Q
2,2
> —%meas(Q) > —00.
(IT1.13)
l

Lemma II1.0.3 If 1 — |a|v1+ L? >0, {u;} C BV (), u € BV(Q) with

lim /|uj —u|dx =0,
j= Jo

and u; — u a.e, then F is lower semicontinuous.

Proof. In order to show our desired result, we subtract lim inf; F(u) from both

sides to obtain

F(u) — {limjinff(uj)} <0.

Using the fact that liminfg(ay) = — limsup,(—ax), we get

lim sup [F(u) — F(u;)] <0, (I11.14)

J

which we will use to show our conclusion. From (III.11), we have

a/ wdH ! —a/ u; dH™ 1
a0 0

< la|V1+ L? [/ \Du]dx—i-/ |Duj\dx]
Q. Q.

+ |a|c/|u — | dz,
Q
(LIL.15)



where Q. is given in (II[.4). Therefore,
F(u) — Flu; S/ 1+ Dqux—/ 1+ Du-2dac+/<;/ u? —u?) dx
()= Fuy) < [ VIFDuRar— [\ puarn [ (@)
+ |a|V/1+ L? {/ |Du|dm—/ |Duj\da:] —|—|ac/|u—uj|dac
Qe Qe Q

S/ Vl—HDuPdm—/ \/1+Du]"2d(£+l€/ (u* — u3) da
Q—Q. Q—Q. Q
+(1+|a|\/1+L2)/ \/1+|Du|2dac+|a|c/ lu — uj| de.
Qe Qe

(111.16)
Sending j — oo, since u; — u a.e, we have the following:
/ vV 1+ |Du|?dx — \/1+ |Du;|?dz — 0,
Q-Q. Q-Q.
n/ (u* —uf) dz — 0, (IIL.17)
Q

|a|c/|u—uj|da: — 0.
Q

Therefore we obtain

limsup [F(u) — F(u;)] < (1 + |a|v1 + L2> /Q V' 1+ |Dul?dz. (II1.18)

j—00

As € > 0 arbitrarily, the integral vanishes as ¢ — 0 and we obtain (II1.14), as

desired. -

Theorem I11.0.4 If 1 — |a|v/1+ L2 > 0, then there exists a ug € BV () so that
for any u € BV (), F(up) < F(u).

Proof. By Lemma II1.0.2, we see that F is bounded below, so we can form a
minimizing sequence {u;} C BV (2) and a subsequence {u;,} which converges to
some u € BV (). By Lemma II1.0.3, F is lower semicontinuous with respect to
this minimizing sequence. Therefore our u is a minimal element for F, as desired.

10



IV. MASSARI

Massari’s paper [3] addresses the free boundary problem with three fluids, but no
solid. We define Q2 as before, and define E = (E}, Es, E3) to be the set of fluids

E;. In this case the energy functional is

3

FE) =3 (%- [ 1o

=1

Q o0

where ¢ is the gravitational constant, p; is the density, and [; is the adhesion
energy of liquid ¢ to 0€2. Additionally, define v;; to be the surface tension

between fluids ¢ and 7, and denote ~; to be the solutions to the linear equation
Solving the system of three equations gives

1
Y1 = 5(712 + Y13 — Ya3)
1
Yo = 5(%2 + Y23 — 713) (IV.3)

1
V3 = 5(713 + Va3 — V12)-

Lemma IV.0.1 Suppose the following:
(i) {E"} is a sequence converging to E
(ii) ¢, is the characteristic function of E;; in particular 33 ép, = 1

(iii) The index i in {E;}3_, is labelled so that 51 < By < S3.

11



Then

3
;@‘ /BQ(¢E¢ — Gpn) dHL < Z |8; — Bl /m(ﬁf)Ej — ¢Ef) dz. (IV.4)

7=13

Proof. Use (ii) to obtain

2 /8 (6, = ey " = /8 (68, + 02, = 1) = Gy + 0y — D]
- / (65, — b, — Om,) — (D51 — by — D) AH

o0N

/89[(¢E1 — o) — (9B, — dpp) — (6, — dpp)| dH ™.

(IV.5)

Multiplying both sides by /3 and using (iii), we obtain

261 /89(¢E1 — ¢pn) dH < By /89[(¢E1 — Gpn) = (D5, — b)) — (DBy — Ppn)] a1

(IV.6)

Adding S5 [, (dE, — Pgn) dH"! to both sides, and rearranging terms, we then

have

_ N n—1 _ N n—1 _ . n—1
B /a (05, — 05y dH™ 4 /a (0, — Opy) AR 4 /a (6r,— by A
o N n—1 . N n—1
< {52 /89(¢E1 Gpn) dH b /{m(ﬁbEl Gpn) dH }
_ N n—1 _ _ N n—1 ]
|60 [ @n = om)an o [ (0n, - omp) e
(IV.7)

Use (iii) on the right hand side of (IV.7) to obtain the desired inequality (IV.4). m

Theorem IV.0.2 Suppose the hypotheses of Lemma IV.0.1 hold. In addition,
suppose OS) is Lipschitz with coefficient L, v; > 0,v; +7; > 0, and

12



Then F is lower semicontinuous.

Proof. Let e > 0, F C Q. By (IT1.11) we have
b dH™ < V1+ L2/ Do + c/ o d, (IV.8)
8Q QE Q€

Now by definition of F, and rearranging terms, we obtain

3

F(B) - F(B) =3 (% [ 1o

=1
3

—Z (%/|D¢E{L| +gpi/96n¢Egl dx‘i‘ﬂi/ Pph dHnl)
i=1 Q Q Q

3
= ; [%’ (/{;‘D¢Ei - /Q’D(bE;L‘) +9Pi/9xn(¢Ei — ¢pn) da

i=1
+05; /Q(¢E - ¢Eih) dHn_l] .

+ 9pi / Tndp, dx + B; / (030} d”H"l>
Q Q

(IV.9)
We now proceed term by term. For the first term, we have:
3 3
S (/|D¢Ei - /|D¢E;L\) ~S (/ Dox|~ [ 1Dop
i=1 Q Q i=1 - @S (IV.10)
+ [ 10os] - [ Do)
Qe Qe

The second term (gp;) is unchanged. Finally, we treat the third term by Lemma

IV.0.1 and equation (III.11). First, we use the fact that

%/IchEil Z%/ |D¢Ei|+%‘/ Do, | (IV.11)
Q O\ Q.

13



to obtain

3

F() - 5" = Y- i [ 100

=1

_/|D¢Ef|) +9P¢/In(¢Ei — ¢pn) dx
Q Q

+5¢/{2(¢Ei - ¢Eih) dHnl]

+gpi/§2xn(¢E¢ - ¢Eih) dx}
s [ﬂ I8, - ul [ Do

=13

HVIF TS, - 8 =) [ 1D

el =l [ (05, — om) o+ [ Doy,

(IV.12)

To show that the right hand side of the above inequality vanishes as h — oo, we

again treat it term by term:

(1) [o_q |Dog,| is lower semicontinuous, so
€

Vi (foQ Dok,

- f9795|D¢E{L‘> <0as h— oo.

(il) i Jo |Dém,| and |8; — Ba| [, |Dér;| also vanish as e — 0, since Q. — .

(ili) [, 2ndp, is continuous with respect to our sequence {E"}, so both

991 Joy 7065, — b dz and €|; — Bl fo, (65, — dpn) d — 0 as h — oo,

To satisfy the definition of lower semicontinuity, it is sufficient to prove

lim sup[F(E) — F(E")] < 0.

h—o0

14



Therefore it remains to show the following:

hmsup{z [¢1+L2|Bj—52|—w}/9|D¢E;|—72/Q |D¢Eg|} <0. (IV.13)

h—o0 =13

Now this is trivial if ; > |5; — (2, so instead suppose v; < |51 — [2| = B2 — fi.

By rearranging terms, and the assumption v, +v; > V1 + L?|5; — (;], we obtain

(VIF TS -2l - ) [

Q

|D¢E]h| _72/ |D¢E]h|
€ QC

i—1,

<

3
m(52 — ﬂl) — ’Yl] /Q |D¢E{z| + [m(53 - 62) - 73] /Q ’D¢E§“

+ 72 [26|D¢E§|
= [VIF T8 = B) =] [ 1D =655 — 6
+ [\/1—1—[/2(53 — B2) _73] /Q Do “‘%/Q [ D¢
= [\/1 + L2 (B2 — B1) —m —72] /Q D
+ [\/1 + L2(Bs — 1) —m —’73] / ‘D¢E§L|
Qe
< VIF L6~ el = 5~ fa) | Doy

+V1+ L2(|Br — B3| — B — 53’)/9 Dol

(IV.14)

Thus F is lower semicontinuous. n

15



V. BEMELMANS, GALDI, AND KYED

A recent paper by Bemelmans, Galdi, and Kyed [1] solves the energy
minimization problem in the case of two fluids and one solid. Here, the energy

functional is given by

F(B) = a / Déul+ 8 [ éwdr ' +7 [ gpdmr
O\B 20 oB

+ pg/ Tn@p dr + Pog/ Ty, dx
Q\B B

Where Q := G x [0, p| is a bounded cylindrical container in R?, B is the solid, «

(V.1)

is the coefficient of surface tension,  is the adension energy of the fluid on the
container, p is the density of the solid, ¢ is the gravitational constant, and 7 is
the adhesion energy of the fluid on the solid. In general, we denote B = B(c, R),
where c is a translation in R? and R is a rotation. We wish to minimize F in the
class of elements

C:={(¢c,R,E)|c € R*, R € SO(3) such that B(c, R) C &;

(V.2)
E C Q\B(c, R)measurable with ES(E) =Vo},

where SO(3) denotes the set of rotations about the origin in R3. First, we need
to prove an analogue of Emmer’s equation (III.11) for the case where the solid
touches the boundary of the container, since now the boundary may no longer be

Lipschitz, as illustrated in figure V.1.

16



Figure V.1: A cusp is highlighted here. The domain of the fluid is non-Lipschitz at such
a cusp.

To mitigate this problem, we first require 9 to be of class C?, and B(c, R) to
have a projection P(c, R) into € so that

. K 8P R / > " K 897 /. V.3
RESO(;):EIzl’IéaP(C,R) ( (C, )7$) maxqg con ( 1») ( )

where K (a,b) denotes the curvature of curve a at the point b. This constraint
ensures that if B and 02 touch, then the point of contact is at only one point py.
In a neighborhood U,, of py, we can describe 02 by the graph of a function

ps = w(p1,p2), and OB by ps = B(p1, p2), where (p1,p2) = p’ € R? with

(0,0) = po. Notice that B(p') > w(p’), with equality only on the origin. Also
notice the necessity of B and 0f) touching at a single point: we later integrate w
and [, which would not be possible if the point of contact was instead a line as
then w and 8 would not be continuous.

Our proof of Lemma II1.0.2 breaks down when we use €2, strips of constant

width. Instead, we will now use strips of variable width. To that end, we fix an

17



e > 0 and define

PR i) — w(p) < 3e
T(p') =
1 ifB(p) —wp) = 3¢
B(6) = {p = (', ps)lps = B(W) — 67 ()} (V.4)
w*(6) ={p= (¢, ps)lps = w(p') — o7 (y)}
B! = Use(0,08%(0)

QF = Use.ow™(9)

These last two sets form “strips” of variable length, of 1/3 the local distance from

0 to B, and they will replace Q. in our version of (III.11):

Lemma V.0.1 Let 02 and B touch in one point as described above. Then for

u € BV(Q\B),
/ wdH" ' <V1+ L2 | |Du|+ c/ udz. (V.5)
99NUe, Q: Qe

Proof. Let 6 € (0,€), us be the trace of u on w*(d), and ', = 02 N U,,. We use

the triangle inequality to obtain

J:

We estimate the first term on the right hand side by |Du|, using the definition of

udH"! §/ \u—u(;]dH”1+/ |us| dH" ! (V.6)
FEO FEO

0

18



the Hausdorff integral and a boundary change:

u — ugl A < / (s w(y') — uly,w(y) + 67y )T+ 1Dl dy

Teq Aeq

y)+67(y’) ou

<m/ / dys

(v, t) dt dy’

< V14 L? | |Dul.
Qg

(V.7)

We also use the definition of the Hausdorff integral on the second term of the

right hand side of (V.6), as well as adding 0 in the form

[ 1ty wty') + S )V TH DA + 5 NP dy
Aeo (V.8)
- / u(yw(y) + 57 )|/ + D@ ) + 0r (@) dyf

€0

to obtain

/F s ()| A = / (e, w(y') + 675" )|/ T 1D@(F) + 6r (7)) E dy/

0 €0

; / [u(y/, w(y) + 0r(y )] [V1+ [Deo(y)P

€0

~ VI+DW(y) +or ()P dy
(V.9)

Now, integrate the right hand side of (V.9) with respect to 6 € (0,¢€). The first
term is the definition of the surface area for A.,. After integrating with 6 € (0, ¢€),

we obtain the volume of a variable-width strip. This volume is given by [, |u| dy.

Similarly, the second term becomes C' [, |u| dy. We now integrate (V.6) with

respect to 0 € (0, €) to obtain

6/ wdH" ' < eVl+ L2/ | Du| + C’E/ |u| dx, (V.10)
r

€0 Qe* ¥
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with C. = 1 + C. We therefore obtain (V.5). "

Theorem V.0.2 Assume 0B(c, R) and 092 touch in alt most one point. Let
a, p, po, B, 7 € R such that
p>po>0,a>0a—|FvV1—L*<0,a—|7|V/1+ L? > 0. Then there exists an

element (co, Ro, Eo) € C such that
F(co, Ro, Eoy) < F(c, R, E) for all(¢, R, E) € C. (V.11)

Remark V.0.3 Recall that

F(E) = a/ |Dég| + B GpdH"™ + 1 dpdH™ !
Q\B o0 oB

+ ,09/ Tn@p dr + pog/ T, dr
O\B B

Proof. We first show that F is bounded below in C. By assumption a > 0, so the
first term is bounded below. For the second term, consider both the part of €2
covered by U,,, if it exists, as well as the part outside of the point of contact. For

the former, we have by Lemma V.0.1

8 owaw = —VIT L [ 1Dosl~ 1l | onde.

99NUe,

For the part of €2 outside the point of contact, we have

8  épdnr' = —|BVIF I \DabE!—c’/ opdr.
Q\Uey Q\Uey

I'\Uq,

In both cases, the first term is maximized by

o / Do,
Q\B
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and the second is finite since
/Q* ¢pdr < LY(E) =Vj.
For the third term of F, we have
7'/ ¢ppdH" ' > —|7||0B| > —c.
OB

Finally, the last two terms are clearly positive by nature of g.

Therefore F is bounded below, and thus there exists a minimizing sequence
{(Cy, Ry, E,,)} from C. We now need to prove that this sequence is bounded in C.
We may assume that F(C,, R,, F,) < mg+ 1, and due to the boundedness of

the pg, pog, and 7 terms, we have
a/ |Dég, | + BONGE, dH" ™ < mo+1+cy.
O\B
Using (V.5) we get
(o — |B)V1+ L? |Dog, | < mo+ 1+ ¢ + V.
O\B

Due to the assumptions on «, 3, V', we get

[tarom|VaRes) -I—/ Do, | < C.
O\B

Therefore ¢p, is bounded in BV (2). Now the values of R,, belong to a compact
set, so R, is bounded for all n € N. Finally, the x1, x5 component of ¢, are

bounded by diam(f2), and x3 is bounded by

pog/xsdﬂcémo+1.
B
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Therefore our sequence {(c,, R,,, E,)} is bounded, so there exists a convergent
subsequence, which we again denote {(c,, R,, E,,)} for simplicity. Finally, we now
claim that F is lower semicontinuous with respect to our convergent sequence.
First, B(c,, R,) converges uniformly to a B(co, Ry), so the integral pog [, x5 dz is
continuous. Also, the integrand x3¢pg, (x) in the pg term is non-negative,
therefore the integral is lower semicontinuous via Fatou’s Lemma.

Finally, in order to compute the traces of ¢p, and ¢g, on OB, we set E/ =T, E,,
where T, denotes the interpolated motion mapping B(c,, R,) to B(co, Ry). This
E! generally is not an element of C, nor even a subset of 2. However,
restricting(¢p; — ¢g,) to OB allows us to estimate using (V.6). It is then

sufficient to show the lower semicontinuity of

Ale,R, E) = a/

|Dop|+ 5 | opdH" 7t +7 | ¢pdH™ "
O\B o0

oB

Using

7'/ ¢Eo d%n_l - 7'/ ¢En d%n_l = T/ ¢E0 - ¢E6 d%n_l,
9B(co,Ro) 0B(cn,Rn) 0B(co,Ro)

as well as (V.6), we have

A(007 R07 EO) - A(Cna an En)

Sa/ |Dmu+a/ wmm+a/WDMA
Q\ (B (co,Ro)UNQ}) B (co,Ro) Qr

—af Do —a [ Doml-a [ Dosl (v
O\(BZ (cn,Rn)UQY) B (cn,Rn) Qr

+|B|vV1+ L2 Q*’D(¢Eo_¢En|+‘6’0/g*’¢Eo_¢En’dx

VTR [ D6s ol 418l [ o~ o ds

co,Ro) B (co,Ro)

Now we use the following on (V.12):
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1. (|6|\/1 + L2 — a) fﬂé‘

D¢pg,| <0 for all n € N by assumption.

¢E() - ¢En

2. Since E,, — Fy, then |B|c [,,. dr — 0 as n — oo, for all € > 0.

3. Similarly, using the triangle inequalty results in [, (o R0)|¢EU — ¢p | dx

< fB:(co,Ro)|¢E0 — ¢p,|dv + fB:(co,Ro)|¢En — ¢, | dz, and both integrals

vanish as n — oo.

4. The Hausdorff measure H? is invariant under rigid motions, therefore

ITIVI+ L2 im0y PO = fie e, 00 | PO

<0.

5o 0 g (oo 5) | POE | & Joe (e 1y | PP | are of order O(e), for all e > 0.

6. fQ\BZ(CO,RO)|D¢EO| S llmlnfn—)oo fQ\B:(Cn,R")|D¢E7l .

With these applied to A, we obtain the lower semi-continuity of A, and thus of
F, as desired.
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VI. NEW PROBLEM

We consider a bounded cylindrical container Q := G x [0, p|, where G is a
bounded, simply connected domain in R?. € is filled with three liquids: we
denote the domain of each fluid by E;,7 = 1,2, 3. The density of each fluid is
given by p;. In addition, there is also a rigid body B with density py floating
inside €2. The interface between each fluid is assumed to be governed by surface
tension. If we denote the surface tension between fluids ¢, j by «;, then we will

consider the “surface tension coefficient” of each fluid by
1
Q; = 5(0&@' + qup — @jk), (VIl)

for i, 5,k = 1,2, 3 mutually distinct.The energy of the system (2 is assumed to be

the following:
e g, the gravitational constant,

e the adhesion energy between fluid 7 and the boundary 02 of the container,

given by [;,

e the adhesion energy between fluid 7 and the surface 9B of the solid, given

by 7;.

We study the energy functional in the case where each fluid region is represented
by a Caccioppoli set: each fluid’s characteristic function is of bounded variation.
Let B(c, R) :={y = ¢+ Rz : x € B}, where ¢ € R® denotes a translation and

R = R(d,0) € SO(3) describes a rotation with respect to some axis with unit
vector d about some angle #. The quantities ¢, R are restricted by requiring that

the floating body is contained in Q. We additionally assume that B(c, R) is a
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closed set. Then E; C Q\B(c, R) measurable, so denote V; = L3(E;) to be the
volume of each fluid. We also define E' = {Ey, Fs, E3}. Lastly, we shall use the

notation (z/,x,) for x € R3. The energy functional is then

3

i=1 G\B(c,R) G\B(c,R) (V1.2)

oN oB B(c,R)

where

/ |Dog,| == sup {/ ¢, div(g)dz : g € CL(G\B(c, R);R?), [|gllco < 1}
G\B(c,R) G\B(c,R)

denotes the total variation of ¢g,, the two integrals 02, OB denote the area of
the wetted part of the container and the solid respectively. We prove that there

is a minimizing configuration (B(c, R), F) to F in the class

C :={(¢,R,E) : c € R*, R € SO(3) such that B(c, R) C G, (VL3)
VI.3

E; € G\B(c, R) measurable with £3(E) = V,}.

We procced via a combination of Massari’s proof [3]| of the case where there is no
solid, and Bemermans, Galdi, and Kyed’s approach [1] in the case where there
are only two fluids. Both of these in turn are based on Emmer’s proof of the
two-fluid, no-solid problem [2]. We begin by establishing a lower bound on F,
then forming a minimizing sequence of (E;, )7 ,. We then prove that F is lower
semicontinuous with respect to this sequence. In proving lower semicontinuity of
F, we use an adaptation of Emmer [2]. Emmer’s original lemma fails in the case
when B and 02 touch, as the boundary of the fluids may not be Lipschitz.

Instead, we require 92 to be of class C? and B(c, R) to have a projection P(c, R)
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into GG such that

min K(0P(c,R),z") > max K(09,2). (V1.4)
RESO(3),2/€dP(c,R) EE)

This restriction ensures that all possible rotations of B give a projection
curvature strictly larger than that of G, so if our solid and container touch, then
they only touch at a single point py. Then for a neighbood U, of py, we can
describe the boundaries 0€2 and 0B by the graphs of the respective functions

ys = w(y1,y2) and y3 = B(y1,y2), where (y1,92) € A, C E are cartesian

coordinates with center y{, = (0,0) in the tangent plane to py, A, is the domain

€0

of both w and 5. We then have 5(y') > w(y/) for all ¥’ € A,,. Fix ¢ > 0 and

define the following:

/ BEOS®) i f3(p) — w(p') < 3e
T(p') =
1 ifB(p) —w(p') = 3e
B7(0) :={p = (), ps)lps = B(p') — 07(y)} (VL5)
w*(0) :=={p= (¢, p3)lps = w(p') — 07(y)}
B: = Uée(o,e)ﬁ*(é)

G: = U(;G(O,E)w* (5)

These last two form strips of variable length that we use instead of Emmer’s

original fixed-length strips:

Lemma VI.0.1 Let 09 and B touch in one point as described in (V1.4). Then
for uw € BV (Q\B), we have

/ wdH" ' <V1+ L2 | |Du|+ c/ udz, (VI.6)
20NUe, Gt G
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/ wdH" ' < V1+ L2 | Dul| + c/ udz. (VL.T)
0B(c,R)NU¢,, Bi(c,R) Bi(c,R)

Proof. We begin by showing that the strips B and 2 are locally Lipschitz at py.
By assumption both w(y’) and 5(y’) are regular, therefore Lipschitz. Let L be an

upper bound for both |Dw| and |Df|. Then near py we have

Dr(y) = 22 (y’)3—€ Dety) o 23—5 (VL8)

Since w(y') and B(y’) are regular, we can force L < € by covering w(y’) and 5(y')
by some appropriate open cover O. We then have D7(y’) <2/3 < 1 for all

y' € A.,. Now that we have established an upper bound for Dw(y’), DB(y'), and
Dr(y') for all y' € A, we can then find an upper bound for D*(0) and Dw*(6)

for 6 € (0,¢). Therefore the strips B and € are Lipschitz.

Next, let § € (0,¢€), us be the trace of u on w*(d), and I',, = 02N U,,. We use the

triangle inequality to obtain
/ ud?—[”1</ lu— ug| M + / g | A (VT.9)
Te T,

We estimate the first term on the right hand side by |Du|. Using the definition of

the Hausdorff integral, we get

/ gl A < / (s () — uly'w(y') + 7))/ T D dy.
T. A
' ' (VL10)

and by using the Lipschitz property of w(y’), we have

/\u<y',w<y'>>—u<ycw )+ 67y ) V1 F 1Dy ) Py

Ac

’ (VL.11)
<VITI? / e, () — uly, () + 57(y))] dy.
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By the Fundamental Theorem of Calculus, we obtain

VIt / e/ oly)) — uly's () + 6r(y'))| dyf

y)+o7(y)

<Vit L2/ a“ (v, 1) dt| dy
v (VL12)
467 (y au
<\/1+L2/ / (y’,t)'dtdy’
) 3?/3

<V1+L? [ |Dul.
Ge

Use the definition of the Hausdorff integral on the second term of the right hand

side of (VI.9), and add 0 in the form

/ u(yw(y!) + 67(¢)) VI T 1D(@(y) 67 (7))P dy/
Ao (VL13)
- / (e, w(y) + 67 )1+ D@ () + 07 (@) dyf

€0

to obtain

/F s ()| AH Y = / (e, w(y) + 57 )1+ D@ () + 07 (@) P dyf

€0 AEO

+ [t sty)) + 7)) [VIF D

€0

— VI+ID((y) +or)P| dy

(VL.14)

We now integrate the right hand side of (VI.14) with respect to § € (0, €). Before
integrating, the first term is the definition of the surface area for A, . After
integrating with respect to  from 0 to €, we obtain the volume of a

variable-width strip, given by [,

u| dy. The second term is also surface area, but

shortened proportionally to d7(y’). By the same logic as before, the second term
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becomes C' [, |u| dy. We now integrate (VI.9) with respect to ¢ € (0,€) to obtain

e/ wdH" ' < eV1+ L2/ | Du| + C’E/ |u| dz, (VI.15)
r o G

e*

€0

with C. = 1 + C. We therefore obtain (VI.6). Equation (VI.7) can be proven

similarly. [
Lemma VI1.0.2 If o, pi, po, Bi, 7i € R such that

pi =0, po >0,
a; >0, o + a; > 0, (V116)

a; +a; > V14 L2 — B,

and 0B(c, R) and 02 touch in at most one point as in (V1.4), then F is bounded

below.

Proof. Index each fluid so that the f3; are in increasing order. Then, from Lemma

VI.0.1 we have, near the point of contact,

5 / bp, dH™ > |GV L2 / Do | — |8l [ b5, de.
20N, Gx Gx

Away from the point of contact, 7(y') = 1, and our strips GF become G \U,,,
which have constant width. Then Lemma VI.0.1 becomes Emmer’s original

lemma [2]:

5[ omaw = —aVIFE [ |Dog|~¢ [ onds
M\Ug G\Ue, Ge\Ueg

In the right hand side of the previous two inequalities, by the assumption
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a; +a; > 1+ L2?|5; — G|, the first term is maximized by

Oéi/ |D¢Ei|v
G\B

. The second is finite since

— | ¢p dv > —L3(E;) > —L*(E) > —o0.
Ge

For the third term of F we have

T | ¢m dH"H > —[n]|0B] > —oo,
oB

and the last two gravitational terms are clearly bounded below by some r < 0.

Therefore F is bounded below. m

Lemma VI1.0.3 Define

3

A(e, R, E) := Z [ai /G\B|D¢E

=1

+ 6@ (bEZ dHnil + Ti (bEz dHn1:| .
i) oB
(VL.17)
Suppose that the hypotheses of Lemma VI.0.2 are satisfied. In addition suppose
that we have a sequence {(c;, R;, E;)} C C and a (co, Ro, Ey) € C with

(Cj, Rj, EJ) — (CQ7 Ro, Eo) a.e. Then A(Co, Ro, Eo) < lim iIlfj A(Cj, Rj, E})

Proof. In order to show our desired result, we subtract liminf; A(c;, R;, E;) from

both sides to obtain

A(Co, Ro, E()) — llIIllIlf A(Cj, Rj, EJ) S 0.
J

30



Using the fact that liminfg(ay) = — limsup,(—ax), we get

lim sup [A(co, Ro, Eo) — Alcj, Ry, Ej)] <0,

J

which we will use to show our conclusion.
Note that the (; terms are labeled in increasing order, so that g; < By < B3. We

then obtain the following:
A(Co, R07 Eo) — A(Cj, Rj, Ej)

3
- : Dopo| = D¢y i 0 — @) dH™!
;[a /G\B<| ¢ro| — | ¢Ei|)+ﬁ /m(@% (bEi) H

) 0 — J n—1
+7; /QB(QSEZ ¢Ez)dH :|

3
<o fo ([ onl- [ pogl) +a [ 106
i—1 G\Qu G\Q: Ge

+ Y [VIF T -l [ Doy
k=13 “ (VL18)
+ (V1+ L?|Bx — Ba| — au) /*’D¢EQ|

G

+ el 5l [ oy - ogylde] +ax [ 106y
G Gt
S [\Wmm—m | Doy
B

k=1,3

+ (V14 L1 — 7| — ak)/ D |
Bt

+c| Tk —T2’/ ‘¢E2 —¢Eiyd4 +ay [ Dol
B F Gr :

Note that if we did not assume the 7; were ordered, we could replace the last
sum in the right hand side of (VI.18) with a different sum that excludes the
middle 7;. Therefore, without loss of generality assume that 7y < 7 < 73, as we
have for the § terms. We now show that the right hand side of (VI.18) vanishes

as j — 00. As € — 0, then:
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e As j — oo, we have E/ — EY, s0 a; <fG—GJD¢E?

~ o 1Dow)

vanishes.

e Similarly, both gp; [, 70 (dp, — ¢pr) dv and c|B; — Ba| [, |65, — ¢pn| dz — 0

as j — o0
° fG€|D¢Ei| and |5; — Ba fGe\DngE].| clearly vanish as € — 0.

Therefore, it remains to show the following:

hmsup{z [(\/1+L2]6k—52\ —Oék> /G*’D%;i\] +Oéz/G |D¢Eg!

h—o00 k=13
k=1,3 Bt Ge
(VI.19)

This is trivial if oy, > |8 — 52|, so instead suppose v1 < |81 — 2| = 2 — B1. By
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rearranging terms, and the assumption a; + o; > 1+ L?|3; — 3], we obtain

> <m|5g‘ — Pl —ak> /G Do | _O‘Q/G D6

k=1,3
- [m(ﬁz — ) — 041] / ‘D¢E{| + [ 1+ L*(B83 — fB2) — a?’] / ‘D¢E§|
Ge Ge
+ay [ Doyl
Ge

= [\/1 + L2(By — 1) — 041] /G |D(1 — (bE; - ¢E§)|

+ [VIF TR~ 8 -] [ 1Dons] +u [ Do
- [VIF TR — 5) - -] [ Do

Ge
+ [\/1 + L2(Bs — 1) — o — 043} / |D¢E,§|
Ge '

< VIF L8~ fal = 1= ) [ 1D

+ V1 + LA([B1 — Bs| — B — Bgl)/c D¢
= 0.

(VI.20)

This takes care of the first sum of (VI.19). The second sum is handled in the

same way. Therefore A is lower semicontinuous. [

Lemma VI1.0.4 Suppose that the hypotheses of Lemma VI.0.3 are satisfied.
Then .F(Co, Ro, E()) S lim infj ]:(Cj, Rj, EJ)

Proof. By assumption B(c, R) is a rigid object, and by hypothesis we have a
convergent sequence (c;j, R;, Ej) — (co, Ro, Ey). Thus B(c;, R;) converges
uniformly to B(co, Rp), so our pgg term is continuous by the Uniform Limit
Theorem. For the p;g terms, the integrand is non-negative, therefore the integral
is lower semicontinuous via Fatou’s Lemma. We then only need to show the

lower semicontinuity of A(c, R, E), which follows from Lemma VI.0.3. n
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Theorem V1.0.5 If «y, p;, po, Bi, i € R such that

pi >0,p0>0,0; > 0,04 + ;> 0,0; +; > 1+ L2|B; — B4, and OB(c, R) and
082 touch in at most one point as in (V0.4), then there exists a (co, Ro, Ep) € C
such that for all (¢, R, E) € C,

F(co, Ro, Eo) < F(c, R, E).

Proof. By Lemma VI1.0.2, F is bounded from below, and we can form a
minimizing sequence {C}, R;, E£;} C C. We may assume that
F(Cj, Rj, E;) < mg+ 1, and due to the boundedness of the p;g, pog, and 7,

terms, we have
O‘i/ |D¢p, | + 000, dH" ' <mo+14c1.
G\B
Using (VI.6) we get
(a; — [Bi[)V1+ L? Do, | <mo+1+cp+cVh.
G\B ’

Due to the assumptions on «y, 5;, V', we get

168, L1 @) +/G\B]D¢Eji| <0, i=12,3. (VI.21)

Therefore ¢p,, i = 1,2,3 are bounded in BV (€2). Now the values of R; belong to
a compact set, so |R;| is bounded in R for all n € N. Finally, the 21, 2,

component of ¢; are bounded by diam(G), and x5 is bounded since

Oépog/ w3dr < mg+ 1,
B(cj,R;)

and everything but x3 is fixed.
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Therefore our sequence is bounded in the sense that |c;| + [R;| + ||¢g, || v < C
for all n € N. Since our sequence was a minimizing sequence, we can form a
minimizing convergent subsequence, which we again call {(¢;, R;, E;)}. By
Lemma VI.0.4, F is lower semi-continuous with respect to this sequence, hence

the sequence converges in C to some (cg, Ry, Ey), as desired. [
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