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Abstract

We present a restricted infection rate inverse binomial-based approach to better predict

COVID-19 cases after a family gathering. The traditional inverse binomial (IB) model is inap-

propriate to match the reality of COVID-19, because the collected data contradicts the mod-

el’s requirement that variance should be larger than the expected value. Our version of an

IB model is more appropriate, as it can accommodate all potential data scenarios in which

the variance is smaller, equal, or larger than the mean. This is unlike the usual IB, which

accommodates only the scenario in which the variance is more than the mean. Therefore,

we propose a refined version of an IB model to be able to accommodate all potential data

scenarios. The application of the approach is based on a restricted infectivity rate and meth-

odology on COVID-19 data, which exhibit two clusters of infectivity. Cluster 1 has a smaller

number of primary cases and exhibits larger variance than the expected cases with a nega-

tive correlation of 28%, implying that the number of secondary cases is lesser when the

number of primary cases increases and vice versa. The traditional IB model is appropriate

for Cluster 1. The probability of contracting COVID-19 is estimated to be 0.13 among the pri-

mary, but is 0.75 among the secondary in Cluster 1, with a wider gap. Cluster 2, with a larger

number of primary cases, exhibits smaller variance than the expected cases with a correla-

tion of 79%, implying that the number of primary and secondary cases do increase or

decrease together. Cluster 2 disqualifies the traditional IB model and requires its refined ver-

sion. The probability of contracting COVID-19 is estimated to be 0.74 among the primary,

but is 0.72 among the secondary in Cluster 2, with a narrower gap. The advantages of the

proposed approach include the model’s ability to estimate the community’s health system

memory, as future policies might reduce COVID’s spread. In our approach, the current haz-

ard level to be infected with COVID-19 and the odds of not contracting COVID-19 among

the primary in comparison to the secondary groups are estimable and interpretable.
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Background and motivation

COVID-19 is the third-leading cause of death in 2020 in the USA, Belgium, France, Sweden,

and the UK, behind only heart disease and cancer (www.kff.org). Predicting a pandemic like

COVID-19 is challenging [1]. Major practical reasons that have been cited include poor data,

insensitive parameter estimates, and imprecise epidemiologic features. A discussion of an

underlying model for the data is missing from this list. What is a model? The model is an

abstraction of reality; the better the model, the better it represents reality. The occurrence

and spread of COVID-19 are too complex to be well matched by any known model in the lit-

erature. It is not surprising that the efforts to predict COVID-19 result in a failure, due to uti-

lizing an unsuitable model for the data. To avoid failure, we must start by refining the model

to suit the complexities that exist in the dynamic nature of COVID-19. That is exactly the

research theme of this article. Of course, the main objective of any data collection is to pre-

dict future incidences as accurately as possible in order to be prepared for any emergencies

and contingencies.

The professionals occasionally hear and/or argue that all models are wrong, but some are

useful [2, 3]. Recently, in Shanmugam [4], a probabilistic approach is presented to capturing

the impact of healthcare efforts on the prevalence rate of COVID-19’s infectivity, hospitaliza-

tion, recovery, and mortality rates in the USA. Several non-intuitive findings including the

existence of imbalance, different vulnerabilities, and risk reduction were noticed. In Shanmu-

gam [5], the number of COVID-19 cases confirmed, recovered/cured, and fatalities across

thirty-two of India’s states/territories, as of May 1, 2020, were modelled and analyzed. In the

end, the attained administrative efficiency by the government was scrutinized. This knowledge

leads to valuable lessons for adaptation for use in any future pandemics like COVID-19.

Hence, via modeling by trial and error, the professionals attempted to catch up and unravel

the mysterious nature of the pandemic. This article is an attestation of such a hubristic

endeavor to predict COVID-19 infectivity with a refined version of the traditional inverse

binomial (IB) model. The traditional IB model possesses a unique property that the variance is

larger than its expected value [6] and it limits its suitability for COVID-19 data under such var-

iance. A refined version of the IB model is necessary to accommodate data under equal and

over variance scenarios as they occur in COVID-19 data.

Yet, the issue of under variance seems not to have received enough attention compared to

over variance in the literature [7, 8]. The Poisson model requires the equality of expected value

and variance [6]. To deal with a deviation from such a requirement in Poisson data, in Conway

[9], a mathematically complex approach is presented by raising a function of the observables

to an unknown versatile parameter τ. Conway and Maxwell applied their approach to model

the queuing systems with state-dependent service rates.

We now return to discuss a refined version of the IB model for COVID-19 data. At a fixed

incidence rate, the number of COVID-19 cases is, of course, a Poisson type random variable.

When COVID-19’s incidence rate is stochastically changing due to a variety of reasons as a

gamma probability pattern, the convolution of Poisson and gamma probability structures

results in the IB model for an occurrence of a random number of COVID-19 cases [10]. How-

ever, in this article, a refined and viable alternative to dealing with equal/under/over variance

COVID-19 data, we start at its jump start probability. In Shanmugam [11], a concept of jump

start probability in health/medical data analysis is introduced. The method in this article is

simple, easy, and versatile, but originates from the jump probability. The unsteady nature

of the variance is recognized here as the heterogeneity level in the gatherings of family with

some members being carriers of the COVID-19 virus. Heterogeneity causes the prediction of

COVID-19 incidence rates to be haphazard, if not uncanny.
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COVID-19 was first noticed in Wuhan Province in the central part of China. Those with

COVID-19 symptoms leaving Wuhan to participate in family gatherings in Gansu Province

are recognized as the primary cases [12]. Those at the family gatherings in Gansu Province

who were infected by the primary cases are recognized as secondary cases. Is there a significant

difference in the virality among the secondary cases in comparison to the primary cases? This

research question is answered in the second part of this article. For this purpose, new concepts

of infectivity that restricted IB modeling processes are defined, and they are utilized to derive

analytic expressions with an intention to better predict the future COVID-19 infection rates

and cases. We illustrate our methodology using the COVID-19 data given in Fan [12].

Uneven COVID-19 jump start proportion

To ease the comprehension of the derivation of an infectivity rate restricted version of the

inverse binomial (IB) which adds on under and equal variance properties in addition to pre-

serving already existing over variance properties, we start with the COVID-19 scenarios. Sup-

pose there is an unknown risk level, 0< θ< 1 for a person to contract COVID-19 at a family

gathering. Also, assume that there exists an unknown restriction level, τ> 1 on infectivity due

to persons who may have a strong immunity and/or have undertaken strict preventive mea-

sures such as physical social distancing, wearing face coverings, washing hands with soap/sani-

tizer frequently, etc. Consequently, the original risk level, θ changes to a new risk level y

ð1� yÞðt� 1Þ,

where τ> 1. Here, the non-negative parameter τ is to indicate the heterogeneous resistance

level to COVID-19’s infectivity potential.

When τ> 1, it is indicative of heterogeneously resistant to the COVID-19’s virus among

the participants. Notice that the new risk level validates the requirement that 0 < y

ð1� yÞðt� 1Þ < 1,

if t > 1þ ln y
lnð1� yÞ. The expression 0 < y

ð1� yÞðt� 1Þ < 1 is valid provided the condition is true. In

other words, there is an interplay between 0< θ< 1 and τ> 1 as they shift in their domains.

In this “game-theoretic” operations, when θ shifts in its domain (0,1), the companion parame-

ter τ alters its domain according to the derived restriction.

See Fig 1 giving the parameter constraint and illustrating the interplay between θ and τ for

0 < y

ð1� yÞðt� 1Þ < 1.

Hence, it results in a restricted infection rate: 0 < y < 1

t
< 1 with τ> 1. In the case of τ>

1, any participant’s chance of being safe from contracting COVID-19 is 0 < 1 � y

ð1� yÞðt� 1Þ < 1

after the family gathering, while her/his chance of contracting COVID-19 is 0 < y

ð1� yÞðt� 1Þ < 1

after, as it happened in Gansu Province, China. Various above-mentioned preventive measures

might not offer absolute safeguards from the COVID-19 infection potential all the time. Con-

sequently, the odds of not contracting COVID-19 exist whether the participants are homo-

geneously immune (that is, τ = 1) or heterogeneously resistant (that is, τ> 1) to contract the

COVID-19 virus. Hence, the odds for being safe after the family gathering is
ð1� yÞðt� 1Þ

y
� 1

n o

among the heterogeneously resistant participants as they identified by the infection rate

restricted inverse binomial (IRRIB) model.

In the case of τ = 1, as the infectivity is unrestricted in a sense: 0< θ< 1, any participant’s

chance of being safe from contracting COVID-19 is 0< 1 − θ< 1 after the family gathering,

while her/his chance of contracting COVID-19 is 0< θ< 1 after the family gathering as it hap-

pened in Gansu Province, China. Hence, the odds for being safe after the family gathering is
ð1� yÞ

y
among the homogeneously immune participants as they identified by the IB model. The

traditional IB model is an extremely special case of the IRRIB model when τ = 1, because the

denominator (1 − θ)(τ−1) = 1 as a baseline value. In other words, when the family gathering
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consists of attendees having homogeneous immunity to COVID-19 (that is, τ = 1), using the

traditional IB model is meaningful. Note that gathering is defined as an episode where three or

more family members are visiting together in the same social space for more than 15 minutes.

Otherwise (that is, with a family gathering in which the attendees have heterogeneous resis-

tance to COVID-19), the involvement of τ> 1 is a necessity in modeling to predict future

COVID-19 cases. Hence, the modeling approach based on IRRIB is versatile to predict inci-

dence of COVID-19 in all three (equal, under, and over variance) scenarios mentioned above.

We now discuss the odds of not contracting COVID-19 among attendees having homoge-

neous resistance to COVID-19 versus heterogeneous resistance to COVID-19 in the gathering.

Amid homogeneous resistance to COVID-19 family members in the gathering, the factor
ð1� yÞ

y

is recognized as the odds for not contracting COVID-19, and it is a safe situation. The odds

for a safe situation in the IRRIB process (synonymous to a situation in which the family gather-

ing involves attendees having heterogeneous resistance to COVID-19) against contracting

COVID-19 is

Oddssafet6¼1 ¼
PrðY ¼ 0Þ

PrðY � 1Þ
¼ 1 �

yt6¼1

1 � yt6¼1

� �ðt� 1Þ

( )� mt

� 1

" #� 1

; 0 < y <
1

t
< 1 ð1Þ

in comparison to the Oddssafet¼1 ¼ 1 � yt¼1ð Þ
� m
� 1½ �

� 1
; 0 < y < 1 for safe in the IB process

(synonymous to a situation in which the family gathering involves attendees having homoge-

neous resistance to COVID-19). The odds ratio in family gatherings in which the attendees

having heterogeneous resistance to COVID-19 against having homogeneous resistance to

Fig 1. Interplay between θ and τ for 0 < y

ð1� yÞðt� 1Þ < 1.

https://doi.org/10.1371/journal.pone.0254313.g001
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COVID-19 is

ORt6¼1
t¼1

¼
Oddst6¼1

Oddst¼1

¼
1 � yt¼1ð Þ

� m
� 1½ �

1 �
yt6¼1

1� yt6¼1ð Þ
ðt� 1Þ

� �� mt

� 1

� � ; 0 < y <
1

t
< 1; ð2Þ

The “m” is called “convolution parameter” [13]. It means that if Y1 withm1 > 0 and Y2 with

m2 > 0 are two independent data realizations/sources of an inverse binomial population with

same θ, then their convolution Y = Y1 + Y2 will follow an inverse binomial probability pattern

withm =m1 +m2 > 0. This concept of “convolution” paves the way for the concept of “infinite

divisibility” in statistical inference. For an example of it, whenm = 1, the inverse binomial

reduces to a geometric sampling situation.

Note that Eq (1) is the “odds of being safe under heterogeneous” situation. Eq (2) is the

odds ratio of the odds of being safe under heterogenous situation over the odds of being safe

under homogenous situation. As mentioned before, we do the following in this article. There

are two situations, which we do not know because of ungiven information. This refers to a situ-

ation in which the “hosts” and “guests” are homogenous with respect to “COVID-19 infectiv-

ity” and refers to a situation in which the “hosts” and “guests” are heterogenous with respect to

“COVID-19 infectivity.” For example, if a person in the gathering is already “vaccinated” and

another in the gathering is “not vaccinated”, they are heterogeneous. Data are not providing

information about the heterogeneity or homogeneity. Our model is an approach to contem-

plate how the outcome might be different under heterogeneous from that of homogeneous sit-

uations.

Jump rate-incidence of COVID-19 cases

We now move on to discuss the jump rate in the incidence of COVID-19 cases. Furthermore,

let us assume that there arem� 1 family gatherings with a group of participants with heteroge-

neous resistance to COVID-19, τ� 1 at the family gathering. Let Y be a random number of

COVID-19 cases emerging out of them family gatherings. Notice that the probability for a sin-

gle new COVID-19 case to arise in any gathering is PrðY ¼ 1Þ ¼ y

ð1� yÞðt� 1Þ in comparison to the

probability of an infection-free situation, PrðY ¼ 0Þ ¼ 1 � y

ð1� yÞðt� 1Þ.

The jump rate detailed in [11] from a COVID-19 free situation to the pandemic is given by:

jumpRateðy;tÞ ¼
PrðY ¼ 1Þ

PrðY ¼ 0Þ
¼
ð1 � yÞ

ðt� 1Þ

y
� 1

 !� 1

ð3Þ

if the family gatherings involve attendees having heterogeneous resistance to COVID-19.

When the gathering consists of attendees having homogeneously immunity to COVID-19

(i.e., τ = 1), the jump rate from COVID-19 free status to contracting COVID-19 is simply

jumpRateðy;t¼1Þ ¼
y

ð1� yÞ
and it pertains to the ideal, traditional IB model scenario for any com-

municable disease but not necessarily the highly infectious and treacherous COVID-19 sce-

nario. Now, consider a domino effect of this jump rate, especially in the COVID-19 situation.

Their recursive probabilities are connected to the jump rate as follows.

PrðY ¼ yÞ ¼
mtþ y � 1

y

� �
y

ð1 � yÞ
ðt� 1Þ

( )

PrðY ¼ y � 1Þ; y ¼ 0; 1; 2; . . . ; 0 < y <
1

t
< 1: ð4Þ
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That is,

PrðY ¼ yÞ /
Gðmtþ yÞ
y!GðmtÞ

jumpRateðy;tÞ
1þ jumpRateðy;tÞ

( )y

; y ¼ 0; 1; 2; . . . ; 0 < y <
1

t
< 1 ð5Þ

with an appropriate normalizer

Nðy; tÞ ¼ 1 �
y

ð1 � yÞ
ðt� 1Þ

( )mt

¼ 1þ jumpRateðy;tÞ
n o� mt

ð6Þ

(its dynamic is illustrated in Fig 2). The dynamic nature of

ð1 � yÞ
ðt� 1Þ

y
¼ 1þ

1

jumpRateðy;tÞ
ð7Þ

is noticed in Fig 1. By imposing τ = 1 orm = 1, the traditional IB model which is often

employed to deal with a group homogeneously immune to COVID-19 after the family

gathering.

On the contrary, together whenmτ = 1, they reduce to what we wish to call the infection

rate restricted geometric (IRRG) process. That is,

PrðY ¼ y j mt ¼ 1Þ ¼ 1 �
y

ð1 � yÞ
ðt� 1Þ

( )
1

y!
y

ð1 � yÞ
ðt� 1Þ

( )y

; y ¼ 0; 1; 2; . . . ; 0 < y <
1

t
< 1: ð8Þ

For probability of safe, 1 � y

ð1� yÞðt� 1Þ

n o
, see Fig 2.

For risk of COVID-19, y

ð1� yÞðt� 1Þ, see Fig 3.

Fig 2. Probability of being safe.

https://doi.org/10.1371/journal.pone.0254313.g002
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However, it is easy to notice that the expected value, E(Y) and variance, Var(Y) of the

IRRIB model are, respectively,

EðYÞ ¼
X1

y¼0

yNðy; tÞPrðY ¼ yÞ ¼ mt 1þ
1

jumpRateðy;tÞ

( )

ð9Þ

And

VarðYÞ ¼ 1þ
1

jumpRateðy;tÞ

( )

EðYÞ: ð10Þ

Mathematical derivations with explanations for the sake of predicting future COVID-19

cases are given in S1 Appendix.

Prediction of COVID-19 cases after family gatherings

To illustrate the main concepts and analytic expressions in Section 2, let us consider the

COVID-19 data connecting Gansu Province (32˚31’N–42˚57’N, 92˚13’E–108˚46’E), in North-

west China and Wuhan (30.5928˚ N, 114.3055˚ E) in Central China. COVID-19 was first

noticed on December 31, 2019, in Wuhan, China. Wuhan is connected to Gansu by travel

options including airplanes, railroads, interstate buses, and private cars. The COVID-19 virus

originated in Wuhan.

The primary and secondary COVID-19 cases are defined as follows. The primary cases

refer to those who traveled from Wuhan to Gansu. The secondary COVID-19 cases refer those

who never left Gansu. The secondary COVID-19 cases were the outcome of family gatherings

in which the primary and secondary COVID-19 cases mingled together. In other words, the

secondary cases might have been infected by the primary cases. It is assumed in [12] that the

Fig 3. Risk for having COVID-19.

https://doi.org/10.1371/journal.pone.0254313.g003
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COVID-19 virus does not mutate to reduce its virulence in transmission. One then wonders

whether the secondary cases exhibit different characteristics from that of primary cases. This

question is the research aim of this article.

We want to capture and compare the virality of the COVID-19 incidence rates/cases in the

primary versus secondary groups. When we plot them in the same graph, we noticed that

there are two clusters in the data (see Fig 4). Table 1 (with gatherings of ten families) contains

lesser primary cases, while Table 2 (with gatherings of seven families) contains larger primary

cases of COVID-19. See Fig 4 for primary vs. secondary COVID-19 cases.

Comparing the sample expected value and variance of the primary and secondary cases

given in Tables 1 and 2, there exists over (under) variance. Fig 1 is to notice that there are two

clusters in the union data. The over (under) variance is synonymous with the null hypothesis

statementH0: τ = 1 (with the alternative statement H1: τ 6¼ 1). For both the data, the test score,
�y2

s2y � �yj j
was computed and displayed in Tables 1 and 2. Utilizing all the derived expressions, the

values of ŷmle;Ho under

H0 : t ¼ 1;E
�y2

s2y � �y
�
�
�

�
�
�
j Ho

8
<

:

9
=

;
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var
�y2

s2y � �y
�
�
�

�
�
�
jH0

8
<

:

9
=

;

v
u
u
u
t ; ð11Þ

correlations underH0: τ = 1 in a situation in which the family gathering consists of attendees

having heterogeneous resistance to COVID-19 are calculated and displayed in Tables 1 and 2.

Fig 4. Primary versus secondary cases of COVID-19.

https://doi.org/10.1371/journal.pone.0254313.g004
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The values of t̂mle;H1
underH1: τ 6¼ 1, ŷmle;H1

under

H1 : t 6¼ 1;E
�y2

s2y � �y
�
�
�

�
�
�
j H1

8
<

:

9
=

;
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var
�y2

s2y � �y
�
�
�

�
�
�
j H1

8
<

:

9
=

;

v
u
u
u
t ; ð12Þ

and correlations underH1: τ 6¼ 1 in a situation in which the family gathering consists of attendees

having heterogeneous resistance to COVID-19 are computed and displayed in Tables 1 and 2.

Table 1. The family gathering in which the primary cases were in single digit (with over variance).

Family Gathering Yp = Primary

COVID-19 Cases

Ys = Secondary

COVID-19 Cases

1 1 9

2 1 26

3 1 27

4 4 14

5 4 46

6 6 10

7 6 11

8 6 12

9 6 13

n = 10 6 23

�y ¼
Xn

i¼1

yi=n
4.1 19.1

s2y ¼
Xn

i¼1

yi � ~yð Þ
2
=ðn � 1Þ

5.21 Over Variance 134.76 Over Variance

m = # unions 41 191

Correlation (Yp, Ys) -0.28

t̂mle (if homogeneously immune to COVID-19) 1 1

ŷmle (if homogeneously immune to COVID-19) 0.78 0.14

t̂mle (if heterogeneously resistance to COVID-19) 2.27 8.05

ŷmle (if heterogeneously resistance to COVID-19) 0.55 0.87

Oddssafet¼1 (if homogeneously immune to COVID-19) 0.27 6.05

Oddssafet6¼1 (if heterogeneously resistance to COVID-19) 0.37 0.99

ORt6¼1
t¼1

1.36 0.16

E �y2

s2y � �yj j
j Ho

� �

(if homogeneously immune to COVID-19)
4.56 19.11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var �y2

s2y � �yj j
j Ho

� �s

(if homogeneously immune to COVID-19)
3.59 2.71

E �y2

s2y � �yj j
j H1

� �

(family gathering consists of attendees having

heterogeneous resistance to COVID-19)

10.29 149.54

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var �y2

s2y � �yj j
j H1

� �s

(family gathering consists of attendees having

heterogeneous resistance to COVID-19)

13.09 1081.33

Test score
�y2

s2y � �yj j
15.12 3.15

p Value 0.99 1.85043E-22

Power 0.76 0.99

https://doi.org/10.1371/journal.pone.0254313.t001
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The p-value and the statistical power are calculated and displayed in Tables 1 and 2. A compari-

son of them reveals that the p-values are significant for the primary cases and secondary cases in

Tables 1 and 2. With a selection of t ¼ t̂1 under the alternative hypothesis, the statistical power

is calculated and displayed in Tables 1 and 2. The power is excellent for the primary and second-

ary cases in Tables 1 and 2. Next, we express final comments and conclusions with respect to pre-

dicting implications of our model and analytic results for this study concerning COVID-19.

Cluster 1: Small primary cases

Here, the number of primary COVID-19 cases is in a single digit (lesser) as in Table 1. In this

case, the number of gatherings is also less, the data have over variance than the expected value

Table 2. The family gathering in which the primary cases were in double digits (with under variance).

Family Gathering Yp = Primary

COVID-19 Cases

Ys = Secondary

COVID-19 Cases

11 29 39

12 29 47

13 36 48

14 36 49

15 36 50

16 36 51

17 (n = 7) 36 52

�y ¼
Xn

i¼1

yi=n
34 48

s2y ¼
Xn

i¼1

yi � ~yð Þ
2
=ðn � 1Þ

11.66 Under

Variance

18.66 Under Variance

m = # family gatherings 238 336

Corr (Yp, Ys) 0.79 079

t̂mle (if homogeneously immune to COVID-19) 1 1

ŷmle (if homogeneously immune to COVID-19) 0.25 0.28

t̂mle (if heterogeneously resistance to COVID-19) 1.34 1.38

ŷmle (if heterogeneously resistance to COVID-19) 0.25 0.28

Oddssafet¼1 (if homogeneously immune to COVID-19) 1.34 1.38

Oddssafet6¼1 (if heterogeneously resistance to COVID-19) 2.91 2.57

ORt6¼1
t¼1

2.53 2.14

E �y2

s2y � �yj j
j Ho

� �

(if homogeneously immune to COVID-19)
0.87 0.83

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var �y2

s2y � �yj j
j Ho

� �s

(if homogeneously immune to COVID-19)
39.69 56.02

E �y2

s2y � �yj j
j H1

� �

(family gathering consists of attendees having

heterogeneous resistance to COVID-19)

10.15 15.70

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var �y2

s2y � �yj j
j H1

� �s

(family gathering consists of attendees having

heterogeneous resistance to COVID-19)

53.30 77.80

Test score
�y2

s2y � �yj j
15.08 24.77

p Value 0.01 0.01

Power 0.98 0.99

https://doi.org/10.1371/journal.pone.0254313.t002
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in both primary as well as secondary cases, the estimate of contracting COVID-19 in primary

and secondary type is 0.78 and 0.14, respectively. With an estimate of the parameters in our

mode, the prediction of a future number of primary and secondary COVID-19 cases will be 5

and 20, respectively, when the family gathering consists of attendees having homogeneous resis-
tance to COVID-19 and having heterogeneous resistance to COVID-19, respectively, in Cluster 1.

The p-value for the suitability of the IB process for COVID-19 data in Table 1 are 0.0001 in the

case of primary as well as secondary infection. The odds for not contracting COVID-19 are

0.27 and 6.053 as primary and secondary, respectively, if the attendees are homogeneously

immune to the COVID-19 virus. The estimate of contracting COVID-19 (in family gatherings

in which the attendees have heterogeneous resistance to COVID-19) is 0.37 among primary

cases and 0.99 among secondary cases. The (statistical) power of accepting the research

hypothesisH1 : t ¼ t̂mle is 0.76 for the primary and 0.99 for the secondary when t̂mle is the true

value.

Cluster 2: Large primary cases

Here, the number of primary COVID-19 cases is in double digits (larger), as in Table 2. In this

case, the number of gatherings is also large, but the data have under variance than the expected

value in both primary as well as secondary cases. The risk of contracting the COVID-19 virus

in primary and secondary type is 0.25 and 0.28, respectively. With the estimate of the parame-

ters in our model, the prediction of a future number of primary and secondary COVID-19

cases will be 40 and 56, respectively, when the family gathering consists of attendees having

homogeneous resistance to COVID-19 and having heterogeneous resistance to COVID-19,

respectively, in Cluster 2. The odds of not contracting COVID-19 in primary and secondary

type are 2.53 and 2.143, respectively; the prediction of a future number of primary and second-

ary COVID-19 cases will be 40 and 56, respectively, when the family gathering consists of

attendees having homogeneous resistance to COVID-19. The prediction of a future number of

primary and secondary COVID-19 cases will be 54 and 78, respectively, when the family gath-

ering consists of attendees having homogeneous resistance to COVID-19. The p-value for the

suitability of IB model processes for the COVID-19 data in Table 2 are 0.006 in the case of pri-

mary and 0.0000058 in the case of secondary infection.

The odds of not contracting COVID-19 are 2.91 and 2.57 among the primary and second-

ary cases, respectively if the family gathering consists of attendees having homogeneous resis-

tance to COVID-19. The odds for not contracting COVID-19 are 2.53 and 2.14 among the

primary and secondary cases, respectively, if the family gathering consists of attendees having

heterogeneous resistance to COVID-19. The estimate of not contracting COVID-19 (in family

gatherings in which the attendees have heterogeneous resistance to COVID-19) is 0.984

among primary cases and 0.72 among secondary cases. The (statistical) power of accepting the

research hypothesis H1 : t ¼ t̂mle are 0.984 for the primary cases and 0.998 for the secondary

cases when t̂mle is the true value.

Discussion and concluding remarks

The COVID-19 pandemic is a challenge not only to healthcare professionals, policy makers,

epidemiologists and biostatisticians who try to model data and make successful predictions,

but also to the general public who faithfully adhere to recommendations such as social distanc-

ing, face covering, and utilizing good and frequent sanitizing practices. Despite all these precau-

tionary efforts, many families desire to get together for occasions and events. Some participants

in such gatherings may have originated from a place like Wuhan, China in where the COVID-

19 virus was spreading, and they are labelled as primary cases (Yp).
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The other participants at a gathering occurring at a location like Gansu Province, China

where the COVID-19 virus had not yet appeared could get infected by the primary cases from

Wuhan, and they are labelled as secondary cases (Ys) in the epidemiologic data collection pro-

cess. An unknown in such gatherings is whether the participants are homogeneously immune

to the infectivity or heterogeneously risky to contract the virus. Amid less clarity, an issue of

interest might be how best one can predict the number of COVID-19 cases after the family

gathering. In other words, a research goal for the analysts of infectious diseases is to address

the similarities versus differences between the primary and secondary groups in the family

gathering. The research goal appears simple and easy on the surface but is actually very compli-

cated and challenging, as pointed out in a recent article [1].

We learned the following from the statistical analysis of COVID-19 data in Table 1 in this

article. The spreading of the COVID-19 virus is expedited by family gatherings with attend-

ees having heterogeneous resistance to COVID-19; the change is significantly different

from its earlier risk of contracting COVID-19. In a macro sense, the number of secondary

COVID-19 cases would have been much less if the number of primary COVID-19 cases was

smaller in the first place. When these family gatherings contribute to massive infection inci-

dents, many communities, not to mention entire nations, do not have enough resources to

treat a deluge of patients. When citizens are locked down in homes without working, the

nations’ productivity reduces to near zero levels, and the global economy suffers conse-

quently. The absence of vaccinations to prevent the spread of COVID-19 makes the scenario

bleaker, although several countries have faithfully committed to social distancing, wearing

face coverings. and other mitigation regimens. It seems that we all have a long way to go to

reach the day in which the virus of COVID-19 is totally controlled and eventually eradi-

cated. To attain this optimum level, professionals need to do more research work with perti-

nent data on COVID-19.

The advantages of this new approach include the model’s ability to estimate the commu-

nity’s health system memory for future policy development, as such policies might reduce

the COVID-19 viral spread in an effort to control the pandemic. In our approach, as demon-

strated, the current hazard level to become infected with COVID-19 and the odds of not con-

tracting COVID-19 among the primary in comparison to the secondary groups are estimable

and interpretable. In essence, family gatherings, especially with more vulnerable family mem-

bers who are aged, have chronic diseases, or have issues of reduced immunity, need to be

highly scrutinized by the family members before engaging in such events. Computer mediated

communication such as tele/video conferencing should be “pushed” and possibly subsidized

by each governmental level to encourage family interaction but while utilizing safe venues.

What was omitted in the itemized reasons in [1] for not successfully predicting COVID-19

cases is the role of an appropriate underlying model for the data. A model is an abstraction of

reality. To rectify this situation, this article has constructed and illustrated a restricted infection

rate inverse binomial-based approach to better predict future COVID-19 cases after a family

gathering or social event.
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