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Stability properties of positive solutions to partial

differential equations with delay ∗

Gyula Farkas & Peter L. Simon

Abstract

We investigate the stability of positive stationary solutions of semi-
linear initial-boundary value problems with delay and convex or concave
nonlinearity. If the nonlinearity is monotone, then in the convex case
f(0) ≤ 0 implies instability and in the concave case f(0) ≥ 0 implies sta-
bility. Special cases are shown where the monotonicity assumption can be
weakened or omitted.

1 Introduction

In this paper, we study the stability of positive stationary solution of the semi-
linear partial differential equation with delay

∂u(t, x)
∂t

= ∆u(t, x) + f(ut(x)), t > 0, x ∈ Ω (1.1)

with the Dirichlet boundary condition

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω (1.2)

and the initial condition

u(θ, x) = φ(θ, x), (θ, x) ∈ [−r, 0]× Ω, (1.3)

where Ω is a bounded domain of Rn with smooth boundary, ∆ denotes the
Laplacian, f : C([−r, 0],R)→ R is a convex or concave C2 function and ut(x) ∈
C([−r, 0],R) is defined as ut(x)(θ) := u(t+ θ, x) for θ ∈ [−r, 0].

This problem without delay was studied by several authors. We present
here a generalization of their results. Shivaji and his co-authors have altogether
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proved that if F ′′ > 0 and F (0) ≤ 0, then every nontrivial nonnegative station-
ary solution of the non-delay problem

∂tu = ∆u+ F (u) (1.4)
u|∂Ω = 0 (1.5)

is unstable. They first considered the monotone case (i.e. F ′ > 0) in [1]. The
non-monotone case was first proved by Tertikas [15] using sub- and supersolu-
tions. This proof was simplified by Maya and Shivaji [9], reducing the problem
to the monotone one via the decomposition of f to a monotone and a linear
function.

In [6] a more direct proof was given. Moreover, that proof implied at the
same time stability in the concave counterpart (F ′′ < 0 and F (0) ≥ 0) and the
result was proved also in the case of a general elliptic operator and nonlinearity
with explicit dependence on x. The main result of [6] is summarized in the
following theorem.

Theorem 1.1 (i) If F ′′ > 0 and F (0) ≤ 0, then every nontrivial nonnegative
stationary solution of (1.4)-(1.5) is unstable.

(ii) If F ′′ < 0 and F (0) ≥ 0, then every nontrivial nonnegative stationary
solution of (1.4)-(1.5) is stable.

In some sense the sign condition for F (0) is also necessary for the above
stability property. Namely, in the case of opposite sign and for balls Ω = BR
there are typically two stationary solutions of (1.4)-(1.5), and the small one
has the opposite stability as in the theorem. This change of stability correlates
with the loss of uniqueness. Namely, under the conditions of Theorem 1.1
there is uniqueness whenever the number of stationary solutions is known. This
is proved for the concave case on an arbitrary domain, see [2, 3, 4] and the
references there; for the convex case generally in one dimension [5, 8] and for
special nonlinearities also in several dimensions [7, 10, 12, 13, 14, 16].

In this paper the above Theorem is generalized to problem (1.1)-(1.3). The
main results are formulated in Theorems 2, 3 and 4. In Section 2 we consider
general delays where we will have an extra technical assumption, namely that
f is monotone in the sense that its Fréchet derivative Df ≥ 0 or Df ≤ 0. For
discrete delays, in Section 3, this assumption will be weakened, in particular in
the special case of no delay the monotonicity assumption is not needed.

To formulate our results let us introduce the embedding · : R→ C([−r, 0],R)
as

a(θ) = a for all θ ∈ [−r, 0], a ∈ R .

The C2 function U : Ω→ R is called a positive stationary solution of (1.1)-(1.3)
if

∆U(x) + f(U(x)) = 0, x ∈ Ω, (1.6)

U(x) = 0, x ∈ ∂Ω, U(x) > 0, x ∈ Ω, (1.7)
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The linearisation of (1.1)-(1.3) around U reads

∂w(t, x)
∂t

= ∆w(t, x) +Df(U(x)) · [wt(x)], t > 0, x ∈ Ω, (1.8)

where Df(U(x)) is the Fréchet derivative of f calculated at U(x). The principle
of linearized stability says that the stability of the zero solution determines the
local stability of the stationary solution U . By putting w(t, x) = eλtv(x) into
(1.8) we arrive at the characteristic equation

∆v(x) +Df(U(x)) · [eλ·v(x)] = λv(x), x ∈ Ω, (1.9)

where eλ·v(x) ∈ C([−r, 0],R) is defined as eλ·v(x)(θ) := eλθv(x) for θ ∈ [−r, 0].
Denote the dominant characteristic root of (1.9) by Λ, i.e. there is a function

V satisfying the Dirichlet boundary condition such that

∆V (x) +Df(U(x)) · [eΛ·V (x)] = ΛV (x), x ∈ Ω, (1.10)

and for all other solutions (λ, v) of (1.9) we have Re(λ) ≤ Re(Λ). It is known,
see [17], that the zero solution of (1.8) is stable, resp. unstable, if Re(Λ) < 0,
resp. Re(Λ) > 0. This fact together with the principle of the linearized stability
yields that U is locally stable, resp. unstable, if Re(Λ) < 0, resp. Re(Λ) > 0.

For the rest of this article, we assume

(H) Λ ∈ R and V (x) > 0, x ∈ Ω.

Note that positive semigroups generated by the linearized equation (1.8) satisfy
(H), see [11].

2 Case of a general delay

In this section we assume that f is monotone in the following sense. The function
f will be called increasing (decreasing) if Df(ā) · [φ] ≥ 0 (Df(ā) · [φ] ≤ 0) for
all a ≥ 0 and φ ∈ C([−r, 0],R), φ ≥ 0. We will call a C2 function h : R → R

strictly convex (concave) if h′′ ≥ 0 (h′′ ≤ 0) and h′′ is not identically zero in
any open interval.

We note that for decreasing functions the positive stationary solution is
always stable. This can be easily seen by multiplying (1.10) with V and inte-
grating on Ω. Namely, the l.h.s. is negative, therefore Λ < 0, i.e. U is stable.
Further in this Section we consider the case, when f is increasing. We have the
following theorem.

Theorem 2.1 Let us assume (H) and that f is increasing.

(i) If f(0̄) ≤ 0 and a 7→ f(ā) is strictly convex, then every positive stationary
solution of (1.1)-(1.3) is unstable.

(ii) If f(0̄) ≥ 0 and a 7→ f(ā) is strictly concave, then every positive stationary
solution of (1.1)-(1.3) is stable.
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Proof. Set g(a) := Df(ā) · [ā] − f(ā) and h(a) = f(ā) for a ≥ 0. Then it is
easy to see that g(a) = ah′(a) − h(a) and in case (i) g(0) ≥ 0 and g′(a) > 0,
hence g(a) > 0 for all a > 0. In case (ii) g(0) ≤ 0 and g′(a) < 0, hence g(a) < 0
for all a > 0.

Multiply (1.6) by V (x) and (1.10) by U(x). After subtraction and integration
over Ω we arrive at∫

Ω

U(x)∆V (x)− V (x)∆U(x) + U(x)Df(U(x)) · [eΛ·V (x)]− V (x)f(Ū(x))dx

= Λ
∫

Ω

V (x)U(x)dx.

By the symmetric Green formula
∫

Ω
U(x)∆V (x) − V (x)∆U(x)dx = 0 and we

have that∫
Ω

V (x)g(U(x)) +Df(U(x)) · [eΛ· − 1̄]U(x)V (x)dx = Λ
∫

Ω

U(x)V (x)dx. (2.1)

In case (i) we show that Λ > 0, hence U is unstable. Let us assume the
contrary, Λ ≤ 0. Then the right-hand side of (2.1) is non-positive, but the
left-hand side is positive since g(U(x)) > 0 and eΛ· − 1̄ ≥ 0. In case (ii) the
inequality Λ < 0 is to be shown. Let us assume Λ ≥ 0. Then the right-hand
side of (2.1) is nonnegative, but the left-hand side is negative since g(U(x)) < 0
and eΛ· − 1̄ ≤ 0.

3 Case of discrete delays

Let F : Rk+1 → R be a C2 function, r1, r2, . . . rk > 0 and r = max{r1, . . . , rk}.
In this section we study the case when

f(φ) = F (φ(−r1), φ(−r2), . . . φ(−rk), φ(0)) for φ ∈ C([−r, 0],R). (3.1)

Here we also use the notation ā = (a, a, . . . , a) ∈ Rk+1 for a ∈ R. Now we have
the following stability result.

Theorem 3.1 Let f be given by (3.1) and let us assume (H) and that ∂lF (ā) ≥
0 for l = 1, 2, . . . , k, a ≥ 0.

(i) If F (0̄) ≤ 0 and a 7→ F (ā) is strictly convex, then every positive stationary
solution of (1.1)-(1.3) is unstable.

(ii) If F (0̄) ≥ 0 and a 7→ F (ā) is strictly concave, then every positive station-
ary solution of (1.1)-(1.3) is stable.
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Proof. We can follow the same method as in the proof of Theorem 2.1. Now,

Df(ā) · [eΛ·] = ∂1F (ā)e−Λr1 + . . .+ ∂kF (ā)e−Λrk + ∂k+1F (ā) .

and (2.1) reads∫
Ω

V (x)
[
g(U(x)) + U(x)(∂1F (U(x))(e−Λr1 − 1) + . . .

+∂kF (U(x))(e−Λrk − 1))
]
dx = Λ

∫
Ω

U(x)V (x)dx.

Then the proof can be completed similarly as that of Theorem 2.1.
In the case k = 1, ∂2F ≡ 0 the sign condition for the partial derivative is

not needed. This is the content of the following theorem.

Theorem 3.2 Let k = 1, f be given by (3.1) and let us assume (H) and that
∂2F ≡ 0.

(I) If F (0̄) ≤ 0 and a 7→ F (ā) is strictly convex, then every positive stationary
solution of (1.1)-(1.3) is unstable.

(II) If F (0̄) ≥ 0 and a 7→ F (ā) is strictly concave, then every positive station-
ary solution of (1.1)-(1.3) is stable.

Proof. Note that in this case F (x, y) ≡ F (x), f(φ) = F (φ(−r)), the charac-
teristic equation has the form

∆V (x) + F ′(U(x))V (x)e−Λr = ΛV (x), (3.2)

while g(a) = aF ′(a)− F (a). First we prove (I). There are two cases.

Case 1. There exist a unique α > 0 such that F (α) = 0.

Case 2. F (β) > 0 for all β > 0.

Let us define Ω′ ⊂ Ω by Ω′ := {x ∈ Ω : U(x) > α} in case 1, and Ω′ := Ω in
case 2. It is easy to see that Ω′ 6= ∅ and that the following facts hold:

(i) F (U(x)) = 0, x ∈ ∂Ω′,

(ii) F (U(x)) > 0, x ∈ Ω′,

(iii) 〈gradU, ν〉 < 0, x ∈ ∂Ω′, where ν is the outer normal vector and 〈·, ·〉 is
the usual scalar product in Rn,

(iv) Either F ′(α) > 0 (case 1) or F ′(0) ≥ 0 (case 2).
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Multiply (1.6) by F ′(U(x))V (x) and (3.2) by F (U(x)). After subtraction and
integration over Ω′ we get∫

Ω′
∆V (x)F (U(x)) + F (U(x))F ′(U(x))e−ΛrV (x)

−∆U(x)F ′(U(x))V (x)− F (U(x))F ′(U(x))V (x)dx (3.3)

= Λ
∫

Ω′
V (x)F (U(x))dx.

By using the Green formula and (i) we have that∫
Ω′

∆V (x)F (U(x))dx =
∫
∂Ω′
〈gradV (x), ν(x)〉F (U(x))dσ

−
∫

Ω′
〈gradV (x), gradF (U(x))〉dx

= −
∫

Ω′
〈gradV (x), gradF (U(x))〉dx.

On the other hand∫
Ω′

∆U(x)F ′(U(x))V (x) =
∫
∂Ω′
〈gradU(x), ν(x)〉F ′(U(x))V (x)dσ

−
∫

Ω′
〈gradU(x), grad(F ′(U(x))V (x))〉dx.

Set
A := −

∫
∂Ω′
〈gradU(x), ν(x)〉F ′(U(x))V (x)dσ.

By using (iii) and (iv) we have that A ≥ 0. Thus (3.3) is simplified to∫
Ω′
−〈gradV (x), gradF (U(x))〉+ 〈gradU(x), grad(F ′(U(x))V (x))〉

+F (U(x))F ′(U(x))(e−ΛrV (x)− V (x))dx+A (3.4)

= Λ
∫

Ω′
V (x)F (U(x))dx,

or ∫
Ω′
F (U(x))V (x)F ′(U(x))(e−Λr − 1)

+
n∑
i=1

(∂iU(x))2V (x)F ′′(U(x))dx+A = Λ
∫

Ω′
V (x)F (U(x))dx. (3.5)

Now suppose that Λ ≤ 0. Because of (ii) the right-hand side of (3.5) is non-
positive in this case. However, since e−Λr − 1 ≥ 0 the left-hand side is strictly
positive, which is a contradiction. Thus we deduce that Λ > 0 and the proof of
(i) is complete.
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Let us turn to the proof of claim (II). Multiply (1.6) by V (x) and (3.2) by
U(x). After subtraction and integration over Ω and using the symmetric Green
formula we have that∫

Ω

V (x)(U(x)F ′(U(x))e−Λr − F (U(x))dx = Λ
∫

Ω

U(x)V (x)dx

or∫
Ω

V (x)e−Λrg(U(x)) + (e−Λr − 1)V (x)F (U(x))dx = Λ
∫

Ω

U(x)V (x)dx. (3.6)

First we claim that F (U(x)) ≥ 0 for all x ∈ Ω. Indeed, F (β) < 0 for all
β > 0 is impossible since U is a positive stationary solution. On the other
hand, let us denote the first (and unique) positive root of F by α (if it exists,
otherwise our claim is trivial). It is enough to show that U(x) ≤ α. Denote
the maximum point of U by x0. Then ∆U(x0) ≤ 0. If there exists a point
x ∈ Ω such that U(x) > α then U(x0) > 0 and thus F (U(x0)) < 0. Finally
0 = ∆U(x0) + F (U(x0)) < 0 is a contradiction which proves our claim.

Now suppose that Λ ≥ 0. Then the right-hand side of (3.6) is nonnegative.
However, since e−Λr−1 ≤ 0 the left-hand side of (3.6) is strictly negative which
is a contradiction. Thus we deduce that Λ < 0 and the proof is complete.

Remarks The case of decreasing nonlinearity corresponds to the assumption
∂lF (ā) ≤ 0 for l = 1, 2, . . . , k + 1, a ≥ 0. Thus under these conditions the
positive stationary state is always stable. The non-delay case is a special case
of Theorem 3.1, namely ∂lF ≡ 0 for l = 1, 2, . . . , k.
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