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CHAPTER I 

INTRODUCTION 

In this thesis, we give certain sufficient conditions for a continuous function from a 

closed orientable surface into itself to have a fixed point. To accomplish this, we will 

apply the Lefschetz-Hopf fixed point theorem, which relies on the computation of 

traces of a continuous function's induced endomorphisms on the surface's homology 

groups. We thereby arrive at the following two theorems. 

Thorem 2 .. 1. Let f: 1]_\ ----+ 11\ be a map. Write m = tr h, and suppose x, y E Z. 

Then f has a fixed point if any of the following conditions are met. 

• Case 1. m = 0 and .X1 + .X2 =/. l. 

• Case 2.1. m = <let Ji = .X1.X2, .X1 =/. 1 and .X2 =/. 1. 

• Case 2.2. [Ji]= ( Ai Ai), m = detfi, A1 -=f 1 and tr Ji-=/- 1. 
1- A1 .X2 

• Case 2.3. [!1] = ( .Xi y ) , m = det Ji, and .X1 ± y =/. 1. 
y .X1 

• Case 2.4. [Ji] = ( x 
(-l)k 

(-l)k) 
xy 

1 

, m = <let Ji, and y =/. 1. 
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Theorem 3 .. 3. Let f be an orientation-preserving self-map of 1I'9 , where g E N. If 

for each 1 ::; i ::; g, f 1(ai) = a3 and fi(bi) = b3 for some J -=f i, then f has a fixed 

point. 

We then examine whether these conditions are realizable, providing examples of 

classes of maps which can be shown to have fixed points. 

In Chapter II, we discuss the preliminaries needed to understand the main result of 

this thesis. Notation for basic concepts from algebra and topology are established 

in Section 1.. Definitions for homology theory are given in Section 2., where the 

Eilenberg-Steenrod axioms and the Barratt-Whitehead lemma are also stated. Section 

3. presents the idea of a closed orientable surface, paying closest attention to orientable 

surfaces. The classification theorem for closed surfaces without boundary closes the 

section. In Section 4., the homology groups of all closed orientable surfaces without 

boundary are computed. 

Our main results, Theorem 2 .. 1 and Theorem 3 .. 3, are proven in Chapter III, which 

is divided into three sections. The first dispenses with the (simple) case of the sphere, 

and gives the well-known result that a map 8 2 -► 8 2 has a fixed point if it is not 

homotopic to the antipodal map x 1-7 -x. The second and third sections state con­

ditions for a map from a torus of genus g = 1 and g > 1, respectively, to have a fixed 

point. We prove in those sections that the conditions given are indeed sufficient. 



3 

The final chapter demonstrates that the conditions of Chapter III are realizable by 

certain maps. We do this for the torus of genus 1 chiefly by providing examples of 

maps which realize the conditions given in Theorem 2 .. 1. The case where g > l is 

dealt with in Section 2., where we discuss the constraints placed on maps in Theorem 

3 .. 3, our main result for this case. 



CHAPTER II 

PRELIMINARIES 

This chapter gives the algebraic machinery and topological background material 

needed in the sequel. Once general notation has been established, we give the stan­

dard axioms for a homology theory and explain how these axioms will be applied 

in this thesis. In this section on surfaces, we introduce a few elementary examples, 

including the Mobius strip and the Klein bottle, and we state the classification theo­

rem for closed surfaces without boundary. We will then be prepared to compute the 

homology groups of all such surfaces up to homeomorphism. 

1. CONVENTIONS AND NOTATION 

Throughout this document, boldface type will indicate that a term or concept is 

being defined. When an idea is introduced without formal definition, we typeset it in 

italics. 

Definitions needed for the homology of surfaces may be found in any introductory text 

on algebraic topology. The references [26], [24], [7], and [18] are examples, arranged 

in order of increasing accessibility. Definitions from point set topology may be found 

in [7] and [9]. 

4 
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The symbol 0 represents the empty set. We write Z for the set of integers, and 

N = { n E Z : n ~ 1} for the set of natural numbers. The set z+ U { 0} will be denoted 

by No. 

Let (X, Tx) and (Y, Ty) be two topological spaces, and let f: X ~ Y be a function. 

If f is continuous with respect to the topologies T x and Ty, we call f a map from X 

into Y. If in addition Y = X, we call fa self-map of X. The identity map of a 

space Xis the self-map of X defined by x 1----+ x. If ACX, the inclusion map from 

A into Xis defined by a 1----+ a, and we replace the usual arrow with a hooked arrow, 

as in i : A c......-t X. The set of fixed points of a self-map f of X will be denoted 

Fix(!)= {x EX: f(x) = x}. 

If X and Y are two topological spaces, the notation X ~ Y means that the spaces 

are homeomorphic. 

If G and G' are two groups, the notation G ~ G' indicates that the groups are 

isomorphic. If r.p is an injective homomorphism from a group A into group B, we 

say that the image of r.p is an isomorphic embedding of A into B, noting that 

A~ r.p(A), since a function is by definition surjective onto its image. 

The ( external) direct sum of two abelian groups A and B will be written as 

A EBB= {(a, b): a EA and b EB}. 

Let A, B, C, D be four abelian groups. If f is a homomorphism from A to C, and g 

is a homomorphism from B to D, we define a homomorphism f EB g : A EBB ~ C EB D 
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by 

(J tB g)(a, b) = (J(a), g(b)) 

for each (a, b) EA fB B. If D = C, we define a homomorphism f - g : A €BB-----+ C 

by 

(f - g) (a, b) = J(a) - g(b) 

for each (a, b) EA fB B. 

The trace of an n x n matrix A with diagonal entries >-i, 1 ~ i ~ n is defined as 

tr A = E~=l >-i- In this thesis, determinants will only be computed for 2 x 2 matrices 

of integers, e.g. A = ( : : ) , so that we may define det A = ad- be. We shall also 

need the well-known result that the expression ldetAI = l(a,b,0) x (c,d,0)I is the 

area of a parallelogram in the xy-plane whose sides are the vectors ai + bj and ci + dj, 

where i = (1, 0) and j = (0, 1) are the standard unit vectors (see (21], I §7). 

We write ( u:) for a square matrix, where t~e subscripted index indicates the column 

and the superscripted index indicates the row of the entry uf. Let R be a ring, and 

suppose Mis a free R-module generated by 9i E M, 1 ~ i ~ s. The rank of Mis 

defined as s. A linear transformation <p : M -----+ M can be represented by an s x s 

matrix ( u:) with entries in R in the sense that, for any mi E R, 1 ~ i ~ s, 

~ ( t, m,g,) = t, m,~(g,) 

is the dot product of the vector (m1 , ... , m8 ) with the result of the matrix multipli-



cation 
Ul 

1 

Ul 
8 

uf 

us 
8 

We write [<p] for the matrix representing <p. 
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If X is a topological space, and A C X, we denote the interior of A by A O and the 

closure of A by A. The frontier ( or boundary) of A will be denoted by Fr A and the 

symbol a will be reserved for other purposes [9]. 

Unless otherwise noted, the remaining definitions in this section appear in [26]. 

A topological pair is an ordered pair (X, A), where X is a topological space, and 

A is a subspace of X. A map (X, A) ----+ (Y, B) between topological pairs is a map 

f: X----+ Y such that J(A) c B. 

Let (X, A) and (Y, B) be two topological pairs. Let Jo, Ji : (X, A) ----+ (Y, B) be 

two maps. A homotopy (X, A) ----+ (Y, B) from Jo to Ji is a continuous function 

H : X x I ----+ Y such that 

• H(X x I) CY, 

• H(A x I) CB, 

• H(x, 0) = J0 (x) for each x EX, and 

• H(x, 1) = fi(x) for each x EX. 

If there exists such a map F, we say Jo is homotopic (in Y) to Ji, and we write 

Let X and Y be two topological spaces. X and Y are said to be homotopy equiv­

alent if there exist maps J : X ----+ Y and g : Y ----+ X such that go J ~ lx and 
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fog c::'. ly. 

Let A and B be two subsets of a topological space X. We say that B is ( continu­

ously) deformable into A (over B) if the identity map of Bis homotopic in X to 

a map of B into A [9]. 

Let A be a subspace of a topological space X. A continuous map r : X ----t A such 

that r(a) = a for each a EA is called a retraction of X onto A. We call A a retract 

of X if there exists a retraction of X onto A. 

A deformation retraction of X onto A is a map H : X x I ----t X such that 

H(x, 0) = x for each x EX, H(x, 1) EA for each x EX, and H(a, 1) = a for each 

a EA. If H(a, t) = a for each (a, t) EA x I, then His called a strong deformation 

retraction. We call A a (strong) deformation retract of X if there is a (strong) 

deformation retraction from X onto A. 

2. HOMOLOGY THEORIES 

Loosely speaking, a functor on the category of topological spaces is a symbol F which 

denotes two functions, one that maps each space X to an "object" F(X), and one 

that maps each continuous function f : X ----t Y between two spaces to an "arrow" 

F(f) : F(X) ----t F(Y) between objects [5]. 1 

The method of applying a functor to spaces and maps between them is fundamental 

in the subject of algebraic topology. Typically one uses a functor to translate a 

difficult, perhaps intractable topological problem into an algebraic problem which 

can be solved more easily. In the early pages of his classic text on the subject [15], 

Greenberg explains how the famous fixed point theorem of Brouwer can be proved 

with little more than a pair of arrow diagrams ( one for maps between spaces, and one 
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for the corresponding homomorphisms between groups) and an appeal to functorial 

properties.2 In the present work, we shall reduce the question of whether or not 

certain classes of self-maps of surfaces have fixed points to the problem of finding 

values which make a multivariate polynomial with integer coefficients not equal to 

0. 

The casual reader may prefer to skim the remainder of this section, which is highly 

technical. However, it should be emphasized that the purpose of the admittedly 

formidable machinery needed for homology theory is to clarify the underlying issues 

which a generally stated inquiry may obscure. When used effectively, the machinery 

has the effect of drawing out what is essential. 

Let G', G, G" be three abelian groups, and let a G' -+ G and /3 : G -+ G" be 

homomorphisms. We call the diagram 

G' ~GLG11 

a sequence of three groups, and we say that the sequence is exact at G if 

Image a = Kernel /3. A collection { Gn, an} of abelian groups Gn and homomorphisms 

an : Gn -+ Gn-l indexed by the integers will be called a (long) exact sequence if 

every sequence of three consecutive groups is exact at its middle group. 

A graded abelian group C = { Cn} is a collection of abelian groups Cn indexed 

by the integers. Let C and D be two graded abelian groups. A homomorphism 

of degree e E Z from C to D is a collection f = {fn} of homomorphisms fn : 

Cn-+ Dn+e· If f is a homomorphism of degree -1 from C to C, and fn-I o fn is the 

zero homomorphism for each n E Z, we write Zn(Cn) = Kernel (8n) and Bn(Cn) = 

Image (8n+1)- The elements of Zn(Cn) are called n-cycles, and the elements of 
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Bn(Cn) are called n-boundaries. 

The following definition appears as in [26]. Let T denote the category of topological 

pairs and maps and let g denote the category of graded abelian groups and homo­

morphisms of degree 0. An homology theory is an ordered pair (H, 8), where His 

a covariant functor from T to g, and 8 is a natural transformation of degree -1 from 

the functor Hon (X,A) to the functor Hon (A, 0), provided that the Eilenberg­

Steenrod axioms are satisfied. 

The Eilenberg-Steenrod axioms 

Axiom 2 .. 1. (Homotopy) If Jo, Ji: (X, A)--+ (Y, B) are homotopic, then H(J0 ) = 

H(f1) : H(X, A) --+ H(Y, B). 

Axiom 2 .. 2. (Exactness) For any pair (X, A) with inclusion maps i: A~ X and 

J : X ~ (X, A), there is an exact sequence 

Axiom 2 .. 3. (Excision) For any pair (X, A), if U is an open subset of X such that 

U C A, then the excision map J : (X - U, A-U) ~ (X, A) induces an isomorphism 

H(J): H(X - U,A- U) ~ H(X,A). 

Axiom 2 . .4. (Dimension) If Pis a space consisting of one point, then H0(P) = .Z, 

and Hq(P) = 0 for each q-/= 0. 

If f : (X, 0) --+ (X, 0) is a map, we denote the function Hn(J) : Hn(X, 0) --+ 

Hn(X, 0) by fn and call the collection f* = {fn} the homology homomorphism 
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induced by f. We will only use the absolute homology groups, i.e. homology 

groups for pairs (X, A) with A= 0. Henceforth, we will not distinguish between the 

pair (X, 0) and the space X. 

In order to carry out calculations of the particular homology groups associated with 

a given space, it is often valuable to have at one's disposal explicit formulas for the 

homomorphisms between the groups to be computed. For the exact sequences we em­

ploy in this thesis, the next lemma (stated as it appears in appears in [15]) provides 

such formulas. 

Lemma 2 .. 5. (Barratt-Whitehead) Given a diagram of R-modules and homo-

morphisms in which all rectangles commute and rows are exact 

--+-C,+1 A, J. B, g. c. h, A J. i-1 - B,-1 

17•+1 j a, !A j ,. j~-1 [~•-1 
- c:+1 A' B' C' A~-l ~ B:_ 1 • 1: • g: • h' • 

if the ,. are isomorphisms, then there is a long exact sequence 

where 

r h -1 / 
i = i'Y g., 

and .6.(a) = (a, a), V(x, y) = x + y. 

g. 
C,-1-

1••-1 
g: c:-1-
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The sequence whose existence is assured by the next theorem is called a Mayer­

Vietoris sequence. It will be our tool of choice when we compute the homology 

groups of specific surfaces. 

Theorem 2 .. 6. (Mayer-Vietoris) Let X 1, X 2 be subspaces of a topological space 

X such that X = X1 U X2. Then there is an exact sequence 

where 

and i' : X1 n X2 <-+ X1, z" : X1 n X2 <-+ X2 are the inclusion maps. 

Proof. This result follows from the Excision Axiom via the Barratt-Whitehead lemma. 

See [26], [15]. □ 

Finally, we introduce the easiest method for computing homology groups. When a 

space X has a strong deformation retract A whose homology groups are known, the 

following theorem says that X and A have the same homology groups. 

Theorem 2 .. 7. 

1. Homotopy equivalent spaces have isomorphic homology groups. 
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2. If A is a strong deformation retract of a space X, then A and X are homotopy 

equivalent. 

Proof. See [24], §19. □ 

3. CLOSED SURFACES 

We now introduce the object of our study, the closed orientable surfaces without 

boundary, and additionally some of their more familiar (non-orientable) relatives. 

The goal of this section is to provide the needed background for the statement of the 

classification theorem for closed surfaces without boundary, with which the section 

concludes. 

Ann-manifold is a Hausdorff topological space X such that every point in X has a 

neighborhood homeomorphic to the open n-dimensional ball 

B" = { (x,);~1 :E Ill.": ~ t.~ < 1} 
in ]Rn under the usual topology. 3 We define a (closed) surface ( without bound­

ary) to be a compact connected 2-manifold.4 The typical example of a surface is the 

sphere 

S2 = {x E JR3 : d(x,O) = l}. 

Another familar example is the (hollow) torus, which we denote by 'Jf 1. (Note that our 

notation for the torus is not standard. The usual notation for a locally n-dimensional 

torus is 1rn. As we will only be dealing with 2-manifolds, we omit the superscripted 

local dimension, and reserve the subscript for the number of holes in the surface 
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A crosscap is a surface M homeomorphic to the image of the function f : [O, 21r) x 

[-1, 1] -----+ IR3 defined by 

J(u, v) = (x(u, v), y(u, v), z(u, v)), 

X ( U, V) = ( 1 + ~ COS ~ ) COS U, 

y(u,v) = (1 + ~cos~) sinu, 

V U 
z(u, v) = 2 sin 2. 

We call the image of f the Mobius strip. Inhabitants of a locally 3-dimensional 

universe can construct this important figure with a twisted strip of paper and a piece 

of tape as shown in Figure 11.1. 

0.5 _ 

~ 0.0 '. 

- 0.5 '< 

- I 

- I 

Figure II.I: The Mobius strip. 

The significance of the crosscap for topologists is that it appears as a subspace in all 

nonorientable surfaces, including the so-called Klein bottle K. In some sense, 1K 

is a twisted cylinder glued to itself along its bases. We show its three-dimensional 

projection (Figure 11.2, left). Given that the surface does not actually intersect itself, 

the Klein bottle is plainly the union of two crosscaps (Figure 11.2, right). 
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Figure 11.2: A projection of the Klein bottle in ffi.3 (left) , and a cutaway of that projection 
(right}. 

Like the Mobius strip, the Klein bottle does not enclose a cavity, and a normal 

vector traveling around the surface in the manner shown in Figure 11.2 flips upon 

returning to its starting point. Water poured into the opening at its top would exit 

the apparent cavity in the "bottle" after flowing halfway around the embedded Mobius 

strip. A surface is called nonorientable if it contains a crosscap as a subspace, and 

orientable otherwise. 

If we identify every pair of antipodal points along the frontier of a disk, we obtain 

a space known as the (real) projective plane IRP2
. In projective geometry, the 

projective plane is conceived as the set of all lines in IR.3 through the origin. Since 

such a line f intersects the frontier of the unit ball centered at the origin in exactly 

two antipodal points if f lies in the xy-plane , and in exactly one point otherwise, 

there is a one-to-one correspondence between such lines and the equivalence classes 

of the relation 

defined for all points g(x1 , y1 ) , g(x2 , y2) on the upper half of the unit sphere, where g 

is the function defined by g(x, y) = JI - x2 - y2 for each (x, y) E B 2 . 
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Figure 11.3: The geometric construction of the real projective plane. 

The realization of the projective plane typically employed by topologists is the iden­

tifcation space5 

New surfaces can be constructed from the aforementioned surfaces (sphere, torus, 

crosscap, Klein bottle, projective plane) by means of a certain "attaching" operation 

which we now define. If S1 and S2 are two surfaces, and D 1 C S1 , D2 C S2 are two 

regions homeomorphic to the closed disk B 2 , then the connected sum of the two 

surfaces is defined as the quotient space 

where h : Fr D 1 -+ Fr D2 is a homeomorphism and U denotes the operation of 

topological sum. 6 

As an illustration, consider the connected sum 11\ #11\ of two tori (Figure 11.4). 

Observe that the operation # is both commutative and associative over the set 

of homeomorphism classes of topological spaces, and that S 2 is its identity, since 

S2#"I:i ~ Li for any surface Li. 
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Figure 11.4: 11\ #11\ . 

It can be shown that every orientable surface is homeomorphic either to a sphere or to 

a connected sum 1r 9 = #f=11r 1 of tori . More generally, we have the following famous 

classification theorem: 

Theorem 3 .. 1. (Classification of closed surfaces without boundary) Every 

(closed) surface ( without boundary) is homeomorphic either to a sphere, to a con­

nected sum of tori , or to a connected sum of projective planes. 

Proof. See [22], pp. 10-29. □ 

We may now define the genus of an orientable surface X to be O if X ~ S2
, and the 

(finite) number of tori whose connected sum is homeomorphic to X otherwise. In the 

next section, we use the classification theorem to classify the homology groups of all 

orientable surfaces. 

4. HOMOLOGY OF ORIE TABLE SURFACES 

There are many different homology theories, all of which satisfy the Eilenberg-Steenrod 

axioms. 7 Moreover , if we fix a coefficient ring, the standard homology theories are 
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equivalent for surfaces.8 We are therefore entitled, for example, to apply results about 

homology groups of surfaces stated in terms of one homology theory to the homology 

groups of another. 

In this section, we take cellular homology with integer coefficients as our homology 

theory, and compute the homology groups of the sphere 82 and the tori 1I' 9 for g E N. 

Theorem 4 .. 1. H0 (X) = Z for a surface X. 

Proof. The rank of the 0th homology group of a space X for which there exists a 

cellular decomposition is the number of connected components of X (for a proof of 

this, see [24], §7). Since a surface is connected, H0(X) = Z. □ 

Theorem 4 .. 2. The homology groups of the sphere 82 are 

H,(S2 ) ~ { : 
if k = 0 or k = 2, 

otherwise. 

Proof. Let a denote the subspace of JR2 whose underlying set is I x I. Then the 

subspace 

A= {x E JR3 : d(x, 0) = 1} 

of JR3 is homeomorphic to the identification space 

a/Fr a= a/ { x ~ y: x, y E Fr a} . 

Let 82 denote the latter space, and write p : A --+ 8 2 for the projection x 1-----+ [xl~• 

Then the 1-cell p(Fr a) and the 2-cell p(a) comprise a cellular decomposition of 82• 

(We will later refer to this decomposition as the "purse-string" decomposition, 
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since identifying the frontier of a cell to a point may be intuitively understood as 

pulling a purse-string tight. This analogy is found in Kinsey [18].) Since there are no 

1-cells, p(a) is a cycle, and also H1 (S2) = 0. Since there are no 3-cells, p(a) is not a 

boundary, so H2(S2) is the infinite cyclic group generated by p(a). The result now 

follows by Theorem 4 .. 1. □ 

A bit more groundwork will be required to determine the homology groups of a torus 

than was needed in the case of the sphere. We provide a series of lemmas which will 

aid in the computations. 

Lemma 4 .. 3. The homology groups of the circle S1 are 

H,(S1) ~ { : 
if O::; k::; 1, 

otherwise. 

Proof. Similar to that of the previous lemma. □ 

Let X and Y be two connected manifolds, let x 0 E X, and let y0 E Y. The wedge 

of X and Y is the space 

X V Y = XII Y / { xo ~ Yo}. 

Lemma 4 . .4. (Wedge axiom) Let X1 and X 2 be two connected manifolds. Then 

Hk(X1 V X2) = Hk(X1) EB Hk(X2) for each k EN. 

Proof. Standard. See [1], Ch. 5. 

Lemma 4 .. 5. H1(S1 V S1) ~ZEB Z. 

□ 



Proof. Immediate from the previous two lemmas. 
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□ 

Lemma 4 .. 6. A one-point space is a strong deformation retract of the closed disk 

B2. 

Proof. 

H(x, t) = (1 - t)x 

is the required homotopy from B 2 to { 0}, since H ( x, 0) = x and H ( x, 1) = 0 for each 

XE B2 . □ 

Impose the cellular decomposition of the unit square I x I (pictured below) into four 

points, four edges, and one 2-cell. Identify the opposite edges via the equivalence 

relation whose nondegenerate relations are 

(x, 0) ~ (x, 1), 

(0, y) ~ (1, y), 

V XE I, 

Vy EI, 

so that the resulting space is a torus. Denote 'JI\ = (I x I) / ~. Orienting a counter­

clockwise, a and bas pictured, and P arbitrarily, we obtain the cellular decomposition 

of 'JI' 1 specified by the followmg schematic diagram, which is called a gluing diagram. 

For the remainder of this section, let 'JI' 1 = ( J x I) / ~ be endowed with the cellular 

decomposition given above. 

Lemma 4 .. 7. Let D c 'JI' 1 be homeomorphic to the open disk B 2. A figure eight is 

a deformation retract of 'JI' 1 - D. 
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p a p 

b a u a b 

p a p 

Figure II.5: Gluing diagram and cellular decomposition for 11\ . 

Proof. Without loss of generality, assume D is the image of a square under the iden­

t ification map p: J x I --* 'IT\. The homotopy H determined by Figure II.6 deforms 

each radial line segment to a point on the frontier of I x I. 

I/ 

-= o -~ 
1//1 

Figure 11.6: Strong deformation retract of the punctured torus onto Fr I x I. 

Since the image of Fr (Ix I) under p is a figure eight, then H is the required homotopy. 

□ 

Figure II. 7: The image of H (x , t) for four values oft as t increases. 
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Lemma 4 .. 8. H2 ('JJ\) ~ Z. 

Proof. Let X 1 C 11\ denote the smaller of the closed squares indicated in the following 

gluing diagram, and denote X 2 = 11\ - xr 
a 

b b 

a 

Figure 11.8: X1 is the small square (green) along with its frontier ( dark green), and 
X2 =:) aUbUFrX1 . 

Then X 1 n X 2 ~ S 1
, and since homeomorphic spaces have isomorphic homology 

groups (see [14] or [24]) , Lemma 4 .. 3 yields H 1(X1 n X 2 ) rv Z. 

Let 

0 -tH2(X1 n X2) ~ H2(X1) EB H2(X2) ~ H2(X1 U X2) 

~H1(X1 n X2) ~ H1(X1) EB H1(X2) ~ H1(X1 U X2) 

~ Ho(X1 n X2) ~ Ho(X1) EB Ho(X2) ~ Ho(X1 U X2) -t 0 

be an exact sequence. 

From Theorem 2 .. 7 and Lemmas 4 .. 6 and 4 .. 7, it follows that H1(X1) = H2(X1) = 0 

and H2(X2) = 0. Then Image j 2 = 0, so 82 is an injection by exactness at H2(X1 U 

X2). T hen Kernel i1 = Image 82 is an isomorphic embedding of H2(X1 U X2) into 



23 

Let i' : X1 n X2 c...+ X1 and i" : X1 n X2 c...+ X2 be the inclusion maps. Then 

by Theorem 2 .. 6. Then i~ = 0, since H1 (X1) = 0. 

To prove that 

it suffices to show that il = 0, so that i 1 = 0. Let z be a cycle in X 1 n X2 whose 

homology class generates H1(X1 n X2), noting that X1 n X2 ~ S1 • By assigning to 

X 1 U X2 an appropriate cellular decomposition, we may ensure that z = i"(z) is a 

chain in C1 (X1 UX2), and it follows that the expression il([z]) is defined. Then il([z]) 

is homologous to 0 in X1 U X2 , since z can be deformed in X1 U X2 to the boundary 

a + b - a - b = 0 as was shown in the proof of Lemma 4 .. 7. Then il is the zero 

homomorphism, so i 1 = 0, since [z] generates H1(X1 n X2). Thus H2 (X1 U X2) ~ 

□ 

Lemma 4 .. 9. H1 ('11\) ~ ZEB Z. 

Proof. Let X1, X2 , i 0 , etc., be as in the previous theorem. Endow X1 n X2 ~ S1 

with a cellular decomposition whose elements are a single point Panda single 1-cell 

a. Let i' : X1 n X2 c...+ X1 and i" : X1 n X2 c...+ X2 be the inclusion maps. Writing 

[ P] for the homology class of P, we have i 0 ( [ Pl) = i~ ( [ Pl) EB i~ ( [ Pl) = ( [ Pl, [ Pl) -/- 0 

by Theorem 2 .. 6, so [P] is not in the kernel of i0 • Since there are no other 0-cells 

in X 1 n X2 , the kernel of i 0 is trivial. Hence i 0 is an injection. Then 81 is the zero 

homomorphism, so Ji is a surjection. Since i1 is the zero homomorphism, it follows 
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that J1 is an injection, and hence H1('ll\) ~ H1(X1) ffi H1(X2) ~ H1(X2). 

By Theorem 2 .. 7, since 8 1 V 8 1 is a deformation retract of X2 , then H1(X2) ~ 

□ 

We can compute the homology groups for a torus of arbitrary genus g EN by induc­

tion, using the previous result as a base case. 

Proof. Let g EN. Assume as an induction hypothesis that H1 (1fg) ~ ffi;=1 (Z ffi Z). 

Abusing notation, 9 we write 

X1 = 1f1 - D~ C 1f1#1fg, 

X2 = 'Ifg - D~ C 1f1#1fg, 

where D 1 C 1f 1 and D 2 C 1f g are each homeomorphic to the closed disk B 2• (The 

topological sum construction saves us from having to require that D 1 n D 2 = 0 when 

g = l.) Then X1 U X2 = 1f1#1fg, Then H1(X1) ffi H1(X2) ~ ffi;i;(Z ffi Z), since 

H1(X1) ~ H1(81 V 8 1) ~ Z ffi Z. Let 

0 --+H2(X1 n X2) ~ H2(X1) ffi H2(X2) ~ H2(X1 U X2) 

~H1(X1 n X2) ~ H1(X1) ffi H1(X2) ~ H1(X1 U X2) 

~Ho(X1 n X2) ~ Ho(X1) ffi Ho(X2) ~ Ho(X1 U X2) --+ 0 

be an exact sequence. To prove that H1(X1 U X2) ~ H1(X1) ffi H1(X2), it suffices to 

show that {i) i 0 is an injection (so that j 1 is a surjection) and {ii) i1 = 0 (so that J1 

is an injection). 
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Ad (i) . As above, each of the inclusion maps i': X 1 nX2 ~ X 1 and i" : X 1 nX2 ~ X 2 

sends [P] r-+ [P]. Thus Kernel i0 = 0. 

Ad (ii). Endow 11'9 wit h a cellular decomposition t hat contains exactly one 2-cell a 

( we will exhibit such a decomposition in Section 3.). Since the generating circle a may 

be deformed in X 1 UX2 to the frontier of a (see figures below10 ), it follows that i 1 ([a]) 

is homologous to the chain 8[a], where a is the single 2-cell in t he decomposition of 

1r g+l .11 Therefore, a is a boundary in X 1 U X 2 . Then i 1 is the zero homomorphism, 

since t here are no 1-cells besides a in t he decomposition of X 1 n X 2 . 

Figure II. 9: The circle a along which 11' 1 and 11' 9 were attached is deformable over 11' 9 to 
the I- skeleton of 11' 9 . 

Figure 11.10: The circle a may be so deformed regardless of its orientation. From left 
to right, the three figures show a homotopy H ( s, t) : 11' 9 x I --t 11' 9 0 :S t :S 1 / 3, for 
1/3 :S t :S 2/3, and fo r 2/3 :S t :S 1, respectively. 
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Thus H1 (1l'9+1) ~ H1(X1) ffi H1(X2) ~ E9;~;(Z ffi Z). Taking Lemma 4 .. 9 as a base 

case, the result follows by induction. 

Proof As above, write 

where B2 ~ D 1 c 'Il'1 and B2 ~ D2 c 1l'9 , and let i' : X1 n X2 <-+ X1 and i" 

X1 n X 2 <-+ X2 be the inclusion maps. Consider the exact sequence 

□ 

X2) ~ Image 82 = Kernel i1. As above, 'li = i1 = 0, so i1 = 'li ffi i1 = 0. Now 

□ 

Corollary 4 .. 12. Let X be an orientable surface of genus g E N0 • Then H0(X) = 

H2 (X) = Z, and 

Proof By the classification theorem for surfaces, X is homeomorphic either to the 

sphere or to the torus of genus g. The result then follows from the results of this 

section. □ 
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Having computed the homology groups of the sphere and the tori 11'9 for g E N, 

it is now possible to apply the Lefschetz-Hopf theorem to any given self-map of an 

orientable surface. 



CHAPTER III 

SUFFICIENT CONDITIONS FOR Fix(!) =J 0 

The main results of this thesis will now be given. Sufficient conditions for a self-map 

of a closed orientable surface to have a fixed point will be deduced and presented in 

this chapter. We deal with each class of orientable surfaces separately, taking the 

sphere S2 first, then the torus of genus 1, and then all other locally 2-dimensional 

tori. 

Our sufficient conditions for a self-map to have a fixed point derive from the Lefschetz­

Hopf fixed point theorem. This result relies on the fact that each homology homo­

morphism has an associated matrix representation. If f is a self-map of an orientable 

surface, the alternating sum of the traces of the homology homomorphisms Ji is called 

the Lefschetz number A(f) off. That is, 

2 

A(f) = I)-1)2tr fi• 
i=O 

Theorem 0 .. 13. (Lefschetz-Hopf fixed point theorem) Let X be a surface. Let 

f: X-----+ X be continuous. If A(f) =J 0, then f has a fixed point. 

28 
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1. THE SPHERE 

Every self-map of 8 2 not homotopic to the antipodal map has a fixed point. We have 

a quite general condition for a self-map of the sphere 82 to have a fixed point. That 

this well-known condition is sufficient follows from the fact that the Brouwer degree 

of a map f, which records how many times f "wraps" the sphere around itself, can 

be determined solely on the basis of whether f is homotopic to the antipodal map 

X-----+-X. 

The sphere 82 has H 2 (82 ) = Z, and since the "purse-string" decomposition has no 

1-cells, then H1 (82) = 0. Then the Lefschetz number of any given self-map f of 82 

is 

A(!) = 1 + tr h = 1 + m 

for some integer m, so A(!) is O only if m = -1. But by the subsequent theorem, 

m = -1 if and only if f is homotopic to the antipodal map. 

The (Brouwer) degree of a map f : 8 2 -----+ 8 2 is the integer 

m=tr f2. 

Thus h(a) = m • a, where a denotes the generator of H2(82). 

Theorem 1..1. Two maps 8 2 -----+ 8 2 have the same degree if and only if they are 

homotopic. 

Proof. See [14], §9. □ 

We immediately have 
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Corollary 1..2. Every self-map of 8 2 not homotopic to the antipodal map has a 

fixed point. 

2. THE TORUS OF GENUS 1 

Throughout this section, we adopt the following standing assumptions. The torus of 

genus 1 will be realized as the product space 'JI' 1 = 8 1 x 8 1, where 

8 1 = {z E CC: lzl = l}. 

For the sake of readability, we will write 0 for the element ei0 E 8 1 and 

Suppose f is a self-map of 'll'1 . We may assume that f is cellular without loss of 

generality. We write m = tr h for the entry in the 1 x 1 matrix representing h, 

and 

for the matrix representing Ji. 
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Theorem 2 .. 1. Let f : 11\ ----+ 'I[' 1 be a map. Suppose x, y E Z. Then f has a fixed 

point if any of the following conditions are met. 

• Case 1. m = 0 and >-1 + >.2-=/- 1. 

• Case 2.1. m = det Ji = >.1>.2, >.1 -=/- 1 and >.2-=/- 1. 

• Case 2.2. [Ji] = ( >.1 >.1 ) , m = det Ji, >.1 -=/- 1 and tr Ji -=/- 1. 
1 - >-1 >-2 

• Case 2.3. [f1] = ( >.1 y ) , m = det Ji, and >.1 ± y -=I 1. 
y >-1 

• Case 2.4. [Ji] = ( x 
(-l)k 

Proof 

Case 1. m = 0. 

(-l)k ) 

xy 

Suppose m = 0. In general, we have 

, m = det f1, and y-=/- 1. 

whenever tr Ji -=/- 1. As a special case, observe that A(f) -=/- 0 whenever both of >.1 

and >.2 are nonpositive. 

A priori, we cannot conclude anything about the individual values of >.1, >.2, r, and 

s from the fact that m = 0. This fact will be explored in the chapter on realizability 

to follow. 

On the other hand, if m-=/- 0, we have A(f) -=/- 0 whenever >.1 + >.2-=/- 1 + m, in which 

case f has a fixed point. 
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In each of the subcases 2.1, 2.2, 2.3 and 2.4, we assume m = det fi. In general, 

A(f) # 0 whenever 1 + det f 1 # tr f 1 . 

Case 2.1. 

If m = det f1 and rs= 0, then m = A1A2, and 

A(f) = 1 - (A1 + A2) + A1A2 

= (1 - A1)(l - A2), 

so Fix(!) # 0 whenever A1 # 1 and A2 # l. 

If A1A2 = rs, then m = 0, and Case 1 obtains. 

Case 2.2. 

If m = det Ji, r = A1, ands= 1- A1, then 

A(f) = 1 - (A1 + A2) + A1A2 - A1(l - A1) 

= (A1 - l)(A1 + A2 - 1) 

is nonzero whenever A1 -=J- 1 and tr f1 -=J- l. It follows that Fix(!) -=J- 0. 

Case 2.3. 

If the matrix representing Ji is ( : : ) , then 

A(f) = 1 - 2x + x 2 - y2 

= ( x2 - y2 ) - ( X - y) - ( X + y) + 1 

= [(x - y) - 1] [(x + y) - 1] 



is nonzero whenever x ± y-=/ 1, in which case f has a fixed point. 

Case 2.4. 

When r = s = 1 or r = s = -1, we have 

A(!) = -(x + xy) + x2y 

= X [xy - (y + 1)], 

is nonzero, since xy = y + l is absurd for any choice of integers x, y with y > l. 

3. THE TORUS OF GENUS g GREATER THAN 1 

33 

□ 

As the student of elementary calculus knows, the two-dimensional torus is easy to 

parametrize as a map g of the unit square. The topologist's method of expressing 

the seamlessness of the torus along g(Fr (Ix I)) is to identify opposite edges of the 

square appropriately, as shown in Section 4 .. The analogous construction of 11'9 as an 

identification space generalizes well for arbitrary genus g. We sacrifice the feeling of 

comfort which a global coordinate system provides, but this is no great loss, since any 

parametrization of 'Ir 9 obtained by methods of analytic geometry may be expected to 
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0.0 

Figure 111.1: The two-dimensional torus encountered in elementary calculus. 

be horrendously complicated. 

r ______________ _ 

11\ 
~-----

\' 
\ 

Figure 111.2: A realization of 1I'3 in Euclidean space as a subset of the union of three tori. 

We construct the torus of genus g E N from a convex polygon a of 4g sides, called 

the fundamental polygon. 12 Label the edges according to the schema 

b -lb-1 b -lb-1 a1 1 a 1 1 ... ag gag g , 

where adjacent symbols denote adjacent edges. Orient the edges labeled ai or bi in one 

direction, say clockwise, and each edge labeled ai1 or bi 1 in the opposite direction. 

Identify each ai and ai 1 according to the edges' orientations, and similarly for bi and 
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b-;1
. Then in the identification space, which we denote by 1f 9 , each vertex of the 

Figure 111.3: A realization of 11' 9 for g = 3 by the method of topological identification. 

polygon represents the same point P. Moreover, 

{ P} U { ai : 1 ~ i ~ g} U { bi : 1 ~ i ~ g} U {a} 

is a cellular decomposition of 1f 9 . 

Proceeding formally, we observe that 

A(f) = 1 - tr 

2g 

= 1- ~Xj +m, 
j=l 

+m 

so that the expression on the right side contains the 2g + 1 unknowns x1 , ... , x 29 , 

m. 

As it stands, the problem of determining when A(!) -=/= 0 by considering the poly-
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nomial A(f) appears intractable. Some simplifying assumptions will have to be made. 

Theorem 3 .. 1. If tr Ji and m are either both odd or both even, then f has a fixed 

point. 

Proof. 'Irivial. If tr Ji = m (mod 2), then A(f) is odd, and hence nonzero. □ 

Theorem 3 .. 2. Any self-map f of 11'9 for g ;::: 2 which is homotopic to the identity 

has Fix(!) =/- 0. 

Proof. By Theorem 4 .. 12, rank H0 (11'9 ) = rank H2(11'9 ) = 1 and rank H1 (11'9 ) = 2g. If 

g;::: 2, then 

A(f) = rank H0 (11'9 ) - rank H1 (11'9 ) + rank H2(11'9 ) 

= 2- 2g < 0, 

in which case f has a fixed point. □ 

Theorem 3 .. 3. Let f be an orientation-preserving self-map of 11'9 , where g E N. If 

for each 1 :S z :S g, f 1(ai) = a1 and f 1 (bi) = b1 for some J =/- z, then f has a fixed 

point. 

Proof. For each 1 < i :S g, the coefficient of ai in the expression fi(ai) is 0, and 

similarly for each bi. Thus the matrix representing Ji contains all zeros on its diagonal, 

so tr Ji = 0. Since f is orientation-preserving, it follows that m > 0, so A(f) 

1 + m =/- 0. □ 



CHAPTER IV 

REALIZABILITY OF CONDITIONS 

In this chapter, we show that there do exist functions which satisfy the conditions of 

our main results, Theorem 2 .. 1 and Theorem 3 .. 3. We begin by considering particular 

classes of maps which show that A(f) is not homotopy invariant when A(!)= 0. We 

then provide examples of maps which confirm that the conditions in Theorem 2 .. 1 

are realizable in Section 1.. Finally, in Section 2., we determine a class of self-maps 

of the torus of arbitrary genus to which Theorem 3 .. 3 may be applied. 

1. THE TORUS OF GENUS 1 

Write a, b for the two generators of H1 ('11-'i), and a for the generator of H2('ll\). For 

the identity map l'fi, we have 

a f------7 a, 

b f------7 b, 

af-----+a, 

37 
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so that A(h·J = 1 - 2 + 1 = 0. Although the identity fixes every point in 11\, we 

cannot conclude that every map homotopic to the identity has a fixed point. To see 

this, consider a map g : 11." 1 ---+ 11." 1 which rotates every point latitudinally around the 

center of the torus by a small angle, and a map g' which "curls" every point around 

a longitudinal circle which passes through the central hole, say, 

g: (01,02) f-+ (01 +1r/4,02), 

g': (01, 02) f-+ (01, 02 + 7r /4). 

Clearly, neither g nor g' has a fixed point. Since homotopic maps induce identical 

endomorphisms on the homology groups (see [14]), and hence have identical Lefschetz 

numbers, these two functions demonstrate that the property of having a fixed point 

is not a homotopy invariant for maps with A(!) = 0. Another example is the map 

(01, 02) r-+ (w + 01, -02) for fixed 0 < w < 21r, which is homotopic to a reflection in a 

plane bisecting the torus, and hence sends a r-+ -a. 

The next elementary example illustrates the fact that composing a map with a rota­

tion by a small angle does not eliminate all fixed points when A(!) =f 0, i.e. when 

the condition for the Lefschetz-Hopf theorem is satisfied. Suppose h : 11." 1 ---+ 11." 1 is a 

map which sends 

a r-+ -a, 

b r-+ -b, 

Then tr h1 =f 2, and A(h) = 1 - (-2) + 1 =/:- 0. Take h to be the cellular map defined 
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by 

Then the map h : 11' 1 -+ 11' 1 defined by 

for fixed w1 E (0, 21r) is obviously homotopic to h (the map H: 11'1 x I-+ 11'1 defined 

by ((01, 02 ), t) f-+ (tw1 - 02, -02) is a homotopy h ~ h), and (wi/2, 0) is a fixed point 

of ii. 

We now explore the realizability of each condition enumerated in Theorem 2 .. 1. As 

above, take 11' 1 = S1 x S1 and, if f is the self-map of 11' 1 under consideration, denote 

m=tr h, 

Case 1. m = 0. 

The projection of 'II\ = S 1 x S 1 onto either factor S 1 c CC shows that a continuous 

function may map the torus surjectively onto either generating circle. Composing the 

projection with exponentiation 0 f-+ >..0 for fixed ).. E N (recall our notation 0 for a 

complex number ei0 in S1 ), we obtain a continuous surjection f such that Ji maps a 

generating circle to any positive multiple of the circle we like. Since h(a) = 0, and 

since one of the matrices 



40 

represents f1 , we either have A(f) = 1-=/:- 0 or A(f) = 1 - A. In the latter case, f has 

a fixed point whenever ,\. -=/:- 1. 

The following example illustrates that there is a continuous surjection from 'I[' 1 onto 

its 1-skeleton (i.e. the union of the two generating circles) which assigns any integers 

we choose to .\.1 and ,\.2. Let p denote the projection from 8 1 x 8 1 onto its first factor 

8 1. Suppose u : 8 1 -----+ JR.2 is a continuous surjection from the circle onto a figure eight 

in the plane. Then u is continuous (to verify this, observe that for any "x"-shaped 

open neighborhood N of the double point of the figure eight, there is an arc of the 

circle which is mapped into N). Let g be a homeomorphism g from the figure eight 

u(81 ) = u o p('I[' 1) onto a U b. Then the map f = go u op is continuous. Without loss 

of generality, we may suppose u wraps around either loop of the figure eight as many 

times as we please. If ,\.1 + .\.2 -=/:- 1, then f has a fixed point. 

Case 2.1. 

The maps 

(01, 02) f-+ (301,302), 

( 01' 02) f-+ (-301' -302) 

are 9-to-1, and correspond to a wrapping of each generating circle around itself three 

times. Since the signs of ,\.1 = ±3 and .\.2 = ±3 are the same for each map, it follows 

that m > 0, so m = det Ji = 9 in either case. 



Case 2.2. 

A map of this class is given by 

f: (01,02) r---+ ( 

3 3
) (01 , 02), 

-2 1 

Note that, for t his map, tr Ji = 4 and m = 9. 
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Figure IV.I: f wraps the two circles a and b {shown in red and blue) around the torus. 

Winding b the same number of t imes in the opposite direction around the tube results 

in a change in the sign of .\2 , and a rather different map; call it g. We now have a 

3-to-1 map with tr g1 = 4 and m = 3. Furthermore, while f (a) and f (b) have t hree 

points of intersection, we have lg( a) n g(b) I = 1. 

Figure IV .2: 91 is represented by the same matrix as Ji except that the sign of the 2, 2 
entry has been reversed. 



42 

On the other hand, we have A(g) = 0 for the map 

g : (01 , 02) c-t ( ~ : ) (01 , 02), 

Case 2.3. 

Consider the map 

whose restriction to the I-skeleton a U b of 11\ is pictured below. 

Figure IV.3: The map J(01 , 02) = (301 + 502 , 501 + 302) realizes the conditions of Case 
2.3. 

A representative of a homotopy class of maps for which A(g) = 0 is 

g : (01 , 02) c-t ( ~1 ~
1 

) (01 , 02), 

Observe that g( t1, t1) = ( t1, t1) for any t1 E [O , 21r). 



Case 2.4. 

The map 

f: (01,02) f--t (301 +02,01 +602) 

>-1 = 3, y = 2 

is realizable, and consequently has a fixed point. 
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Figure IV.4: The map f (01, 02) = (301 + 02, 01 + 602) realizes the conditions of Case 2.4. 

Note that the condition A(f) -=/- 0 is not necessary for a map to have a fixed point. 

For instance, the map 

g : ( 01, 02) >-> ( : : ) ( 01, 02). 

has A(g) = 0, and we have a fixed point g(t1, -t1) = (t1, -t1). 

2. THE TORUS OF GENUS g GREATER THAN 1 

Observe that permuting the generating circles of the first homology groups determines 

a set of functions 1f 9 ~ 11' 9 which map each generating circle to its image under the 

permutation. 
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Let ai and bi, 1 ::; i ::; g, denote the two generating circles of each torus in the 

connected sum 'IT' g = #f=1 'IT' 1 . An iteration of the permutation with cycle decomposi­

tion 

corresponds to a class of maps that send each ai to ai+l and each bi to bi+l, where 

the indices are to be understood mod g. Any continuous map which induces such a 

permutation of the edges of the fundamental polygon has a fixed point if the hypoth­

esis of Theorem 3 .. 3 is satisfied. It can be shown using theory beyond the scope of 

this thesis that certain permutations cannot be realized by a continuous map. 
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NOTES 

1To be brief, a category C may be defined as an ordered pair (Ve, Mc), where 

Ve is a class of elements called objects, and Mc = {hom(X, Y) : X, Y E Ve}, where 

hom(X, Y) is a set of elements f : X --+ Y called arrows with domain X and 

range Y, provided that the following three functorial properties are satisfied. {i) 

For every ordered triple (X, Y, Z) of objects, there is a function that assigns to each 

ordered pair of arrows (f : X --+ Y, g : Y --+ Z) an arrow g f : X --+ Z called the 

composite off and g. {ii) If and h: Z--+ W then h(gf) = (hg)f: X--+ W. (in) For 

every YE Ve, there is an arrow ly : Y--+ Y such that if f: X--+ Y then ly f = f, 

and if h : Y --+ Z, then hly = h. A covariant functor F from a category C to a 

category 1) is two functions F: Ve--+ Vv and F: Mc--+ Mv denoted by the same 

symbol such that {i) F(idx) = lF(X) and {ii) F(gf) = F(g)F(f). If F and Gare two 

covariant functors from a category C to a category V, a natural transformation 

'T/ from F to G is a function Mc --+ Mv such that rJ(Y)F(f) = G(f)TJ(X) for each 

f: X--+ Yin Ve. See [26] and [5]. 

2Brouwer's theorem states that a continuous function from the closed n-ball into 

itself has a fixed point. Neither the original nor the modern functorial proof is con­

structive, but constructive methods for finding such fixed points exist: see, for in­

stance, [13] and [27]. 

3We ought to mention the idea of an n-manzfold with boundary, a slight general­

ization of a manifold. Its defining property when n = 2 states that every point has 

a neighborhood homeomorphic to a basic open set in the subspace of the Euclidean 

plane which consists of all points with nonnegative vertical coordinates. Such spaces, 

called surfaces with boundary, are not considered in the current work, and so we write 
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surface where, strictly speaking, we mean surface without boundary. 

4Some authors do not require a surface to be compact, and call a compact con­

nected 2-manifold a closed surface. 

5If (X, Tx) is a topological space, and ~ is an equivalence relation on X, the 

quotient set X /~ is the set of all equivalence classes [x]~ of points in X. The 

correspondingidentificationspaceistheorderedpair (X /~ ,Tp), whereTp = {G C 

Y : p-1 (G) E Tx} is the identification topology, and p is the map X ----+ X /~ 

defined by x r-+ [x]~- [9] 

6 It can be shown that the connected sum of two surfaces is well-defined up to 

topological invariance. That is, S1 #S2 and Sf #S; are homeomorphic whenever S1 , Sf 

are two homeomorphic spaces and S2 , s; are two homeomorphic spaces. Furthermore, 

the result is independent of choice of the homeomorphism h and the disks D1 and 

D2. 

7Some standard theories include simplicial homology with integer coefficients [18] 

(in which the basic geometric building blocks are homeomorphic images of oriented 

simplices, i.e. points, line segments, triangles, tetrahedra, and their higher-dimensional 

analogues), cellular homology for CW complexes [24] (in which the building blocks are 

continuous images of n-balls), singular homology [15] (in which the building blocks 

are maps of simplices), homology with rational coefficients [14] (in which cycles whose 

integral multiples are boundaries vanish), and mod 2 simplicial homology [2] (in which 

the orientation of simplices is discarded). 

8That is, there is a natural isomorphism between the graded groups resulting from 

any two competing homology theories. 

9That is, we take it as understood that X 1 and X2 are actually subsets of the 
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identification space "ff\ #"£9 • 

10In section §2.3, we explain the relationship between the polygon pictured and 

Tg. 

nof course, -o[a] is also a boundary homologous to i1 (a), and only one of the 

boundaries ±o[a] has the same orientation as i 1 (a), but we find it worthwhile to 

visualize the deformation in either case. 

12The fundamental polygon is typically realized as a regular polygon, but this con­

straint is inessential for our purposes, since we are concerned only with the topology 

of "£9 , and not its geometry. 
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