SOLVING READER AND WRITER PROBLEM WITH THE HIERARCHICAL

LOCK APPROACH USING SEMAPHORE

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos
in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Mei Li, B.S.

San Marcos, Texas
December 2004

ACKNOWLEGEMENTS

| am very thankful for the members of my thesis committee' Dr. Haddix,
Dr. Chen and Dr. McCabe | would like to especially thank my advisor, Dr Haddix,
for his invaluable guidance and help in the preparation of my thesis

Many thanks to my husband and my daughter for their love and support

The manuscript was submitted on Nov 7", 2004

i

TABLE OF CONTENTS

ACKNOWLEGEMENTS ... ittt sa e s s en s r s e e Il
I I e R /|
S O (10 PP /1
CHAPTER

1 INTRODUCTION Cre e e s s e e e eaes

1 1 Description of Reader andeter Problem
1 2 Description of Semaphore

1 3 Related Work

1 4 Objective

1.5 Overview of the Thesis

DESCRIPTION OF ALGORITHMS ... ie it i s e ces ve vas ves cen em en saenena]
2.1 Reader Privilege
2 1.1 Description of the Algorithm
2 1.2 Discussion of Correctness — Reader Privilege

2.2 Writer Privilege
2 2.1 Description of the Algorithm
2 2.2 Discussion of Correctness — Writer Privilege

2.3 Fair Reader and Writer
2.3.1 Description of the Algorithm
2 3.2 Discussion of Correctness — Fair Reader and Writer

2.4 Fair and Efficient Reader and Writer
2 4.1 Description of the Algorithm
2.4.2 Discussion of Correctness — Fair and Efficient Reader and Writer

2 5 Fair and Efficient Reader and Writer with Intent to Read and Write
2.5.1 Purpose of Intent to Read and Write Locks
2.5.2 Description of Using Intent to Read and Write Locks
2.5.3 Description of the Aigorithm
2.5.4 IR, R and IW Semaphore Upgrades and Additions

v

2.5.5 The Farr and Efficient Algorithm with Intent to Read and Write
2.5.6 Discussion of Correctness — Fair and Efficient Reader and Writer
with Intent to Read and Intent to Write

2 6 Fair and Efficient Reader and Writer with Intent to Read, Intent to Write
and Upgrade Lock
2.6.1 Description of the Purpose of Upgrade Lock
2.6.2 Description of Using Upgrade Lock
2.6.3 Description of the Algorithm
2.6.4 Discussion of Correctness — Fair and Efficient Reader and Writer
with Intent to Read, Intent to Write and Upgrade Lock

3 EXPERIMENTAL DESIGN ..uciiiiicirirrsnisisssrssnsnssesnesssnsnsnsasasasasesnsnses 44
3 1 Design of the Experiment

3.2 Description of the Experiment
3 2.1 RW_Server
3.2.2 RW_Server_1
32 3 RW_Server_2
3.2.4.RW_Server_3
3.2 5 RW_Server_4
3 2.6 I_RW_Server_5
3.2.7 I_RW_U_Server_6

4 DESCRIPTION OF IMPLEMENTATION ..cuiuiuiiiuiiiiiinieieieceiirrcnresnennnns 54
4 1 Software Required to Implement the Experiment

4.2 Implementation Versions
4.3 The Specification of Classes and Main Methods

4.3.1 The Classes and Methods of Design Category One
implementation — Reader and Writer Algorithms

4 3.2 The Classes and Methods of the Design Category Two
Implementation — Reader and Writer with Intentional Locks

4.3 3 The Classes and Methods of the Design Category Three
Implementation - Reader and Writer with Intentional Locks and
Upgrade Lock

4 34 Change the Class Name During Implementation

5. DISCUSSION AND ANALYSIS OF THE TEST RESULTS... ... cescoe v are var 2ea . 69
5.1 Adjusting the Requests According to Lock Types Available
5.2 Discussion of Results Using the Verbose Version

5.3 Discussion of the Results Using the Throughput Version
5.3 1 Comparing the Time Elapsed for Six Different Algorithms

5.4 Discussion of Resuits Using the Turnaround Version

5.5 Analysis of the Execution Results for Three Versions

6. CONCLUSIONS AND FUTURE WORK ...iuiiuiarcsrscesrasnssasmsrasessesansnsnsnsnnnsas 84
6.1 Analytic Conclusion

6.2 Experimental Conclusions

6.3 Future Work

APPENDICES

REFERENCES

LIST OF TABLES

Tables

Table 2 1 Compatibility of Requests with Existing Lockscoecvn v cve v e vnn o0 24

Table 2.2. Request Additions and Type Updates... ... ccccoc v cencenvevviv v crn ee ennn 24
Table 2 3 Conflict Matrix for Read, Write and Upgrade Locks.......cccveveevvenieiannnne 33
Table 3.1. An Example SCeNario....cicrcieirrreirrrararsnirsssrsrarasasasessssnrsssasssnansns 49
Table 5 1. The Time Elapsed for the Six Algorithms(Test 1)...vveicrieiiiiieiiieieiennn 73
Table 5.2. The Time Elapsed for the Six Algorthms(Test 2)...cvuvcviieiririririrnriennn 74
Table 5 3. The Time Elapsed for the Six Algorithms(Test 3)....cccvviicieieivirinierinne. 74
Table 5.4 The Time Elapsed for the Six Algorthms(Test 4)....cccviviicvririvacenanns 75
Table 55 The Time Elapsed for the Algorithm 5, Algorithm 6 and Algorithm 6a
QI3 00 1 T 76
Table 5 6. The Time Elapsed for the Algorithm 5, Algorithm 6 and Algorithm 6a
IS S) N 77
Table 5 7. The Average Waiting Time in Milliseconds to Obtain a Lock Under
Different Algorithm(Test 1). oeeereii e e 78
Table 5.8 The Average Waiting Time in Milliseconds to Obtain a Lock Under
Different Algorthm(Test 2). .ivcrcvirriiiririrers i ea e 78
Table 59 The Average Waiting Time in Milliseconds to Obtain a Lock Under
Different Algorthm(Test 3)...vuiveieirarriiiinrarra i eas 79
Table 5.10. The Average Waiting Time in Milliseconds to Obtain a Lock Under
Algorithm 5, Algorithm 6 and Algorithm 6a.......c.cveveireviimreinnrararenenn. 82

vii

LIST OF FIGURES

Figures
1. Figure 2.1 Solution For Reader and Writer Problem - Strong Reader.............. 9
2. Figure 2.2 Solution for Reader and Writer Problem - Stronger Writer............. 12
3. Figure 2.3 Solution for Reader and Writer Problem - Fair Reader and Writer... 15
4. Figure 2.4 Solution for Reader and Writer Problem - Fair and Efficient Reader
= T IR 41 L= 19
5. Figure 2.5 Reader and Writer Algorithms - Fair and Efficient Readers and Writers
with Intent to Read and WIitecceviiieiiiiircirins s e e s e 26
6. Figure 2.6 Intent to Read and Write Algorithms - Fair and Efficient Readers and
Wiriters with Intent to Read and Write.....vveiniireieiiincrerrvs e s s snsannes 27
7. Figure 2.7 Reader and Writer Algorithms- Fair and Efficient Readers and Writers
with Intent to Read, Write and Upgrade LOCK.....uovrrmrimmiimirirrrarerrnennnnnss 35
8. Figure 2.8 Intent to Read and Write Algorithms - Fair and Efficient Readers and
Wiriters with Intent to Read, Write and Upgrade LocK.......uuvervavarensinrninnnnne, 36
9. Figure 2.9 Upgrade Algorithm — Fair and Efficient Reader and Writer with Intent
to Read, Write and Upgradec.ccvviririmnmininemmnerarssssnsnesesarsssssmsssnnsasasanns 37
10. Figure 3.1 The Structure of the EXperiment.......ccccovreiiiriiirsrnrarara s ssasananes 47
11. Figure 4.1 Relationships Among Classes for Reader and Writer Algorithms..... 55
12. Figure 4.2 Relationships Among Classes for Fair and Efficient Reader and Writer
With Intentional LOCKS...ueriiiuisiirirsneinisisinrsnrrercsnsnanasara s ssssnsasnnsnsasasnnns 59
13. Figure 4.3 Relationships Among Classes for Fair and Efficient Reader and Writer

with Intentional Locks and Upgrade LOCKS......ccvcverraririnnsrriniscssasiriaenaranass 67

viii

CHAPTER 1

INTRODUCTION

1.1 Description of Reader and Writer Problem

The reader-and-writer problem is a classic synchronization problem. It was
introduced by P. J. Courtois, F. Heymans and D. L. Parnas in 1971[CoHP71].
The problem illustrates that a shared database is accessed by two kinds of
processes: readers and writers. The readers execute transactions that examine
the database While the writers update the database. A writer must have
exclusive access to the elements of the database to be modified but more than

one reader may access the database concurrently.

1.2 Description of Semaphore

There have been various proposals for achieving synchronization among
concurrent processes. One of them is using inter-process communication
primitives that block more than one process entering its critical region where the
shared resources such as database are accessed. The pair of SLEEP and

WAKEUP is the simplest of these primitives and also the basis for the now

ubiquitous semaphores.

In 1965, E. W. Dijksta [Dijk65] suggested using an integer variable to count
the number of wakeups saved for future use. A new variable type, called
semaphore, was introduced. A semaphore could have the value of 0, indicating
that no wakeups were saved, or some positive value if one or more wakeups

were pending [TaWo97].

A semaphore has two operations: UP and DOWN (generalizations of Wakeup
and Sleep, respectively). The DOWN operation (also known as P operation) on a
semaphore checks to see if the value is greater than 0. If so, it decrements the
value (i.e. uses a stored wakeup) and continues. [f the value is 0, the process is
blocked and put to sleep without completing the DOWN for the moment
[TaWo97]. The UP operation (also known as V operation) increments the value
of the semaphore, if one or more processes are sleeping on that semaphore,
unable to complete an earlier DOWN operation, the first process of the waiting
processes queued (the one sleeping for the longest period) is chosen by the
system and is allowed to complete its DOWN. This is called blocked_queue
semaphore. The group of blocked processes is maintained in a queue and a
process that blocks is placed at the end of the queue while a process at the head
of the queue is selected for execution. The blocked_queue semaphore is much
different than a weak_semaphore, which may be implemented with “test and set”
instruction. Instead of putting a blocked process in a queue, the
weak_semaphore lets the process execute a busy waiting loop in which the value

of semaphore is continuously tested. Once a process checked the value of

semaphore is greater than 0, it completes its DOWN operation and enters the
critical section. The blocked process is chosen to complete a DOWN operation in

a random order [EuSt82].

Semaphores can be used to solve synchronization problems. Checking the
value, changing it, and possible going to sleep is all done as a single, indivisible,
atomic action. System support is usually provided to guarantee atomicity of
semaphore operations. It is guaranteed that once a semaphore operation has
started, no other process can access the semaphore until the operation has

completed or blocked [TaWo097].

In this research, we will solve the reader and writer problem using the

blocked_queue semaphore.

1.3 Related Work

Since 1960’s, the reader and writer problem has been extensively studied and
researchers have discovered several solutions using semaphores. Three of
these traditional approaches are reader privilege, writer privilege and fair reader
and writer. P.J. Courteous, F.Heymans and D.L.Parnas first introduced reader
privilege and writer privilege approaches in 1971[CoHP71]. For the reader
privilege approach, the readers have higher priority than the writers. So if the
readers keep coming in, the writers may never get a chance to access the

database. This is called writer starvation when that happens. For the writer

privilege approach, the writers have higher priority than the readers and thus
reader starvation may occur. Neither of these are optimum solutions. A better
approach for most applications is the fair reader-and-writer approach [Hart03].
An outer semaphore, for which each reader and writer waits is added in addition
to the traditional semaphores. The solution guarantees FIFO ordering for the
read/write requests, while maintaining exclusive write access and shared read
access. Even though this is a fairly good solution it still suffers from an efficiency
problem. For example, if requests RRWRRW (R means reader request and W
means writer request) are queued on the outer semaphore and they arrive at
almost the same time (In real world, this is a likely occurrence) the first RR pair
can enter the critical section to read concurrently, but the second RR pair must
wait for the first W to finish even though they arrived in the queue almost at the
same time as the first RR. This meets a strong fairness criterion but is not the
most efficient approach. The fourth approach we will explore is to use an
enhanced algorithm for the reader-and-writer problem. The enhanced algorithm
lets all sharing processes pass the outer semaphore if they arrive during the
same lock arbitration. In the above sequence, RRWRRW can all pass the outer
semaphore as long as they arrive during the same lock arbitration. Thus, the
four R’s can access the shared resource at the same time, but the first W will be
blocked by inner semaphore and has to wait for all four R’s to finish their job.
This strategy not only maximizes the number of concurrent readers but also
gives the writer a fair chance. The idea is that allowing readers to “pass” writers

in the queue doesn’t penalize the writers since the reader accesses overlap

because of shared access. In this scenario, the readers start their accesses

simultaneously, and ideally, their accesses would complete contemporaneously.

Because of the inherent hierarchical structure of databases, (in our model, a
database consists of a collection of tables, with each table holding multiple rows,
or records), restricting all clients from examining or updating the data in a
database because one client is updating a row is costly and inefficient. We
propose to use intent to read and intent to write locks [OMGI00]. For example, to
read a record in the database, the client obtains an intent to read lock from the
ancestor(s) of the requested resource, a read lock for the record, and then reads
the record. Another client comes and wants to write to another record. It obtains
an intent to write lock from the ancestor(s) of the other record. Even if the two
records have the same ancestors, the request will be granted because the intent
to read lock is not in conflict with the intent to write lock The two clients can do
their jobs concurrently without interfering with each other, as long as they are
operating on separate records. Using the intent to read and intent to write locks
should improve concurrency and efficiency for an application or suite of

applications utilizing the same resources.

Even though the above algorithm improves efficiency, deadlock can still
occur. When two processes read concurrently and then attempt to write without
releasing the read locks, deadlock may result. To solve this problem, we

propose to use an upgrade semaphore as an upgrade lock [OMGI00]. If a

process has to obtain an upgrade lock before it writes to the shared resource
following a read, deadlock can be avoided. To avoid deadlock with the other
algorithms, a write lock must be obtained for the duration of the entire update

transaction, thus reducing sharing and concurrency.

1.4 Obijective

We will compare the traditional approaches, our enhanced approach, and the
hierarchical and sequential lock approaches for the reader-and-writer probiem
using semaphores. To accomplish this, we will use intent to read, intent to write,
and upgrade locks. We will show that this approach has three characteristics:

fairness, efficiency and freedom from deadlock.

1.5 Overview of the Thesis

The thesis consists of six chapters.

Chapter 1 - Introduce the thesis background, definition of terms, aims of
research and outline of the remaining chapters.
Chapter 2 - Specify the six algorithms used to solve the reader and writer

problem and provide a rationale for their correctness.

Chapter 3 - Specify the design of the experiment.
Chapter4 - Describe the implementation.
Chapter 5 - Discuss and analyze the test results.

Conclusions and future work.

Chapter 6

CHAPTER 2
DESCRIPTION OF THE ALGORITHMS

In order to solve the reader and writer problem properly, we must consider the
important properties of the problem. The properties we are interested in are
fairness, liveness, and efficiency. Fairness means no starvation. Neither
readers nor writers can be starved and each read/write request should be
handled in some approximation of FIFO order. Liveness means no deadlock. In
other words, at each point in time, some process must be capable of executing.
The third property is efficiency. Efficiency is obtained by allowing some
processes to share access. With regard to efficiency, we must weigh algorithm
efficiency against the amount of sharing obtainable. Fairness and liveness will be
considered as properties to be examined heuristically. Efficiency will be
addressed experimentally. A total of six algorithms are considered. The first four
algorithms address two classes of privileges, namely, exclusive (writer) and
shared (reader) by specifying different conditions for acquiring the privilege of
critical section execution. The last two consider additional classes of privileges,

namely hierarchical (intention privileges) and sequential (read followed by write).

2.1 Reader Privilege [CoHP71]

2.1.1 Description of the Algorithm

This solution supports a strong reader, providing that no reader be kept
waiting unless a writer has already obtained permission to use the database. No
reader should wait simply because a writer is waiting for other readers to finish
[CoHP71]. In effect, this allows readers to cut in front of writers. For high
contention resources, this defers updates and other maintenance activities to

periods of low demand.

In this algorithm, semaphore rc is used to protect the counter of reader and
semaphore w is a mutual exclusion semaphore for the writer and the first reader
to enter the critical section. Readers that enter or leave while other readers are
present ignore semaphore w. Semaphore rc ensures that only one reader will
enter or leave at a time thereby eliminating the possibility of ambiguity about
which process is responsible for the counter. Semaphore w will be positive if and

only if there are no readers and no writers present in the critical section.

Pseudo code for this algorithm is provided in Figure 2.1.

Integer readcount; (initial value = 0)
Semaphore rc /I Semaphore for readcount (initial value = 1)
Semaphore w /I Semaphore for mutual exclusion (initial value = 1)

READER WRITER
P(rc);
readcount= readcount + 1;
If readcount = 1 then P(w);
V(rc);
P(w);
reading is performed writing is performed
P(ro); V(w);

readcount = readcount — 1;
If readcount = 0 then V(w);

V(rc);

Figure 2.1: Solution for Reader and Writer Problem - Strong Reader

e Reader procedure:

The reader requests semaphore rc and exclusively updates the count.
If it is the first reader, (count = 1), it requests semaphore w, thereby
blocking writers.

It releases rc and allowing other readers to obtain access.

Reading is performed.

The reader requests semaphore rc and exclusively updates the count.
If it is the last reader (count = 0), it releases semaphore w, thereby

unblocking the writers. In all cases, it releases rc.

e Writer procedure:

10

- Writer requests semaphore w to block readers (and other writers).
- Writing is performed.
- When the writer finishes the job, it releases semaphore w, thereby

unblocking the readers (and other writers).

2.1.2 Discussion of Correctness — Reader Privilege

Fairness:

In this algorithm, because a reader can block the mutual exclusive semaphore
w when readcount is equal to 1, all subsequent writers are blocked. Writers are
blocked as long as there is a reader who is reading. Readers can continue to
enter the critical section as long as there is another reader reading. Indeed, when
there are multiple readers, the same reader can read multiple times while writers
continue to wait. Writers can access the database only if the last reader finishes
the job and exits the database and no reader is waiting. If the readers keep
coming in, the writers may never get a chance to access the database.
Obviously, this solution favors readers and potentially starves writers. Because

of this unfairness, this algorithm is not suitable for many applications.

Liveness:

The only points of possible blocking are at the simple semaphores. So long as
processes behave correctly, and readcount and the semaphores are initialized
correctly, blocking can never occur. Trivially, the writer releases semaphore w

whenever a grant is received. With the readers, it is also straightforward: Each

11

grant of semaphore rc is followed by a release. Similarly, assuming that
readcount is initialized correctly, the number of increments will be equal to the
number of decrements, and thus, each time, a grant on semaphore w is received,

it will be released.

2.2 Writer Privilege [CoHP71]
2.2.1 Description of the Algorithm

This solution supports a strong writer, by providing that no writer should be
kept waiting unless a reader has already obtained permission to use the
database. No writer should wait simply because a reader is waiting for a writer to

finish. [COHP71]

In this algorithm, three more semaphores have been added. The use of rc
and w corresponds exactly to the use of rc and w in the solution of Figure 2.1.
The semaphore ris used to protect the act of entering the critical section in the
same way that w is used to protect the shared resource in Figure 2.1. The first
writer to pass semaphore r will block readers from entering the section to
manipulate rc and w. wec is used to protect the writer count. Semaphore pr
guarantees the priority of writers. Without pr we have the possibility that a writer
and one or more readers will be simuitaneously waiting for a V(r) to be done by a
reader. In that case, the priority of writer could not be guaranteed. [CoHP71]

Pseudo code for the algorithm is provided in Figure 2.2.

12

Integer readcount, writecount; (initial value = 0)

Semaphore pr Il pre_read (initial value = 1)
Semaphore r /l read (initial value = 1)
Semaphore rc I/ readcount (initial value = 1)
Semaphore wc [/l writecount (initial value = 1)
Semaphore w /I mutual exclusion(initial value = 1)
READER WRITER
P(pr); P(wc);
P(r); writecount = writecount + 1;
P(rc); if writecount = 1 then P(r);

readcount = readcount + 1;
if readcount = 1 then P(w);
V(rc);
V(r);

V(pr);

reaa{ng is performed

P(rc);
readcount = readcount — 1;
if readcount = 0 then V(w);
V(rc);

V(wc);
P(w);

\'A./‘riting is performed

V(w);

P(wc);

writecount = writecount - 1;
if writecount = 0 then V(r);

V(wc);

Figure 2.2: Solution for Reader and Writer Problem - Stronger Writer

e Reader procedure

- Request semaphore pr. Only one reader can come in at a time.

- Request semaphore r. Readers are restricted by the semaphore.

- Request semaphore rc to access the readcount exclusively.

- If it is the first reader, request semaphore w and block writer.

- Release rc on readcount.

- Release semaphore r to iet other readers come in.

13

Release semaphore pr.
Reading is performed.
If it is the last reader, release semaphore w.

Release semaphore rc on readcount

e Writer procedure

Request we on writecount.

If it is the first writer, request semaphore r to block reader. This is
where writer has higher priority because it blocks reader before waiting
on semaphore w.

Release wc on writecount

Request w and try to write.

Writing is performed

Release semaphore w to another writer.

Request we on writecount.

If it is the last writer, release r to unblock readers

Release wec on writecount.

2.2.2 Discussion of Correctness — Writer Privilege

Fairness:

In this solution, a reader is blocked by semaphore r whenever there is a writer

in its critical section or waiting for its critical section. Because a writer only needs

to wait on semaphore w, once a writer is finished, w will be released to other

writers without allowing a reader an opportunity even though a read request

14

occurs first. Readers may be starved if sequences of writers wish to update the
database. Indeed, under the right conditions, a writer may write multiple times
while a reader is waiting. Because of the unfairness of the algorithm, it is not

appropriate for many applications.

Liveness:

As long as each semaphore, readcount and writecount are initialized correctly
and each grant to a process is followed by a release, deadlock can never occur
In this algorithm, each request of a semaphore is followed by a release and the
number of increments of readcount and writecount is equal to the number of

decrements. Thus, deadlock can never occur during correct execution.

2.3 Fair Reader and Writer [Hart03]
2.3.1 Description of the Algorithm

In this algorithm, semaphore pw which each reader and writer waits on has
been added. This is what guarantees the FIFO ordering for read/write requests
[Hart03]. Because of the FIFO character of this algorithm, we call this algorithm

Fair Reader and Writer.

Pseudo code for the algorithm is provided in Figure 2.3.

15

Semaphore pw // pre_mutual exclusion(initial value = 1).
Semaphore rc /l read_count(initial value = 1).
Semaphore w /I mutual exclusion(initial value = 1).
Integer readcount // (initial value = 0).

READER WRITER
P(pw); P(pw);
P(rc); P(w);

readcount = readcount + 1;
if readcount = 1

P(w); V(pw);
V(rc);
V(pw);
reading is performed writing is performed
P(rc);

readcount = readcount — 1;
if readcount =0
V(w);
V(rc); V(w);

Figure 2.3 Solution for Reader and Writer Problem - Fair Reader and Writer

e Reader procedure
- Request semaphore pw to enter the queue. If a reader waits on the
semaphore first, the reader gets a permission to manipulate mutual
exclusion semaphore w first.
- Request semaphore rc on readcount.
- If it is the first reader, request semaphore w to block writer (any
readers immediately behind this one will be waiting on pw).

- Release semaphore rc on readcount.

16

Release semaphore pw to allow waiting read/write processes enter to

queue.

Reading is performed.

Request semaphore rc on readcount.

If it is the last reader, release semaphore w to writer.

Release semaphore rc on readcount.

e Writer procedure

Request semaphore pw to enter the queue.

Request semaphore w to write.

Release semaphore pw to other read/write requests.

Writing is performed

Release semaphore w for next reader or writer.

2.3.2 Discussion of Correctness — Fair Reader and Writer

Fairness:

Assume we have a sequence read/write requests RRWR(R means read
request and W means write request). The first reader passes the semaphore pw
without any problem, then request semaphore rc and update the readcount.
Because it is the first reader, it blocks writer by obtaining grant on semaphore w.
Then it unblocks rc and pw and read from the database. The second reader can

get in at this time. The second reader first locks the rc to update the count,

17

because the count is not 1, skip the if statement. Then the second reader
releases rc and pw to let the first process at the front of the queue to enter so
that the second reader can then read concurrently with the first reader. A write
request passes semaphore pw but is blocked by semaphore w since the readers
are still reading in database. The writer has to wait until the readers finish. The
reader immediately after W has to wait until the writer is unblocked at semaphore
w. As described above, the algorithm can guarantee FIFO while maintaining the
exclusive write access and shared read access. This is a fair and correct

algorithm.

Liveness:

This algorithm is a little different from the reader privilege by adding the outer
semaphore pw. As long as each reader and writer request grants to enter the
outer semaphore pw first, then release it before they enter the critical section,

deadlock can be avoided.

2.4 Fair and Efficient Readers and Writers

2.4.1 Description of the Algorithm

In this algorithm, the outer semaphore pw is the same as the one In the
Figure 2.3. All readers can read concurrently as long as they have previously
passed the outer semaphore pw. If a reader is blocked by this semaphore, it can
not read even though other readers are in the critical section. This algorithm 1s

fair and efficient because it allows all read requests to pass the outer semaphore

18

during the same lock arbitration. Thus the strategy maximizes the read
concurrency while maintaining approximate FIFO fairness. The principal
difference between this algorithm and the Fair Readers and Writers algorithm
(the last algorithm) is that when a reader obtains the privilege all currently waiting
readers are allowed to enter their critical section rather than only those who
immediately succeed the first reader in the queue. If all readers are concurrent
and of equal duration, writers will write at the same time or sooner than in the fair
readers and writers algorithm. If all readers are not completely concurrent, some
writers may experience small delays compared to the fair readers and writers
algorithm. It maintains a high degree of fairness in that readers entering the
queue after the first reader obtains the privilege are barred from executing their

critical sections by semaphore pw.

Pseudo code for the algorithm is provided in Figure 2.4.

19

Semaphore pw I/l pre_mutual exclusion(initial value = 1)
Semaphore rc /I read_count(initial value = 1).
Semaphore w /Imutual exclusion (initial value = 1).

Integer readcount(initial value is 0)

READER WRITER
P(pw); P(pw);
V(pw); V(pw);
P(rc);
readcount++;
if readcount = 1
{
P(w);
P(pw);
} P(w);
V(rc);
reading is performed writing is performed
P(ro)
readcount --;
if readcount =0
{
V(pw);
V(w);
} V(w);
V(rc);

Figure 2.4: Solution for Reader and Writer Problems - Fair and Efficient
Reader and Writer

e Read procedure
- Reader requests semaphore pw.
- Reader releases semaphore pw. This allows all read/write requests
after the reader to come in.

- Request semaphore rc on readcount.

20

If it is the first reader, request w to block writer then request pw to
block all processes that are ready to pass the outer semaphore pw.
Release semaphore rc on readcount.

Reading is performed

Request semaphore rc on readcount.

If it is the last reader, unblock pw to let other processes come in then
release w to unblock writer.

Release semaphore rc.

e Write procedure

Request semaphore pw.

Release semaphore pw. This allows all read/write requests after the
writer to come in.

Request semaphore w to block readers.

Writing is performed.

Release semaphore w to unblock other read/write request.

2.4.2 Discussion of Correctness- Fair and Efficient Reader and Writer

Fairness:

This algorithm is fair and efficient because it allows all processes that arrive

while a read process is in lock arbitration to enter their critical sections with that

first read process. While a read process is waiting for a grant on w, all processes

will pass semaphore pw. As soon as a read process requests semaphore w, it

21

requests semaphore pw, thus blocking all new requests from entering the iock
arbitration. Once, the sharing readers complete their critical sections, semaphore
pw are raised, allowing all requests to enter lock arbitration until another reader
obtains a grant on w. In this manner, reading concurrency is maximized while

maintaining fairness for writers.

A strong fairness criterion might provide that all requests are granted in the
order that they reach the request arbiter. Some of the algorithms discussed here
have strong fairness for one class of users, but allow another class to experience
livelock. The fairness criterion of the fair and efficient algorithm is to increase
shared access without significantly penalizing any processes versus the results

under the strong fairness criterion.

Liveness:
This algorithm is similar to the fair reader and writer algorithm. As long as all
processes request and release the outer semaphore and mutual exclusive

semaphore properly, deadlock will not occur.

Efficiency:

Consider the requests RRWR, where R means read request and W means
write request. This sequence will require four time units to complete (assuming
each request requires one time unit). If the three Rs can read concurrently, only

two time units are required to complete the four requests. In the above case, the

22

fair readers and writers would require three time units to complete, while W
would still have to wait one time unit for its turn. This algorithm is an enhanced
and improved solution of previous one. In practice, reading data from a database
usually occurs more frequently than writing data into a database, so the
efficiency of the reading procedure is very important. This algorithm is correct as
well as efficient. This algorithm has the nice property of increasing concurrency

among shared access requests when contention is higher.

2.5 Fair and Efficient Readers and Writers with Intent to
Read and Write

2.5.1 Purpose of Intent to Read and Write Locks

This algorithm adds intentional locks]OMGI00] to the Fair and Efficient
Readers and Writers algorithm. Intentional locks are relevant if there exists a
hierarchical locking relationship such as the inherent relationship in a database
or file system. A database contains multiple tables, each of which contains
multiple rows. Similarly, a file directory contains multiple files and each file
consists of multiple records. If we lock a whole database because somebody is
updating only one row in a table, the cost of restriction in terms of accessing the
database is huge and will significantly reduce concurrency. On the other hand, if
we set locks for each table or each row, it will result in a higher locking overhead.
In order to balance between the lock overhead and the degree of concurrency,

we use intent to read and write locks [OMGI00].

23

2.5.2 Description of Using Intent to Read and Write Locks

When using intention locks to access a hierarchy, the order in which locks are
acquired is always from the top down. To read a record in the database, for
example, the client obtains intent to read lock (IR) on the database and the table
(in this order) before obtaining the read lock(R) on the record. Intent to read
locks (IR) conflict with write locks (W), and intent to write locks (IW) conflict with
read(R) and write (W) locks; however, intent to read and intent to write locks do
not conflict with each other, allowing many concurrent locks within a database
[IONAO1]. When a mass read or write is to take place, the possibility of locking

the larger resource is still available.

2.5.3 Description of the Algorithm

In this algorithm, semaphores rc(0) and rc(1) have been added. Semaphores
pw and w have the same functionality as those in Figure 2.4. rc(0) and rc(1)
have similar functionality to rc in Figure 2.4. All R, IR, and IW requests go
through either rc(0) or re(1). Each of rc(0) and rc(1) can be of type IR, R, or IW.
The primary flag is 0 for rc(0) and 1 for rc(1). The first process that enters the
primary semaphore will give the semaphore its type. The next process, If
compatible with the primary type, enters the primary semaphore, updates the
primary count and if necessary, updates the primary type. If the value of count is
equal to 1, it requests semaphore w, and then pw. The next process, if not
compatible with the primary type, enters the secondary semaphore, updates the

secondary count, and if necessary, updates the secondary type. Recall that IR is

compatible with R, IW and itself; R is compatible with IR and itself; IW is

. compatible with IR and itself [OMGIOO0].

These compatibilities are defined in Table 2.1.

Table 2.1. Compatibility of Requests with Existing Locks
(X indicates incompatibility)

Requested Lock Previous Grant

IR R W W
Intention Read (IR) X
Read (R) X X
Intention Write(IW) X X
Write (W) X X X X

2.5.4 IR, R and IW Semaphore Upgrades and Additions

Table 2.2 illustrates IR, R and IW semaphore upgrades and additions.

Table 2.2. Request Additions and Type Updates
Primary Addition Addition Addition
Type Type Semaphore Semaphore

Type Update

None IR Primary IR

None R Primary R

None W Primary W
IR IR Primary IR

IR R Primary R

IR IW Primary A%

R IR Primary R

R R Primary R

R W Secondary R

IW IR Primary IW

W R Secondary W

IW IW Primary IW

24

2.5.5 The Fair and Efficient Algorithm with Intent to Read and Write

Pseudo code for the algorithm is provided in Figures 2.5 and 2.6.

25

26

Global Variables:

Semaphore pw, w, rc(0), rc(1) // Initial value all 1

Integer smp I/l \ndicates the value of current semaphore, initial value i1s 0

Integer count [2] /I counter for share semaphores rc(0) and rc(1), initial value 1s 0

Enum typ[2] /Il type for share semaphores rc(0)and rc(1)(IR, IW, or R), initial
/I value i1s IR, R =read, IR = Intent to Read, IW = Intent to Write

Integer prm /l indicates which of share semaphores Is primary, initial value i1s 0

Local Variables:

Integer smp /ldentifies current process’s rc() semaphore
READER WRITER
P(pw), P(pw);
V(pw) V(pw),
If(typ(prm) = IW)

smp = prm;
else

smp =1—prm,

P(rc(smp));
count[smp] ++;
If(typ(smp) = IR)
typ(smp) =R,
If(count(smp) = 1)
{

P(w), P(w),
P(pw),

}
V(re(smp));
reading Is performed writing I1s performed

P(rc(smp));
count[smp] --,
If(count(smp) = 0)

{

typ(smp) = IR,

prm =1 —prm;

V(pw);

V(w); V(w);

}
V(rc(smp)),

Figure 2.5: Reader and Writer Algorithms — Fair and Efficient Readers and
Writers with Intent to Read and Write

INTENT TO READ

P(pw);

V(pw);

smp = prm;

P(rc(smp));

count[smp] ++,

If(count[smp] = 1)
{

P(w),
P(pw),

}
V(rc(smp));

Intent to read operations, including
requesting locks on lower resources

P(rc(smp));

count[smp] --,

if(count[smp] = 0)
{

typ(smp) = IR;
prm =1 — prm;
V(pw);

V(w);

}

V(re(smp)),

27

INTENT TO WRITE

P(pw),

V(pw),

ifttyp(prm) = IW || typ(prm) = IR)
smp = prm,

else
smp =1 —prm,

P(rc(smp)),
count[smp] ++,
if(typ(smp) = IR)
typ(smp) = IW,
if(count[smp] = 1)
{

P(w),
} P(pw),

V(rc(smp)),

Intent to write operations, including
requesting locks on lower resources

P(rc(smp)),
count[smp] --,

if(count[smp] = 0)
{

typ(smp) = IR,
prm =1 — prm,
V(pw);

V(w),

}

V(rc(smp)),

Figure 2.6: Intent to Read and Write Algorithms - Fair and Efficient Readers

and Writers with Intent to Read and Write

28

Reader procedure

Request and release the outer semaphore pw.

If the type of primary semaphore is not /W, assign the primary
semaphore to variable smp. Otherwise, assign the secondary
semaphore to variable smp.

Request the semaphore assigned in smp and update count. If the type
of the primary semaphore is IR, upgrade it to R.

If count is 1, request semaphore w to block the writer and request
semaphore pw to block the processes that are waiting to enter lock
arbitration.

Release semaphore indicated by smp on count.

Reading is performed

Request the semaphore indicated by smp again to update count.

If it is the last shared access operation, reinitialize its primary type.
Update the primary flag to the other rc(0)/rc(1) semaphore. Release
pw and w.

Finally, release the semaphore indicated by smp

Write procedure

Request semaphore pw.
Release semaphore pw. This allows all read/write requests after the
writer to come in.

Request semaphore w to block readers

29

Writing is performed.

Release semaphore w to unblock other read/write requests.

e Intent to read procedure

Request and release semaphore pw.

Assign the primary semaphore to variable smp.

Request the semaphore indicated by smp to update the count

If count is 1, request w and pw

Intent to read operation

Request the semaphore indicated by smp again to update the count

If it is the last shared access operation, update the primary flag to point
to the other rc(0)/rc(1) semaphore. Then release pw and w.

Release the semaphore indicated by smp.

¢ Intent to write procedure

Request and release semaphore pw.

If the type of the primary semaphore is /W or IR, assign the primary
semaphore to smp because /W is compatible with /R and itself.
Otherwise, assign the secondary semaphore to smp.

Request the semaphore pointed to by smp and update count. If the

type of smp is IR, change it to IW.

30

- If the count of sharing semaphore is equal to 1, request w to block
other processes from entering critical section then request the outer
semaphore pw.

- Release semaphore smp on the count of sharing semaphore.

- Intent to write operations.

- Request semaphore smp to update count.

- If it is the last shared access operation, downgrade the type to /R and
change the primary to the opposite.

- Release the semaphores pw and w.

- Release the semaphore pointed to by smp.

2.5.6 Discussion of Correctness — Fair and Efficient Readers and
Writers with Intent to Read and Intent to Write

Fairness:

The policy in this algorithm is to maximize concurrency amongst compatible
privileges (Refer to Table 2.1). Thus, at any point in execution, there are possibly
three classes of incgmpatible requests. These are write requests (which, in
addition are mutually incompatible), read requests, and intent to write requests.
Intent to read requests are compatible with both read and intent to write. Thus,
there are two classes of shared access requests. In a maximal case, the mutual
exclusion lock queue would include one or more write requests (W), a read
request (R), and an intent to write (/W) request. The R and /W requests are

proxies for possibly multiple requests and the primary request might have been

31

made as the result of an intent to read (/IR) request. Assuming that a write
request has the privilege, additional requests entering would go into a queue.
Assume that the R request is primary, then R and IR requests would go into the
primary rc queue, /W requests would go in the secondary rc queue, and W
requests would go into the w queue. Once, in the rc() queues or the w queue, a
request’s place in execution order is assured. Requests entering the rc() queues
could still execute prior to W requests entering lock arbitration before them.
However, the W requests should not be significantly delayed. Once, a W request
enters lock arbitration, a process sending a shared access request afterward

could receive at most two shared access grants before the W request is granted.

Liveness:

This algorithm is fair and efficient reader and writer algorithm with intent to
read and intent to write lock. As long as all processes request and release the
outer semaphore pw, rc(0) and rc(1) semaphores and mutual exclusive
semaphore w properly and increase and decrease the count of rc(0) or re(1)

correctly, deadlock will not occur.

Efficiency:

In this algorithm, intent to read and intent to write privileges are added in order
to implement a hierarchical lock scheme. Using a hierarchical lock can maximum
the concurrency of accessing a database. Semaphores rc(0) and rc(7) allow IR,
IW and R processes to execute their critical sections in parallel and thereby

improve concurrency and efficiency. Thus, this algorithm is fair and very efficient.

32

This algorithm has the nice property of increasing concurrency among shared

access requests when contention is higher.

2.6 Fair and efficient readers and writers with intent to read,
intent to write, and upgrade locks.

The algorithm adds an upgrade lock [OMGI00] to the fair and efficient

readers and writers with intent to read and intent to write locks.

2.6.1 Description of the Purpose of Upgrade Lock

Because read/write locking allows multiple readers but only one writer to
access a resource, it is possible to create a deadlock. The situation happens if
two or more transactions attempt to first read a resource then later write the
same resource without releasing the read locks [[IONAO1]. For example, there are
two transactions 771 and T2 that both are reading concurrently. Later on, T71
wants to update the resource but it is blocked because T2 is still reading. Later
on, T2 wants to update the resource but is also blocked because T7 has not
released its read lock yet. Neither T71 nor T2 can proceed and since both are
waiting on the other to release the read lock deadlock occurs. One way of
dealing with this problem is to add upgrade locks. If each process acquires an
upgrade lock before updating a resource, deadlock can be avoided [IONAO1],

while concurrency is possible between the upgrade lock and read or intention to

33

read locks. Without an upgrade lock, a write lock must be obtained at the

beginning of the transaction. This prevents any concurrency with other lock.

2.6.2 Description of Using Upgrade Lock
An upgrade lock is similar to read lock except that it conflicts with itself. Table
2.3 shows the conflict matrixes for read, write and upgrade locks [IONAO1]. (X

indicates conflict).

Table 2.3.Conflict Matrix for Read, Write and Upgrade Locks
(X indicates Conflict)
Request Mode Granted mode
R U W
Read(R) X
Upgrade(U) X X
Write(W) X X. X

For example, there are two transactions T1 and T2 that are reading
conéurrently. Later, T1 wants to update the resource. It obtains an upgrade lock
first without any problem because an upgrade lock does not conflict with a read
lock. Later on, T2 attempts to acquire the upgrade lock but it is blocked. T1
proceeds to acquire a write lock. After T1 release its write lock, T2 is granted the

upgrade lock and eventually acquires a write lock [[ONAO1].

2.6.3 Description of the Algorithm

34

In this algorithm, we add three more semaphores: rc(2), u and pu in addition
to the semphores pw, w, rc(0) and re(1) used in Figures 2.5 and 2.6. All upgrade
requests must actively compete for a grant to pass the u semaphore. Ali
requests must pass the outer semaphores pu and pw. All IR, R, IWand U
requests must pass one of the readcount semaphores rc(0), re(1), or re(2).
Upgrade requests must pass the u semaphore before releasing the pu
semaphore. A second upgrade request will not pass the u semaphore, and thus
will block all subsequent requests on semaphore pu. There is a significant issue
of fairness between upgrade and write locks. The philosophy of the “fair and
efficient” algorithms is to maximize concurrency between shared access
requests. With an upgrade, the effect could be to allow an upgrade’s write to take
place before a write (without upgrade), which had been waiting longer. This
algorithm requires an upgrade to obtain its own exclusive lock, but allows waiting
reads, and intents to read to share the lock. The pu semaphore assures that at

[{}we}]

most one upgrade request is “in” arbitration at a time.

Pseudo code for this algorithm is provided in Figures 2.7, 2.8 and 2.9.

35

Global variables:

Integer count[3] // counter for share semaphores rc(0), rc(1)and rc(2)

Char typ[3] /I type for share semaphores rc(0), rc(1), rc(2) (IR, IW, R, or U)
Integer prm /I ndicates which of share semaphores is primary(rc(0), rc(1),rc(2))
Semaphore pu // pre_upgrade, initial value = 1

Semaphore u /[upgrade, initial value = 1

Semaphore pw // pre_mutual exclusive, initial value = 1

Semaphorew // mutual exclusive, initial value = 1

Semaphore rc(0), rc(1), rc(2) // initial value = 1

Local variable

Integer smp // identifies current process’s rc() semaphore;
READER WRITER
P(pu); P(pu),
V(pu), V(pu);
P(pw), P(pw),
V(pw), V(pw),
If(typ(prm) 1= IW)

smp = prm,;
else

smp = (prm + 1) mod 3;
P(rc(smp)),

count(smp) ++;
If(zyp(smp) =1)

P(w), P(w),
P(pw),

}
V(re(smp)),
reading Is performed writing 1s performed
P(rc(smp)),
count(smp)--,
If(count(smp) = 0) V(w);
{
typ(smp) = IR;
prm = (prm + 1) mod 3;
V(pw),
V(w),
}
V(re(smp)),

Figure 2.7 Reader and Writer Algorithms - Fair and Efficient Readers and
Writers with Intent to Read, Write and Upgrade Lock

INTENT TO READ

P(pu);
V(pu),
P(pw),
V(pw),
sSmp = prm;

P(rc(smp)),
count(smp) ++,
if(count(smp) = 1)

{

P(w);
P(pw);
}
V(re(smp)),
Intent to read operations

P“(r‘:(smp));

count(smp) --;

if(count(smp) = 0)
{

typ(smp) = IR,
prm = (prm + 1) mod 3;

V(pw);
V(w),

}
V(rc(smp));

INTENT TO WRITE

P(pu),
V(pu),
P(pw),
V(pw),

Iftyp(prm)=IW/|[typ(prm)=IR)
smp = prm,
else if(typ(prm+1) mod 3 = IW
[| typ(prm+1) mod 3) = IR)
smp = (prm+1) mod 3,
else
smp = (prm+2) mod 3,

P(rc(smp)),
count(smp)++,
if(typ(smp) = IR)
typ(smp) = IW,
If(count(smp) = 1)
{

P(w),
P(pw);

}
V(re(smp)),
intent to write operations
P(re(smp));

count(smp)--,
if(count(smp) = 0)
{

typ(smp) = IR,
prm = (prm + 1) mod 3,
V(pw);
V(w),
}
V(rc(smp)),

36

Figure 2.8 Intent to Read and Write Algorithms - Fair and Efficient Readers
and Writers with Intent to Read, Write and Upgrade Lock.

37

Upgrade

P(pu),
P(u);
V(pu),
P(pw),
V(pw);
[f(count(prm) = 0)
smp = prm,;
else If(count((prm + 1) mod 3) = 0)
smp = (prm + 1) mod 3,
else
smp = (prm + 2) mod 3;

P(rc(smp));
count(smp)++;
typ(smp) = U;
if(count(smp) = 1)

{
P(w),

} P(pw),

V(re(smp));

reading is performed
While(count(smp) > 1),
writing is performed
count(smp) = IR;

prm = (prm + 1) mod 3,
V(pw),

V(w),

V(u),

Figure 2.9: Upgrade Algorithm - Fair and Efficient Readers and Writers with
Intent to Read, Write and Upgrade lock

e Read procedure
- Reader requests and releases the outer guard pu.

- Reader requests and releases the inner guard pw.

38

If the type of the primary semaphore is not /W, assign the primary
semaphore to variable smp.

Lock rc(smp) to exclusively access count.

If the type of semaphore is IR, upgrade it to R

If it is the first reader, lock the mutual exclusion semaphore w then pw.
Release rc(smp) on count.

Read operation is performed.

Lock re(smp) again to update the count.

If it is last reader, reset the type of the semaphore to /R and make the
primary flag point to the next rc semaphore 0, 1, or 2.

Release pw then w.

Release rc(smp).

e Write procedure

Request and release the outer guard, semaphore pu.
Request and release the inner guard, semaphore pw.
Request semaphore w to block other processes.
Write operations are performed.

Release semaphore w to allow other processes to enter critical

section.

e Intent to write procedure

Request and release the outer guard, semaphore pu.

39

- Request and release the inner guard, semaphore pw.

- If the type of the primary semaphore is /W or IR, assign the primary to
variable smp.

Otherwise, assign secondary or tertiary to variable smp.

- Request semaphore rc(smp) to exclusively access count(smp).

- If the type of semaphore is IR, upgrade it to /W.

- If it is the first intent to write request, request the mutual exclusion
semaphore w, then pw.

- Release semaphore rc(smp) on count.

- Intent to write operations...

- Request semaphore rc(smp) again to update count.

- If it is the last intent to write request, reset the type of semaphore
re(smp) to /IR and make the primary flag point to the next rc()
semaphore.

- Release semaphore pw then w.

- Release semaphore rc(smp).

¢ Intent to read Procedure
- Request and release the outer guard, semaphore pu.
- Request and release the inner guard, semaphore pw.
- Assign the primary semaphore to variable smp.
- Request semaphore rc(smp) to exclusively access count. Update

count.

40

- If it is the first reader, lock the mutual exciusion semaphore w, then

pw.

- Release semaphore rc(smp).

- Intent to read operation.

- Request semaphore rc(smp) again to update count.

- If it is last intent to read request, reset the type of semaphore rc(smp)
to IR and make the primary flag point to the next rc() semaphore.

- Release semaphore pw, then w.

- Release semaphore rc(smp).

e Upgrade procedure

- Request the outer guard, semaphore pu.

- Request upgrade semaphore u. Only one upgrade process can enter
this semaphore.

- Release the outer guard pu.

- Request the inner guard, semaphore pw.

- If count of the primary is 0, assign primary semaphore to variable smp.
Else if count of secondary is 0, assign secondary semaphore to
variable smp else assign tertiary semaphore to smp. An upgrade
request only can enter an empty semaphore.

- Request semaphore rc(smp) to exclusively access the count.

- Let type of semaphore rc(smp) be U.

- Request the inner semaphore w then pw.

41

- Release semaphore rc(smp) on count

- Read operations

- Wait until only upgrade is in the critical section.

- Write operation is performed.

- After upgrade operation finishes, downgrade the type of semaphore
re(smp) to IR.

- Make the primary flag point to the next rc() semaphore.

- Release semaphore pw, then w.

- Release semaphore u.

2.6.4 Discussion of Correctness — Fair and Efficient Readers and
Writers with Intent to Read, Intent to Write and Upgrade Lock

Fairness:

There is a significant issue of fairness between upgrade and write locks. To
avoid situations in which an upgrade lock “jumps ahead” of a waiting write lock,
two policies are followed. The first policy requires an upgrade to obtain its own
exclusive lock, but allows waiting reads, and intent to reads to share the lock.
The second policy utilizes the u and pu semaphores to provide two assurances:
First, at most one upgrade request is “in” arbitration at a time; and second, if an
upgrade request is waiting because a prior upgrade request is already “in”
arbitration, all subsequent requests will queue on the pu semaphore.
Semaphore pu is used to block all requests subsequent to the second upgrade

request (blocked by semaphore u) so that they are not allowed to enter

42

arbitration. Because the additional rc semaphore rc(2), pu and u semaphore are
added, the algorithm guarantees that an upgrader process can enter an empty
semaphore. Even though the read part of upgrader process can share with other
waiting reads and intent to reads, it has to obtain mutual exclusive lock to start a
write. If a waiting writer queued ahead of the upgrader, the upgrader is not able
to obtain the mutual exclusive lock before the writer thus the upgrader can not

take priority over the writer and the fairness is assured.

Liveness:

It is similar to the previous five algorithms in that if the pre_upgrade,
upgrade and other rc semaphores initialize, request and release properly,
deadlock will not happen. In addition, this algorithm can avoid deadlock in the
situation when two or more users first read then write by obtaining upgrade
locks before write on database. The third rc semaphore rc(2), pu and u
semaphore are added in this algorithm than the previous one only with intent to
read and write locks. When there is an upgrade request, rc(2) and pu
semaphores can guarantee the upgrader enter an empty semaphore(Because
IW and R are incompatible, they may occupy two of rc semaphore, this is why
we need the third rc semaphore). In addition, because of the u and pu
semaphore, it permits only one upgrader “in” a lock arbitration. The second
upgrader request will be blocked by the u semaphore and the subsequent
processes after the second upgrader request will be blocked by the pu

semaphore. The algorithm allows an upgrader obtain an upgrader lock before

43

obtaining a write lock and block the second upgrader until the first upgrader

releases its lock and thus deadlock will not occur.

Efficiency:

The principal difference between this algorithm and previous five algorithms
is that in the previous five algorithms, deadlock avoidance requires acquisition
of an exclusive lock for the entire update, including both read and write
operations. In this algorithm, read and intent to read locks can share access
during the read phase of the “upgrade” transaction, thereby providing additional

potential concurrency, possibly creating improved efficiency.

CHAPTER 3

EXPERIMENTAL DESIGN

3.1 Design of the Experiment

The experiment is designed as a simulated database application, which is
accessed by several readers, writers and upgraders. The actual read, write and
upgrade are simulated by putting the reader, writer, and upgrader threads into
sleep for certain period of time, and represented by the outputs such as “Reader
is reading”, “ Writer # is writing”, “ Upgrader # is upgrading”, “Reader # is
reading from record #” etc. This experiment compares the six reader-and-writer
algorithms described in Chapter 2. In this experiment, we designed six
procedures that implement the six reader-and-writer algorithms. Among the six
algorithms, we have three categories of design approach. The first category is
the four reader and writer algorithms. This category includes reader privilege
algorithm, writer privilege algorithm, fair reader and writer algorithm as well as
fair and efficient reader and writer algorithm. The purpose of the design of this
category is to compare fairness, efficiency and liveness of these four algorithms.

The same approach of design was used for the four reader and writer algorithms

with modifications of certain methods.

44

45

The second category is the fair and efficient reader and writer algorithm with
intent to read and intent to write locks. The design objective of this category is to
demonstrate that this algorithm can achieve hierarchical locking in a database
thus increasing concurrency and efficiency by providing hierarchical locking

necessitate use of a more complex approach of design.

The third category is the fair and efficient reader and writer algorithm with
intent to read, intent to write and upgrade lock. The design objective of this
category is to show that deadlock can be avoided by adding upgrade lock.
Including upgrade locks differentiated this design from that of the other five

algorithms. A benchmark is designed to test and compare all six algorithms.

There are three versions of implemented, one with extensive output (the
Verbose version) two without (the Throughput version and Turnaround version).
The Verbose version will display detailed information of what happens for all
requests (such as the phenomena of reader starvation, writer starvation and
concurrently access the different records by readers and writers etc) and output
the time spent for those requests and the average time spent to obtain various
types of lock under the different algorithms. The Throughput version displays the
total time elapsed for benchmark execution of all requests in order to get more
precise results for efficiency. The Turnaround version displays the individual
waiting time to obtain each lock and average waiting time to obtain each type of

lock under the different algorithms in order to analyze the efficiency.

46

The structure of the experiment is depicted in Figure 3.1.
The tokens in Figure 3.1 are:
RW_Server: The benchmark to test and compare the six algorithms.
RW_Server_1: The implementation for the reader privilege algorithm.
RW_Server_2: The implementation for the writer privilege algorithm.
RW_Server_3: The implementation for the fair reader and writer algorithm.
RW_Server_4: The implementation for the fair and efficient reader and
writer algorithm.
| RW_Server_5: The implementation for the fair and efficient reader and
writer algorithm with intent to read and intent to write lock.
| RW_U_Server_6: The implementation for the fair and efficient reader and
writer algorithm with intent to read, intent to write lock and

upgrade lock.

o L

-

Throughput ‘Mode

RW_Server 1
RW_Server 2
- RW_Server 3
RW Server 4
I RW_Server 5
I RW U Server 6

i g%x
Turnaround Mode

RW_Server

Figure 3.1 The Structure of the Experiment

The whole project executable package is designed in such as a way that the

» RW Server 1

RW Server 2
RW_Server 3
RW._Server 4

I RW Server 5

I RW_U Server 6

Verbose Mode

RW_Server |
RW _Server 2

RW _Server 3
RW_Server 4

I RW Server 5

I RW U Server 6

user has the option of choosing the display mode (verbose, throughput or

turnaround) for execution results. Also, the project allows the user to enter the
number of requests, the duration time for the table reading operation, the record

reading operation, the table writing operation, the record writing operation and

47

the interval time between each request. Then it generates the table reader, table

48

writer, table upgrader, record reader, record writer, and record upgrader requests
pseudo-randomly. These are generated pseudo-randomly so that the execution
results can be compared. Upgrader threads are always generated for all
algorithms. But for the first five algorithms that do not actually support upgrade
locks, an upgrader request is replaced by one writer request with duration equal

to a reader time plus a writer time.

There are a total of six kinds of requests: Table Read, Table Write, Table
Upgrade, Record Read, Record Write and Record Upgrade. Table Read, Table
Write and Table Upgrade will access a table as a whole and Record Read,
Record Write and Record Upgrade will access a specific record in the table. An

example scenario with all requests and duration time is specified in Table 3.1.

49

Table 3.1 An Example Scenario

Table Read Time = 40, Table Write Time = 60,
Record Read Time = 20, Record Write Time = 30

Request Number of | Critical Duration (Relative Wait Times in Milliseconds)
Type Requests Section Reader-Writer | IR/IW IR/IW/Upgrade
Activity Algorithms Algorithm | Algorithm
Table Read | 10 Table Read | 40 40 40
Lock
Table Write | 10 Table Wrnte | 60 60 60
Lock
Table 10 Table N/A N/A 40
Upgrade Upgrade Lock
Table Write | 100 100 60
Lock
Record 50 Table Read | 20 N/A N/A
Read Lock
Table Intent | N/A 20 20
Read Lock /
Record Read
Lock
Record 50 Table Write | 30 N/A N/A
Write Lock
Table Intent | N/A 30 30
Write Lock /
Record Write
Lock
Record 50 Table Write | 50 N/A N/A
Upgrade Lock
Table Intent | N/A N/A 20
Write Lock /
Record
Upgrade Lock
Table Intent | N/A 50 30

Write Lock /
Record Write
Lock

50

3.2 Description of the Experiment

3.2.1 RW_Server

RW_Server implements the benchmark and test program for all the six
algorithms. It creates various requests and resources they want to access the
database. It processes the six types of requests. The resource includes a table
and its five records in the table. The user inputs the number of requests, the
duration time of each of the six types of requests and the interval time between
the arrivals of each request. Request types are determined pseudo randomly
with equal probability of read, write or upgrade and equal probability of each of
the six resources, hamely the table and five constituent records. These requests,
duration time and interval time can be fed into the 3 different groups of six
programs, representing the six algorithms but in different output mode. The first
group of the programs outputs the execution results in Verbose mode in which
detailed information about the phases that each thread goes through and its
relative order against other threads is presented. The second group of programs
outputs the execution results in Throughput mode in which only time information
for comparing the efficiency of the algorithms is presented. The third group of
programs outputs the execution results in Turnaround mode in which only the
individual waiting time to obtain each lock and average waiting time to obtain
each type of lock under different algorithms are presented. This group of

programs is used for analyzing the efficiency for the six different algorithms. Then

51

the data from executing these six programs will be collected and comparison

results will be obtained and analyzed.

3.2.2 RW_Server 1

RW_Server_1 implements the reader privilege algorithm. This is used to test
if there exists writer starvation phenomena during the simulation of readers and
writers competing for grants to access the database. Turnaround and Throughput

metrics are collected for comparison with the other five algorithms.

3.2.3 RW _Server_2

RW_Server_2 implements the writer privilege algorithm. This is used to test if
there exists reader starvation phenomena during simulation of readers and
writers competing for grants to access the database. Turnaround and Throughput

metrics are collected for comparison with the other five algorithms.

3.2.4 RW_Server_3

RW_Server_3 implements the fair reader and writer algorithm. This is used to
demonstrate if FIFO order can be obtained during simulation of readers and
writers competing for the grants to access the database. Turnaround and

Throughput metrics are collected for comparison with the other five algorithms.

3.2.5 RW _Server 4

52

RW_Server_4 implements the fair and efficient reader and writer algorithm.
This is used to determine whether this algorithm is more efficient than the
previous algorithms during simulation of readers and writers competing for grants
to access the database. Turnaround and Throughput metrics are collected for

comparison with the other five algorithms.

3.2.6 |_RW_Server_5

I_RW_Server_5 implements the fair and efficient reader and writer algorithm
with intent to read and intent to write locks. It simulates a two level database (a
table and the records in that table) being accessed by a number of readers and
writers. Among the readers and writers, some of them try to access the table as
a whole while others try to access the individual records of the table. The
experiment will test whether hierarchical access using intent to read and intent to

write locks is more efficient than the other five algorithms.

3.2.71_ RW_U_Server_6

I_RW_U_Server_6 implements the fair and efficient reader and writer algorithm
with intent to read, intent to write and upgrade locks. It utilizes a two levei
database (a table and the records in that table) that is accessed by a number of
readers, writers and upgraders. Among the readers, writers and upgraders,
some of them try to access the table as a whole while the rest try to access the

individual records of the table. The experiment will test whether deadlock can be

53

avoided by adding the upgrade lock, and compare the efficiency of this algorithm

with the five preceding ones.

CHAPTER 4

DESCRIPTION OF IMPLEMENTATION

4.1 Software Required to Implement the Experiment

The software is implemented in the JAVA programming language. It is
compatible with JDK 1.3 or 1.4. Since itis in JAVA, it is very portable. However,
the execution of the experiment is automated for Windows with a MS-DOS batch
script program. [f a system other than Windows is used, the CLASSPATH
environment variable must be set up, and the program must be built and
executed manually. Refer to the user instruction document in Appendix C that
comes with the project package for the automated execution of the project

program on Windows.

4.2 Implementation Versions

There are three versions of implementations as described in Section 3.1. The
user is allowed to choose which version he/she wants to run. The source code of
the Verbose version is in Appendix A and The sample results of running the three

versions of implementation is in Appendix B.

54

55

The Verbose version displays which thread is running and what it is doing at
selected points during the execution of the program. This information is useful in
investigating the relative order of the threads, deadlocks and starvation. But the
costs for outputting these excessive texts to the screen make it unsuitable for
benchmark comparison among the algorithms. On the other hand, although the
Throughput version does not provide detailed information, performance data
collected from this version is more accurate. The Throughput version provides an
overall performance metric. In contrast, the Turnaround version records the
waiting time for obtaining each lock and the average waiting time for obtaining
each type of lock for each algorithm. This data is used to analyze the

performance of each algorithm.

4.3 The Specification of Classes and Main Methods

4.3.1 The Classes and Methods of the Design Category One

Implementation - Reader and Writer Algorithms

This category consists of the Reader Privilege Algorithm, the Writer Privilege
Algorithm, the Fair Reader and Writer Algorithm as well as the Fair and Efficient
Reader and Writer Algorithm. Each of these algorithms is implemented with
JAVA classes: Database, Reader, Writer, Break, Semaphore and RW_Server
[SIGGO03]. The relationship of these five classes is depicted in Figure 4.1. Each is
described in one of the following sections.

Database Class

56

This class contains the semaphores, readCount and writeCount(if it is
necessary). It contains four methods: startRead, startWrite, endRead and
endWrite.

startRead: starts a read process using different algorithms and returns a
reader count.

endRead: ends a read process using different algorithms and returns a
reader count.

startWrite: starts a write process using different algorithms.

endWrite: ends a write process and releases the mutual exclusive
semaphore.

Détébase . Reader
Attributes: ‘

semaphore Attributes:
objects RW_Server(12.3, L Database object
readCount 4) i readerNum
Method: % Methods:
startRead() " Attributes: run()
startWrite() Database objects

endRead() Reader objects

endWrite() Writer objects

Method: |
- RW_Server Main()

A

Writer
ry
Semaphore Attributes:
Database object
Attributes: writerNum
value Method:
Methods: run()
PO
VO

Figure 4.1 Relationships Among Classes for Reader and Writer Algorithms

Reader Class

57

This class shows activity of a specific reader. It only has a run method.

run: The method calls the startRead method of database class to start a
read process and calls the endRead method of database class to end a read

process.

Writer Class
This class shows activity of a specific writer. It only has a run method.

run: The method calls the startWrite method of database class to start a
write process and calls the endWrite method of database class to end a read

process.

Semaphore Class
This class executes the two procedures of semaphore P and V.
P: Requests a semaphore

V: Releases a semaphore.

RW _Server Class
This class specifies six different types of requests then calls the method of
reader and writer class to access the reader and writer requests. It only contains
one method RW_Server_Main (It is converted to RW_Server_1_Main in
Algorithm_1, RW_Server_2_Main in Algorithm_2, RW_Server_3_Main in
Algorithm_3, RW_Server_4_Main in Algorithm_4).
RW_Server_Main: If the request type is 0, it indicates that the request is a

reader process and if the record number is 5, it means the request is a table

58

reader, which wants to read from the table as a whole. If the record number is
from O to 4, it indicates that the reader process wants to read from the specific
record. If the request type is 1, it indicates the request is a writer process and if
the record number is 5, it means that the request is a table writer, which wants to
write to the table as a whole. If the record number is from 0 to 4, it indicates that
the writer process wants to write to the specific record. If the request type is 2, it
indicates the request is an upgrader process and if the record number is 5, it
indicates that the request is a table upgrader, which wants to upgrade the table
as a whole. If the record number is from 0 to 4, it indicates that the upgrader
process wants to upgrade the specific record. Because there is no upgrader
algorithm in this category of implementation, we just consider a table upgrade or
a record upgrade as a table write or a record write with duration time equals to a
table reader time plus a table writer time or a record reader time plus a record
writer time After specifying the six types of requests, the method call the run()

method of Reader and Writer class to start the reader and the writer processes.

4.3.2 The Classes and Methods of the Design Category Two

Implementation - Readers and Writers with Intentional Locks

This category includes Fair and Efficient Reader and Writer Algorithm with
Intent to Read and Intent to Write Lock. This category of experiment
implementation consists of ten classes: Resource, Record, Type, Table, Reader,
Writer, Semaphore, Break, Return_Value and RW_Server. The relationship of

these ten classes is shown in Figure 4.2.

59

Count
Type objects

. - EndWrite)
L

endintentRead()
 StartintentWrite()

et GetNumotRecords()
RecordNum . GetRecords() -

- readTime .

__Meth(!ds -

‘Table object
‘WriterNum
 RecordNum
writeTime

- Methods:
Run()

Break

v

Duration()

Table obj ect
ArrayList ObJGCtS
id

Figure 4.2: Relationships Among Classes for Fair Reader and Writer with
Intentional Locks

60

Resource Class:

This is the base class of Table class and Record class. It contains general
methods of Table class and Record class.

startRead: starts a read process using fair and efficient reader and writer
algorithm with intent to read and intent to write.

endRead : ends a read process using fair and efficient reader and writer
algorithm with intent to read and intent to write.

startintentRead: starts an intent to read process using fair and efficient
reader and writer algorithm with intent to read and intent to write.

startintentWrite: starts an intent to write process using fair and efficient
reader and writer algorithm with intent to read and intent to write.

endintentRead: ends an intent to read process using fair and efficient reader
and writer algorithm with intent to read and intent to write.

endIntentWrite: ends an intent to write process using fair and efficient reader
and writer algorithm with intent to read and intent to write.

startWrite: starts a write process using fair and efficient reader and writer
algorithm with intent to read and intent to write.

endWrite: ends a write process and releases the mutual exclusive

semaphore.

Record Class:
This class implements fair and efficient reader and writer to simulate read and

write on the individual records in a table. It contains four methods:

61

startRead: inherits from the base class.

endRead: ends a read process using fair and efficient reader and writer
algorithm with intent to read and write lock.

startWrite: inherits from the base class.

endWrite: inherits from the base class.

Table Class:

This class simulates the table that contains records. It implements the fair
and efficient reader and writer with intent to read and intent to write lock
algorithm for read, write, intent to read and intent to write. It contains ten major
methods.

GetNumOfRecord: gets number of record in a table

GetRecord: gets a record number in a table.

startRead: inherits from the base class.

endRead: ends a read process using fair and efficient reader and writer
algorithm with intent to read and write lock.

startintentRead: inherits from the base class.

endIntentRead: ends an intent to read process using fair and efficient reader
and writer algorithm with intent to read and intent to write.

endintentWrite: ends an intent to read process using fair and efficient reader
and writer algorithm with intent to read and intent to write.

startWrite: inherits from the base class.

endWrite: inherits from the base class.

62

Type class:

This class defines the types of the two share semaphores. The type is
initialized to be IR and the supported types are IR, IW and R. The class contains
two major methods.

getType: get a type(IR, IW or R)

setType: set a type(IR, IW or R)

Reader class

This class calls the methods of the Table class to start and end a read
process. The class only contains a run() method.

run: If the request is Table Read, the method calls startRead method of the
Table class to start a read process, then calls endRead method of Table class to
end the read process. If the request is Record Read, the method first calls
startintendRead method of Table class to obtain an Intent to Read lock, then
calls startRead method of Record class to start a read process and finally calls

endIntentRead to release the intent to read lock.

Writer class

This class calls the methods of the Table class to start and end a write
process. The class only contains a run() method.

run: If the request is Table Write, the method calls startWrite method of the
Table class to start a write process, then calls endWrite method of Table class to

end the write process. If the request is Record Write, the method first calls

63

startintendWrite method of Table class to obtain an Intent to Write lock, then
calls startWrite method of Record class to start a write process and finally calls

endIntentWrite to release the intent to write lock.

Semaphore Class
This class executes the two procedures of semaphore P and V.
P: Requests a semaphore

V: Releases a semaphore.

ReturnValue class
This class only has two attributes and no methods. The attributes are smp and

count. They represent the current share semaphore and its count.

Break class
This class only has one method: Duration()

Duration(): This method determines the duration of each request.

I_RW _Server_5 Class
This class is designed to manipulate reader and writer process. It only has

|_RW_Server_5_Main method.

i_RW_Server_5_Main: If the request type is 0, it indicates that the request is

a reader process and if the record number is 5, it means the request is a table

64

reader, which wants to read from the table as a whole. If the record number is
from O to 4, it indicates that the reader process wants to read from the specific
record. If the request type is 1, it indicates the request is a writer process and if
the record number is 5, it means the request is a table writer, which wants to
write to the table as a whole. If the record number is from 0 to 4, it indicates that
the writer process wants to write to the specific record. If the request type is 2, it
indicates the request is an upgrade process and if the record number is 5, it
means the request is for table upgrade, which needs to upgrade the table as a
whole. If the record number is from 0 to 4, it indicates that the upgrade process
wants to upgrade that specific record. Because there is no upgrade algorithm in
this category of implementation, we just consider a table upgrade or a record
upgrade as a table write or record write with duration time equals to a table
reader time plus a table writer time or a record reader time plus a record writer
time. After specifying the six types of requests, the method call the run() method

of Reader and Writer class to start the reader and the writer processes.

4.3.3 The Classes and Methods of the Design Category Three
Implementation - Readers and Writers with Intentional Locks and

Upgrade Locks

This category includes fair and efficient reader and writer algorithm with intent

to read, intent to write lock and upgrade lock.

65

This category of experiment implementation consists of eleven classes:
Resource, Record, Type, Table, Reader, Writer, Upgrader, Semaphore, Break,
Return_Value and |_RW_Server. The only difference between this
implementation from the previous one is that the Upgrader class is added for the
upgrade request. In addition, StartUpgrade and endUpgade methods are added
to Table class and Record class to support the upgrade request. Of course, in
the Type class, there should be one more type U(upgrader). The Upgrader class

is described as follow:

Upgrader Class .

This class calls the methods of the Table class to start and end an upgrader
process. The class only contains a run() method.

run: If the request is Table Upgrader, the method calls the startUpgrade
method of Table class to start a read process and read until only the upgrader
itself in the critical section(the table) then start to write to the table. When it is
done, it calls the endUpgrade method of Table class to end an upgrade process.
If the request is Record Upgrader, the method first calls
upgrader_startintentWrite method of Table class to obtain an Intent to write
lock, then calls startUpgrade method of Record class to start read process and
read until only the upgrader itself in the critical section(the record), then start to
write to the record. Finally it calls the endUpgrade of the Record class to end an

upgrade process and calls the upgrader_endintentWrite to release the intent to

write lock.

66

I_RW_Server_6 Class
This class is designed to manipulate reader and writer process. It only has
I_RW_U_Server_6_Main method.

I_RW_U_Server_6_Main: If the request type is 0, it indicates that the
request is a reader process and if the record number is 5, it means the request is
a table reader, which wants to read from the table as a whole. If the record
number is from 0 to 4, it indicates that the reader process wants to read from the
specific record. If the request type is 1, it indicates the request is a writer
process and if the record number is 5, it means the request is a table writer,
which wants to write to the table as a whole. If the record number is from 0 to 4, it
indicates that the writer process wants to write to the specific record. If the
request type is 2, it indicates the request is an upgrader process and if the record
number is 5, it means the request for table upgrade, which needs to upgrade the
table as a whole. If the record number is from 0 to 4, it indicates that the
upgrader process wants to upgrade that specific record. After specifying the six
types of requests, the method calls the run() method of Reader or Writer or

Upgrader class to start the reader, the writer and the upgrader process.

The relationship between those eleven classes is shown in Figure 4.3.

67

Attributes:
_ind ‘

StartUpgr

Endllnoraden

Reader_id
Writer_

Figure 4.3: Relationships Among Classes for Fair Reader and Writer with
Intentional Locks and Upgrade Locks

68

4.3.4 Change the Class Name During Implementation

We have totally six algorithm implementations, some of which have same
class names but different implementations. We found we had to change the class
names in order for the system to run the different implementations properly. For
example, in the source code, we changed the class names such as database,
reader, writer, upgrader to database 1 in Algorithm 1, to database_2 in Algorithm
2, to reader_2 in Algorithm 2, to writer_3 in Algorithm 3 or to upgrader_6 in

Algorithm 6, etc.

CHAPTER 5

DISCUSSION AND ANALYSIS OF THE TEST
RESULTS

We conducted multiple experiments to get a series of results. The detailed
results of running the Verbose version of implementation are provided in

Appendix A.

5.1 Adjusting the Requests According to Lock Types

Available

In order to make all six algorithms comparable, we have to do some
adjustments based on the availability of lock types. There are six types of
requests (table read, table write, record read, record write, table upgrade, record
upgrade) for the experiment. For those algorithms without hierarchical locks
(intention to read and intention to write), we have to translate the record read and
record write to table read and table write. Since an upgrade process is a read
process followed by a write process, for those algorithms without hierarchical and
sequential (upgrade) locks, we have to adjust a table (record) upgrade to a table

write request equal in duration to one table(record) read request plus one table

69

70

(record) write request; For the algorithm with hierarchical locks but not sequential

locks, we have to adjust a table upgrade to one table write request (with duration

equal to table read plus table write) and adjust a record upgrade to one record

write request(with duration equal to record read plus record write). An example

is shown in Table 3.1.

5.2 Discussion of Results Using the Verbose Version

From examination of Verbose version runs (See Appendix B for example run),

we can observe the following phenomena:

1.

For the Reader Privilege Algorithm, once there is a reader who wants to
read from the database, the writers after the reader could not access the
database until all readers followed by that reader finish accessing the
database. If the readers keep entering, the writers will never have a
chance to access the database, thus writer starvation occurs.

For the Writer Privilege Algorithm, once there is a writer who wants to
write to the database, the readers after this writer could not access the
database until all writers following by that writer finish accessing the
database. If writers continue entering, readers never have a chance to
access the database, thus reader starvation occurs.

For the Fair Reader and Writer Algorithm, all requests are processed in

first come and first serve order.

71

4. For the Fair and Efficient Reader and Writer Algorithm, as long as the
readers enter the outer semaphore in the same lock arbitration, they can
read concurrently no matter how many writer requests are interleaved.

5. For the Fair and Efficient Reader and Writer Algorithm with Intent to Read
and Intent to Write lock, the hierarchical and parallel access to a database
can be achieved. For example, when a reader is reading from record 1 of
a table, a writer still can write to record 2 of that table.

6. For the Fair and Efficient Reader and Writer Algorithm with Intent to Read,
Intent to Write Lock and Upgrade Lock, an upgrading process can first
read then write to the whole table or a record as long as there is oniy one

upgrading process is reading from that table or that record.

5.3 Discussion of Results Using the Throughput Version

Since the efficiency issue is our key point of this research, the throughput
version is designed to get more precise data by only outputting the time spent for
the six algorithms. The test results are illustrated in the following tables. The time
spent results are based on the same request sets and the same table reader
time, table writer time, table upgrader time, record reader time, record writer time,

record upgrader time and the same interval time for the six algorithms.

5.3.1 Comparing the Time Elapsed for Six Different Algorithms

Tables 5.1 and 5.2 showed that if number of requests is small, no significant

difference in the time spent by these algorithms is observed. But, when the

72

number of requests becomes bigger, only the time elapsed with Algorithm 1,
Algorithm 2 and Algorithm_4 are comparable. For Algorithm 1, the readers block
the writers and thus let readers read concurrently before any writer starts to write.
As a result, the concurrency and efficiency of the readers is increased. Similarly,
for the Algorithm 2, the writers block the readers and thus let readers read
concurrently after all writers finish their job. As a result, the concurrency and
efficiency of readers is maximized. For Algorithm 4, because readers can read
concurrently as long as they arrive at the same lock arbitration, increased reader
efficiency is achieved. The time elapsed for Algorithm 3 becomes significantly
longer than for the other three Reader and Writer Algorithms as the number of
requests increases. The reason is that if there are one or more writers
interleaving into readers, only the sequence of readers between two writers can
read simultaneously so that the concurrency of the readers is decreased under
contention. Among the six algorithms, as the number of requests increases, the
time elapsed for Algorithm 5 increases the slowest followed by Algorithm 6.
Algorithm 5 is the most efficient when the number of requests is large. This is
because Algorithm 5 allows the readers and the writers to access a different
resource of a database (for example, different record) concurrently without
conflict. Even though Algorithm 6 has the same extent of concurrency as
Algorithm 5, it apparently suffers from the large overhead involved in obtaining
the upgrade locks. Recall that lock arbitration is deferred when there are two

upgrade requests outstanding. These results indicate that in some

73

circumstances, this additional cost for implementing upgrade locks is not

worthwhile.

Tables 5.2, 5.3 and 5.4 shows that the time spent for Algorithm 1 and
Algorithm 2 is somewhat less than for Algorithm 4. Because in Algorithm 1,
readers block the writers and thus let readers read concurrently before any writer
starts to write and in Algorithm 2, the writers block the readers and thus let
readers read concurrently after all writers finish their job, these two algorithms
maximize reader concurrency. But in Algorithm 4, because there is a small
interval between each request, the requests may not be able to enter the same
lock arbitration, thereby allowing many readers but not all the readers to read
concurrently. Reader concurrency is enhanced over Algorithm 3, but not

maximized.

Table 5.1. The Time Elapsed for the Six Algorithms

table read time = 40 milliseconds, record read time = 20 milliseconds,

table write time = 60 milliseconds, record write time = 30 milliseconds,

table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 0 milliseconds

Num_requests | Algo_1 Algo_2 Algo_3 Algo_4 Algo_5 Algo_6
(Seconds) | (Seconds) | (Seconds) | (Seconds) | (Seconds) | (Seconds)

4 012 012 012 012 009 009
10 027 027 0.31 027 021 021
20 053 053 067 053 0 36 037
50 156 156 186 156 115 144
100 314 314 365 314 183 2 51
200 598 595 712 6 01 3 54 483
400 1272 12 69 14 88 12 71 6 82 933
800 2570 25 67 29 81 2569 12 90 18 57
1200 39 36 39 31 4563 39 36 19 98 3018
2400 77 90 7775 90 27 77 97 38 87 48 64

Table 5.2. The Time Elapsed for Six Algorithms

table read time = 40 milliseconds, record read time = 20 milliseconds,

table write time = 60 milliseconds, record write time = 30 milliseconds,

table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 10 milliseconds

Num_requests | Algo_1 Algo_2 Algo_3 Algo_4 Algo_5 Algo_6
(Seconds) | (Seconds) | (Seconds) | (Seconds) | (Seconds) | (Seconds)

4 014 014 014 015 012 013
10 027 027 031 027 03 031
20 058 053 067 057 041 0 66
50 161 156 186 164 139 183
100 321 314 364 322 243 233
200 6 06 595 711 6 07 376 482
400 12 82 12 69 14 87 12 83 7 32 9 64
800 25 80 25 66 29 80 2577 14 21 18 46
1200 39 46 39 30 45 62 3943 20 01 29 15
2400 78 47 7878 90 27 77 88 40 48 60 90

Table 5.3. The Time Elapsed for Six Algorithms

table read time = 40 milliseconds, record read time = 20 milliseconds,

table write time = 60 milliseconds, record write time = 30 milliseconds,
table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 20 milliseconds

Num_requests Algo_1 Algo_2 Algo_3 Algo_4 Algo_5 Algo_6
(Seconds) | (Seconds) | (Seconds) | (Seconds) | (Seconds) | (Seconds)
4 014 014 013 014 019 015
10 029 027 031 031 033 033
20 059 053 067 061 0 56 058
50 166 156 186 168 152 158
100 326 314 365 328 229 2 67
200 614 595 711 619 462 501
400 12 91 12 69 14 88 12 95 8 69 924
800 2593 25 67 29 81 2599 16 66 18 42
1200 39 54 39 29 45 62 3959 2512 30 85
2400 77 92 7773 90 26 77 97 49 09 6120

74

75

Table 5.4. The Time Elapsed for Six Algorithms

table read time = 40 milliseconds, record read time = 20 milliseconds,

table write time = 60 milliseconds, record write time = 30 milliseconds,

table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 30 milliseconds

Num_requests Algo_1 Algo_2 Algo_3 Algo_4 Algo_5 Algo_6
(Seconds) | (Seconds) | (Seconds) | (Seconds) | (Seconds) | (Seconds)

4 012 012 012 012 012 012
10 032 032 032 032 032 032
20 068 0 64 068 070 0 66 070
50 183 175 187 185 178 195
100 345 333 366 348 315 326
200 6 49 6 16 712 6 56 6 25 6 35
400 13 41 12 90 14 88 - 13 49 12 30 12 37
800 26 62 25 86 29 81 2677 24 62 2473
1200 40 37 39 50 4563 40 52 36 25 36 68
2400 78 85 77 88 90 97 80 87 74 55 77 97

Comparing the results for different intervals between requests offers a few
additional points of interest. One is that the time for algorithm 6 reduced as the
interval time was increased from 0 to 10 milliseconds with large nhumbers of
requests. An explanation for this may be that the deferral of arbitration mentioned
above used with the upgrade lock. This can be avoided by increasing the
complexity of the upgrade implementation to allow two upgrade requests into
arbitration at the same time. For example, one of the alternate upgrade
implementations is adding one more rc semaphore, rc(3), and changing the initial
value of upgrade semaphore u to 2 in algorithm 6. This will allow two upgrade
processes in the arbitration at the same time thus the concurrency are
reasonably improved. We call this alternate upgrade implementation algorithm

6a. The example test results of comparing Algorithm 5, Algorithm 6 and

76

Algorithm 6a are illustrated in Table 5.5 and Table 5.6. Tables 5.5 and 5.6 show
that the time elapsed for Algorithm 6a is longer than Algorithm 5 but is shorter
than Algorithm 6 when the number of requests is getting larger. Even though
Algorithm 6a improves the degree of the concurrency, it not eventually solves the

problem. This will be a matter for the future research.

Another interesting observation is that when the interval reaches 30
milliseconds, the advantage of the hierarchical locking algorithms (5 and 6)
significantly diminishes. This is due to the fact that the requests are now spread
out over a major part of the execution time. For example, 2400 requests with 30
milliseconds interval, indicates that the last request was issued at time 71.97

seconds.

Table 5.5. The Time Elapsed for the Algorithm 5, Algorithm 6 and
Algorithm 6a

table read time = 40 milliseconds, record read time = 20 milliseconds,

table write time = 60 milliseconds, record write time = 30 milliseconds,

table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 0 milliseconds

Num_requests | Algo_5 Algo_6 Algo_6a
(Seconds) (Seconds) (Seconds)

4 015 015 014

10 022 021 021

20 037 038 038

50 100 145 133
100 188 242 199
200 326 487 463
400 672 938 8 62

800 12 59 18 59 16 36
1200 18 87 3000 27 57

77

Table 5.6. The Time Elapsed for the Algorithm 5, Algorithm 6 and

Algorithm 6a

table read time = 40 milliseconds, record read time = 20 milliseconds,
table write time = 60 milliseconds, record write time = 30 milliseconds,
table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,

interval time = 10 milliseconds

Num_requests | Algo_5 Algo_6 Algo_6a
(Seconds) (Seconds) (Seconds)

4 009 009 009

10 03 031 03

20 052 066 056

50 134 183 176

100 243 252 233

200 373 495 465

400 717 976 938

800 1330 18 58 17 10

1200 20 25 3044 26 24

5.4 Discussion of Results using Turnaround Version

In order to analyze the reasons why the efficiency is different under the six
reader and writer algorithms, we obtained additional information showing how

long it will take for each type of request to be granted.

The sample results of the average time spent for obtaining the six types of

request under the different algorithms for different intervals between requests are

illustrated in Tables 5.7, 5.8 and 5.9.

78

Table 5.7: The Average Waiting Time in Milliseconds to Obtain a Lock
Under Different Algorithm.

Request_num = 1200,

Table Reader Time = 40, Record Record Time = 20,

Table Write time = 60, Record Write Time = 30,

Table Upgrade Time = 100, Record Upgrade Time = 50,

Interval time = 10

Lock Table Record | Table Record | Table Record

Type Read Read Write Write Upgrade | Upgrade
(TR) (RR) (TW) (RW) (TV) (RU)

Algorithm

Algo_1 5796 6212 12798 13610 14156 13726

Algo_2 33110 33305 12587 13396 13943 13510

Algo_3 16629 16102 15684 16673 17346 16819

Algo_4 3362 3363 12811 13628 14181 13742
Algo_5 3296 1977 5136 2766 5553 2883
Algo_6 8645 8333 8440 8615 9063 8677

Table 5.8: The Average Waiting Time in Milliseconds to Obtain a Lock
Under Different Algorithm.

Request_num = 1200,

Table Reader Time = 40, Record Record Time = 20,

Table Write time = 60, Record Write Time = 30,

Table Upgrade Time = 100, Record Upgrade Time = 50,

Interval time = 20

Lock Table Record | Table Record | Table Record

Type Read Read Write Write Upgrade | Upgrade
(TR) (RR) (TW) (RW) (TU) (RU)

Algorithm

Algo_1 2815 2916 7180 7650 7711 7954

Algo_2 27075 27464 6881 7347 7648 7403

Algo_3 10603 10270 9987 10632 11064 10722

Algo 4 3376 2978 7263 7694 7990 7749

Algo_5 575 402 1035 515 1076 521

Algo 6 2404 2298 2497 2361 2593 2392

79

Table 5.9: The Average Waiting Time in Milliseconds to Obtain a Lock
Under Different Algorithm.

Request_num = 1200,
Table Read Time = 40, Record Read Time = 20,

Table Write time = 60, Record Write Time = 30,
Table Upgrade Time = 100, Record Upgrade Time =50,
Interval time = 30

Lock Table Record | Table Record | Table Record
Type Read Read Write Write Upgrade | Upgrade
(TR) (RR) (TW) (RW) (TV) (RU)
Algorithm
Algo_1 972 1098 2032 2184 2249 2197
Algo 2 20028 20513 1378 1499 1558 1500
Algo_3 4577 4439 4291 4592 4779 4625
Algo_4 1014 1065 2057 2296 2338 2308
Algo 5 229 191 408 177 333 194
Algo 6 282 210 362 238 281 230

Tables 5.7, 5.8 and 5.9 show that in Algorithm 1, which is the reader privilege
algorithm, the average time spent to obtain read locks(including table read lock
and record read lock) is significantly shorter than for obtaining write locks
(including Table Write, Table Upgrade, Record Write and Record Upgrade). This

demonstrates that readers take priority over writers in this algorithm.

On the contrast, the average time spent to obtain write locks (including Table
Write, Table Upgrade, Record Write and Record Upgrade) is significantly shorter
than that for obtaining reader locks in Algorithm 2 which is the writer privilege
algorithm. This illustrates that writers have priority over readers. Of particular
interest when comparing Algorithms 1 and 2 is that there is little difference in the

times for obtaining write locks, but vastly different times for obtaining shared

80

locks. This indicates that, at least in some circumstances, providing shared lock

priority has a small cost for exclusive lock requestors.

Since algorithm 3 is a fair algorithm for readers and writers, we can observe
from the tables that the time spent to obtain reader locks and writer locks are
similar. The cost of a very strict fairness appears to be that everyone must wait
longer for their locks, even though the times are very comparable across request

types.

In comparing with Algorithm 3, Algorithm 4 allows more readers to enter in the
same lock arbitration and read concurrently, thus the time spent for obtaining
read locks in Algorithm 4 is much shorter than in Algorithm 3. Of perhaps even
greater significance is the observation that the waiting times for writers a‘re also

significantly less for Algorithm 4 than for Algorithm 3.

The waiting times for Algorithm 5 are significantly less than the previous four
especially for record read, record write and record upgrade requests. This is
because the hierarchical locks allow readers and writers to access different
records simultaneously. Also, of interest here are the differences in waiting times
for different locks. A shared small resource (row) lock is obtained more quickly
than exclusive or large resource locks. The longest waiting times were for

exclusive large resource (table) locks.

81

Even though Algorithm 6 also has hierarchical locks and allows the read part
of upgrade to share with other waiting reads and intent to reads, the time spent to
obtain locks is shorter than the algorithms without hierarchical locks, it still suffers
from the additional overhead associated with obtaining the upgrade locks and
thus the time spent to obtain locks is larger than in Algorithm 5. Table 5.10
shows the comparison of waiting time for obtaining six types of lock under
Algorithm 5, Algorithm 6 and Algorithm 6a(described in the previous section). It
illustrates that the average time for obtaining the six types of lock are reduced in
Algorithm 6a by comparing to Algorithm 6 because Algorithm 6a allows two
upgrades in the same lock arbitration thus improves some efficiency. Algorithm
Ba is not as efficient as Algorithm 5 may be due to the arbitration issue. To solve

the issue is beyond the scope of current work.

82

Table 5.10: The Average Waiting Time in Milliseconds to Obtain a Lock
Under Algorithm 5, Algorithm 6 and Algorithm 6a.

Request_num = 1200,

Table Reader Time = 40, Record Record Time = 20,
Table Write time = 60, Record Write Time = 30,

Table Upgrade Time = 100, Record Upgrade Time = 50 ,
Interval time = 10

Lock Table Record | Table Record | Table Record

Type Read Read Write Write Upgrade | Upgrade
(TR) (RR) (TW) (RW) (TY) (RU)

Algorithm

Algo 5 2587 1615 6072 3306 6695 3335

Algo_6 8149 7850 7963 8196 8664 8250

Algo_6a | 6465 6143 6675 6488 6832 6546

5.5 Analysis of the Execution Results for Three Versions

From Tables 5.1 through 5.4, we can observe when the requests number is
small, the efficiency of all algorithms is approximately the same. Neither
Algorithm 5 nor Algorithm 6 has any advantage in efficiency. In addition, if the
requests number is small, Algorithm 5 and Algorithm 6 have greater overhead
due to activities such as obtaining the intentional lock and upgrade lock. But
when the number of requests grows larger, Algorithm 4 is the most efficient of the
algorithms without intent to read and intent to write locks because this algorithm
allows multiple readers to take priority over the writers as long as they arrive in
the same shared lock arbitration. Even though Algorithms 1, 2 and 4 provide
similar results when running the verbose version, Algorithms 1 and 2 suffer from
the starvation and fairness problem, so we conclude that Algorithm 4 is the most

efficient, starvation free in the first category of experiment. Among all six

83

algorithms, Algorithm 5 and Algorithm 6 are better than Algorithm 4 in terms of
concurrency and efficiency when the number of requests is big because they
provide granularity locks and let the readers and the writers access different
resources of the database in parallel. Algorithm 6 is less efficient than Algorithm
5 because of the additional overhead associated with the upgrade locks such as
only allow one upgrade in a lock arbitration which offsetting some of the gains
due to hierarchical locking and causing greatly reduce the concurrency and
efficiency. Although Algorithm 6a improves Algorithm 6 by allowing two upgrades
in the same lock arbitration, it still cannot maximize the concurrency as Algorithm
5. The tradeoff is that Algorithm 6 is deadlock free, not suffering from the

possibility of deadlock, as discussed in section 2.6.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Analytic Conclusion

From our analysis the algorithms, we conclude that the first five algorithms
(Reader Privilege, Writer Privilege, Fair Reader and Writer, Fair and Efficient
Readers and Writers, and Fair and Efficient Readers and Writers with Intent to
Read and Write) can have deadlock when two or more transactions attempt to
first read a resource then later write the same resource without releasing the
read locks. Of course, deadlock can be avoided by requiring that either long write

locks or that read locks must be released before requesting write locks.

6.2 Experimental Conclusions

Also, from our simulation experiments, we derive the following conciusions:

Writer starvation can occur with the Reader Privilege Algorithm. This probiem
happens when the readers enter a database continuously, since once they obtain
the privilege they will never release the lock to the waiting writers. Thus, this
algorithm makes the solution for the reader and writer problem unfair and

potentially leads to writer starvation. Conversely, reader starvation can occur with

84

85

the Writer Privilege Algorithm. This problem happens when the writers enter a
database continuously, and once they obtain the privilege to execute they will
never release the lock to the waiting readers. This is also an unfair solution
because of the starvation problem. In spite of the drawbacks of unfairness and
starvation of these two solutions, from an efficiency point of view, they appear to
be more efficient than the fair reader and writer algorithms if there are only a
limited number of reader and writer requests. The reason is that for the reader
privilege algorithm, the readers block and defer the writers and thus maximize
the concurrency among readers; and that for the writer privilege algorithm,
concurrency among writers was increased by deferring the reader processes

until all writer processes were completed.

The advantage of the fair reader and writer algorithm is that it can guarantee
absolute first-come-first-served ordering without starving either the readers or the
writers -- the drawback is that it is significantly less efficient in many
circumstances. If there are one or more writers interleaving with multiple readers,
only the continuous sequence of readers between a pair of writers can read

simultaneously so that concurrency of readers is diminished.

We demonstrated that our enhanced fair and efficient reader and writer
algorithm was starvation free and could achieve efficiency and fairness. This
algorithm combines the advantages of the previous three algorithms and

overcomes their drawbacks. This algorithm not only provided high degree of

86

concurrency and efficiency for readers but also gives a fair chance to the writers,
which are interleaved with the readers. The fairness is nearly the same as the fair
reader and writer algorithm when all readers read concurrently with equal
durations. There may be small delays for writers when reads are not completely

concurrent.

In addition to our enhanced fair and efficient algorithm, we also proved that
our fair and efficient reader and writer algorithm with intent to read and intent to
write lock can further improve the efficiency when the volume of requests to
access a database is large. It gains much more concurrency than algorithms that
do not have intentional locks by allowing record readers and writers to access the
database where there are no conflicts rather than using fully exclusive access
across the database or a table of the database. Even though there is some
overhead in obtaining the intentional locks, it appears that, at least in some
circumstances, the additional overhead is more than compensated by increased

paralielism in reads.

Finally we added an upgrade lock into our enhanced fair and efficient
algorithm with intent to read and intent to write locks. Even though the efficiency
is not improved when compared to the fair and efficient readers and writers with
intent to read and intent to write algorithm, the deadlock problem that all the
previous five algorithms suffer from can be completely avoided. Thus, there

exists a tradeoff between using the upgrade lock and not using the upgrade lock.

87

Not using the upgrade lock can lead to better efficiency at least in some
circumstances, but leaves the potential deadlock problem when more than one
transaction first reads from a database then sequentially wants to write to the
database. By using the upgrade lock, avoids potential deadlock problem but is
less efficient due to the fact that the algorithm allows only one upgrader in the
same arbitration and blocks the subsequent processes followed by the second
upgrader. Algorithm 6a(described in Section 5.3.1) provides a better solution but
still not resolve the problem. We believe that the separate upgrade queue(s)

actually denimishes by making additional pools of concurrent locks.

6.3 Future Work

One of future work in this area would be developing an alternate algorithm for
algorithm 6 which not only avoiding potential deadlock problem but also

increasing the reasonable degree of concurrency and efficiency.

Another future work in this area including providing a better GUI for our test

bed and testing these algorithms over a wide large benchmarks.

The third area of research could be construction of benchmark that provides

data points including hierarchical and sequential locking operations.

88

Another issue not addressed by current research is dealing with situation
where faults have either caused processes to not release locks or caused two or

more processes to hold incompatible locks on the same resource.

APPENDICES

89

90

APPENDIX A

PROGRAMING SOURCE CODE OF READER AND WRITER
PROBLEM

The following material is the Java source code of Verbose

implementation of reader and writer problem using semaphore.

. RW_Server.java
. RW_Server_1.java
. RW_Server_2.java

. RW_Server_4.java

1
2
3
4. RW_Server_3.java
5
6. I|_RW_Server_5.java
7

. |_RW_U_Server_6.java

91

Jreicicknk *kkk * ke ek Rk ek

File
RW_Server java

Description

The RW_Server class serves as the benchmark for all six algorthms Users can
choose how many requests to be run Those requests will be translated into
table read request, record read request, table write request, record write

request, table upgrade request and record upgrade request by a random number
generator Users are also allowed to choose the time duration for table read,
table write, table upgrade, record read, record write, record upgrade as well

as the interval time between the requests The various requests and time
durations will be the test input data for all six algorithms for the reader

and writer problems The time spent by each algorithm is obtained for
comparison

Note the program uses the screen as the STDOUT and the keyboard as the STDIN
Exessive output 1s used for keeping track of the order of the execution of

the program and calculating the average waiting time for each lock type under

the different algorithms

Author
Mei Li

Date

April 24, 2004
import java 10 *,
import java util *,

public class RW_Server

{

/*
Function
convertStrTolnt

Description
This 1s a helper function that converts a string to an integer

Parameters
str - the string to be converted into an integer

Return
An integer Error 1s returned If the string 1s not in valid number format such as when the string

contains any character that Is not numeric)

*/

private
static int convertStrTolnt(String str)

int anint,
try
anint = Integer parselnt(str), // convert string to an integer

catch (NumberFormatException e)

{

92

anint = ERROR,
}

if (anint == ZERO || anint == ERROR)

System out printin("Your input \"" + str + "\" is invalid!),
System out printin("Please make sure your input is in the correct "
+ "number format and also greater than 0!"),
}

return anint,

}

I*
Function®
running

Description

This function generates the request types and the record numbers that the
requests want to access These requests includes table reader, table writer,
table upgrader, record reader, record writer and record upgrader The
function specifies the interval time between each request and the access time
for the six requests Then, the function calls the six algorithm

implementation functions

Parameters
num_requests - the number of requests the user wants to run
br - a buffereReader object that Is use to get input from the user

*/
private

static void running(int num_requests, BufferedReader br)

throws |OException

String str,

// set up a repeatable random number generator

Random rand = new Random(888),

/I array of record numbers the requests will access

int recNum[] = new intfnhum_requests],

/I array of the types of requests(record reader, table writer, etc)
int threadType[] = new int{num_requests],

/* The following loop generates table read, table write, table upgrade,
record read, record write, record upgrade requests randomly and it also
randomly specifies which of the records or the table the readers writers
and upgraders try to access Assume there are 5 records In a table */

for iInt1 = 0, 1 < num_requests, 1++) {

/l generates a record number between 0 and 5, inclusively
recNum[i] = rand nextint(6),

/I generates a request type between 0 and 2, inclusively
threadType[i] = rand nextint(3),

}

int T_readTime =0, // the access time for table read

int R_readTime =0, /I the access time for record read

int T_writeTime = 0, /I the access time for table write

int R_writeTime =0, / the access time for record write

int interval = 0, /I the interval time between each request
do

System out print("Please enter the access time for table read "),
str = br readLine(),

T_readTime = convertStrTolnt(str),
}
while (T_readTime == ERROR || T_readTime == ZERO),
do

System out print("Please enter the access time for record read "),
str = br readLine(),

R_readTime = convertStrTolnt(str),
}
while (R_readTime == ERROR || R_readTime == ZERO),
do

System out print("Please enter the access time for table write "),
str = br readLine(),

T_wnteTime = convertStrTolnt(str),
}
while (T_writeTime == ERROR || T_wrniteTime == ZERO),
do

System out print("Please enter the access time for record write "),
str = br readLine(),

R_writeTime = convertStrTolnt(str),
} while (R_writeTime == ERROR || R_writeTime == ZERO),

do

System out print("Please enter the interval time "),
str = br readLine(),

interval = convertStrTolnt(str),
} while (interval == ERROR || interval == ZERO),

/I call the implementation function of algorthm_1
RW_Server_1 RW_Server_1_Main(threadType,

recNum,

num_requests,

T_readTime,

R_readTime,

T_writeTime,

R_wrniteTime,

interval),

/I call the implementation function of algorithm_2
RW_Server_2 RW_Server_2_Main(threadType,

recNum,

num_requests,

T_readTime,

R_readTime,

T_writeTime,

R_writeTime,

interval),

/I call the implementation function of algorithm_3
RW_Server_3 RW_Server_3_Main(threadType,
recNum,

93

num_requests,
T_readTime,
R_readTime,
T_writeTime,
R_writeTime,
Interval),

/I call the implementation function of algorithm_4
RW_Server_4 RW_Server_4_Main(threadType,

recNum,

num_requests,

T_readTime,

R_readTime,

T_writeTime,

R_writeTime,

interval),

// call the implementation function of algorithm_5
I_RW_Server_5 |_RW_Server_5_Main(threadType,

recNum,

num_requests,

T_readTime,

R_readTime,

T_wnteTime,

R_writeTime,

interval),

/I call the implementation function of algorithm_6
I_RW_U_Server_61_RW_U_Server_6_Main(threadType,

94

recNum,
num_requests,
T_readTime,
R_readTime,
T_wrniteTime,
R_writeTime,
interval),
}
/*
Function
main
Description

This 1s the entry point of the program In this function, the user specifies

the number of requests via STDIN (the screen) If the user simply types ENTER
after the prompt, a default value of 15 will be assumed This function also
checks the user input to make sure it is in correct number format and value
range (1 e , the number must be greater than 0) This function may throw
I0Exception exception The function finally call the running function to

convert the requests to the type and record number

Parameters
args[] - An array of strings corresponding to the command line arguments

Return
None

public
static void main(String args[])
throws IOException

{

*/

BufferedReader br = new BufferedReader(new InputStreamReader(System in)),
String str,

int num_requests_default = 15,

int num_requests,

do

{
do

System out printin(""),

System out print("Please enter the number of requests (default ="
+ num_requests_default + ", g to quit) "),

str = br readLine(),

if (str equals(™))
num_requests = num_requests_default,
else If (str equals("q") || str equals("Q"))
num_requests = QUIT,
else
num_requests = convertStrTolnt(str),

}
while (num_requests == ERROR || num_requests == ZERO),

if (num_requests '= QUIT)
running(num_requests, br),

while (num_requests '= QUIT),

}

final static int QUIT =-1011,
final static nt ERROR =-1012,
final static int ZERO =0,

}

95

96

/
File
RW_Server_1 java

Description
This Is the implementation of the reader privilege algorithm From the running

result, reader starvation will be observed

Author
Mer L

Date
April 24, 2004

import java 10 *,
import java util *,

e —
The node class Is used to declare objects that are used to sort the request

types based on the average lock waiting time

class node

{

long avg,
int type,

node()
{

avg =-1,
type =-1,
node(long a, int t)

avg = a,
type =t,

}

public class RW_Server_1

{

e

/*
Function
average

Description
It calculates the average of the long integers contained in the arr array

Parameters
arr - An array of objects of Object type These objects contains long
integers corresponding to the lock waiting times for a request type

Return
The average It returns -1 if the number of objects 1s 0

*/

static long average(Object(] arr)

long total = 0,
int count =0,

for (int1 = 0; 1 < arr length, 1++)

{

count++,
total += ((Long)arri]) longValue(),

if (count == 0)
return -1,

return total / count,

}
/*

97

Function
display

Description
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long
integers corresponding to the lock waiting times for a request type

Return
None

static void display(Object([] array)
for (int1 =0, 1 < array length, 1++)
if i == array length - 1)
}System out print(((Long)array[i]) longValue()),

else

System out print(((Long)array[i]) longValue() +" "),

}
}
}

/*

*/

Function
bubbleSort

Description

It sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort is used since we only have
a small number (6) of request types to sort

Parameters

nodeArray - An array of nodes These nodes contains the average wairting time

for a request type and the request type
size - The size of the nodeArray array

Return
None

static void bubbleSort(node[] nodeArray, int size)

node tmp = new node(),

*f

for (int1=size-1,1> 0, I--)
{
for(intj=0, <1, ++)
if (nodeArray[j] avg > nodeArray[j+1] avg)
{

tmp avg = nodeArray[j+1] avg,

tmp type = nodeArray[j+1] type,
nodeArray[j+1] avg = nodeArray]j] avg,
nodeArray[j+1] type = nodeArray[j] type,
nodeArray[j] avg = tmp avg,
nodeArray[j] type = tmp type,

98

Function
RW_Server_1_Main

Description

This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
it starts the threads and wait for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock waiting
times) for the various requests are calculated and displayed

Parameter

thread_Type - An array of the request types (namely read, writer or
upgrader)

rec_Num - The identification number of the record a request tries to access

num_threads - The number of requests

table_r_time - The access time of table read

record_r_time - The access time of record read

table_w_time - The access time of table write

record_w_time - The access time of record write

interval - The interval time between the requests

Return
None

public static void RW_Server_1_Main(int[] thread_Type,
int[] rec_Num,
int num_threads,
int table_r_time,
int record_r_time,
int table_w_time,
int record_w_time,
int interval)

int reader_id = 0, writer_id = 0,
Database_1 db = new Database_1(),
ArrayList threadArrayList = new ArrayList(),

for iInt1= 0, 1 < num_threads, 1++)

{
if (thread_Type[i] == 0)
{ [/l readers are added to list
if (rec_Num[i] == 5) // this 1s a table level reader
threadArrayList add(new Reader_1(reader_id++,

*/

db,
Ol
table_r_time)),
else // this 1s a record level reader
threadArrayList add(new Reader_1(reader_id++,
1 1
record_r_time)),

}
else If(thread_Type[i] == 1)
{ /I wniters are added to list
if (rec_Num[i] == 5) // this 1s a table level writer
threadArrayList add(new Wnter_1(writer_id++,
Ol
01
table_w_time)),
else //this is a record level writer
threadArrayList add(new Writer_1(writer_id++,

db,
1,
Ol
record_w_time)),
}
else

{/If1it1s a upgrader, add it to the list as a writer
if (rec_Num[i] == 5) // this 1s a table level upgrader
threadArrayList add(new Writer_1(writer_id++,

3

Ol
1 1
table_r_time + table_w_time)),
else /I this 1s a record level upgrader
threadArrayList add(new Writer_1(writer_id++,
db,

1 il
1,
record_r_time + record_w_time)),
}
}

/l converts the ArrayList containing the readers and writers to an Array
Object[] threadArray = threadArrayList toArray();
System out printin("),

System out printin("Start running algonthm_1 "),
Date startDate = new Date(), // starting time

for (int1= 0, 1 < threadArray length, 1++)
if (threadArray[i] instanceof Reader_1)

{
((Reader_1)threadArray[i]) start(),
Break_1 duration(interval),// interval

}

else

((Wniter_1)threadArray[i]) start(),
Break_1 duration(interval), // interval

}
}

// block until all threads terminates

try
{
for (int1 =0, 1 < threadArray length, 1++)

if (threadArray[i] instanceof Reader_1)
((Reader_1)threadArray[i]) join(),
else
((Writer_1)threadArray[i]) join(),

catch (InterruptedException e)

System out printin(“Interrupted"),

/l ending time
Date endDate = new Date(),

/I calculate and print to stdout the time spent in seconds
long timeDiff = endDate getTime() - startDate getTime(),
System out printin("™),
System out printin("\nTime spent for algorithm_1 "

+ (double)timeDiff/1000 + " seconds "),

ArrayList TR_list = new ArrayList(),
ArrayList RR_list = new ArrayList(),
ArrayList TW_list = new ArrayList(),
ArrayList TU_list = new ArrayList(),
ArrayList RW_list = new ArrayList(),
ArrayList RU_list = new ArrayList(),

for (int1 =0, 1 < threadArray length, i1++)

if (threadArray[i] instanceof Reader_1)

{
if (Reader_1)threadArray[i]) getType() == ReaderWnterType TR)

{
TR_list add(new Long(
((Reader_1)threadArray[i]) getLockWaitingTime())),
}

else

{
RR_hst add(new Long(
((Reader_1)threadArray[i]) getLockWaitingTime())),
}

}

else

if (Wniter_1)threadArray[i]) getType() == ReaderWriterType TW)

TW_Iist add(new Long(
((Wniter_1)threadArray[i]) getLockWaitingTime())),

else If (Wnter_1)threadArray[i]) getType() == ReaderWnterType TU)

{
TU_list add(new Long(
((Writer_1)threadArray[i]) getLockWaitingTime())),

}
else If ((Wnter_1)threadArray[i]) getType() == ReaderWnterType RW)

RW_list add(new Long(
((Writer_1)threadArray[i]) getLockWaitingTime())),

100

}

else

{
RU_hst add(new Long(
((Writer_1)threadArray[i]) getLockWaitingTime())),
}

}
}

Object[] TR_arr = TR_list toArray(),
Object[] RR_arr = RR_list toArray(),
Object[] TW_arr = TW_list toArray(),
Object[] TU_arr = TU_list toArray(),
Object[] RW_arr = RW_list toArray(),
Object[] RU_arr = RU_list toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray[] = {
new node(avgTR, ReaderWrnterType TR),
new node(avgRR, ReaderWriterType RR),
new node(avgTW, ReaderWnterType TW),
new node(avgTU, ReaderWriterType TU),
new node(avgRW, ReaderWriterType RW),
new node(avgRU, ReaderWriterType RU)},

bubbleSort(nodeArray, 6),

System out printin("\nThe average times spent in miliseconds to obtain a "
+ "lock in algorithm_1 \n"),
for (int1=0,1<86, 1++)

{
switch (nodeArray[i] type)

{

case ReaderWnterType RR
System out print("RR Average =" + avgRR +"["),
display(RR_arr),
System out printin("\n"),
break,

case ReaderWnterType RU
System out print("RU Average =" + avgRU +"["),
display(RU_arr),
System out printin("J\n"),
break,

case ReaderWrnterType RW
System out print("RW Average =" + avgRW +"["),
display(RW_arr),
System out printin("\n"),
break,

case ReaderWriterType TR
System out print("TR Average =" + avgTR +"["),
display(TR_arr),
System out printin("J\n"),
break,

case ReaderWriterType TU
System out print("TU Average =" + avgTU + " ["),
display(TU_arr),

101

102

System out printin("\n"),
break,
case ReaderWriterType TW
System out print("TW Average =" + avgTW + " ["),
display(TW_arr),
System out printin("\n"),
break,
default
System out printin("Oop! Somerthing must be wrong "),
break,

}
}
}

R R AR ek R e Rk ekl ek e de e ek ek

This class I1s emulates a physical database It contains methods that will be
called by Reader_1 and Writer_1 classes

* dhkkkkk *kkkkkkhkkkk Fkkkdkkkk Fedekk dededkedok dekkkkkkdk Fekkkk *kkkkkkhikk Fekkkkkkkk % /

class Database_1

{
/*
Function Database_1

Description
Constructor for the Database_1 class It initializes readCount, and the
semaphores rc and w

Parameters
None

Return

None
*/

public Database_1()

readCount =0,
rc = new Semaphore_1(1),
w = new Semaphore_1(1),

}

/*
Function
startRead

Description
start a read process according to the reader previlege algorithm

Parameters
readNum - the ID number of a reader

Return

The number of readers that are currently reading
>/

public int startRead(int readerNum)

{
System out printin(“reader " + readerNum + " wants to read "),
rc P(),
++readCount,
if (readCount == 1) // the first reader will block writer
w P(),

rc V(),

103

return readCount,

}

I*
Function
endRead

Description*
end a read process according to the reader previlege algorithm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading

public int endRead(int readerNum)
{
rc P(),
--readCount,
System out printin(“reader " + readerNum + " is done reading Count =" +
readCount),
if (readCount == 0) // the last reader will unblock writer
w V(),
rc V(),
return readCount,

}

*/

/*
Function
startWrite

Description
start a write process according to the reader previlege algorithm

Parameters
writerNum - the ID number of a writer

Return
None

*/

public void startWrite(int writerNum)

System out printin("writer " + writerNum + " wants to write "),
w P(),
}

/*
Function
endWrite

Description.
end a write process according to the reader privilege algorthm

Parameters
writerNum - the 1D number of a writer

Return
None

>/

public void endWrite(int writerNum)

{

System out printin("writer " + writerNum + " is done writing "),
w V(),

private int readCount, // the number of active readers
Semaphore_1 rc, /1 controls access to readCount
Semaphore_1 w, /I controls access to the Database_1

}

104

/ dedededdededodeddededed dod deodedededeok deod iedededed deodedededkdk e dedede ok Jedek

This class defines the reader and writer types and provides methods for
retrieving the types

class ReaderWnterType
{

private int value,
ReaderWriterType(int type)

value = type,

int getReaderWnterType()
{

return value,

}

final static int TR = 0x100,
final static int RR = 0x101,
final static int TW = 0x102,
final static int TU = 0x103,
final static int RW = 0x104,
final static int RU = 0x105,

}

e Hekkdk ok

This class calls the methods of Database_1 to start and end a read process

class Reader_1 extends Thread

{
r*

Function
Reader_1

Description
Constructor for Reader_1 class. It specifies which reader is reading from
which database and how long the reading time 1s

Parameters

r - reader ID

w - the database the reader is reading from

n - indicates the reader is a table reader or a record reader
r_time - reader access time

Return
None

*/

public Reader_1(int r, Database_1 w, int n, intr_time)

readerNum =r,
db=w,
read_time =r_time;

if (n == 0) // Table Reader

t_r = new ReaderWrterType(ReaderWriterType TR),
else /I Record Reader

t_r = new ReaderWnterType(ReaderWnterType RR),

}

105

/*
Function
getType

Description
Get the type of the reader (TR or RR)

Parameters
None

Return
An integer that corresponds to the reader's type

public int getType()

{
return t_r getReaderWriterType(),

}

*/

/*
Function
getLockWaitingTime

Description
Get the lock waiting time for the reader

Parameters
None

Return

A long integer that corresponds to the lock waiting time

*

public long getLockWaitingTime()
{

return lockWaitingTime,

}

/

/*
Function
run

Description
This function specifies how a reader thread runs

Parameters
None

Return
None

public void run()
intc,

Date start_req = new Date(),
¢ = db startRead(readerNum),

>/

106

Date obtain_req = new Date(),

System out printin("reader " + readerNum + " Is reading Count =" + c),
Break_1 duration(read_time), // read read_time milliseconds

¢ = db endRead(readerNum),

// warting time for obtaining a reader lock
lockWaitingTime = obtain_req getTime() - start_req getTime(),

}

private Database_1 db, // the database that the reader tries to access
private int readerNum, // identification number of the reader

private int read_time, // access time spent by the reader

private ReaderWriterType t_r, // the type of the reader (TR or RR)
private long lockWaitingTime, // the lock waiting time of the reader

}

JridRRRR kR ke dedededededeede ke ek Fedededede ke e Ak dekkod ek e e e ko

This class calls the method of Database_1 to start and end a write process

**/

class Wniter_1 extends Thread

{
/*
Function
Whriter_1

Description
Constructor for Writer_1 class It specifies the type of the process(table
writer, record writer, table upgrader, record upgrader)and its duration time

Parameters

w - writer ID

d - the database the writer and upgrader are writing to
n - indicates table writer or record writer

u - Indicates an upgrader or not

w_time - writer access time

Return
None
*
public Wniter_1(int w, Database_1 d, int n, int u, int w_time)
{
writerNum = w,
db=d,

write_time = w_time,
if (n ==0)
{

if (u == 0) // Table Wniter
t_w = new ReaderWriterType(ReaderWriterType TW),
else /I Table Upgrader
t_w = new ReaderWriterType(ReaderWriterType TU),
}

else

{
if (u == 0) // Record Writer
t_w = new ReaderWrniterType(ReaderWrniterType RW),
else /Il Record Upgrader
t_w = new ReaderWnterType(ReaderWriterType RU),

}
}

107

r*

Function
getType

Description
Get the type of the writer (TW, RW, TU or RU)

Parameters
None

Return

An integer that corresponds to the writer's type

*/

public int getType()
{

return t_w getReaderWrnterType(),

}

/*

Function
getLockWaitingTime

Description
Get the lock waiting time for the writer

Parameters*
None

Return

A long integer that corresponds to the lock waiting time

*/

public long getLockWaitingTime()

return lockWaitingTime,

}

/*

Function
run

Description
This function specifies how a writer thread runs

Parameters
None

Return
None
*/

public void run()

{

Date start_req = new Date(), // start iming
db startWrite(writerNum), // start a write process
Date obtain_req = new Date(), // end timing

System out printin("writer " + wrniterNum + " 1s writing "),
Break_1 duration(write_time); // writer or upgrader writes write_time milliseconds

db endWrite(writerNum),

/I the waiting time to obtain a writer lock

108

lockWaitingTime = obtain_req getTime() - start_req getTime(),

}

private Database_1 db, // the database that the writer tries to access
private int writerNum, /ldentification number of the writer

private int write_time, /I access time spent by the writer

private ReaderWriterType t_w, // the type of the writer (TW, TR, TU or RU)
private long lockWaitingTime, // the lock waiting time of the reader

nnnnnnnnnnn * hedekk dekkdkkkkkkhkik dkkkkkkkkk Fedkedkdededodededdkkdedddhdodk xunnv/

final class Semaphore_1
{ '
/*
Function
Semaphore_1

Description
default constructor for Semaphore_1

Parameters
None

Return

None
*/

public Semaphore_1()

value =1,

}

/*
Function
Semaphore_1

Description
constructor for Semaphore_1

Parameter
v - An integer value for the semaphore

Return

None
*/

public Semaphore_1(int v)
{

value = v,

}

/*
Function
P

Description
This function call the wait() to sleep when the value of Semaphore less than
or equal 0 If the value of Semaphore is a positive number, decrements by 1

Parameters

109

None

Return
None
*/

public synchronized void P()

while (value <= 0)

try
wait(),

catch (InterruptedException e) {}

}

value--,

}

/*
Function
\Y)

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that is waiting on the semaphore If it has any

Parameters
None

Return
None
*/

public synchronized void V()

{

++value,

notify(),
}

private int value, //the value of the semaphore

R etk dododokdekdek dodod ke ek ok dekdekek ok R dekeded gk g dedede ke dedededededed e ke ek Rk kokk

xxxxxxxxxxxxxxx *edededok Fedededdododdkdeddeddeddedededd *kkddkkd dekkk /

final class Break_1

{
/*
Function
duration

Description
The function specifies the duration of access time in milliseconds

Parameter
miliseconds - how many milliseconds the access time 1s

Return

None
*/

public static void duration(int milliseconds)

{

try
Thread sleep(milliseconds),

catch (InterruptedException e) {}

110

111

JRRR Fede

File
RW_Server_2 java

Description
This 1s the iImplementation of the writer privilege algorithm From the running

result, reader starvation will be observed

Author
Mei L

Date
April 24, 2004

s

import java 10 *,
import java util *,

The node class Is used to declare objects that are used to sort the request
types based on the average lock waiting time

class node

{
long avg,
int type,

node()
{

avg = -1,
type = -1,
}

node(long a, Int t)

avg = a,
type =t,

}

class RW_Server_2
{

l*
Function
average

Description
It calculates the average of the long integers contained in the arr array

Parameters
arr - An array of objects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

Return
The average It returns -1 if the number of objects i1s 0

*

static long average(Object[] arr)

{
long total = 0,
int count =0,

for iInt1=0, 1 < arr length, 1++)

{

count++,
total += ((Long)arr(i]) longValue(),

if (count == 0)
return -1,

return total / count,

}
/*

112

Function
display

Description
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long
integers corresponding to the lock waiting times for a request type

Return
None

static void display(Object[] array)
for (int1 =0, 1 <array length, 1++)
if (1 == array length - 1)
:System out print(((Long)array[i]) longValue()),

else

System out print(((Long)array[i]) longValue() + " "),

}
}

/*

*/

Function
bubbleSort

Description

It sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort 1s used since we only have
a small number (6) of request types to sort

Parameters

nodeArray - An array of nodes These nodes contains the average waiting time

for a request type and the request type
size - The size of the nodeArray array

Return
None

*/

static void bubbleSort(node[] nodeArray, int size)

{

node tmp = new node(),
for int1=size-1,1>0, I-)
for inty=0,) <1, J++)
l{f (nodeArray[j] avg > nodeArray][j + 1] avg)

tmp avg = nodeArray[j + 1] avg,

tmp type = nodeArray[j + 1] type,
nodeArray|| + 1] avg = nodeArray[j] avg,
nodeArray[] + 1] type = nodeArray|j] type,
nodeArray[j] avg = tmp avg,

nodeArray[j] type = tmp type,

113

/*
Function
RW_Server_2_Main

Description

This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
it starts the threads and wait for threads to terminate After that, the
throughput time for this algonthm and the turnaround times (lock waiting
times) for the various requests are calculated and displayed

Parameter

thread_Type - An array of the request types (namely read, writer or
upgrader)

rec_Num - The identification number of the record a request tries to access

num_threads - The number of requests

table_r_time - The access time of table read

record_r_time - The access time of record read

table_w_time - The access time of table write

record_w_time - The access time of record write

interval - The interval time between the requests

Return
None

public static voild RW_Server_2_Main(int[] thread_Type,
int[] rec_Num,
int num_threads,
int table_r_time,
int record_r_time,
int table_w_time,
int record_w_time,
int interval)

int reader_id = 0, wniter_id = 0,
Database_2 db = new Database_2(),
ArrayList threadArraylList = new ArrayList(),
for (int1=0, i < num_threads, 1++)

{
if (thread_Type[i] == 0) // readers are added to list

>/

/I converts the ArrayList containing the readers and writers to an Array

if (rec_Num[i] == 5) // this is a table level reader
threadArrayList add(new Reader_2(reader_id++,

o)
table_r_time)),
else // this 1s a record level reader
threadArrayList add(new Reader_2(reader_id++,

1 il
record_r_time)),

}
else if (thread_Type][i] == 1) // writers are added to list

if (rec_Num[i] == 5) // this 1s a table level writer
threadArrayList add(new Wnter_2(writer_id++,

Oa
Ol
table_w_time)),
else /ithis 1s a record level writer
threadArrayList add(new Wniter_2(writer_id++,

db,
1 1
0)
record_w_time)),

}

else

{/I'f1t1s a upgrader, add it to the list as a writer
if (rec_Num[i] == 5) // this is a table level upgrader
threadArrayList add(new Wniter_2(writer_1d++,
db,
01
1 1
table_r_time + table_w_time)),
else / this 1s a record level upgrader
threadArrayList add(new Wniter_2(writer_id++,
1 L
1)

record_r_time + record_w_time)),

}
}

Object(] threadArray = threadArrayList toArray(),
System out printin("™),

System out printin("\n\nStart running algorithm_2 "),
Date startDate = new Date(), // starting time

for (int1 =0, 1 < threadArray length, 1++)

}

if (threadArray[i] instanceof Reader_2)

{
((Reader_2)threadArrayfi]) start(),

}

Break_2 duration(interval),

else

{
((Writer_2)threadArray[i]) start(),

}

Break_2 duration(interval),

114

115

1

try {
for (int 1= 0, 1 < threadArray length, 1++)

if (threadArray[i] instanceof Reader_2)
((Reader_2)threadArray[i]) join(),
else
((Wniter_2)threadArray[i]) join(),

catch (InterruptedException e)

System out printin("Interrupted”),

// ending time
Date endDate = new Date(),

/I calculate and print to stdout the time spent in seconds

long timeDiff = endDate getTime() - startDate getTime(),

System out printin("),

System out printin("\nTime spent for algorithm_2 " +
(double) timeDiff / 1000 + " seconds "),

ArrayList TR_list = new ArrayList(),
ArrayList RR_list = new ArrayList(),
ArrayList TW_list = new ArrayList(),
ArrayList TU_list = new ArrayList(),
ArrayList RW_list = new ArrayList(),
ArrayList RU_list = new ArrayList(),
© for (int1= 0, 1 <threadArray length, 1++)
if (threadArray[i] instanceof Reader_2)
if (((Reader_2)threadArray[i]) getType() == ReaderWnterType TR)
{

TR_list add(new Long(
((Reader_2)threadArray[i]) getLockWaitingTime())),

else

{
RR_list add(new Long(
((Reader_2)threadArray[i]) getLockWaitingTime())),

}

else
{
if ((Wniter_2)threadArray[i]) getType() == ReaderWriterType TW)

TW_list add(new Long(
((Wniter_2)threadArray[i]) getLockWaitingTime())),

else If ((Wniter_2)threadArray[i]) getType() == ReaderWriterType TU)

{
TU_hst add(new Long(
((Writer_2)threadArray[i]) getLockWaitingTime())),

}
else if ((Writer_2)threadArray[i]) getType() == ReaderWriterType RW)

RW._list add(new Long(
((Writer_2)threadArray[i]) getLockWaitingTime())),

else

{
RU_list add(new Long(
((Whniter_2)threadArray[i]) getLockWaitingTime())),

}
}

Object]] TR_arr = TR_list toArray(),
Object[] RR_arr = RR_Iist toArray(),
Object[] TW_arr = TW_list toArray(),
Object[] TU_arr = TU_hst toArray(),
Object[] RW_arr = RW_list toArray(),
Object[] RU_arr = RU_list toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray[] = {
new node(avgTR, ReaderWriterType TR),
new node(avgRR, ReaderWriterType RR),
new node(avgTW, ReaderWnterType TW),
new node(avgTU, ReaderWriterType TU),
new node(avgRW, ReaderWriterType RW),
new node(avgRU, ReaderWnterType RU)},

bubbleSort(nodeArray, 6),

System out printin("\nThe average times spent in milliseconds to obtain a "
+ "lock In algorithm_2 \n"),
forint1=0,1<86, 1++)

{
switch (nodeArray[i] type)

{

case ReaderWrnterType RR
System out print("RR Average =" + avgRR + " ["),
display(RR_arr),
System out printin("\n"),
break;

case ReaderWnterType RU
System out print("RU Average =" + avgRU + " ["),
display(RU_arr),
System out printin("J\n"),
break,

case ReaderWnterType RW
System out print("RW Average =" + avgRW + " ["),
display(RW_arr),
System out printin("I\n"),
break,

case ReaderWnterType TR
System out print("TR Average =" + avgTR + " ["),
display(TR_arr),
System out printin("\n"),
break,

case ReaderWnterType TU
System out print("TU Average =" + avgTU + " ["),
display(TU_arr),
System out printin("\n"),

116

117

break,
case ReaderWriterType TW
System out print("TW Average =" + avgTW + " [),
display(TW_arr);
System out printin("\n"),
break,
default
System out printin("Oop! Somerthing must be wrong "),
break,

[k e deded e de e ke e eded e * * * ok

This class emulates a physical database it contains methods that will be
called by Reader_2 and Writer_2 classes

* Fededdeddedekkkddddkdkkdkhkkhkkkhkikhkk Fekkkkdkkkkkkdkdkhkdkkkikkkkhk *kkkdk x/

class Database_2
{

/*

Function Database_2

Description
Constructor for the Database_2 class [t initializes readCount, writecCount
and the semaphores r, rc, wc, pr, and w

Parameters®
None

Return

None
*/

Database_2()

readCount = 0,

writeCount = 0,

r = new Semaphore_2(1),
rc = new Semaphore_2(1),
wc = new Semaphore_2(1),
pr = new Semaphore_2(1);
w = new Semaphore_2(1),

}
I*
Function.
startRead

Description.
start a read process according to the writer privilege algorithm

Parameters
readNum - the ID number of a reader

Return

The number of readers that are currently reading
*

int startRead(int readerNum)

System out printin("reader " + readerNum + " wants to read."),

pr P(), /I requests pre_read

r P(), /I requests read semaphore

rc P(), /I requests reader count

++readCount,

if (readCount == 1) // the first reader blocks writer
w P(), /] blocks writers

rc V(), // release reader count

rV(), /I release read semaphore

pr V(), // release pre_read semaphore
return readCount,

/*

118

Function
endRead

Description
end a read process according to the writer privilege algonthm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading

int endRead(int readerNum)
rc P(), // requests the reader count
--readCount,
System out printin("reader " + readerNum + " 1s done reading Count ="+
readCount),

if (readCount == 0) // The last reader will unblock the writer
w V(),

rc V(), // releases the reader count

return readCount,

}
/*

*/

Function
startWrnite

Description
start a write process according to the writer previlege algonthm

Parameters
writerNum - the ID number of a writer

Return
None

*/

void startWnte(int writerNum)
{
System out printin("writer " + wnterNum + " wants to write "),
wc P(), // requests the writer count
++writeCount,
if (writeCount == 1) // the first writer locks the read semaphore
r P())
we V(), // release the writer count

119

w P(), // release the database

/*
Function
endWrite

Description
end a write process according to the writer privilege algorithm

Parameters
writerNum - the ID number of a writer

Return
None
*
void endWrite(int writerNum)
System out printin("writer " + writerNum + " is done writing "),
w V(),
we P(),
--writeCount,
if (writeCount == 0) // The last writer releases the read semaphore
rVoQ,
we V(), /I release the writer count
}
private int readCount, // the number of active readers
private int writeCount, // the number of active writers
Semaphore_2r, /I control access to reader
Semaphore_2 rc, /I control access to reader count
Semaphore_2 we, // control access to writer count
Semaphore_2 pr, /I control access to pre_read
Semaphore_2 w, /I controls access to the database
}
This class defines the reader and writer types and provides methods for
retrieving the types
aaaaaaaaaaaaaaaaa * Fekkdkhkdkkkik *kk * Fedek /

class ReaderWriterType
{

private int value,
ReaderWniterType(int type)

value = type,

int getReaderWniterType()
{

return value,

}

final static int TR = 0x100,
final static int RR = 0x101,
final static int TW = 0x102,
final static int TU = 0x103,
final static int RW = 0x104,
final static int RU = 0x105,

120

This class calls the method of Database_2 to start and end a read process

Fhkkhkdkddkkhkdkkikk Kk kkkkkkdkkkhkk Fedkdkkkdkkhkdkkikk * ke dekk Fkkk %% xa/
class Reader_2 extends Thread
{
/*
Function
Reader_2
Description
Constructor for Reader_2 class It specifies which reader 1s reading from
which database and how long the reading time 1s
Parameters
r- reader ID
db - the database the reader I1s reading from
n - indicates the reader is a table reader or a record reader
r_time - reader access time
Return
None
*
Reader_2(int r, Database_2 db, int n, int r_time)
{
readerNum =,
server = db,
readTime = r_time,
if (n==0) // Table Reader
t_r = new ReaderWrnterType(ReaderWriterType TR),
else /I Record Reader
t_r = new ReaderWriterType(ReaderWriterType RR),
}
/*
Function
getType
Description
Get the type of the reader (TR or RR)
Parameters
None
Return
An integer that corresponds to the reader’s type
*/
public int getType()
{
return t_r getReaderWnterType(),
}
/*
Function
getLockWaitingTime
Description

Get the lock warting time for the reader

Parameters
None

121

Return
A long integer that corresponds to the lock waiting time
*

public long getLockWaitingTime()
{

return lockWaitingTime,

}

/*
Function
run

Description
This function specifies how a reader thread runs

Parameters
None

Return

None
*/

public void run()
intc,
Date start_req = new Date();
c = server startRead(readerNum),
Date obtain_req = new Date(),

System out printin("reader " + readerNum + " is reading Count ="+ ¢),
Break_2.duration(readTime), // read read_time milliseconds

¢ = server endRead(readerNum),

/I the waiting time to obtain a reader locl
lockWaitingTime = obtain_req getTime() - start_req getTime(),

}

private Database_2 server, /I the database that the reader tries to access
private int readerNum, I/ dentification number of the reader

private int readTime, /I access time spent by the reader

private ReaderWriterType t_r; // the type of the reader (TR or RR)
private long lockWaitingTime, // the lock waiting time of the reader

}

/ PPP—— *
This class calls the method of Database_2 to start and end a write process

class Writer_2 extends Thread

{
/*
Function.
Writer_2

Description
Constructor for Writer_2 class It specifies the type of the process(table
writer, record writer, table upgrader, record upgrader)and its duration time

Parameters
w - writer ID
db - the database the writer and upgrader are writing to

n - indicates table writer or record writer
u - iIndicates an upgrader or not
w_time - writer access time

Return
None

122

Writer_2(int w, Database_2 db, int n, int u, Int w_time)
{

writerNum = w,

server = db,

writeTime = w_time,

if (n == 0)

if (u==0)
t_w = new ReaderWriterType(ReaderWriterType TW),

else
t_w = new ReaderWrnterType(ReaderWnterType TU),
}

else

{
if (u==20)
t_w = new ReaderWnterType(ReaderWriterType RW),
else
t_w = new ReaderWrniterType(ReaderWnterType RU),
}
}

*/

/*
Function
getType

Description
Get the type of the writer (TW, RW, TU or RU)

Parameters
None

Return
An integer that corresponds to the writer's type

*/

public int getType()

{
return t_w getReaderWriterType(),

}

/*
Function
getLockWaitingTime

Description
Get the lock waiting time for the writer

Parameters
None

Return
A long integer that corresponds to the lock waiting time

*/

public long getLockWaitingTime()
{

123

return lockWaitingTime,

}

/*
Function
run

Description
This function specifies how a writer thread runs

Parameters
None

Return
None
*/

public void run()

Date start_req = new Date(),
server startWnite(writerNum), // start a wnite process
Date obtain_req = new Date(),

System out printin("writer " + writerNum + " i1s writing "),
Break_2 duration(writeTime), // write write_time milliseconds

server endWrnte(wnterNum),

/I waiting time to obtain a write lock
lockWaitingTime = obtain_req getTime() - start_req getTime(),

}

private Database_2 server, // the database that the writer tries to access
private int wnterNum, // dentification number of the writer

private int writeTime, I/l access time spent by the writer

private ReaderWnterType t_w, // the type of the writer (TW, TR, TU or RU)
private long lockWaitingTime, // the lock waiting time of the reader

}

/ dededededededededededede e de e ek dededededededededededededede e e *

Semaphore class using Java synchronization $

final class Semaphore_2

{
/*
Function
Semaphore_2

Description
default constructor for Semaphore_2

Parameters®
None

Return-
None
*/

Semaphore_2()

value =1,

}

/*

124

Function
Semaphore_2

Description
constructor for Semaphore_2

Parameter
v - An integer value for the semaphore

Return
None

*/

Semaphore_2(int v)

value = v,

}
/*

Function
P

Description
This function call the wait() to sleep when the value of Semaphore less than
or equal 0 If the value of Semaphore is a positive number, decrements by 1

Parameters
None

Return
None

public synchronized void P()
while (value <= 0)
try
wait(),
catch (InterruptedException e) {

}

value--,

}
lis

*/

Function®
\

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that i1s waiting on the semaphore if it has any

Parameters
None

Return
None

*/

public synchronized void V()

{

++value,

125

notify(),

private int value, // the value of the semaphore

}

P bbbttt Lttt *

The class specifies the duration of access time

*****'k**/

final class Break_2

{
I*
Function
duration

Description
The function specifies the duration of access time in milliseconds

Parameter
milliseconds - how many milliseconds the access time Is

Return

None
*/

public static void duration(int milliseconds)

{
try

Thread sleep(milliseconds),

catch (InterruptedException e) {

}
}

126

File
RW_Server_3 java

Description
This I1s the implementation of the fair reader and writer algorithm

From the running result, FIFO order will be observed

Author
Mei Li

Date
April 24, 2004

import java 10 *,
import java util *,

/ sk Fedededededededededede dededededededededededededee

The node class Is used to declare objects that are used to sort the request
types based on the average lock waiting time

class node

{
long avg,
int type,

node()
{

avg = -1,
type = -1,

node(long a, int t)

avg = a,
type =t,

}

public class RW_Server_3

{

I*
Function
average

Description
It calculates the average of the long integers contained in the arr array

Parameters
arr - An array of objects of Object type These objects contains long
integers corresponding to the lock waiting times for a request type

Return
The average It returns -1 if the number of objects 1s 0

static long average(Object(] arr)

long total = 0,
Int count =0,

*/

for (int1= 0,1 <arr length, 1++)

{

count++,
total += ((Long)arr[i]) longValue(),

if (count == 0)
return -1,

return total / count,

}
/*

127

Function
display

Description
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long
integers corresponding to the lock waiting times for a request type

Return
None

*/

static void display(Object[] array)
for (int1=0, 1 < array length, 1++)
if 1 == array length - 1)
}System out print(((Long) array[i]) longValue()),

else

System out print(((Long) array[i]) longValue() +" "),

}
}

/*

Function
bubbleSort

Description

It sorts an array of nodes based on the average warting times the nodes
contain The sorting algorithm of bubble sort is used since we only have
a small number (6) of request types to sort

Parameters

nodeArray - An array of nodes These nodes contains the average waiting time
for a request type and the request type

size - The size of the nodeArray array

Return
None

static void bubbleSort(node[] nodeArray, int size)

{

*/

128

node tmp = new node(),
for inti=size-1,1>0, 1)

{
for (int)=0, <1, j++) {
if (nodeArray[j] avg > nodeArray[j + 1] avg)
{

tmp avg = nodeArray[) + 1] avg,

tmp type = nodeArray[j + 1] type,
nodeArray[] + 1] avg = nodeArray[j] avg,
nodeArray[} + 1] type = nodeArray][]] type,
nodeArray[j] avg = tmp avg,

nodeArray[j] type = tmp type,

/*
Function
RW_Server_3_Main

Description

This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
it starts the threads and wait for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock waiting
times) for the various requests are calculated and displayed

Parameter

thread_Type - An array of the request types (namely read, writer or
upgrader)

rec_Num - The identification number of the record a request tries to access

num_threads - The number of requests

table_r_time - The access time of table read

record_r_time - The access time of record read

table_w_time - The access time of table write

record_w_time - The access time of record write

interval - The interval ime between the requests

Return

None
*/

public static void RW_Server_3_Main(int[] thread_Type,
int[] rec_Num,
int num_threads,
int table_r_time,
int record_r_time,
int table_w_time,
int record_w_time,
int interval)

int reader_id = 0, writer_id =0,
Database_3 db = new Database_3();
ArrayList threadArrayList = new ArrayList(),

for (int1 =0, i < num_threads, 1++)
{
if (thread_Type[i] == 0)

{// readers are added to list
if (rec_Num[i] == 5) // this Is a table level reader

threadArrayList add(new Reader_3(reader_id++,
0,
table_r_time)),
else /I this 1s a record level reader
threadArrayList add(new Reader_3(reader_id++,
1,
record_r_time)),

}
else if (thread_Type[i] == 1)
{ /I writers are added to list
if (rec_Num[i] == 5) // this 1s a table level writer
threadArrayList add(new Wniter_3(writer_id++,
07
01
table_w_time)),
else /lthis 1s a record level wnter
threadArrayList add(new Wnter_3(writer_id++,
1,
01
record_w_time)),
}
else
{//f1t1s a upgrader, add it to the list as a writer
if (rec_Num{i] == 5) // this 1s a table level upgrader
threadArrayList add(new Wnter_3(writer_id++,
db,
0,
1

ta;ble__r_tlme + table_w_time)),

else // this 1s a record level upgrader
threadArrayList add(new Writer_3(writer_id++,
1,
1 ’

record_r_time + record_w_time)),

}
}

// converts the ArrayList containing the readers and writers to an Array

Object[] threadArray = threadArrayList toArray(),
System out printin("),

System out printin("Start running algorithm_3 "),
Date startDate = new Date(), // starting time

for (int1=0, 1 <threadArray length, I1++)
if (threadArray[i] instanceof Reader_3)

((Reader_3)threadArray[i]) start(),
Break_3 duration(interval),

}

else

{
((Writer_3)threadArray[i]) start(),
Break_3 duration(interval),
}
}
try

129

for (int1 =0, 1 < threadArray length, 1++)

if (threadArray[i] instanceof Reader_3)
((Reader_3)threadArray[i]) join(),
else
((Writer_3)threadArray[i}) join(),

catch (InterruptedException e)

System out printin("Interrupted"),

/l ending time

Date endDate = new Date(),

/I calculate and print to stdout the time spent in seconds

long timeDiff = endDate getTime() - startDate getTime(),

System out printin(""),

System out printin("\nTime spent for algorithm_3 " + (double) timeDiff / 1000 + " seconds "),

ArrayList TR _list = new ArrayList(),
ArrayList RR_list = new ArrayList(),
ArrayList TW_list = new ArrayList(), |
ArrayList TU_list = new ArrayList(),
ArrayList RW_list = new ArrayList(),
ArrayList RU_list = new ArrayList(),
for (int1 =0, 1 < threadArray length, 1++)
if (threadArray[i] instanceof Reader_3)
{
if (Reader_3)threadArray[i]) getType() == ReaderWrnterType TR)
{

TR_list add(new Long(
((Reader_3)threadArray[i]) getLockWaitingTime())),
}

else

{
RR_list add(new Long(
((Reader_3)threadArray[i]) getLockWaitingTime())),

}
}
else

if ((Wniter_3)threadArray[i]) getType() == ReaderWrnterType TW)

TW_list add(new Long(
((Wniter_3)threadArray[i]) getLockWaitingTime())),

}
else If (Writer_3)threadArray[i]) getType() == ReaderWniterType TU)

TU_list add(new Long(
((Wniter_3)threadArray[i]) getLockWaitingTime())),

}
else if ((Wnter_3)threadArray[i]) getType() == ReaderWriterType RW)

RW_list add(new Long(
((Writer_3)threadArray[i]) getLockWaitingTime())),

else

{

130

RU_list add(new Long(
((Writer_3)threadArray[i]) getLockWaitingTime())),

}
}

}

Object[] TR_arr = TR_list toArray(),
Object[] RR_arr = RR_list toArray(),
Object[] TW_arr = TW_list toArray(),
Object[] TU_arr = TU_list toArray(),
Object[] RW_arr = RW_list toArray(),
Object[] RU_arr = RU_Iist toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray[] = {
new node(avgTR, ReaderWnterType TR),
new node(avgRR, ReaderWnterType RR),
new node(avgTW, ReaderWriterType TW),
new node(avgTU, ReaderWrterType TU),
new node(avgRW, ReaderWriterType RW),
new node(avgRU, ReaderWriterType RU)},

bubbleSort(nodeArray, 6),

System out printin("\nThe average times spent in miliseconds to obtain a "
+ "lock in algonthm_3 \n"),
for int1=0,1<86, 1++)

{
switch (nodeArray[i] type)
{
case ReaderWriterType RR
System out print("RR Average =" + avgRR +"["),
display(RR_arr),
System out printin("\n"),
break,
case ReaderWrnterType RU
System out print("RU Average =" + avgRU +"["),
display(RU_arr),
System out printin("[\n"),
break,
case ReaderWnterType RW
System out print("RW Average =" + avgRW + " ["),
display(RW_arr),
System out printin("[\n"),
break,
case ReaderWriterType TR
System out print("TR Average =" + avgTR +"["),
display(TR_arr),
System out printin("]\n"),
break,
case ReaderWriterType TU
System out print("TU Average =" +avgTU + " ["),
display(TU_arr),
System out printin("\n"),
break,
case ReaderWnterType TW

131

132

System out print("TW Average =" + avgTW + " ["),
display(TW_arr),
System out printin("\n"),

break,
default
System out printin("Oop! Somerthing must be wrong "),
break,
}
}
}
}

/ -
This class emulates a physical database It contains methods that will be
called by Reader_3 and Writer_3 classes

Fedededededededededededededededede Jedededededededededededededededededede ke kdedededodeodekekokekkddekdddkkkdkkdkkkkkdkkiddkdkkdhkdkkkdkkdkkkkkkhkkkkk I

class Database_3

{
/*
Function Database_3

Description
Constructor for the Database_3 class It initializes readCount, and the
semaphores rc, w and pw

Parameters
None

Return
None
*/

public Database_3()
readerCount = 0,

rc = new Semaphore_3(1),
w = new Semaphore_3(1),
pw = new Semaphore_3(1),

}

/*
Function
startRead

Description
start a read process according to the fair reader and writer algorithm

Parameters
readNum - the ID number of a reader

Return

The number of readers that are currently reading
*/

public int startRead(int readerNum)
{
System out printin("reader " + readerNum + " wants to read "),
pw P(), // requests the outer semaphore
rc P(), // request the reader count
++readerCount,
if (readerCount == 1) // the first reader blocks the writer
w.P(),

133

rc V(), // release the reader count
pw V(), // releases the outer semaphore
return readerCount,

}

/*
Function
endRead

Description
end a read process according to the fair reader and writer algorithm

Parameters
readNum - the ID number of a reader

Return

The number of readers that are currently reading
*/

public int endRead(int readerNum)
{
rc P,
--readerCount;
System out printin("reader " + readerNum + " 1s done reading Count =" +
readerCount),
if (readerCount == 0) // the last reader unblocks the writer
wV(),
rc V(),

return readerCount,

}

/*
Function.
startWrite

Description
start a write process according to the fair reader and writer algorithm

Parameters
writerNum - the ID number of a writer

Return
None

public void startWnte(int writerNum)

System out printin("writer " + writerNum + " wants to write "),
pw P(), // requests the outer semaphore

w P(), // requests the database access

pw V(), // releases the outer semaphore

}

*/

/*
Function
endWrite

Description
end a write process according to the fair reader and writer algorithm

Parameters.
writerNum - the ID number of a writer

134

Return
None

>/
public void endWrite(int writerNum)
{

System out printin("writer * + writerNum + " is done writing "),

wV(),

}

private int readerCount, // the number of active readers
Semaphore_3 rc, // controls access to readerCount
Semaphore_3 w, // controls access to the database
Semaphore_3 pw, // controls access to outer semaphore

JrRRRR R R Jededededede Rk Fedededek dedede ok dederdederdededede e dededededeededede e e e e e e e e e e ok

This class defines the reader and writer types and provides methods for
retrieving the types

class ReaderWriterType
{

private int value,

*kkk ke dekdk dekkdkkdkddkkd /

ReaderWriterType(int type)

value = type,

}
int getReaderWnterType()

return value,

}

final static int TR = 0x100,
final static int RR = 0x101,
final static int TW = 0x102,
final static int TU = 0x103,
final static int RW = 0x104,
final static int RU = 0x105,

}

/ Fdedkd Fededededdodedok ek *k

This class calls the method of Database_3 to start and end a read process

class Reader_3 extends Thread

{
/*
Function
Reader_3

* —

Description
Constructor for Reader_3 class It specifies which reader is reading from
which database and how long the reading time I1s

Parameters

r - reader ID

db - the database the reader Is reading from

n - indicates the reader is a table reader or a record reader
r_time - reader access time

135

Return
None
*/
public Reader_3(int r, Database_3 db, int n, int r_time)
{
readerNum =,
server = db,
readTime =r_time,
if (n ==0)
t_r = new ReaderWniterType(ReaderWriterType TR),
else
t_r = new ReaderWrnterType(ReaderWnterType RR),
}
/*
Function
getType
Description
Get the type of the reader (TR or RR)
Parameters
None
Return
An integer that corresponds to the reader's type
*
public int getType()
{
return t_r getReaderWnterType(),
}
/*
Function
getLockWaitingTime
Description
Get the lock waiting time for the reader
Parameters
None
Return
A long integer that corresponds to the lock waiting time
*

public long getLockWaitingTime()

return lockWaitingTime,

}

/*
Function
run

Description
This function specifies how a reader thread runs

Parameters
None

136

Return
None
*/
public void run()
intc,
Date start_req = new Date(),
¢ = server startRead(readerNum),
Date obtain_req = new Date(),
System out printin("reader " + readerNum + " 1s reading Count =" + ¢),
Break_3 duration(readTime), // read read_time milliseconds
c = server endRead(readerNum),// end a read process
lockWaitingTime = obtain_req getTime() - start_req getTime(),
}
private Database_3 server, /I the database that the reader tries to access
private int readerNum, /I 'dentification number of the reader
private int readTime, /I access time spent by the reader
private ReaderWriterType t_r, // the type of the reader (TR or RR)
private long lockWaitingTime, // the lock waiting time of the reader
}
/ Sk Rk Rk R ke A ok Sekkkkk .
This class calls the method of Database_3 to start and end a write process
nnnnn F kK *kk /
class Writer_3 extends Thread
{
/*
Function
Writer_3
Description
Constructor for Wniter_3 class It specifies the type of the process(table
writer, record writer, table upgrader, record upgrader)and its duration time
Parameters
w - writer ID
db - the database the writer and upgrader are writing to
n - indicates table writer or record writer
u - Indicates an upgrader or not
w_time - writer access time
Return
None
*/

public Writer_3(int w, Database_3 db, int n, int u, int w_time)
{

writerNum = w,

server = db,

writeTime = w_time,

if (n == 0)

if (u==0) // Table Writer

t_w = new ReaderWnterType(ReaderWriterType TW),
else /I Table Upgrader

t_w = new ReaderWrniterType(ReaderWriterType TU),

}

else

if (u==0) // Record Writer
t w = new ReaderWnterType(ReaderWriterType RW),
else /l Record Upgrader
t w = new ReaderWrniterType(ReaderWrnterType RU),
}
}

137

/*
Function
getType

Description
Get the type of the wniter (TW, RW, TU or RU)

Parameters
None

Return
An integer that corresponds to the writer's type

public int getType()

{
return t_w getReaderWriterType(),

}

*/

l*
Function
getLockWaitingTime

Description
Get the lock waiting time for the writer

Parameters
None

Return
A long integer that corresponds to the lock waiting time

>/

public long getLockWaitingTime()

return lockWaitingTime,

}

/*
Function
run

Description
This function specifies how a writer thread runs

Parameters
None

Return
None

*/

public void run()

Date start_req = new Date(),
server startWrite(writerNum), // start a write process

Date obtain_req = new Date(),

System out printin("writer " + writerNum + " is writing "),

Break_3 duration(writeTime), // write write_time milliseconds

server endWrite(writerNum), // end a write process

lockWaitingTime = obtain_req getTime() - start_req getTime(),

}

private Database_3 server, // the database that the writer tries to access
private int writerNum, // 'dentification number of the writer

private int writeTime, /I access time spent by the writer

private ReaderWniterType t_w, // the type of the writer (TW, TR, TU or RU)
private long lockWaitingTime, // the lock waiting time of the reader

}

138

/ *

Semaphore_3 class using Java syschronization

final class Semaphore_3

{
/*

o

Function
Semaphore_3

Description
default constructor for Semaphore_3

Parameters
None

Return
None

*/

public Semaphore_3()

value =1,

}

/*
Function
Semaphore_3

Description
constructor for Semaphore_3

Parameter
v - An integer value for the semaphore

Return
None

*/

public Semaphore_3(int v)
{

value = v,

}

I*
Function
P

139

Description
This function call the wait() to sleep when the value of Semaphore less than
or equal O If the value of Semaphore Is a positive number, decrements by 1

Parameters.
None

Return

None
*/

public synchronized void P()

while (value <= 0)

try
wait(),

catch (InterruptedException e) {

}

value--,

}

/*
Function
\

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that is waiting on the semaphore If it has any

Parameters
None

Return.

None
*/

public synchronized void V()

{

++value,

notify(),
}

private int value, // the value of the semaphore

}

/ ok e

The class specifies the duration of access time

* dek g kdeddokkdkkdkdekddkkdkdkdkddkdddddkdddkddedkidddkdedd ik *ek sk * * Fededede /

final class Break_3

{
I*
Function
duration

Description
The function specifies the duration of access time in milliseconds

Parameter
milliseconds - how many milliseconds the access time 1s

Return
None

140

>/

public static void duration(int miliseconds)

{
try

Thread sleep(milliseconds),

catch (InterruptedException e) {}

}

JRRR * *

File
RW_Server_4 java

Description
This 1s the implementation of the fair and efficient reader and writer

algorthm From the running result, We can observe this i1s more efficient
than the fair reader and writer algornithm under most circumstances

Author
Mei Li

Date
April 24, 2004

import java 10 *,
import java util *,

The node class Is used to declare objects that are used to sort the request
types based on the average lock waiting time

class node

{
long avg,
int type,

node()
{

avg = -1,
type = -1,

node(long a, int t)

avg =a,
type =t,
}
}

public class RW_Server_4

{

/*
Function
average

Description
It calculates the average of the long integers contained in the arr array

Parameters.
arr - An array of objects of Object type These objects contains long
integers corresponding to the lock waiting times for a request type

Return
The average It returns -1 if the number of objects i1s 0

static long average(Object[] arr)

long total = 0,
int count =0,

*/

for (int1=0, 1 < arr length, 1++)

{

count++,
total += ((Long)arr]i]) longValue(),

if (count == 0)
return -1,

return total / count,

}
/*

142

Function
display

Description
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long
integers corresponding to the lock waiting times for a request type

Return
None

static void display(Object[] array)
for (int1=0, 1 < array length, 1++)
if (I == array length - 1)
{System out print(((Long)array[i]) longValue()),
else

System out print(((Long)array[l]) longValue() +" "),

}
}

/*

*/

Function
bubbleSort

Description

It sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort is used since we only have
a small number (6) of request types to sort

Parameters

nodeArray - An array of nodes These nodes contains the average warting time
for a request type and the request type

size - The size of the nodeArray array

Return
None

*/

static void bubbleSort(node[] nodeArray, int size)

{

143

node tmp = new node(),
for (inti=size-1,1>0, 1)
for(intj=0,j<1,j++)
if (nodeArray[j] avg > nodeArray[j + 1] avg)

tmp avg = nodeArray[j + 1] avg,

tmp type = nodeArraylj + 1] type,
nodeArray[j + 1] avg = nodeArray[j] avg,
nodeArray[j + 1] type = nodeArray[j] type,
nodeArray[j] avg = tmp avg,

nodeArray[j] type = tmp type,

/*
Function
RW_Server_4_Main

Description

This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
it starts the threads and walit for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock waiting
times) for the various requests are calculated and displayed

Parameter

thread_Type - An array of the request types (namely read, writer or
upgrader)

rec_Num - The identification number of the record a request tries to access

num_threads - The number of requests

table_r_time - The access time of table read

record_r_time - The access time of record read

table_w_time - The access time of table write

record_w_time - The access time of record write

interval - The interval time between the requests

Return

None
*/

public static voild RW_Server_4_Main(int[] thread_Type,
int[] rec_Num,
int num_threads,
int table_r_time,
int record_r_time,
int table_w_time,
int record_w_time,
int interval)

int reader_id = 0, wnter_id = 0,
Database_4 db = new Database_4(),
ArrayList threadArrayList = new ArrayList(),

for (iInt 1 = 0, 1 < num_threads, 1++)

{
if (thread_Type[i] == 0)
{ //readers are added to list

}

/I converts the ArrayList containing the readers and writers to an Array

if (rec_Num[i] == 5) // this Is a table level reader
threadArrayList add(new Reader_4(reader_id++,
0,
table_r_time)),
else // this 1s a record level reader
threadArrayList add(new Reader_4(reader_id++,
1,
record_r_time)),

}
else if(thread_Type]i] == 1)
{// writers are added to list
if (rec_Numl[i] == 5) // this 1s a table level writer
threadArrayList add(new Wniter_4(writer_id++,
db,
01
Ol
table_w_time)),
else /lthis 1s a record level writer
threadArrayList add(new Writer_4(writer_td++,

)

1,
Ol
record_w_time)),
}
else

{/If1it1s a upgrader, add it to the list as a writer
if (rec_Num[i] == 5) // this 1s a table level upgrader
threadArrayList add(new Writer_4(writer_id++,
01
1)
table_r_time + table_w_time)),
else // this 1s a record level upgrader
threadArrayList add(new Writer_4(writer_id++,
db,
1,
1 ’

record_r_time + record_w_time)),

}

Object[] threadArray = threadArrayList toArray(),
System out printin(""),

System out printin("Start running algorthm_4 "),
/I start time -

Date startDate = new Date(),

for (int1=0, 1 < threadArray length, I1++)

if (threadArray[i] instanceof Reader_4)

{
((Reader_4)threadArray[i]) start(),

Break_4 duration(interval),

}

else

{
((Writer_4)threadArray[i]) start(),

Break_4 duration(interval),

}

144

}
try
{
for iInt 1 = 0, 1 < threadArray length, i++)

iIf (threadArray[i] instanceof Reader_4)
((Reader_4)threadArray[i]) join(),
else
((Writer_4)threadArrayf[i]) join(),

catch (InterruptedException e)

System out printin("Interrupted"),

/l ending time
Date endDate = new Date(),

// calculate and print to stdout the time spent in seconds
long timeDiff = endDate getTime() - startDate getTime(),
System out printin(""),
System out printin("\nTime spent for algorithm_4 "

+ (double) timeDiff / 1000 + " seconds "),

ArrayList TR_list = new ArrayList(),
ArrayList RR_list = new ArrayList(),
ArrayList TW_list = new ArrayList(),
ArrayList TU_list = new ArrayList();
ArrayList RW_list = new ArrayList(),
ArrayList RU_list = new ArrayList(),

for (iInt1=0, 1 < threadArray length, 1++)

if (threadArray[i] instanceof Reader_4)

{
if (Reader_4)threadArray[i]) getType() == ReaderWriterType TR)
{

TR_list.add(new Long(
((Reader_4)threadArray[i]) getLockWaitingTime())),
}

else

{
RR_list add(new Long(
((Reader_4)threadArray[i]) getLockWaitingTime())),
}
}

else

{
if ((Wnter_4)threadArray][i]) getType() == ReaderWrniterType TW)

TW_list add(new Long(
((Writer_4)threadArray[i]) getLockWaitingTime())),

}
else If ((Writer_4)threadArray[i]) getType() == ReaderWniterType TU)

TU_list add(new Long(
((Wnter_4)threadArray[i]) getLockWaitingTime())),

}
else If (Wniter_4)threadArray[i]) getType() == ReaderWrnterType RW)

{
RW._list.add(new Long(

145

((Writer_4)threadArray[i]) getLockWaitingTime())),
else

{
RU_list add(new Long(
((Wniter_4) threadArray[i]) getLockWaitingTime())),

}
}

Object[] TR_arr = TR_list.toArray(),
Object[] RR_arr = RR_list toArray(),
Object[] TW_arr = TW_list toArray(),
Object[] TU_arr = TU_list toArray(),
Object[] RW_arr = RW_list toArray(),
Object[] RU_arr = RU_list toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray[] = {
new node(avgTR, ReaderWriterType.TR),
new node(avgRR, ReaderWriterType RR),
new node(avgTW, ReaderWnterType TW),
new node(avgTU, ReaderWriterType TU),
new node(avgRW, ReaderWrnterType RW),
new node(avgRU, ReaderWniterType RU)},

bubbleSort(nodeArray, 6),

System out printin("\nThe average times spent in milliseconds to obtain a "

+ "lock in algorithm_4 \n"),
for iInt1=0,1<86, 1++)

{
switch (nodeArray][i] type)

case ReaderWriterType RR
System out print("RR Average =" + avgRR + " ["),
display(RR_arr),
System out printin("J\n"),
break,
case ReaderWriterType RU
System out print("RU Average =" + avgRU + " ["),
display(RU_arr),
System out printin("[\n"),
break,
case ReaderWrnterType RW
System out print("RW Average =" + avgRW + " ["),
display(RW_arr);
System out printin("J\n"},
break,
case ReaderWriterType TR
System out print("TR Average =" + avgTR + " ["),
display(TR_arr),
System out printin("\n");
break,
case ReaderWriterType TU
System out print("TU Average =" + avgTU + " ["),

146

147

display(TU_arr),
System out printin("\n"),
‘break,
case ReaderWnterType TW
System out print("TW Average =" + avgTW + " ["),
display(TW_arr),
System out printin("\n"),
break,
default
System out printin("Oop' Somerthing must be wrong "),
break,

This class is emulates a physical database It contains methods that will be
called by Reader_4 and Writer_4 classes

/
class Database_4
{
/*
Function Database_4

Description
Constructor for the Database_4 class It initializes readCount, and the
semaphores rc, w and pw

Parameters
None

Return

None
*/

public Database_4()
{

readerCount = 0,

rc = new Semaphore_4(1);
w = new Semaphore_4(1),
pw = new Semaphore_4(1),
}
/*
Function ,
startRead

Description
start a read process according to the reader previlege algorithm

Parameters
readNum - the ID number of a reader

Return.

The number of readers that are currently reading
*/

public int startRead(int readerNum)

{

148

System out printin("reader " + readerNum + " wants to read "),
pw P(), // requests the outer semaphore
pw V(), // releases the outer semaphore
rc P(,
++readerCount,
Il the first reader blocks writer and other process waiting on the outer semaphore
If (readerCount == 1)
{
w P()!
pw P(),

rc V(),
return readerCount,

}

l*
Function
endRead

Description
end a read process according to the reader previlege algorthm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading
*/

public int endRead(int readerNum)

{

System out printin("reader " + readerNum + " 1s done reading Count =" +
readerCount);

rc P(),

--readerCount,

/I the last reader unblockd other processes waiting on the outer semaphore and database
if (readerCount == 0)

{
pw V(),
w V(),

}
re V(),

return readerCount,

}

l*
Function
startWrite

Description
start a write process according to the reader previlege algorithm

Parameters®
writerNum - the ID number of a writer

Return

None
*/

public void startWrite(int writerNum)

System out printin("writer " + writerNum + " wants to write "),

149

pw P(), // requests the outer semaphore
pw V(), // releases the outer semaphore
w P(), // requests the database access

/*
Function
endWrite

Description
end a write process according to the reader previlege algonthm

Parameters
writerNum - the ID number of a writer

Return
None
*/

public void endWrite(int writerNum)

System out printin("writer " + writerNum + " 1s done writing "),
w V(), // release the database access

// the number of active readers
private int readerCount,

Semaphore_4 rc, // controls access to readerCount
Semaphore_4 w, // controls access to the database
Semaphore_4 pw, // controls access to the outer semaphore

}

/ Jedesdk e dededededededodeok dekedekd dodd e deod e dd deeded e Rk ek ok ko Feekdek

This class defines the reader and writer types and provides methods for
retrieving the types.
* Kkkkkkkkdkkkhkkkkidkhikkkhikikik kkkkkkkkkik * Fkkdkkkkkdhddhkikkikikikkhdkk /

class ReaderWrniterType
{

private int value,

ReaderWniterType(int type)

value = type,

int getReaderWniterType()

return value,

}

final static int TR = 0x100,
final static int RR = 0x101,
final static int TW = 0x102,
final static int TU = 0x103,
final static int RW = 0x104,
final static int RU = 0x105,

}

J* * e deddedede e ek e dedededk e dedk e e ek e e e e e e dededededede e edededeedede e dedede e ek

This class calls the method of Database_4 to start and end a read process

%ededodkdedededk ek dkddedkdkkdokdedodededodedododekdodeodedekdededkdedkdkddeddddekddkdekdkkkkkkkkkkkkkikkkkkkk *dk kkkdkk %k nn/

class Reader_4 extends Thread

150

I*
Function
Reader_4

Description

Constructor for Reader_4 class It specifies which reader is reading from

which database and how long the reading time 1s

Parameters

r - reader ID

db - the database the reader is reading from

n - Indicates the reader Is a table reader or a record reader
r_time - reader access time

Return
None

*

public Reader_4(int r, Database_4 db, int n, int read_time)
{

readerNum =r,

server = db,

readTime = read_time,

if (n==0)

t_r = new ReaderWriterType(ReaderWnterType TR),
else

t_r = new ReaderWnterType(ReaderWrterType RR),

}

/*
Function
getType

Description
Get the type of the reader (TR or RR)

Parameters
None

Return
An integer that corresponds to the reader's type

public int getType()
{

return t_r getReaderWriterType(),
}

*/

/*
Function
getLockWaitingTime

Description
Get the lock warting time for the reader

Parameters
None

Return
A long integer that corresponds to the lock waiting time

*f

public long getLockWaitingTime()

151

return lockWairtingTime,

}

I*
Function
run

Description
This function specifies how a reader thread runs

Parameters
None

Return
None

*/
public void run()
{

intc,

Date start_req = new Date(),

/I start a read process

¢ = server startRead(readerNum),
Date obtain_req = new Date(),

System out printin("reader " + readerNum + " Is reading Count ="+ ¢),
Break_4 duration(readTime), // read read_time milliseconds

¢ = server endRead(readerNum), // end a read process

lockWaitingTime = obtain_req getTime() - start_req getTime(),
}

private Database_4 server, // the database that the reader tries to access
private int readerNum, // identification number of the reader

private int readTime, /l access time spent by the reader

private ReaderWnterType t_r, // the type of the reader (TR or RR)

private long lockWaitingTime, // the lock waiting time of the reader

}

Jersckicienk * * * * ek ke dekdeokk RekededededkdedodkddoRded R Rk ko ke ek ko Feke e ek ok

This class calls the method of Database_4 to start and end a write process

*****************‘k**/

class Writer_4 extends Thread

{/*
Function
Writer_1

Description
Constructor for Writer_1 class It specifies the type of the process(table
writer, record writer, table upgrader, record upgrader)and its duration time

Parameters

w - writer ID

d - the database the writer and upgrader are writing to
n - indicates table writer or record writer

u - indicates an upgrader or not

w_time - writer access time

*/
public Writer_4(int w, Database_4 db, int n, int u, int wnte_time)

writerNum = w,
server = db,
writeTime = write_time,

if (n == 0)

{
if (u==0) // Table Writer
t_w = new ReaderWrniterType(ReaderWriterType TW),
else /] Table Upgrader
t_w = new ReaderWnterType(ReaderWnterType TU),

}

else

{
if (u==0) // Record Writer
t_w = new ReaderWriterType(ReaderWnterType RW),
else /I Record Upgrader
t_w = new ReaderWrnterType(ReaderWnterType RU),

}
}

152

/*
Function
getType

Description
Get the type of the writer (TW, RW, TU or RU)

Parameters
None

Return .
An integer that corresponds to the writer's type

public int getType()

{
return t_w getReaderWriterType(),

}

*/

/*
Function
getLockWaitingTime

Description.
Get the lock waiting time for the writer

Parameters.
None

Return
A long integer that corresponds to the lock waiting time

public long getLockWaitingTime()

return lockWaitingTime,

}

*/

/*
Function
run

Description

This function specifies how a writer thread runs

Parameters
None

Return
None

153

public void run()
Date start_req = new Date();
server startWnte(writerNum), // start a write process
Date obtain_req = new Date();

System out printin("writer " + wrnterNum + " 1s writing "),
Break_4 duration(writeTime), // write write_time milliseconds

server endWrite(writerNum), // end a write process

lockWaitingTime = obtain_req getTime() - start_req getTime(),
}

private Database_4 server, // the database that the writer tries to access

private int writerNum, /I dentification number of the writer
private int writeTime, /I access time spent by the writer

private ReaderWriterType t_w, // the type of the wnter (TW, TR, TU or RU)

private long lockWaitingTime, // the lock waiting time of the reader

}

*f

* St dededed Rtk dedkdkk ke dededded ek d ek *

Semaphore_4 class using Java syschronization

final class Semaphore_4

{

*f

/*
Function
Semaphore_4

Description
default constructor for Semaphore_4

Parameters
None

Return
None

*/

public Semaphore_4()

value =1,

}
/*

Function:
Semaphore_1

Description
constructor for Semaphore_1

Parameter
v - An integer value for the semaphore

Return
None

154

*/

public Semaphore_4(int v)
{

value = v,

}
I*

Function
P

Description.
This function call the wait() to sleep when the value of Semaphore less than
or equal O If the value of Semaphore is a positive number, decrements by 1

Parameters
None

Return
None

public synchronized void P()
while (value <= 0)
try
wait(),

catch (InterruptedException €) {

} /

value--,

}
/*

*/

Function,
\Y

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that 1s waiting on the semaphore if it has any

Parameters
None

Return
None

*/

public synchronized void V()

{

++value,

notify(),
}

private int value,

}

e Jededede kg dededek i ek Rk gt dddkkkdek ke ot el fededededededed dededededededede ko dedede

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

final class Break_4

{

}

/*

155

Function
duration

Description
The function specifies the duration of access time in milliseconds

Parameter
milliseconds - how many milliseconds the access time is

Return
None

public static void duration(int milliseconds)

{
try
{ I

Thread sleep(milliseconds),

catch (InterruptedException e) {

}

*/

156

[k sk ko
File
RW_Server_5 java

Description

This 1s a Java program that implements "fair and efficient readers and writers
with intent to read and write" It 1s assumed that a 2-level resource (a table
and the records In that table) 1s accessed by a number of readers and writers

Among the readers and writers, some of them try to access the table as a whole

while the rest try to access the individual records of the table Readers and
writers are implemented as threads Whether a thread is a reader or writer,

whether 1t tnies to access the table or a record, and if it tries to access a

record which record 1t is, I1s determined by the parametenzed value that are

passed into the method Note that we consider a table upgrade as a table write

and a record upgrade as a record write The duration time equals to a reader

time plus a writer time

Author
Mei Li

Date
April 24, 2004

import java io *,
import java util.*,

The node class I1s used to declare objects that are used to sort the request

types based on the average lock waiting time

class node

{

long avg,
int type,

node()
{

avg = -1,
type = -1,

node(long a, int t)

avg =a,
type =t,

}

public class I_RW_Server_5
{

o]

/*
Function:
average

Description
t calculates the average of the long integers contained in the arr array

Parameters.
arr - An array of objects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

157

Return
The average It returns -1 if the number of objects 1s 0
*/

static long average(Object[] arr)

{
long total = 0,
int count = 0,

for int1=0, 1 < arr length, 1++)

{

count++,
total += ((Long)arr[i]) longValue(),

if (count == 0)
return -1,

return total / count,

}

/*
Function-
display

Description
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long
integers corresponding to the lock waiting times for a request type

Return*
None

*/
static void display(Object[] array)

for iInt1=0, 1 < array length, 1++)
if I == array length - 1)
System out print(((Long)array[i]) longValue()),
}

else

{
System out print(((Long)array[i]) longValue() +" "),

}
}

/*
Function®
bubbleSort

Description-

It sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort 1s used since we only have
a small number (6) of request types to sort

Parameters
nodeArray - An array of nodes These nodes contains the average waiting time
for a request type and the request type.

158

size - The size of the nodeArray array

Return
None
*/

static void bubbleSort(node[] nodeArray, int size)

{

node tmp = new node(),
for (int1=size-1,1>0, 1-)
for (int) =0,) <1, J++)
I{f (nodeArray[j] avg > nodeArray]j + 1] avg)

tmp avg = nodeArray[j + 1] avg,

tmp type = nodeArray[j + 1] type,
nodeArray[) + 1] avg = nodeArray[|] avg,
nodeArray[) + 1] type = nodeArray([j] type,
nodeArray[j] avg = tmp avg,

nodeArray[j] type = tmp type,

/*
Function
I_RW_Server_5_Main

Description

This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
it starts the threads and wait for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock waiting
times) for the various requests are calculated and displayed

Parameter

thread_Type - An array of the request types (namely read, writer or
upgrader)

rec_Num - The identification number of the record a request tries to access

num_threads - The number of requests

table_r_time - The access time of table read

record_r_time - The access time of record read

table_w_time - The access time of table write

record_w_time - The access time of record write

interval - The interval tme between the requests

Return
None
*/

public static void I_RW_Server_5_Main(int[] thread_Type,
int]] rec_Num,
int num_threads,
int table_r_time,
int record_r_time,
int table_w_time,
int record_w_time,
int interval)

int reader_id = 0, writer_id =0,
Table_5 tbl = new Table_5(5), /I There are five records in a table

Arraylist threadArrayList = new ArrayList(),
for (int1= 0, 1 < num_threads, 1++)

if (thread_Type[i] == 0)
{/l readers
if (rec_Num[i] == 5) // table level readers
threadArrayList add(new Reader_5(reader_id++,
tbl,
table_r_time)),
else // record level readers
threadArrayList add(new Reader_5(reader_id++,
rec_Num[i],
tbl,
record_r_time)),

}
else If (thread_Typeli] == 1)
{ /I writers
if (rec_Num{[i] == 5) // table level writers
threadArrayList add(new Writer_5(writer_id++,
thl,
0,
table_w_time)),
else // record level writers
threadArrayList add(new Writer_5(writer_id++,

rec_Num[i],
thl,
01
record_w_time)),
}
else

{/Ifitis a upgrader, add it to the list of writers
if (rec_Num[i] == 5) // table level upgrader
threadArrayList add(new Wrniter_5(writer_id++,
tbl,
1 ’
table_r_time + table_w_time)),
else // record level upgrader
threadArrayList add(new Writer_5(writer_id++,
rec_Num([i],
tbl,
1,
record_r_time + record_w_time)),
}
}

// converts the ArrayList containing the readers and writers to an Array
Obyject[] threadArray = threadArrayList toArray(),

System out printin("™),
System out printin("Start running algonthm_5 "),
/I starting time
Date startDate = new Date(),
for int1= 0, 1 < threadArray length, 1++)
if (threadArray][i] instanceof Reader_5)
{

((Reader_5)threadArray[i]) start(),

159

Break_5 duration(interval),

}

else

((Writer_5)threadArray[i]) start(),
Break_5 duration(interval),

}
}
try

for (iInt1 = 0, 1 < threadArray length, 1++)
if (threadArray[i] instanceof Reader_5)
((Reader_5)threadArray[i]) join(),

else
((Wnter_5)threadArray[i]) jon();

catch (InterruptedException e)

System out printin(“Interrupted");

/l ending time
Date endDate = new Date(),

/I calculate and print to stdout the time spent in seconds

long timeDiff = endDate getTime() - startDate getTime(),

System out printin(""),

System out printin("Time spent for algorithm_5 " +
(double) timeDiff / 1000 + " seconds "),

ArrayList TR_list = new ArrayList(),
ArrayList RR_hst = new ArrayList(),
ArrayList TW_list = new ArrayList(),
ArrayList TU_list = new ArrayList(),
ArrayList RW_list = new ArrayList(),
ArrayList RU_list = new ArrayList(),

for iInt 1= 0, 1 < threadArray.length, 1++)
If (threadArray[l] instanceof Reader_5)
{
if (Reader_5)threadArray[i]) getType() == ReaderWriterType TR)
{

TR_list add(new Long(
((Reader_5)threadArray[i]) getLockWaitingTime())),

else

{
RR_Iist add(new Long(
((Reader_5)threadArray[i]) getLockWaitingTime())),

}
}
else

{
if ((Wnter_5)threadArray[i]) getType() == ReaderWriterType TW)

TW_list add(new Long(
((Wniter_5)threadArray]i]) getLockWaitingTime())),

}
else If (Wnter_5)threadArray][i]).getType() == ReaderWriterType TU)

i

160

{
TU_list add(new Long(

((Wnter_5)threadArray[i]) getLockWaitingTime())),

}
else If (Wnter_5)threadArray[i]) getType() == ReaderWnterType RW)

RW_list add(new Long(

((Wniter_5)threadArray[i]) getLockWaitingTime())),

else

RU_list add(new Long(

((Writer_5)threadArray/[i]) getLockWaitingTime())),

}
}
}
Object[] TR_arr = TR_list toArray(),
Object[] RR_arr = RR_list toArray(),
Object[] TW_arr = TW_list toArray(),
Obyject[] TU_arr = TU_list toArray();

Object[] RW_arr = RW_list toArray(),
Object[] RU_arr = RU_list toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray[] = {
new node(avgTR, ReaderWriterType TR),
new node(avgRR, ReaderWnterType RR),
new node(avgTW, ReaderWriterType TW),
new node(avgTU, ReaderWriterType TU),
new node(avgRW, ReaderWrnterType RW),
new node(avgRU, ReaderWriterType RU)},

bubbleSort(nodeArray, 6),

System out printin("\nThe average times spent in milliseconds to obtain a "

+ "lock in algonthm_5 \n"),
for (int1=0,1<86, 1++)

{
switch (nodeArray[i] type)

case ReaderWnterType RR

System out print("RR Average =" + avgRR + " ["),

display(RR_arr),
System out printin("\n"),
break,

case ReaderWnterType RU*

System out print("RU Average =" + avgRU + " ["),

display(RU_arr);
System out printin("I\n"),
break,

case ReaderWrnterType RW

System out print("RW Average =" + avgRW + " [");

display(RW_arr),
System out printin("\n"),
break;

161

162

case ReaderWriterType TR
System out print("TR Average =" + avgTR + " ["),
display(TR_arr),
System out printin("\n"),
break,
case ReaderWrniterType TU
System out print("TU Average =" + avgTU + " ["),
display(TU_arr),
System out printin("J\n"),
break,
case ReaderWriterType TW
System out print("TW Average =" + avgTW + " ["),
display(TW_arr),
System out printin("I\n"),
break,
default
System out printin("Oop! Somerthing must be wrong "),
break,

}
}
}
}

s Fedede e R Rk ko * Feedede R AR AR KK Fedekdddedd e *kk

This class defines the types of the share semaphores rc[0], rc[1] This type 1s
initialized to be IR and the supported types are IR, IW, and R

'k/

class Type_5
private int value,
/*

Function
Type_5

Description
Default constructor for Type_5 class The default type 1s IR

Parameters
None

Return
None

Type_5()

value = IR,

}

/*
Function
getType

*/

Description
get a type of a process

Parameters
None ‘

Return
a value of a type

163

int getType()
{

return value,

}
/*

>/

Function
setType

Description
set a type of a process

Parameters
a value of a type

Return
None

void setType(int v)
{

value = v,

}

final static int IR = 0x1000,
final static int IW = 0x1001,
final static int R = 0x1002,

}

*/

[kt sk Rk * ke Fekdedededeok eded ek e *

This class specifies the return value of some of the methods of Resource_5,
Table_5 and Record_5

dekkdkkdkkkdkkk Fekdekd k% * * Fekedkdedkdkdededhdkdkdedddkkdkdkdkddkdkddddd ki idkkk /

class ReturnValue_1

int smp, // The current sharing semaphore
int count, // The count of current sharing semaphore

}

Rk * Tededededededeokkk ok ko dodd ek * * * dedede ek ke ke ek ek ok

This i1s the base class of Table_5 and Record_5 classes It simulates the
table that contains records It implements intent read and intent write
methods for record read and record write

class Resource_5

protected Semaphore_5 w, // controls access to the resource

protected Semaphore_5 pw, // controls access to the outer semaphore
protected Semaphore_5[] rc, // share semaphore controlling access to count[]
protected int[] count, // counters for share semaphores rc[0] and rc[1]
protected Type_5[] type, // type for share semaphores rc[0] and rc[1]
protected int prm, // which of share semaphores 1s primary, initially 0

/*

Function
Resource_5

Description
Constructor for Resource_5 class It initializes the various variable

Parameters
None

Return
None

164

public Resource_5()

{
w = new Semaphore_5(),
pw = new Semaphore_5(),
rc = new Semaphore_5[3],
count = new Int[3],
type = new Type_5[3],
prm =0,

for int1=0,1<3, 1++)
rc[i] = new Semaphore_5(),
for int1=0,1<3, 1++)
type[t] = new Type_5(),

*/

/*
Function
startRead

Description
Starts a read process according to fair and effcient reader and writer
algorithm with intent to read and intent to write

Parameters
readerNum - the ID number of a reader

Return
a ReturnValue_1 object

*/

public ReturnValue_1 startRead(int readerNum)

int smp, // indicates which of rc[0] or rc[1] currently to use
ReturnValue_1 retVal = new ReturnValue_1(),

pw P(), // requests the outer semaphore
pw V(), // releases the outer semaphore

if (type[prm] getType() = Type_5 IW)
smp = prm;

else
smp=1-prm,

retVal smp = smp,

rc[smp] P(),

count[smp]++,

retVal count = count[smp],

if (type[smp] getType() == Type_5 IR)
type[sm<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>