
SOLVING READER AND WRITER PROBLEM WITH THE HIERARCHICAL

LOCK APPROACH USING SEMAPHORE

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Mei Li, B.S.

San Marcos, Texas
December 2004

ACKNOWLEGEMENTS

I am very thankful for the members of my thesis committee· Dr. Haddix,

Dr. Chen and Dr. McCabe I would like to especially thank my advisor, Dr Haddix,

for his invaluable guidance and help m the preparation of my thesis

Many thanks to my husband and my daughter for their love and support

The manuscript was submitted on Nov ?1h, 2004

111

TABLE OF CONTENTS

ACKNOWLEGEMENTS Iii

LIST OF TABLES .. VII

LIST OF FIGURES ... VIII

CHAPTER

1 INTRODUCTION ... 1
1 1 Description of Reader and Writer Problem

1 2 Description of Semaphore

1 3 Related Work

1 4 ObJective

1.5 Overview of the Thesis

2 DESCRIPTION OF ALGORITHMS .. 7
2.1 Reader Privilege

2 1 .1 Description of the Algorithm
2 1.2 D1scussIon of Correctness - Reader Privilege

2.2 Writer Privilege
2 2.1 Description of the Algorithm
2 2.2 DIscussIon of Correctness - Writer Priv1l'ege

2.3 Fair Reader and Writer
2.3.1 Description of the Algorithm
2 3.2 Discussion of Correctness - Fair Reader and Writer

2.4 Fair and Efficient Reader and Writer
2 4.1 Description of the Algorithm
2.4.2 Discussion of Correctness - Fair and Eff1c1ent Reader and Writer

2 5 Fair and Efficient Reader and Writer with Intent to Read and Write
2.5.1 Purpose of Intent to Read and Write Locks
2.5.2 Description of Using Intent to Read and Write Locks
2.5.3 Description of the Algorithm
2.5.4 IR, Rand IW Semaphore Upgrades and Additions

1V

2.5.5 The Fair and Efficient Algorithm with Intent to Read and Write
2.5.6 DIscussIon of Correctness - Fair and Efficient Reader and Writer

with Intent to Read and Intent to Write

2 6 Fair and Eff1c1ent Reader and Writer with Intent to Read, Intent to Write
and Upgrade Lock
2.6.1 Description of the Purpose of Upgrade Lock
2.6.2 Description of Using Upgrade Lock
2.6.3 Description of the Algorithm
2.6.4 Discussion of Correctness - Fair and Eff1c1ent Reader and Writer

with Intent to Read, Intent to Write and Upgrade Lock

3 EXPERIMENTAL DESIGN .. 44
3 1 Design of the Experiment

3.2 Description of the Experiment
3 2.1 RW_Server
3.2.2 RW_Server_ 1
3 2 3 RW_Server_2
3.2.4.RW_Server_3
3.2 5 RW_Server_ 4
3 2.6 I_RW_Server_5
3.2.7 I_RW_U_Server_6

4 DESCRIPTION OF IMPLEMENTATION ... 54
4 1 Software Required to Implement the Experiment

4.2 Implementation Versions

4.3 The Spec1ficat1on of Classes and Mam Methods

4.3.1 The Classes and Methods of Design Category One
implementation - Reader and Writer Algorithms

4 3.2 The Classes and Methods of the Design Category Two
Implementation - Reader and Writer with Intentional Locks

4.3 3 The Classes and Methods of the Design Category Three
Implementation - Reader and Writer with Intentional Locks and
Upgrade Lock

4 3 4 Change the Class Name During Implementation

5. DISCUSSION AND ANALYSIS OF THE TEST RES UL TS•............. 69
5.1 AdJusting the Requests According to Lock Types Available

5.2 Discussion of Results Using the Verbose Version

5.3 Discussion of the Results Using the Throughput Version
5.3 1 Comparing the Time Elapsed for Six Different Algorithms

5.4 Discussion of Results Using the Turnaround Version

V

5.5 Analysis of the Execution Results for Three Versions

6. CONCLUSIONS AND FUTURE WORK .•........•..•.•.••.•...•.•.......•..•.••.••••..•••.. 84
6.1 Analytic Conclusion

6.2 Experimental Conclusions

6.3 Future Work

APPENDICES•... 89

REFERENCES ... 229

V1

LIST OF TABLES

Tables

Table 2 1 Compatibility of Requests with Existing Locks 24

Table 2.2. Request Additions and Type Updates .. 24

Table 2 3 Conflict Matrix for Read, Write and Upgrade Locks•.•................... 33

Table 3.1. An Example Scenario ••.••...•...... 49

Table 5 1. The Time Elapsed for the Six Algorithms(T est 1) 73

Table 5.2. The Time Elapsed for the Six Algorithms(Test 2) 74

Table 5 3. The Time Elapsed for the Six Algorithms(Test 3) 74

Table 5.4 The Time Elapsed for the Six Algorithms(Test 4) 75

Table 5 5 The Time Elapsed for the Algorithm 5, Algorithm 6 and Algorithm 6a
(Test 1) ... 76

Table 5 6. The Time Elapsed for the Algorithm 5, Algorithm 6 and Algorithm 6a
(Test 1)•.....................................•.............. 77

Table 5 7. The Average Waiting Time in Milliseconds to Obtain a Lock Under
Different Algorithm(Test 1). . .. 78

Table 5.8 The Average Waiting Time in Milliseconds to Obtain a Lock Under
Different Algorithm(Test 2). . .. 78

Table 5 9 The Average Waiting Time in Milliseconds to Obtain a Lock Under
Different Algorithm(Test 3) .. 79

Table 5.10. The Average Waiting Time in Milliseconds to Obtain a Lock Under
Algorithm 5, Algorithm 6 and Algorithm 6a 82

Vll

LIST OF FIGURES

Figures

1. Figure 2.1 Solution For Reader and Writer Problem - Strong Reader ...•......•... 9

2. Figure 2.2 Solution for Reader and Writer Problem - Stronger Writer ...•......•.. 12

3. Figure 2.3 Solution for Reader and Writer Problem - Farr Reader and Writer ... 15

4. Figure 2.4 Solution for Reader and Writer Problem - Fair and Efficient Reader

and Writer .. 19

5. Figure 2.5 Reader and Writer Algorithms - Fair and Eff1c1ent Readers and Writers

with Intent to Read and Write•.•....•..........•...........•.•..........•......•..•..... 26

6. Figure 2.6 Intent to Read and Write Algorithms - Farr and Efficient Readers and

Writers with Intent to Read and Wnte •.•......................•.••..••••.•............•..... 27

7. Figure 2.7 Reader and Writer Algorithms- Fair and Efficient Readers and Writers

with Intent to Read, Write and Upgrade Lock ... 35

8. Figure 2.8 Intent to Read and Wnte Algorithms - Farr and Efficient Readers and

Writers with Intent to Read, Write and Upgrade Lock•...........•........••.• 36

9. Figure 2.9 Upgrade Algorithm - Fair and Efficient Reader and Writer with Intent

to Read, Write and Upgrade .. 37

10. Figure 3.1 The Structure of the Expenment. ... 47

11. Figure 4.1 Relationships Among Classes for Reader and Writer Algorithms ..•.. 55

12. Figure 4.2 Relationships Among Classes for Fair and Eff1c1ent Reader and Writer

with Intentional Locks .. 59

13. Figure 4.3 Relat1onsh1ps Among Classes for Fair and Efficient Reader and Writer

with Intentional Locks and Upgrade Locks ... 67

Vlll

CHAPTER 1

INTRODUCTION

1.1 Description of Reader and Writer Problem

The reader-and-writer problem is a classic synchronization problem. It was

introduced by P. J. Courtois, F. Heymans and D. L. Parnas in 1971[CoHP71].

The problem illustrates that a shared database is accessed by two kinds of

processes: readers and writers. The readers execute transactions that examine

the database while the writers update the database. A writer must have

exclusive access to the elements of the database to be modified but more than

one reader may access the database concurrently.

1 .2 Description of Semaphore

There have been various proposals for achieving synchronization among

concurrent processes. One of them is using inter-process communication

primitives that block more than one process entering its critical region where the

shared resources such as database are accessed. The pair of SLEEP and

WAKEUP is the simplest of these primitives and also the basis for the now

ubiquitous semaphores.

1

In 1965, E. W. Dijksta [Dijk65] suggested using an integer variable to count

the number of wakeups saved for future use. A new variable type, called

semaphore, was introduced. A semaphore could have the value of 0, indicating

that no wakeups were saved, or some positive value if one or more wakeups

were pending [TaWo97].

A semaphore has two operations: UP and DOWN (generalizations of Wakeup

and Sleep, respectively). The DOWN operation (also known as P operation) on a

semaphore checks to see if the value is greater than 0. If so, it decrements the

value (i.e. uses a stored wakeup) and continues. If the value is 0, the process is

blocked and put to sleep without completing the DOWN for the moment

[TaWo97]. The UP operation (also known as V operation) increments the value

of the semaphore, if one or more processes are sleeping on that semaphore,

unable to complete an earlier DOWN operation, the first process of the waiting

processes queued (the one sleeping for the longest period) is chosen by the

system and is allowed to complete its DOWN. This is called blocked_queue

semaphore. The group of blocked processes is maintained in a queue and a

process that blocks is placed at the end of the queue while a process at the head

of the queue is selected for execution. The blocked_queue semaphore is much

different than a weak_semaphore, which may be implemented with "test and set"

instruction. Instead of putting a blocked process in a queue, the

weak_semaphore lets the process execute a busy waiting loop in which the value

of semaphore is continuously tested. Once a process checked the value of

2

semaphore is greater than 0, it completes its DOWN operation and enters the

critical section. The blocked process is chosen to complete a DOWN operation in

a random order [EuSt82].

Semaphores can be used to solve synchronization problems. Checking the

value, changing it, and possible going to sleep is all done as a single, indivisible,

atomic action. System support is usually provided to guarantee atomicity of

semaphore operations. It is guaranteed that once a semaphore operation has

started, no other process can access the semaphore until the operation has

completed or blocked [TaWo97].

In this research, we will solve the reader and writer problem using the

blocked_queue semaphore.

1.3 Related Work

Since 1960's, the reader and writer problem has been extensively studied and

researchers have discovered several solutions using semaphores. Three of

these traditional approaches are reader privilege, writer privilege and fair reader

and writer. P.J. Courteous, F.Heymans and D.L.Parnas first introduced reader

privilege and writer privilege approaches in 1971 [CoHP71]. For the reader

privilege approach, the readers have higher priority than the writers. So if the

readers keep coming in, the writers may never get a chance to access the

database. This is called writer starvation when that happens. For the writer

3

privilege approach, the writers have higher priority than the readers and thus

reader starvation may occur. Neither of these are optimum solutions. A better

approach for most applications is the fair reader-and-writer approach [Hart03].

An outer semaphore, for which each reader and writer waits is added in addition

to the traditional semaphores. The solution guarantees FIFO ordering for the

read/write requests, while maintaining exclusive write access and shared read

access. Even though this is a fairly good solution it still suffers from an efficiency

problem. For example, if requests RRWRRW (R means reader request and W

means writer request) are queued on the outer semaphore and they arrive at

almost the same time (In real world, this is a likely occurrence) the first RR pair

can enter the critical section to read concurrently, but the second RR pair must

wait for the first W to finish even though they arrived in the queue almost at the

same time as the first RR. This meets a strong fairness criterion but is not the

most efficient approach. The fourth approach we will explore is to use an

enhanced algorithm for the reader-and-writer problem. The enhanced algorithm

lets all sharing processes pass the outer semaphore if they arrive during the

same lock arbitration. In the above sequence, RRWRRW can all pass the outer

semaphore as long as they arrive during the same lock arbitration. Thus, the

four R's can access the shared resource at the same time, but the first W will be

blocked by inner semaphore and has to wait for all four R's to finish their job.

This strategy not only maximizes the number of concurrent readers but also

gives the writer a fair chance. The idea is that allowing readers to "pass" writers

in the queue doesn't penalize the writers since the reader accesses overlap

4

because of shared access. In this scenario, the readers start their accesses

simultaneously, and ideally, their accesses would complete contemporaneously.

Because of the inherent hierarchical structure of databases, (in our model, a

database consists of a collection of tables, with each table holding multiple rows,

or records), restricting all clients from examining or updating the data in a

database because one client is updating a row is costly and inefficient. We

propose to use intent to read and intent to write locks [OMGI00]. For example, to

read a record in the database, the client obtains an intent to read lock from the

ancestor(s) of the requested resource, a read lock for the record, and then reads

the record. Another client comes and wants to write to another record. It obtains

an intent to write lock from the ancestor(s) of the other record. Even if the two

records have the same ancestors, the request will be granted because the intent

to read lock is not in conflict with the intent to write lock The two clients can do

their jobs concurrently without interfering with each other, as long as they are

operating on separate records. Using the intent to read and intent to write locks

should improve concurrency and efficiency for an application or suite of

applications utilizing the same resources.

Even though the above algorithm improves efficiency, deadlock can still

occur. When two processes read concurrently and then attempt to write without

releasing the read locks, deadlock may result. To solve this problem, we

propose to use an upgrade semaphore as an upgrade lock [OMGI00]. If a

5

process has to obtain an upgrade lock before it writes to the shared resource

following a read, deadlock can be avoided. To avoid deadlock with the other

algorithms, a write lock must be obtained for the duration of the entire update

transaction, thus reducing sharing and concurrency.

1.4 Objective

We will compare the traditional approaches, our enhanced approach, and the

hierarchical and sequential lock approaches for the reader-and-writer problem

using semaphores. To accomplish this, we will use intent to read, intent to write,

and upgrade locks. We will show that this approach has three characteristics:

fairness, efficiency and freedom from deadlock.

1.5 Overview of the Thesis

The thesis consists of six chapters.

Chapter 1 - Introduce the thesis background, definition of terms, aims of

research and outline of the remaining chapters.

Chapter 2 - Specify the six algorithms used to solve the reader and writer

problem and provide a rationale for their correctness.

Chapter 3 - Specify the design of the experiment.

Chapter 4 - Describe the implementation.

Chapter 5 - Discuss and analyze the test results.

Chapter 6 - Conclusions and future work.

6

CHAPTER2

DESCRIPTION OF THE ALGORITHMS

In order to solve the reader and writer problem properly, we must consider the

important properties of the problem. The properties we are interested in are

fairness, liveness, and efficiency. Fairness means no starvation. Neither

readers nor writers can be starved and each read/write request should be

handled in some approximation of FIFO order. Liveness means no deadlock. In

other words, at each point in time, some process must be capable of executing.

The third property is efficiency. Efficiency is obtained by allowing some

processes to share access. With regard to efficiency, we must weigh algorithm

efficiency against the amount of sharing obtainable. Fairness and liveness will be

considered as properties to be examined heuristically. Efficiency will be

addressed experimentally. A total of six algorithms are considered. The first four

algorithms address two classes of privileges, namely, exclusive (writer) and

shared (reader) by specifying different conditions for acquiring the privilege of

critical section execution. The last two consider additional classes of privileges,

namely hierarchical (intention privileges) and sequential (read followed by write).

7

2.1 Reader Privilege [CoHP71]

2.1.1 Description of the Algorithm

This solution supports a strong reader, providing that no reader be kept

waiting unless a writer has already obtained permission to use the database. No

reader should wait simply because a writer is waiting for other readers to finish

[CoHP71]. In effect, this allows readers to cut in front of writers. For high

contention resources, this defers updates and other maintenance activities to

periods of low demand.

In this algorithm, semaphore re is used to protect the counter of reader and

semaphore w is a mutual exclusion semaphore for the writer and the first reader

to enter the critical section. Readers that enter or leave while other readers are

present ignore semaphore w. Semaphore re ensures that only one reader will

enter or leave at a time thereby eliminating the possibility of ambiguity about

which process is responsible for the counter. Semaphore w will be positive if and

only if there are no readers and no writers present in the critical section.

Pseudo code for this algorithm is provided in Figure 2.1.

8

Integer readcount; (initial value = 0)
Semaphore re II Semaphore for readcount (initial value = 1)
Semaphore w II Semaphore for mutual exclusion (initial value = 1)

READER

P(rc);
readcount= readcount + 1;
If readcount = 1 then P(w);
V(rc);

reading is performed

P(rc);
readcount = readcount - 1;
If readcount = 0 then V(w);
V(rc);

WRITER

P(w);

writing is performed

V(w);

Figure 2.1: Solution for Reader and Writer Problem - Strong Reader

• Reader procedure:

- The reader requests semaphore re and exclusively updates the count.

If it is the first reader, (count = 1), it requests semaphore w, thereby

blocking writers.

- It releases re and allowing other readers to obtain access.

- Reading is performed.

- The reader requests semaphore re and exclusively updates the count.

If it is the last reader (count = 0), it releases semaphore w, thereby

unblocking the writers. In all cases, it releases re.

• Writer procedure:

9

10

- Writer requests semaphore w to block readers (and other writers).

- Writing is performed.

- When the writer finishes the job, it releases semaphore w, thereby

unblocking the readers (and other writers).

2.1.2 Discussion of Correctness - Reader Privilege

Fairness:

In this algorithm, because a reader can block the mutual exclusive semaphore

w when readcount is equal to 1, all subsequent writers are blocked. Writers are

blocked as long as there is a reader who is reading. Readers can continue to

enter the critical section as long as there is another reader reading. Indeed, when

there are multiple readers, the same reader can read multiple times while writers

continue to wait. Writers can access the database only if the last reader finishes

the job and exits the database and no reader is waiting. If the readers keep

coming in, the writers may never get a chance to access the database.

Obviously, this solution favors readers and potentially starves writers. Because

of this unfairness, this algorithm is not suitable for many applications.

Liveness:

The only points of possible blocking are at the simple semaphores. So long as

processes behave correctly, and readcount and the semaphores are initialized

correctly, blocking can never occur. Trivially, the writer releases semaphore w

whenever a grant is received. With the readers, it is also straightforward: Each

11

grant of semaphore re is followed by a release. Similarly, assuming that

readcount is initialized correctly, the number of increments will be equal to the

number of decrements, and thus, each time, a grant on semaphore w is received,

it will be released.

2.2 Writer Privilege [CoHP71]

2.2.1 Description of the Algorithm

This solution supports a strong writer, by providing that no writer should be

kept waiting unless a reader has already obtained permission to use the

database. No writer should wait simply because a reader is waiting for a writer to

finish. [CoHP71]

In this algorithm, three more semaphores have been added. The use of re

and w corresponds exactly to the use of re and win the solution of Figure 2.1.

The semaphore r is used to protect the act of entering the critical section in the

same way that w is used to protect the shared resource in Figure 2.1. The first

writer to pass semaphore r will block readers from entering the section to

manipulate re and w. we is used to protect the writer count. Semaphore pr

guarantees the priority of writers. Without pr we have the possibility that a writer

and one or more readers will be simultaneously waiting for a V(r) to be done by a

reader. In that case, the priority of writer could not be guaranteed. [CoHP71]

Pseudo code for the algorithm is provided in Figure 2.2.

Integer readcount, writecount; (initial value = 0)
Semaphore pr II pre_read (initial value= 1)
Semaphore r II read (initial value = 1)
Semaphore re II readcount (initial value = 1)
Semaphore we II writecount (initial value = 1)
Semaphore w II mutual exclusion(initial value = 1)

READER

P(pr);
P(r);

P(rc);
readcount = readcount + 1;
if readcount = 1 then P(w);
V(rc);

V(r);
V(pr);

reading is performed

P(rc);
readcount = readcount - 1;
if readcount = 0 then V(w);
V(rc);

WRITER

P(wc);
writecount = writecount + 1;

if writecount = 1 then P(r);
V(wc);
P(w);

writing is performed

V(w);
P(wc);
writecount = writecount - 1;

if writecount = 0 then V(r);
V(wc);

Figure 2.2: Solution for Reader and Writer Problem - Stronger Writer

• Reader procedure

- Request semaphore pr. Only one reader can come in at a time.

- Request semaphore r. Readers are restricted by the semaphore.

- Request semaphore re to access the readeount exclusively.

- If it is the first reader, request semaphore wand block writer.

- Release re on readeount.

- Release semaphore r to let other readers come in.

12

13

- Release semaphore pr.

- Reading is performed.

- If it is the last reader, release semaphore w.

- Release semaphore re on readcount

• Writer procedure

Request we on writecount.

- If it is the first writer, request semaphore r to block reader. This is

where writer has higher priority because it blocks reader before waiting

on semaphore w.

- Release we on writecount

- Request wand try to write.

- Writing is performed

- Release semaphore w to another writer.

- Request we on writecount.

- If it is the last writer, release r to unblock readers

- Release we on writecount.

2.2.2 Discussion of Correctness - Writer Privilege

Fairness:

In this solution, a reader is blocked by semaphore rwhenever there is a writer

in its critical section or waiting for its critical section. Because a writer only needs

to wait on semaphore w, once a writer is finished, w will be released to other

writers without allowing a reader an opportunity even though a read request

occurs first. Readers may be starved if sequences of writers wish to update the

database. Indeed, under the right conditions, a writer may wnte multiple times

while a reader is waiting. Because of the unfairness of the algorithm, it is not

appropriate for many applications.

Liveness:

14

As long as each semaphore, readcount and writecount are initialized correctly

and each grant to a process is followed by a release, deadlock can never occur

In this algorithm, each request of a semaphore is followed by a release and the

number of increments of readcount and writecount is equal to the number of

decrements. Thus, deadlock can never occur during correct execution.

2.3 Fair Reader and Writer [Hart03]

2.3.1 Description of the Algorithm

In this algorithm, semaphore pw which each reader and writer waits on has

been added. This is what guarantees the FIFO orde-ring for read/write requests

[Hart03]. Because of the FIFO character of this algorithm, we call this algorithm

Fair Reader and Writer.

Pseudo code for the algorithm is provided in Figure 2.3.

15

Semaphore pw II pre_mutual exclusion(initial value = 1).
Semaphore re II read_count(initial value = 1).
Semaphore w II mutual exclusion(initial value = 1).
Integer readcount II (initial value = 0).

READER

P(pw);

P(rc);
read count = read count + 1;

if readcount = 1
P(w);

V(re);
V(pw);

reading is performed

P(rc);
readcount = readcount - 1 ;

if readcount = 0
V(w);

V(rc);

WRITER

P(pw);

P(w);

V(pw);

writing is performed

V(w);

Figure 2.3 Solution for Reader and Writer Problem - Fair Reader and Writer

• Reader procedure

- Request semaphore pw to enter the queue. If a reader waits on the

semaphore first, the reader gets a permission to manipulate mutual

exclusion semaphore w first.

- Request semaphore re on readeount.

- If it is the first reader, request semaphore w to block writer (any

readers immediately behind this one will be waiting on pw).

- Release semaphore re on readeount.

16

- Release semaphore pw to allow wa1tmg read/write processes enter to

queue.

- Reading is performed.

- Request semaphore re on readeount.

- If it is the last reader, release semaphore w to writer.

- Release semaphore re on readeount.

• Writer procedure

- Request semaphore pw to enter the queue.

- Request semaphore w to write.

- Release semaphore pw to other read/write requests.

- Writing is performed

- Release semaphore w for next reader or writer.

2.3.2 Discussion of Correctness - Fair Reader and Writer

Fairness:

Assume we have a sequence read/write requests RRWR(R means read

request and W means write request). The first reader passes the semaphore pw

without any problem, then request semaphore re and update the readeount.

Because it is the first reader, it blocks writer by obtaining grant on semaphore w.

Then it unblocks re and pw and read from the database. The second reader can

get in at this time. The second reader first locks the re to update the count,

17

because the count is not 1, skip the if statement. Then the second reader

releases re and pw to let the first process at the front of the queue to enter so

that the second reader can then read concurrently with the first reader. A write

request passes semaphore pw but is blocked by semaphore w since the readers

are still reading in database. The writer has to wait until the readers finish. The

reader immediately after W has to wait until the writer is unblocked at semaphore

w. As described above, the algorithm can guarantee FIFO while maintaining the

exclusive write access and shared read access. This is a fair and correct

algorithm.

Liveness:

This algorithm is a little different from the reader privilege by adding the outer

semaphore pw. As long as each reader and writer request grants to enter the

outer semaphore pw first, then release it before they enter the critical section,

deadlock can be avoided.

2.4 Fair and Efficient Readers and Writers

2.4.1 Description of the Algorithm

In this algorithm, the outer semaphore pw is the same as the one m the

Figure 2.3. All readers can read concurrently as long as they have previously

passed the outer semaphore pw. If a reader is blocked by this semaphore, it can

not read even though other readers are in the critical section. This algorithm Is

fair and efficient because it allows all read requests to pass the outer semaphore

18

during the same lock arbitration. Thus the strategy maximizes the read

concurrency while maintaining approximate FIFO fairness. The principal

difference between this algorithm and the Fair Readers and Writers algorithm

(the last algorithm) is that when a reader obtains the privilege all currently waiting

readers are allowed to enter their critical section rather than only those who

immediately succeed the first reader in the queue. If all readers are concurrent

and of equal duration, writers will write at the same time or sooner than in the fair

readers and writers algorithm. If all readers are not completely concurrent, some

writers may experience small delays compared to the fair readers and writers

algorithm. It maintains a high degree of fairness in that readers entering the

queue after the first reader obtains the privilege are barred from executing their

critical sections by semaphore pw.

Pseudo code for the algorithm is provided in Figure 2.4.

Semaphore pw
Semaphore re
Semaphorew

II pre_mutual exclusion(initial value= 1)
// read_count(initial value= 1).
//mutual exclusion (initial value= 1).

Integer readcount(initial value is 0)

READER WRITER

P(pw);
V(pw);

P(pw);
V(pw);

P(rc);
read count++;

if readcount = 1
{

P(w);
P(pw);

}

V(rc);

reading is performed

P(rc);
readcount --;

if readcount = 0
{

V(pw);
V(w);

}
V(rc);

P(w);

writing is performed

V(w);

19

Figure 2.4: Solution for Reader and Writer Problems - Fair and Efficient
Reader and Writer

• Read procedure

- Reader requests semaphore pw.

- Reader releases semaphore pw. This allows all read/write requests

after the reader to come in.

- Request semaphore re on readcount.

20

- If it is the first reader, request w to block writer then request pw to

block all processes that are ready to pass the outer semaphore pw.

- Release semaphore re on readeount.

- Reading is performed

- Request semaphore re on readeount.

- If it is the last reader, unblock pw to let other processes come in then

release w to unblock writer.

- Release semaphore re.

• Write procedure

- Request semaphore pw.

- Release semaphore pw. This allows all read/write requests after the

writer to come in.

- Request semaphore w to block readers.

- Writing is performed.

- Release semaphore w to unblock other read/write request.

2.4.2 Discussion of Correctness- Fair and Efficient Reader and Writer

Fairness:

This algorithm is fair and efficient because it allows all processes that arrive

while a read process is in lock arbitration to enter their critical sections with that

first read process. While a read process is waiting for a grant on w, all processes

will pass semaphore pw. As soon as a read process requests semaphore w, it

21

requests semaphore pw, thus blocking all new requests from entering the lock

arbitration. Once, the sharing readers complete their critical sections, semaphore

pw are raised, allowing all requests to enter lock arbitration until another reader

obtains a grant on w. In this manner, reading concurrency is maximized while

maintaining fairness for writers.

A strong fairness criterion might provide that all requests are granted in the

order that they reach the request arbiter. Some of the algorithms discussed here

have strong fairness for one class of users, but allow another class to experience

livelock. The fairness criterion of the fair and efficient algorithm is to increase

shared access without significantly penalizing any processes versus the results

under the strong fairness criterion.

Liveness:

This algorithm is similar to the fair reader and writer algorithm. As long as all

processes request and release the outer semaphore and mutual exclusive

semaphore properly, deadlock will not occur.

Efficiency:

Consider the requests RRWR, where R means read request and W means

write request. This sequence will require four time units to complete (assuming

each request requires one time unit). If the three Rs can read concurrently, only

two time units are required to complete the four requests. In the above case, the

22

fair readers and writers would require three time units to complete, while W

would still have to wait one time unit for its turn. This algorithm is an enhanced

and improved solution of previous one. In practice, reading data from a database

usually occurs more frequently than writing data into a database, so the

efficiency of the reading procedure is very important. This algorithm is correct as

well as efficient. This algorithm has the nice property of increasing concurrency

among shared access requests when contention is higher.

2.5 Fair and Efficient Readers and Writers with Intent to
Read and Write

2.5.1 Purpose of Intent to Read and Write Locks

This algorithm adds intentional locks[OMGI00] to the Fair and Efficient

Readers and Writers algorithm. Intentional locks are relevant if there exists a

hierarchical locking relationship such as the inherent relationship in a database

or file system. A database contains multiple tables, each of which contains

multiple rows. Similarly, a file directory contains multiple files and each file

consists of multiple records. If we lock a whole database because somebody is

updating only one row in a table, the cost of restriction in terms of accessing the

database is huge and will significantly reduce concurrency. On the other hand, if

we set locks for each table or each row, it will result in a higher locking overhead.

In order to balance between the lock overhead and the degree of concurrency,

we use intent to read and write locks [OMGIO0].

23

2.5.2 Description of Using Intent to Read and Write Locks

When using intention locks to access a hierarchy, the order in which locks are

acquired is always from the top down. To read a record in the database, for

example, the client obtains intent to read lock (IR) on the database and the table

(in this order) before obtaining the read lock(R) on the record. Intent to read

locks (IR) conflict with write locks (W), and intent to write locks (IW) conflict with

read(R) and write (W) locks; however, intent to read and intent to write locks do

not conflict with each other, allowing many concurrent locks within a database

[IONA01]. When a mass read or write is to take place, the possibility of locking

the larger resource is still available.

2.5.3 Description of the Algorithm

In this algorithm, semaphores rc(O) and rc(1) have been added. Semaphores

pw and w have the same functionality as those in Figure 2.4. rc(O) and rc(1)

have similar functionality to re in Figure 2.4. All R, IR, and IW requests go

through either rc(O) or rc(1). Each of rc(O) and rc(1) can be of type IR, R, or IW.

The primary flag is 0 for rc(0) and 1 for rc(1). The first process that enters the

primary semaphore will give the semaphore its type. The next process, 1f

compatible with the primary type, enters the primary semaphore, updates the

primary count and if necessary, updates the primary type. If the value of count is

equal to 1, it requests semaphore w, and then pw. The next process, if not

compatible with the primary type, enters the secondary semaphore, updates the

secondary count, and if necessary, updates the secondary type. Recall that IR is

compatible with R, IWand itself; R is compatible with IR and itself; IW is

, compatible with IR and itself [OMGI00].

These compatibilities are defined in Table 2.1.

Table 2.1. Compatibility of Requests with Existing Locks
(X indicates incompatibility)
Requested Lock Previous Grant

IR R IW w
Intention Read (IR) X
Read (R) X X
Intention Write(IW) X X
Write 0JV) X X X X

2.5.4 IR, Rand IW Semaphore Upgrades and Additions

Table 2.2 illustrates IR, Rand IW semaphore upgrades and additions.

Table 2.2. Request Additions and Type Updates
Primary Addition Addition Addition
Type Type Semaphore Semaphore

Type Update
None IR Primary IR
None R Primary R
None IW Primary IW
IR IR Primary IR
IR R Primary R
IR IW Primary IW
R IR Primary R
R R Primary R
R IW Secondary R
IW IR Primary IW
IW R Secondary IW
IW IW Primary IW

24

2.5.5 The Fair and Efficient Algorithm with Intent to Read and Write

Pseudo code for the algorithm is provided in Figures 2.5 and 2.6.

25

26

Global Variables:

Semaphore pw, w, rc(O), rc(1) II Initial value all 1
Integer smp II indicates the value of current semaphore, initial value Is O
Integer count [2] II counter for share semaphores rc(O) and rc(1), initial value Is 0
Enum typ[2] II type for share semaphores rc(O)and rc(1)(IR, IW, or R), in1t1al

II value Is IR, R = read, IR= Intent to Read, IW = Intent to Write
Integer prm II indicates which of share semaphores Is primary, 1mt1al value Is 0

Local Variables:

Integer smp

READER

P(pw),
V(pw)

II 1dent1f1es current process's re() semaphore

WRITER

P(pw);
V(pw),

lf(typ(prm) I= IW)
smp = prm;

else
smp = 1 -prm,

P(rc(smp));
count[smp] ++;

lf(typ(smp) = IR)
typ(smp) = R,

lf(count(smp) = 1)
{

P(w),
P(pw),

}
V(rc(smp));
reading Is performed

P(rc(smp));
count[smp] --,
lf(count(smp) = 0)

{
typ(smp) = IR,
prm = 1 -prm;
V(pw);
V(w);
}

V(rc(smp)),

P(w),

writing Is performed

V(w);

Figure 2.5: Reader and Writer Algorithms - Fair and Efficient Readers and
Writers with Intent to Read and Write

INTENT TO READ

P(pw);
V(pw);
smp = prm;
P(rc(smp)};
count[smp] ++,

lf(count[smp] = 1)
{

P(w);
P(pw},

}
V(rc(smp));

Intent to read operations, including
requesting locks on lower resources

P(rc(smp));

count[smp] --,

1f(count[smp] = 0)
{

typ(smp) = IR;
prm = 1 -prm;
V(pw);
V(w);

}
V(rc(smp)),

INTENT TO WRITE

P(pw),
V(pw),
1f(typ(prm) = IW II typ(prm) = IR)

smp = prm,
else

smp = 1 -prm,

P(rc(smp)),
count[smp] ++,
1f(typ(smp) = IR)

typ(smp) = IW,
1f(count[smp] = 1)
{

P(w),
P(pw),

}

V(rc(smp)),

Intent to write operations, including
requesting locks on lower resources

P(rc(smp)),
count[smp] --,

1f(count[smp] = 0)
{
typ(smp) = IR,
prm = 1 - prm,
V(pw);
V(w),
}

V(rc(smp)),

27

Figure 2.6: Intent to Read and Write Algorithms - Fair and Efficient Readers
and Writers with Intent to Read and Write

28

• Reader procedure

- Request and release the outer semaphore pw.

If the type of primary semaphore is not /W, assign the primary

semaphore to variable smp. Otherwise, assign the secondary

semaphore to variable smp.

- Request the semaphore assigned in smp and update count. If the type

of the primary semaphore is JR, upgrade it to R.

- If count is 1, request semaphore w to block the wnter and request

semaphore pw to block the processes that are waiting to enter lock

arbitration.

- Release semaphore indicated by smp on count.

- Reading is performed

- Request the semaphore indicated by smp again to update count.

- If it is the last shared access operation, reinitialize its primary type.

Update the primary flag to the other rc(0)lrc(1) semaphore. Release

pwand w.

- Finally, release the semaphore indicated by smp

• Write procedure

- Request semaphore pw.

- Release semaphore pw. This allows all read/write requests after the

writer to come in.

- Request semaphore w to block readers

29

- Writing is performed.

- Release semaphore w to unblock other read/write requests.

• Intent to read procedure

- Request and release semaphore pw.

- Assign the primary semaphore to variable smp.

- Request the semaphore indicated by smp to update the count

- If count is 1, request w and pw

- Intent to read operation

- Request the semaphore indicated by smp again to update the count

- If it is the last shared access operation, update the primary flag to point

to the other rc(0)/rc(1) semaphore. Then release pw and w.

- Release the semaphore indicated by smp.

• Intent to write procedure

- Request and release semaphore pw.

- If the type of the primary semaphore is JW or JR, assign the primary

semaphore to smp because JW is compatible with JR and itself.

Otherwise, assign the secondary semaphore to smp.

- Request the semaphore pointed to by smp and update count. If the

type of smp is /R, change it to JW

30

- If the count of sharing semaphore is equal to 1, request w to block

other processes from entering critical section then request the outer

semaphore pw.

- Release semaphore smp on the count of sharing semaphore.

- Intent to write operations.

- Request semaphore smp to update count.

- If it is the last shared access operation, downgrade the type to IR and

change the primary to the opposite.

- Release the semaphores pw and w.

- Release the semaphore pointed to by smp.

2.5.6 Discussion of Correctness - Fair and Efficient Readers and
Writers with Intent to Read and Intent to Write

Fairness:

The policy in this algorithm is to maximize concurrency amongst compatible

privileges (Refer to Table 2.1). Thus, at any point in execution, there are possibly

three classes of incompatible requests. These are write requests (which, in
/

addition are mutually incompatible), read requests, and intent to write requests.

Intent to read requests are compatible with both read and intent to write. Thus,

there are two classes of shared access requests. In a maximal case, the mutual

exclusion lock queue would include one or more write requests (W), a read

request (R), and an intent to write (/W) request. The R and IW requests are

proxies for possibly multiple requests and the primary request might have been

31

made as the result of an intent to read (/R) request. Assuming that a write

request has the privilege, additional requests entering would go into a queue.

Assume that the R request is primary, then R and JR requests would go into the

primary re queue, IW requests would go in the secondary re queue, and W

requests would go into the w queue. Once, in the re() queues or the w queue, a

request's place in execution order is assured. Requests entering the re() queues

could still execute prior to W requests entering lock arbitration before them.

However, the W requests should not be significantly delayed. Once, a W request

enters lock arbitration, a process sending a shared access request afterward

could receive at most two shared access grants before the W request is granted.

Liveness:

This algorithm is fair and efficient reader and writer algorithm with intent to

read and intent to write lock. As long as all processes request and release the

outer semaphore pw, re(O) and re(1) semaphores and mutual exclusive

semaphore w properly and increase and decrease the count of re(O) or re(1)

correctly, deadlock will not occur.

Efficiency:

In this algorithm, intent to read and intent to write privileges are added in order

to implement a hierarchical lock scheme. Using a hierarchical lock can maximum

the concurrency of accessing a database. Semaphores re(O) and re(1) allow IR,

/Wand R processes to execute their critical sections in parallel and thereby

improve concurrency and efficiency. Thus, this algorithm is fair and very efficient.

This algorithm has the nice property of increasing concurrency among shared

access requests when contention is higher.

32

2.6 Fair and efficient readers and writers with intent to read,
intent to write, and upgrade locks.

The algorithm adds an upgrade lock [OMGI00] to the fair and efficient

readers and writers with intent to read and intent to write locks.

2.6.1 Description of the Purpose of Upgrade Lock

Because read/write locking allows multiple readers but only one writer to

access a resource, it is possible to create a deadlock. The situation happens if

two or more transactions attempt to first read a resource then later write the

same resource without releasing the read locks [IONA01]. For example, there are

two transactions T1 and T2 that both are reading concurrently. Later on, T1

wants to update the resource but it is blocked because T2 is still reading. Later

on, T2 wants to update the resource but is also blocked because T1 has not

released its read lock yet. Neither T1 nor T2 can proceed and since both are

waiting on the other to release the read lock deadlock occurs. One way of

dealing with this problem is to add upgrade locks. If each process acquires an

upgrade lock before updating a resource, deadlock can be avoided [IONA01],

while concurrency is possible between the upgrade lock and read or intention to

read locks. Without an upgrade lock, a write lock must be obtained at the

beginning of the transaction. This prevents any concurrency with other lock.

2.6.2 Description of Using Upgrade Lock

33

An upgrade lock is similar to read lock except that it conflicts with itself. Table

2.3 shows the conflict matrixes for read, write and upgrade locks [IONA01]. (X

indicates conflict).

Table 2.3.Conflict Matrix for Read, Write and Upgrade Locks
(X indicates Conflict
Request Mode Granted mode

R u w
Read(R) X
UpQrade(U) X X
Write(W) X x. X

For example, there are two transactions T1 and T2 that are reading

'
concurrently. Later, T1 wants to update the resource. It obtains an upgrade lock

first without any problem because an upgrade lock does not conflict with a read

lock. Later on, T2 attempts to acquire the upgrade lock but it is blocked. T1

proceeds to acquire a write lock. After T1 release its write lock, T2 is granted the

upgrade lock and eventually acquires a write lock [IONA01].

2.6.3 Description of the Algorithm

34

In this algorithm, we add three more semaphores: rc(2), u and pu in addition

to the semphores pw, w, rc(O) and rc(1) used in Figures 2.5 and 2.6. All upgrade

requests must actively compete for a grant to pass the u semaphore. All

requests must pass the outer semaphores pu and pw. All JR, R, IW and U

requests must pass one of the readcount semaphores rc(O), rc(1), or rc(2).

Upgrade requests must pass the u semaphore before releasing the pu

semaphore. A second upgrade request will not pass the u semaphore, and thus

will block all subsequent requests on semaphore pu. There is a significant issue

of fairness between upgrade and write locks. The philosophy of the "fair and

efficient" algorithms is to maximize concurrency between shared access

requests. With an upgrade, the effect could be to allow an upgrade's write to take

place before a write (without upgrade), which had been waiting longer. This

algorithm requires an upgrade to obtain its own exclusive lock, but allows waiting

reads, and intents to read to share the lock. The pu semaphore assures that at

most one upgrade request is "in" arbitration at a time.

Pseudo code for this algorithm is provided in Figures 2.7, 2.8 and 2.9.

Global variables:

Integer count[3] II counter for share semaphores rc(O), rc(1)and rc(2)
Char typ[3] // type for share semaphores rc(O), rc(1), rc(2) (IR, IW, R, or U)
Integer prm II indicates which of share semaphores is pnmary(rc(O), rc(1),rc(2))
Semaphore pu II pre_upgrade, initial value = 1
Semaphore u II upgrade, initial value = 1
Semaphore pw II pre_mutual exclusive, 1mt1al value = 1
Semaphore w II mutual exclusive, 1mt1al value = 1
Semaphore rc(O), rc(1), rc(2) II initial value= 1

Local variable

Integer smp

READER

// identifies current process's re() semaphore;

WRITER

P(pu);
V(pu),
P(pw),
V(pw),
lf(typ(prm) I= IW)

smp = prm;
else

smp = (prm + 1) mod 3;
P(rc(smp)),
count(smp) ++;
1f(typ(smp) = 1)

{
P(w),
P(pw),

}
V(rc(smp)),

reading Is performed

P(rc(smp)),
count(smp)--,
1f(count(smp) = 0)

{
typ(smp) = IR;
prm = (prm + 1) mod 3;
V(pw),
V(w),

}
V(rc(smp)),

P(pu),
V(pu);
P(pw),
V(pw),

P(w),

writing Is performed

V(w);

35

Figure 2.7 Reader and Writer Algorithms - Fair and Efficient Readers and
Writers with Intent to Read, Write and Upgrade Lock

INTENT TO READ

P(pu);
V(pu),
P(pw),
V(pw),
smp = prm;

P(rc(smp)),
count(smp) ++,

if(count(smp) = 1)
{
P(w);
P(pw);

}

V(rc(smp)),

intent to read operations

P(rc(smp));
count(smp) --;
if(count(smp) = 0)
{

typ(smp) = IR,
prm = (prm + 1) mod 3;

V(pw);
V(w),

}
V(rc(smp));

INTENT TO WRITE

P(pu),
V(pu),
P(pw),
V(pw),

1f(typ(prm)=IWlltyp(prm)=IR)
smp = prm,

else 1f(typ(prm+1) mod 3 = IW
II typ(prm+1) mod 3) = IR)

smp = (prm+1) mod 3,
else

smp = (prm+2) mod 3,

P(rc(smp)),
count(smp)++,

1f(typ(smp) = IR)
typ(smp) = IW,

1f(count(smp) = 1)
{

P(w),
P(pw);

}
V(rc(smp)),

intent to write operations

P(rc(smp));
count(smp)--,
1f(count(smp) = 0)
{

typ(smp) = IR,
prm = (prm + 1) mod 3,
V(pw);
V(w),

}
V(rc(smp)),

36

Figure 2.8 Intent to Read and Write Algorithms - Fair and Efficient Readers
and Writers with Intent to Read, Write and Upgrade Lock.

Upgrade

P(pu),
P(u);
V(pu),
P(pw),
V(pw);
lf(count(prm) = 0)

smp = prm;
else 1f(count((prm + 1) mod 3) = 0)

smp = (prm + 1) mod 3,
else

smp = (prm + 2) mod 3;

P(rc(smp));
count(smp)++;
typ(smp) = U;
1f(count(smp) = 1)
{

P(w),
P(pw),

}
V(rc(smp));

reading is performed

While(count(smp) > 1);

writing is performed

count(smp) = IR;
prm = (prm + 1) mod 3,
V(pw),
V(w),
V(u),

37

Figure 2.9: Upgrade Algorithm - Fair and Efficient Readers and Writers with
Intent to Read, Write and Upgrade lock

• Read procedure

- Reader requests and releases the outer guard pu.

- Reader requests and releases the inner guard pw.

38

- If the type of the primary semaphore is not JW, assign the primary

semaphore to variable smp.

- Lock rc(smp) to exclusively access count.

- If the type of semaphore is JR, upgrade it to R

- If it is the first reader, lock the mutual exclusion semaphore w then pw.

- Release rc(smp) on count.

- Read operation is performed.

- Lock rc(smp) again to update the count.

- If it is last reader, reset the type of the semaphore to JR and make the

primary flag point to the next re semaphore 0, 1, or 2.

- Release pw then w.

- Release rc(smp).

• Write procedure

- Request and release the outer guard, semaphore pu.

- Request and release the inner guard, semaphore pw.

- Request semaphore w to block other processes.

- Write operations are performed.

- Release semaphore w to allow other processes to enter critical

section.

• Intent to write procedure

- Request and release the outer guard, semaphore pu.

39

- Request and release the inner guard, semaphore pw.

- If the type of the primary semaphore is JW or JR, assign the primary to

variable smp.

Otherwise, assign secondary or tertiary to variable smp.

Request semaphore rc(smp) to exclusively access count(smp).

- If the type of semaphore is JR, upgrade it to JW.

- If it is the first intent to write request, request the mutual exclusion

semaphore w, then pw.

- Release semaphore rc(smp) on count.

- Intent to write operations ...

- Request semaphore rc(smp) again to update count.

- If it is the last intent to write request, reset the type of semaphore

rc(smp) to JR and make the primary flag point to the next re()

semaphore.

- Release semaphore pw then w.

- Release semaphore rc(smp).

• Intent to read Procedure

- Request and release the outer guard, semaphore pu.

- Request and release the inner guard, semaphore pw.

- Assign the primary semaphore to variable smp.

- Request semaphore rc(smp) to exclusively access count. Update

count.

40

If it is the first reader, lock the mutual exclusion semaphore w, then

pw.

- Release semaphore rc(smp).

- Intent to read operation.

- Request semaphore rc(smp) again to update count.

- If it is last intent to read request, reset the type of semaphore rc(smp)

to IR and make the primary flag point to the next re() semaphore.

- Release semaphore pw, then w.

- Release semaphore rc(smp).

• Upgrade procedure

- Request the outer guard, semaphore pu.

- Request upgrade semaphore u. Only one upgrade process can enter

this semaphore.

- Release the outer guard pu.

- Request the inner guard, semaphore pw.

- If count of the primary is 0, assign primary semaphore to variable smp.

Else if count of secondary is 0, assign secondary semaphore to

variable smp else assign tertiary semaphore to smp. An upgrade

request only can enter an empty semaphore.

- Request semaphore rc(smp) to exclusively access the count.

- Let type of semaphore rc(smp) be U.

- Request the inner semaphore w then pw.

41

- Release semaphore rc(smp) on count

- Read operations

- Wait until only upgrade is in the critical section.

- Write operation is performed.

- After upgrade operation finishes, downgrade the type of semaphore

rc(smp) to JR.

- Make the primary flag point to the next re() semaphore.

- Release semaphore pw, then w.

- Release semaphore u.

2.6.4 Discussion of Correctness - Fair and Efficient Readers and
Writers with Intent to Read, Intent to Write and Upgrade Lock

Fairness:

There is a significant issue of fairness between upgrade and write locks. To

avoid situations in which an upgrade lock "jumps ahead" of a waiting write lock,

two policies are followed. The first policy requires an upgrade to obtain its own

exclusive lock, but allows waiting reads, and intent to reads to share the lock.

The second policy utilizes the u and pu semaphores to provide two assurances:

First, at most one upgrade request is "in" arbitration at a time; and second, if an

upgrade request is waiting because a prior upgrade request is already "in"

arbitration, all subsequent requests will queue on the pu semaphore.

Semaphore pu is used to block all requests subsequent to the second upgrade

request (blocked by semaphore u) so that they are not allowed to enter

42

arbitration. Because the additional re semaphore rc(2), pu and u semaphore are

added, the algorithm guarantees that an upgrader process can enter an empty

semaphore. Even though the read part of upgrader process can share with other

waiting reads and intent to reads, it has to obtain mutual exclusive lock to start a

write. If a waiting writer queued ahead of the upgrader, the upgrader is not able

to obtain the mutual exclusive lock before the writer thus the upgrader can not

take priority over the writer and the fairness is assured.

Liveness:

It is similar to the previous five algorithms in that if the pre_upgrade,

upgrade and other re semaphores initialize, request and release properly,

deadlock will not happen. In addition, this algorithm can avoid deadlock in the

situation when two or more users first read then write by obtaining upgrade

locks before write on database. The third re semaphore re(2), pu and u

semaphore are added in this algorithm than the previous one only with intent to

read and write locks. When there is an upgrade request, rc(2) and pu

semaphores can guarantee the upgrader enter an empty semaphore(Because

IW and R are incompatible, they may occupy two of re semaphore, this is why

we need the third re semaphore). In addition, because of the u and pu

semaphore, it permits only one upgrader "in" a lock arbitration. The second

upgrader request will be blocked by the u semaphore and the subsequent

processes after the second upgrader request will be blocked by the pu

semaphore. The algorithm allows an upgrader obtain an upgrader lock before

obtaining a write lock and block the second upgrader until the first upgrader

releases its lock and thus deadlock will not occur.

Efficiency:

43

The principal difference between this algorithm and previous five algorithms

is that in the previous five algorithms, deadlock avoidance requires acquisition

of an exclusive lock for the entire update, including both read and write

operations. In this algorithm, read and intent to read locks can share access

during the read phase of the "upgrade" transaction, thereby providing additional

potential concurrency, possibly creating improved efficiency.

CHAPTER3

EXPERIMENTAL DESIGN

3.1 Design of the Experiment

The experiment is designed as a simulated database application, which is

accessed by several readers, writers and upgraders. The actual read, write and

upgrade are simulated by putting the reader, writer, and upgrader threads into

sleep for certain period of time, and represented by the outputs such as "Reader

is reading"," Writer# is writing"," Upgrader # is upgrading", "Reader# is

reading from record#" etc. This experiment compares the six reader-and-writer

algorithms described in Chapter 2. In this experiment, we designed six

procedures that implement the six reader-and-writer algorithms. Among the six

algorithms, we have three categories of design approach. The first category is

the four reader and writer algorithms. This category includes reader privilege

algorithm, writer privilege algorithm, fair reader and writer algorithm as well as

fair and efficient reader and writer algorithm. The purpose of the design of this

category is to compare fairness, efficiency and liveness of these four algorithms.

The same approach of design was used for the four reader and writer algorithms

with modifications of certain methods.

44

45

The second category is the fair and efficient reader and writer algorithm with

intent to read and intent to write locks. The design objective of this category is to

demonstrate that this algorithm can achieve hierarchical locking in a database

thus increasing concurrency and efficiency by providing hierarchical locking

necessitate use of a more complex approach of design.

The third category is the fair and efficient reader and writer algorithm with

intent to read, intent to write and upgrade lock. The design objective of this

category is to show that deadlock can be avoided by adding upgrade lock.

Including upgrade locks differentiated this design from that of the other five

algorithms. A benchmark is designed to test and compare all six algorithms.

There are three versions of implemented, one with extensive output (the

Verbose version) two without (the Throughput version and Turnaround version).

The Verbose version will display detailed information of what happens for all

requests (such as the phenomena of reader starvation, writer starvation and

concurrently access the different records by readers and writers etc) and output

the time spent for those requests and the average time spent to obtain various

types of lock under the different algorithms. The Throughput version displays the

total time elapsed for benchmark execution of all requests in order to get more

precise results for efficiency. The Turnaround version displays the individual

waiting time to obtain each lock and average waiting time to obtain each type of

lock under the different algorithms in order to analyze the efficiency.

The structure of the experiment is depicted in Figure 3.1.

The tokens in Figure 3.1 are:

RW Server: The benchmark to test and compare the six algorithms.

RW Server 1: The implementation for the reader privilege algorithm.

RW Server 2: The implementation for the writer privilege algorithm.

RW_Server_3: The implementation for the fair reader and writer algorithm.

RW Server 4: The implementation for the fair and efficient reader and

writer algorithm.

46

I_RW_Server_5: The implementation for the fair and efficient reader and

writer algorithm with intent to read and intent to write lock.

I_RW_U_Server_6: The implementation for the fair and efficient reader and

writer algorithm with intent to read, intent to write lock and

upgrade lock.

47

Figure 3.1 The Structure of the Experiment

The whole project executable package is designed in such as a way that the

user has the option of choosing the display mode (verbose, throughput or

turnaround) for execution results. Also, the project allows the user to enter the

number of requests, the duration time for the table reading operation, the record

reading operation, the table writing operation, the record writing operation and

the interval time between each request. Then it generates the table reader, table

48

writer, table upgrader, record reader, record writer, and record upgrader requests

pseudo-randomly. These are generated pseudo-randomly so that the execution

results can be compared. Upgrader threads are always generated for all

algorithms. But for the first five algorithms that do not actually support upgrade

locks, an upgrader request is replaced by one writer request with duration equal

to a reader time plus a writer time.

There are a total of six kinds of requests: Table Read, Table Write, Table

Upgrade, Record Read, Record Write and Record Upgrade. Table Read, Table

Write and Table Upgrade will access a table as a whole and Record Read,

Record Write and Record Upgrade will access a specific record in the table. An

example scenario with all requests and duration time is specified in Table 3.1.

49

Table 3.1 An Example Scenario

Table Read Time = 40, Table Wnte Time = 60,
Record Read Time = 20, Record Write Time = 30
Request Number of Critical Duration (Relative Wait Times m M1lllseconds)
Type Requests Section Reader-Writer IR/IW IR/IW/Upgrade

Act1v1ty Algorithms Algorithm Algorithm
Table Read 10 Table Read 40 40 40

Lock
Table Write 10 Table Write 60 60 60

Lock
Table 10 Table N/A NIA 40
Upgrade Uoarade Lock

Table Write 100 100 60
Lock

Record 50 Table Read 20 N/A N/A
Read Lock

Table Intent N/A 20 20
Read Lock /
Record Read
Lock

Record 50 Table Write 30 N/A N/A
Write Lock

Table Intent N/A 30 30
Write Lock /
Record Write
Lock

Record 50 Table Write 50 N/A N/A
Upgrade Lock

Table Intent N/A N/A 20
Write Lock /
Record
Upgrade Lock
Table Intent N/A 50 30
Write Lock /
Record Write
Lock

3.2 Description of the Experiment

3.2.1 RW Server

50

RW_Server implements the benchmark and test program for all the six

algorithms. It creates various requests and resources they want to access the

database. It processes the six types of requests. The resource includes a table

and its five records in the table. The user inputs the number of requests, the

duration time of each of the six types of requests and the interval time between

the arrivals of each request. Request types are determined pseudo randomly

with equal probability of read, write or upgrade and equal probability of each of

the six resources, namely the table and five constituent records. These requests,

duration time and interval time can be fed into the 3 different groups of six

programs, representing the six algorithms but in different output mode. The first

group of the programs outputs the execution results in Verbose mode in which

detailed information about the phases that each thread goes through and its

relative order against other threads is presented. The second group of programs

outputs the execution results in Throughput mode in which only time information

for comparing the efficiency of the algorithms is presented. The third group of

programs outputs the execution results in Turnaround mode in which only the

individual waiting time to obtain each lock and average waiting time to obtain

each type of lock under different algorithms are presented. This group of

programs is used for analyzing the efficiency for the six different algorithms. Then

the data from executing these six programs will be collected and comparison

results will be obtained and analyzed.

3.2.2 RW Server 1

51

RW_Server_ 1 implements the reader privilege algorithm. This is used to test

if there exists writer starvation phenomena during the simulation of readers and

writers competing for grants to access the database. Turnaround and Throughput

metrics are collected for comparison with the other five algorithms.

3.2.3 RW Server 2

RW_Server_2 implements the writer privilege algorithm. This is used to test if

there exists reader starvation phenomena during simulation of readers and

writers competing for grants to access the database. Turnaround and Throughput

metrics are collected for comparison with the other five algorithms.

3.2.4 RW Server 3

RW_Server_3 implements the fair reader and writer algorithm. This is used to

demonstrate if FIFO order can be obtained during simulation of readers and

writers competing for the grants to access the database. Turnaround and

Throughput metrics are collected for comparison with the other five algorithms.

3.2.5 RW Server 4

52

RW_Server_ 4 implements the fair and efficient reader and writer algorithm.

This is used to determine whether this algorithm is more efficient than the

previous algorithms during simulation of readers and writers competing for grants

to access the database. Turnaround and Throughput metrics are collected for

comparison with the other five algorithms.

3.2.6 I RW Server 5

I_RW_Server_S implements the fair and efficient reader and writer algorithm

with intent to read and intent to write locks. It simulates a two level database (a

table and the records in that table) being accessed by a number of readers and

writers. Among the readers and writers, some of them try to access the table as

a whole while others try to access the individual records of the table. The

experiment will test whether hierarchical access using intent to read and intent to

write locks is more efficient than the other five algorithms.

3.2. 7 I RW U Server 6 - - - -

I_RW_U_Server_6 implements the fair and efficient reader and writer algorithm

with intent to read, intent to write and upgrade locks. It utilizes a two level

database (a table and the records in that table) that is accessed by a number of

readers, writers and upgraders. Among the readers, writers and upgraders,

some of them try to access the table as a whole while the rest try to access the

individual records of the table. The experiment will test whether deadlock can be

53

avoided by adding the upgrade lock, and compare the efficiency of this algorithm

with the five preceding ones.

CHAPTER4

DESCRIPTION OF IMPLEMENTATION

4.1 Software Required to Implement the Experiment

The software is implemented in the JAVA programming language. It is

compatible with JDK 1.3 or 1.4. Since it is in JAVA, it is very portable. However,

the execution of the experiment is automated for Windows with a MS-DOS batch

script program. If a system other than Windows is used, the CLASSPATH

environment variable must be set up, and the program must be built and

executed manually. Refer to the user instruction document in Appendix C that

comes with the project package for the automated execution of the project

program on Windows.

4.2 Implementation Versions

There are three versions of implementations as described in Section 3.1. The

user is allowed to choose which version he/she wants to run. The source code of

the Verbose version is in Appendix A and The sample results of running the three

versions of implementation is in Appendix B.

54

55

The Verbose version displays which thread is running and what it is doing at

selected points during the execution of the program. This information is useful in

investigating the relative order of the threads, deadlocks and starvation. But the

costs for outputting these excessive texts to the screen make it unsuitable for

benchmark comparison among the algorithms. On the other hand, although the

Throughput version does not provide detailed information, performance data

collected from this version is more accurate. The Throughput version provides an

overall performance metric. In contrast, the Turnaround version records the

waiting time for obtaining each lock and the average waiting time for obtaining

each type of lock for each algorithm. This data is used to analyze the

performance of each algorithm.

4.3 The Specification of Classes and Main Methods

4.3.1 The Classes and Methods of the Design Category One

Implementation - Reader and Writer Algorithms

This category consists of the Reader Privilege Algorithm, the Writer Privilege

Algorithm, the Fair Reader and Writer Algorithm as well as the Fair and Efficient

Reader and Writer Algorithm. Each of these algorithms is implemented with

JAVA classes: Database, Reader, Writer, Break, Semaphore and RW_Server

[SiGG03]. The relationship of these five classes is depicted in Figure 4.1. Each is

described in one of the following sections.

Database Class

56

This class contains the semaphores, readCount and writeCount(if it is

necessary). It contains four methods: startRead, startWrite, endRead and

endWrite.

startRead: starts a read process using different algorithms and returns a
reader count.

endRead: ends a read process using different algorithms and returns a
reader count.

startWrite: starts a write process using different algorithms.

endWrite:
semaphore.

ends a write process and releases the mutual exclusive

Figure 4.1 Relationships Among Classes for Reader and Writer Algorithms

Reader Class

This class shows activity of a specific reader. It only has a run method.

run: The method calls the startRead method of database class to start a

read process and calls the endRead method of database class to end a read

process.

Writer Class

This class shows activity of a specific writer. It only has a run method.

run: The method calls the startWrite method of database class to start a

write process and calls the endWrite method of database class to end a read

process.

Semaphore Class

This class executes the two procedures of semaphore P and V.

P: Requests a semaphore

V: Releases a semaphore.

RW_Server Class

This class specifies six different types of requests then calls the method of

reader and writer class to access the reader and writer requests. It only contains

one method RW_Server_Main (It is converted to RW_Server_ 1_Main in

Algorithm_ 1, RW_Server_2_Main in Algorithm_2, RW_Server_3_Main in

Algorithm_3, RW_Server_ 4_Main in Algorithm_ 4).

RW_Server_Main: If the request type is 0, it indicates that the request is a

reader process and if the record number is 5, it means the request is a table

57

58

reader, which wants to read from the table as a whole. If the record number is

from Oto 4, it indicates that the reader process wants to read from the specific

record. If the request type is 1, it indicates the request is a writer process and if

the record number is 5, it means that the request is a table writer, which wants to

write to the table as a whole. If the record number is from O to 4, it indicates that

the writer process wants to write to the specific record. If the request type is 2, it

indicates the request is an upgrader process and if the record number is 5, it

indicates that the request is a table upgrader, which wants to upgrade the table

as a whole. If the record number is from O to 4, it indicates that the upgrader

process wants to upgrade the specific record. Because there is no upgrader

algorithm in this category of implementation, we just consider a table upgrade or

a record upgrade as a table write or a record write with duration time equals to a

table reader time plus a table writer time or a record reader time plus a record

writer time After specifying the six types of requests, the method call the run()

method of Reader and Writer class to start the reader and the writer processes.

4.3.2 The Classes and Methods of the Design Category Two

Implementation - Readers and Writers with Intentional Locks

This category includes Fair and Efficient Reader and Writer Algorithm with

Intent to Read and Intent to Write Lock. This category of experiment

implementation consists of ten classes: Resource, Record, Type, Table, Reader,

Writer, Semaphore, Break, Return_Value and RW_Server. The relationship of

these ten classes is shown in Figure 4.2.

59

Figure 4.2: Relationships Among Classes for Fair Reader and Writer with
Intentional Locks

60

Resource Class:

This is the base class of Table class and Record class. It contains general

methods of Table class and Record class.

startRead: starts a read process using fair and efficient reader and writer

algorithm with intent to read and intent to write.

endRead : ends a read process using fair and efficient reader and writer

algorithm with intent to read and intent to write.

startlntentRead: starts an intent to read process using fair and efficient

reader and writer algorithm with intent to read and intent to write.

startlntentWrite: starts an intent to write process using fair and efficient

reader and writer algorithm with intent to read and intent to write.

endlntentRead: ends an intent to read process using fair and efficient reader

and writer algorithm with intent to read and intent to write.

endlntentWrite: ends an intent to write process using fair and efficient reader

and writer algorithm with intent to read and intent to write.

startWrite: starts a write process using fair and efficient reader and writer

algorithm with intent to read and intent to write.

endWrite: ends a write process and releases the mutual exclusive

semaphore.

Record Class:

This class implements fair and efficient reader and writer to simulate read and

write on the individual records in a table. It contains four methods:

61

startRead: inherits from the base class.

endRead: ends a read process using fair and efficient reader and writer

algorithm with intent to read and write lock.

startWrite: inherits from the base class.

endWrite: inherits from the base class.

Table Class:

This class simulates the table that contains records. It implements the fair

and efficient reader and writer with intent to read and intent to write lock

algorithm for read, write, intent to read and intent to write. It contains ten major

methods.

GetNumOfRecord: gets number of record in a table

GetRecord: gets a record number in a table.

startRead: inherits from the base class.

endRead: ends a read process using fair and efficient reader and writer

algorithm with intent to read and write lock.

startlntentRead: inherits from the base class.

endlntentRead: ends an intent to read process using fair and efficient reader

and writer algorithm with intent to read and intent to write.

endlntentWrite: ends an intent to read process using fair and efficient reader

and writer algorithm with intent to read and intent to write.

startWrite: inherits from the base class.

endWrite: inherits from the base class.

62

Type class:

This class defines the types of the two share semaphores. The type is

initialized to be IR and the supported types are IR, IW and R. The class contains

two major methods.

getType: get a type(IR, IW or R)

setType: set a type(IR, IW or R)

Reader class

This class calls the methods of the Table class to start and end a read

process. The class only contains a run() method.

run: If the request is Table Read, the method calls startRead method of the

Table class to start a read process, then calls endRead method of Table class to

end the read process. If the request is Record Read, the method first calls

startlntendRead method of Table class to obtain an Intent to Read lock, then

calls startRead method of Record class to start a read process and finally calls

endlntentRead to release the intent to read lock.

Writer class

This class calls the methods of the Table class to start and end a write

process. The class only contains a run() method.

run: If the request is Table Write, the method calls startWrite method of the

Table class to start a write process, then calls endWrite method of Table class to

end the write process. If the request is Record Write, the method first calls

startlntendWrite method of Table class to obtain an Intent to Write lock, then

calls startWrite method of Record class to start a write process and finally calls

endlntentWrite to release the intent to write lock.

Semaphore Class

This class executes the two procedures of semaphore P and V.

P: Requests a semaphore

V: Releases a semaphore.

ReturnValue class

63

This class only has two attributes and no methods. The attributes are smp and

count. They represent the current share semaphore and its count.

Break class

This class only has one method: Duration()

Duration(): This method determines the duration of each request.

I_RW_Server_S Class

This class is designed to manipulate reader and writer process. It only has

RW Server 5 Main method. - - -

I_RW_Server_5_Main: If the request type is 0, it indicates that the request is

a reader process and if the record number is 5, it means the request is a table

reader, which wants to read from the table as a whole. If the record number is

from Oto 4, it indicates that the reader process wants to read from the specific

record. If the request type is 1, it indicates the request is a writer process and if

the record number is 5, it means the request is a table writer, which wants to

write to the table as a whole. If the record number is from O to 4, it indicates that

the writer process wants to write to the specific record. If the request type is 2, it

indicates the request is an upgrade process and if the record number is 5, it

means the request is for table upgrade, which needs to upgrade the table as a

whole. If the record number is from O to 4, it indicates that the upgrade process

wants to upgrade that specific record. Because there is no upgrade algorithm in

this category of implementation, we just consider a table upgrade or a record

upgrade as a table write or record write with duration time equals to a table

reader time plus a table writer time or a record reader time plus a record writer

time. After specifying the six types of requests, the method call the run() method

of Reader and Writer class to start the reader and the writer processes.

4.3.3 The Classes and Methods of the Design Category Three

Implementation - Readers and Writers with Intentional Locks and

Upgrade Locks

64

This category includes fair and efficient reader and writer algorithm with intent

to read, intent to write lock and upgrade lock.

This category of experiment implementation consists of eleven classes:

Resource, Record, Type, Table, Reader, Writer, Upgrader, Semaphore, Break,

Return_ Value and I_RW_Server. The only difference between this

implementation from the previous one is that the Upgrader class is added for the

upgrade request. In addition, StartUpgrade and endUpgade methods are added

to Table class and Record class to support the upgrade request. Of course, in

the Type class, there should be one more type U(upgrader). The Upgrader class

is described as follow:

Upgrader Class ,

This class calls the methods of the Table class to start and end an upgrader

process. The class only contains a run() method.

65

run: If the request is Table Upgrader, the method calls the startUpgrade

method of Table class to start a read process and read until only the upgrader

itself in the critical section(the table) then start to write to the table. When it is

done, it calls the endUpgrade method of Table class to end an upgrade process.

If the request is Record Upgrader, the method first calls

upgrader_startlntentWrite method of Table class to obtain an Intent to write

lock, then calls startUpgrade method of Record class to start read process and

read until only the upgrader itself in the critical section(the record), then start to

write to the record. Finally it calls the endUpgrade of the Record class to end an

upgrade process and calls the upgrader_endlntentWrite to release the intent to

write lock.

/_RW_Server_6 Class

This class is designed to manipulate reader and writer process. It only has

_RW_U_Server_6_Main method.

66

I_RW_U_Server_6_Main: If the request type is 0, it indicates that the

request is a reader process and if the record number is 5, it means the request is

a table reader, which wants to read from the table as a whole. If the record

number is from O to 4, it indicates that the reader process wants to read from the

specific record. If the request type is 1, it indicates the request is a writer

process and if the record number is 5, it means the request is a table writer,

which wants to write to the table as a whole. If the record number is from O to 4, it

indicates that the writer process wants to write to the specific record. If the

request type is 2, it indicates the request is an upgrader process and if the record

number is 5, it means the request for table upgrade, which needs to upgrade the

table as a whole. If the record number is from O to 4, it indicates that the

upgrader process wants to upgrade that specific record. After specifying the six

types of requests, the method calls the run() method of Reader or Writer or

Upgrader class to start the reader, the writer and the upgrader process.

The relationship between those eleven classes is shown in Figure 4.3.

67

Figure 4.3: Relationships Among Classes for Fair Reader and Writer with
Intentional Locks and Upgrade Locks

68

4.3.4 Change the Class Name During Implementation

We have totally six algorithm implementations, some of which have same

class names but different implementations. We found we had to change the class

names in order for the system to run the different implementations properly. For

example, in the source code, we changed the class names such as database,

reader, writer, upgrader to database_ 1 in Algorithm 1, to database_2 in Algorithm

2, to reader_2 in Algorithm 2, to writer_3 in Algorithm 3 or to upgrader_6 in

Algorithm 6, etc.

CHAPTERS

DISCUSSION AND ANALYSIS OF THE TEST
RESULTS

We conducted multiple experiments to get a series of results. The detailed

results of running the Verbose version of implementation are provided in

Appendix A.

5.1 Adjusting the Requests According to Lock Types

Available

In order to make all six algorithms comparable, we have to do some

adjustments based on the availability of lock types. There are six types of

requests (table read, table write, record read, record write, table upgrade, record

upgrade) for the experiment. For those algorithms without hierarchical locks

(intention to read and intention to write), we have to translate the record read and

record write to table read and table write. Since an upgrade process is a read

process followed by a write process, for those algorithms without hierarchical and

sequential (upgrade) locks, we have to adjust a table (record) upgrade to a table

write request equal in duration to one table(record) read request plus one table

69

70

(record) write request; For the algorithm with hierarchical locks but not sequential

locks, we have to adjust a table upgrade to one table write request (with duration

equal to table read plus table write) and adjust a record upgrade to one record

write request(with duration equal to record read plus record write). An example

is shown in Table 3.1.

5.2 Discussion of Results Using the Verbose Version

From examination of Verbose version runs (See Appendix B for example run),

we can observe the following phenomena:

1. For the Reader Privilege Algorithm, once there is a reader who wants to

read from the database, the writers after the reader could not access the

database until all readers followed by that reader finish accessing the

database. If the readers keep entering, the writers will never have a

chance to access the database, thus writer starvation occurs.

2. For the Writer Privilege Algorithm, once there is a writer who wants to

write to the database, the readers after this writer could not access the

database until all writers following by that writer finish accessing the

database. If writers continue entering, readers never have a chance to

access the database, thus reader starvation occurs.

3. For the Fair Reader and Writer Algorithm, all requests are processed in

first come and first serve order.

4. For the Fair and Efficient Reader and Writer Algorithm, as long as the

readers enter the outer semaphore in the same lock arbitration, they can

read concurrently no matter how many writer requests are interleaved.

71

5. For the Fair and Efficient Reader and Writer Algorithm with Intent to Read

and Intent to Write lock, the hierarchical and parallel access to a database

can be achieved. For example, when a reader is reading from record 1 of

a table, a writer still can write to record 2 of that table.

6. For the Fair and Efficient Reader and Writer Algorithm with Intent to Read,

Intent to Write Lock and Upgrade Lock, an upgrading process can first

read then write to the whole table or a record as long as there is only one

upgrading process is reading from that table or that record.

5.3 Discussion of Results Using the Throughput Version

Since the efficiency issue is our key point of this research, the throughput

version is designed to get more precise data by only outputting the time spent for

the six algorithms. The test results are illustrated m the following tables. The time

spent results are based on the same request sets and the same table reader

time, table writer time, table upgrader time, record reader time, record writer time,

record upgrader time and the same interval time for the six algorithms.

5.3.1 Comparing the Time Elapsed for Six Different Algorithms

Tables 5.1 and 5.2 showed that if number of requests is small, no significant

difference in the time spent by these algorithms is observed. But, when the

72

number of requests becomes bigger, only the time elapsed with Algorithm 1,

Algorithm 2 and Algorithm_ 4 are comparable. For Algorithm 1, the readers block

the writers and thus let readers read concurrently before any writer starts to write.

As a result, the concurrency and efficiency of the readers is increased. Similarly,

for the Algorithm 2, the writers block the readers and thus let readers read

concurrently after all writers finish their job. As a result, the concurrency and

efficiency of readers is maximized. For Algorithm 4, because readers can read

concurrently as long as they arrive at the same lock arbitration, increased reader

efficiency is achieved. The time elapsed for Algorithm 3 becomes significantly

longer than for the other three Reader and Writer Algorithms as the number of

requests increases. The reason is that if there are one or more writers

interleaving into readers, only the sequence of readers between two writers can

read simultaneously so that the concurrency of the readers is decreased under

contention. Among the six algorithms, as the number of requests increases, the

time elapsed for Algorithm 5 increases the slowest followed by Algorithm 6.

Algorithm 5 is the most efficient when the number of requests is large. This is

because Algorithm 5 allows the readers and the writers to access a different

resource of a database (for example, different record) concurrently without

conflict. Even though Algorithm 6 has the same extent of concurrency as

Algorithm 5, it apparently suffers from the large overhead involved in obtaining

the upgrade locks. Recall that lock arbitration is deferred when there are two

upgrade requests outstanding. These results indicate that in some

circumstances, this additional cost for implementing upgrade locks is not

worthwhile.

73

Tables 5.2, 5.3 and 5.4 shows that the time spent for Algorithm 1 and

Algorithm 2 is somewhat less than for Algorithm 4. Because in Algorithm 1,

readers block the writers and thus let readers read concurrently before any writer

starts to write and in Algorithm 2, the writers block the readers and thus let

readers read concurrently after all writers finish their job, these two algorithms

maximize reader concurrency. But in Algorithm 4, because there is a small

interval between each request, the requests may not be able to enter the same

lock arbitration, thereby allowing many readers but not all the readers to read

concurrently. Reader concurrency is enhanced over Algorithm 3, but not

maximized.

Table 5.1. The Time Elapsed for the Six Algorithms

table read time = 40 milliseconds, record read time = 20 milliseconds,
table write time = 60 milliseconds, record write time = 30 milliseconds,
table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 0 milliseconds

Num_requests Algo_1 Algo_2 Algo_3 Algo_4 Algo_5 Algo_6

(Seconds) (Seconds) (Seconds) (Seconds) (Seconds) (Seconds)

4 012 0 12 012 0 12 0 09 009
10 0 27 027 0.31 027 0 21 0 21
20 0 53 0 53 067 0 53 0 36 0 37
50 1 56 1 56 1 86 1 56 1 15 144
100 314 314 365 314 1 83 2 51
200 5 98 5 95 712 6 01 3 54 4 83
400 12 72 12 69 14 88 12 71 682 9 33
800 25 70 25 67 29 81 25 69 12 90 18 57
1200 39 36 39 31 4563 39 36 19 98 3018
2400 7790 77 75 90 27 77 97 38 87 4864

74

Table 5.2. The Time Elapsed for Six Algorithms

table read time = 40 milliseconds, record read time = 20 milliseconds,
table write time = 60 milliseconds, record wnte time = 30 milliseconds,
table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 10 milliseconds

Num_requests Algo_1 Algo_2 Algo_3 Algo_4 Algo_5 Algo_6

(Seconds) (Seconds) (Seconds) (Seconds) (Seconds) (Seconds)

4 014 014 0 14 015 0 12 0 13
10 027 027 0 31 027 03 0 31
20 0 58 0 53 067 0 57 041 066
50 1 61 1 56 1 86 1 64 1 39 1 83
100 3 21 314 364 322 243 2 33
200 606 5 95 7 11 6 07 3 76 482
400 12 82 12 69 14 87 12 83 7 32 964
800 25 80 25 66 29 80 2577 14 21 18 46
1200 3946 39 30 45 62 3943 20 01 2915
2400 7847 78 78 90 27 77 88 4048 60 90

Table 5.3. The Time Elapsed for Six Algorithms

table read time = 40 milliseconds, record read time = 20 milliseconds,
table write time = 60 milliseconds, record write time = 30 milliseconds,
table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 20 milliseconds

Num_requests Algo_1 Algo_2 Algo_3 Algo_4 Algo_5 Algo_6

(Seconds) (Seconds) (Seconds) (Seconds) (Seconds) (Seconds)

4 0 14 0 14 0 13 014 0 19 0 15
10 029 027 0 31 0 31 0 33 0 33
20 0 59 0 53 067 0 61 0 56 0 58
50 166 1 56 1 86 168 1 52 1 58
100 326 314 365 328 2 29 267
200 614 5 95 7 11 619 462 5 01
400 12 91 12 69 14 88 12 95 869 9 24,
800 25 93 2567 29 81 25 99 16 66 18 42
1200 39 54 3929 4562 39 59 2512 30 85
2400 77 92 7773 9026 77 97 49 09 6120

75

Table 5.4. The Time Elapsed for Six Algorithms
table read time = 40 milliseconds, record read time = 20 m1lhseconds,
table write time = 60 milliseconds, record write time = 30 milliseconds,
table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 30 milliseconds

Num_requests Algo_1 Algo_2 Algo_3 Algo_4 Algo_5 Algo_6

(Seconds) (Seconds) (Seconds} (Seconds) (Seconds) (Seconds)

4 012 012 012 012 012 012
10 0 32 0 32 0 32 0 32 0 32 0 32
20 068 0 64 0 68 0 70 0 66 0 70
50 1 83 1 75 1 87 1 85 1 78 1 95
100 345 3 33 366 348 3 15 3 26
200 649 616 7 12 6 56 6 25 6 35
400 13 41 12 90 14 88 , 13 49 12 30 12 37
800 2662 25 86 29 81 2677 2462 24 73
1200 40 37 39 50 45 63 40 52 3625 36 68
2400 78 85 77 88 90 97 80 87 74 55 77 97

Comparing the results for different intervals between requests offers a few

additional points of interest. One is that the time for algorithm 6 reduced as the

interval time was increased from O to 10 milliseconds with large numbers of

requests. An explanation for this may be that the deferral of arbitration mentioned

above used with the upgrade lock. This can be avoided by increasing the

complexity of the upgrade implementation to allow two upgrade requests into

arbitration at the same time. For example, one of the alternate upgrade

implementations is adding one more re semaphore, rc(3), and changing the initial

value of upgrade semaphore u to 2 in algorithm 6. This will allow two upgrade

processes in the arbitration at the same time thus the concurrency are

reasonably improved. We call this alternate upgrade implementation algorithm

6a. The example test results of comparing Algorithm 5, Algorithm 6 and

76

Algorithm 6a are illustrated in Table 5.5 and Table 5.6. Tables 5.5 and 5.6 show

that the time elapsed for Algorithm 6a is longer than Algorithm 5 but is shorter

than Algorithm 6 when the number of requests is getting larger. Even though

Algorithm 6a improves the degree of the concurrency, it not eventually solves the

problem. This will be a matter for the future research.

Another interesting observation is that when the interval reaches 30

milliseconds, the advantage of the hierarchical locking algorithms (5 and 6)

significantly diminishes. This is due to the fact that the requests are now spread

out over a major part of the execution time. For example, 2400 requests with 30

milliseconds interval, indicates that the last request was issued at time 71.97

seconds.

Table 5.5. The Time Elapsed for the Algorithm 5, Algorithm 6 and
Algorithm 6a
table read time = 40 milliseconds, record read time = 20 milliseconds,
table write time = 60 milliseconds, record write time = 30 milliseconds,
table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 0 milliseconds

Num_requests Algo_5 Algo_6 Algo_6a

(Seconds) (Seconds) (Seconds)

4 015 0 15 014
10 0 22 0 21 0 21
20 0 37 0 38 0 38
50 1 00 145 1 33
100 1 88 242 1 99
200 326 4 87 4 63
400 6 72 9 38 8 62
800 12 59 18 59 16 36
1200 18 87 30 00 27 57

Table 5.6. The Time Elapsed for the Algorithm 5, Algorithm 6 and
Algorithm 6a
table read time = 40 milliseconds, record read time = 20 milliseconds,
table write time = 60 milliseconds, record wnte time = 30 milliseconds,
table upgrade time = 100 milliseconds, record upgrade time = 50 milliseconds,
interval time = 10 milliseconds

Num_requests Algo_S Algo_6 Algo_6a

(Seconds) (Seconds) (Seconds)

4 0 09 0 09 0 09
10 03 0 31 03
20 0 52 066 0 56
50 1 34 1 83 1 76
100 243 2 52 2 33
200 3 73 4 95 465
400 7 17 9 76 9 38
800 13 30 18 58 17 10
1200 20 25 3044 2624

5.4 Discussion of Results using Turnaround Version

In order to analyze the reasons why the efficiency is different under the six

reader and writer algorithms, we obtained additional information showing how

long it will take for each type of request to be granted.

77

The sample results of the average time spent for obtaining the six types of

request under the different algorithms for different intervals between requests are

illustrated in Tables 5.7, 5.8 and 5.9.

78

Table 5.7: The Average Waiting Time in Milliseconds to Obtain a Lock
Under Different Algorithm.
Request_num = 1200,
Table Reader Time = 40, Record Record Time = 20,
Table Wnte time = 60, Record Wnte Time = 30,
Table Upgrade Time = 100, Record Upgrade Time = 50,
Interval time= 10

Lock Table Record Table Record Table Record
Type Read Read Write Write Upgrade Upgrade

(TR) (RR) (TW) (RW) (TU) (RU)
Algorithm
Algo 1 5796 6212 12798 13610 14156 13726
Algo 2 33110 33305 12587 13396 13943 13510
Algo 3 16629 16102 15684 16673 17346 16819
Algo 4 3362 3363 12811 13628 14181 13742
Algo_5 3296 1977 5136 2766 5553 2883
Algo 6 8645 8333 8440 8615 9063 8677

Table 5.8: The Average Waiting Time in Milliseconds to Obtain a Lock
Under Different Algorithm.
Request_num = 1200,
Table Reader Time = 40, Record Record Time = 20,
Table Wnte time = 60, Record Wnte Time = 30,
Table Upgrade Time = 100, Record Upgrade Time = 50,
Interval time= 20

Lock Table Record Table Record Table Record
Type Read Read Write Write Upgrade Upgrade

(TR) (RR) (TW) (RW) (TU) (RU)
Algorithm
Algo_1 2815 2916 7180 7650 7711 7954
Algo_2 27075 27464 6881 7347 7648 7403
Algo 3 10603 10270 9987 10632 11064 10722
Algo_4 3376 2978 7263 7694 7990 7749
Algo 5 575 402 1035 515 1076 521
Algo_6 2404 2298 2497 2361 2593 2392

79

Table 5.9: The Average Waiting Time in Milliseconds to Obtain a Lock
Under Different Algorithm.
Request_num = 1200,
Table Read Time= 40, Record Read Time= 20,
Table Write time= 60, Record Write Time= 30,
Table Upgrade Time = 100, Record Upgrade Time = 50 ,
Interval time= 30

Lock Table Record Table Record Table Record
Type Read Read Write Write Upgrade Upgrade

(TR) (RR) (TW) (RW) (TU) (RU)
Algorithm
Algo_1 972 1098 2032 2184 2249 2197
Algo 2 20028 20513 1378 1499 1558 1500
Algo 3 4577 4439 4291 4592 4779 4625
Algo 4 1014 1065 2057 2296 2338 2308
Algo_5 229 191 408 177 333 194
Algo 6 282 210 362 238 281 230

Tables 5.7, 5.8 and 5.9 show that in Algorithm 1, which is the reader privilege

algorithm, the average time spent to obtain read locks(including table read lock

and record read lock) is significantly shorter than for obtaining write locks

(including Table Write, Table Upgrade, Record Write and Record Upgrade). This

demonstrates that readers take priority over writers in this algorithm.

On the contrast, the average time spent to obtain write locks (including Table

Write, Table Upgrade, Record Write and Record Upgrade) is significantly shorter

than that for obtaining reader locks in Algorithm 2 which is the writer privilege

algorithm. This illustrates that writers have priority over readers. Of particular

interest when comparing Algorithms 1 and 2 is that there is little difference in the

times for obtaining write locks, but vastly different times for obtaining shared

locks. This indicates that, at least in some circumstances, providing shared lock

priority has a small cost for exclusive lock requestors.

80

Since algorithm 3 is a fair algorithm for readers and writers, we can observe

from the tables that the time spent to obtain reader locks and writer locks are

similar. The cost of a very strict fairness appears to be that everyone must wait

longer for their locks, even though the times are very comparable across request

types.

In comparing with Algorithm 3, Algorithm 4 allows more readers to enter m the

same lock arbitration and read concurrently, thus the time spent for obtaining

read locks in Algorithm 4 is much shorter than in Algorithm 3. Of perhaps even

greater significance is the observation that the waiting times for writers are also

significantly less for Algorithm 4 than for Algorithm 3.

The waiting times for Algorithm 5 are significantly less than the previous four

especially for record read, record write and record upgrade requests. This is

because the hierarchical locks allow readers and writers to access different

records simultaneously. Also, of interest here are the differences in waiting times

for different locks. A shared small resource (row) lock is obtained more quickly

than exclusive or large resource locks. The longest waiting times were for

exclusive large resource (table) locks.

81

Even though Algorithm 6 also has hierarchical locks and allows the read part

of upgrade to share with other waiting reads and intent to reads, the time spent to

obtain locks is shorter than the algorithms without hierarchical locks, it still suffers

from the additional overhead associated with obtaining the upgrade locks and

thus the time spent to obtain locks is larger than in Algorithm 5. Table 5.10

shows the comparison of waiting time for obtaining six types of lock under

Algorithm 5, Algorithm 6 and Algorithm 6a(described in the previous section). It

illustrates that the average time for obtaining the six types of lock are reduced in

Algorithm 6a by comparing to Algorithm 6 because Algorithm 6a allows two

upgrades in the same lock arbitration thus improves some efficiency. Algorithm

6a is not as efficient as Algorithm 5 may be due to the arbitration issue. To solve

the issue is beyond the scope of current work.

82

Table 5.10: The Average Waiting Time in Milliseconds to Obtain a Lock
Under Algorithm 5, Algorithm 6 and Algorithm 6a.

Request_num = 1200,
Table Reader Time = 40, Record Record Time = 20,
Table Write time = 60, Record Write Time = 30,
Table Upgrade Time= NO, Record Upgrade Time= 50,
Interval time = 10

Lock Table Record Table Record Table Record
Type Read Read Write Write Upgrade Upgrade

(TR) (RR) (TW) (RW) (TU) (RU)
Algorithm
Algo 5 2587 1615 6072 3306 6695 3335
Algo 6 8149 7850 7963 8196 8664 8250
Algo 6a 6465 6143 6675 6488 6832 6546

5.5 Analysis of the Execution Results for Three Versions

From Tables 5.1 through 5.4, we can observe when the requests number is

small, the efficiency of all algorithms is approximately the same. Neither

Algorithm 5 nor Algorithm 6 has any advantage in efficiency. In addition, if the

requests number is small, Algorithm 5 and Algorithm 6 have greater overhead

due to activities such as obtaining the intentional lock and upgrade lock. But

when the number of requests grows larger, Algorithm 4 is the most efficient of the

algorithms without intent to read and intent to write locks because this algorithm

allows multiple readers to take priority over the writers as long as they arrive in

the same shared lock arbitration. Even though Algorithms 1, 2 and 4 provide

similar results when running the verbose version, Algorithms 1 and 2 suffer from

the starvation and fairness problem, so we conclude that Algorithm 4 is the most

efficient, starvation free in the first category of experiment. Among all six ,

83

algorithms, Algorithm 5 and Algorithm 6 are better than Algorithm 4 in terms of

concurrency and efficiency when the number of requests is big because they

provide granularity locks and let the readers and the writers access different

resources of the database in parallel. Algorithm 6 is less efficient than Algorithm

5 because of the additional overhead associated with the upgrade locks such as

only allow one upgrade in a lock arbitration which offsetting some of the gains

due to hierarchical locking and causing greatly reduce the concurrency and

efficiency. Although Algorithm 6a improves Algorithm 6 by allowing two upgrades

in the same lock arbitration, it still cannot maximize the concurrency as Algorithm

5. The tradeoff is that Algorithm 6 is deadlock free, not suffering from the

possibility of deadlock, as discussed in section 2.6.

CHAPTER6

CONCLUSIONS AND FUTURE WORK

6.1 Analytic Conclusion

From our analysis the algorithms, we conclude that the first five algorithms

(Reader Privilege, Writer Privilege, Fair Reader and Writer, Fair and Efficient

Readers and Writers, and Fair and Efficient Readers and Writers with Intent to

Read and Write) can have deadlock when two or more transactions attempt to

first read a resource then later write the same resource without releasing the

read locks. Of course, deadlock can be avoided by requiring that either long write

locks or that read locks must be released before requesting write locks.

6.2 Experimental Conclusions

Also, from our simulation experiments, we derive the following conclusions:

Writer starvation can occur with the Reader Privilege Algorithm. This problem

happens when the readers enter a database continuously, since once they obtain

the privilege they will never release the lock to the waiting writers. Thus, this

algorithm makes the solution for the reader and writer problem unfair and

potentially leads to writer starvation. Conversely, reader starvation can occur with

84

85

the Writer Privilege Algorithm. This problem happens when the writers enter a

database continuously, and once they obtain the privilege to execute they will

never release the lock to the waiting readers. This is also an unfair solution

because of the starvation problem. In spite of the drawbacks of unfairness and

starvation of these two solutions, from an efficiency point of view, they appear to

be more efficient than the fair reader and writer algorithms if there are only a

limited number of reader and writer requests. The reason is that for the reader

privilege algorithm, the readers block and defer the writers and thus maximize

the concurrency among readers; and that for the writer privilege algorithm,

concurrency among writers was increased by deferring the reader processes

until all writer processes were completed.

The advantage of the fair reader and writer algorithm is that it can guarantee

absolute first-come-first-served ordering without starving either the readers or the

writers -- the drawback is that it is significantly less efficient in many

circumstances. If there are one or more writers interleaving with multiple readers,

only the continuous sequence of readers between a pair of writers can read

simultaneously so that concurrency of readers is diminished.

We demonstrated that our enhanced fair and efficient reader and writer

algorithm was starvation free and could achieve efficiency and fairness. This

algorithm combines the advantages of the previous three algorithms and

overcomes their drawbacks. This algorithm not only provided high degree of

86

concurrency and efficiency for readers but also gives a fair chance to the writers,

which are interleaved with the readers. The fairness is nearly the same as the fair

reader and writer algorithm when all readers read concurrently with equal

durations. There may be small delays for writers when reads are not completely

concurrent.

In addition to our enhanced fair and efficient algorithm, we also proved that

our fair and efficient reader and writer algorithm with intent to read and intent to

write lock can further improve the efficiency when the volume of requests to

access a database is large. It gains much more concurrency than algorithms that

do not have intentional locks by allowing record readers and writers to access the

database where there are no conflicts rather than using fully exclusive access

across the database or a table of the database. Even though there is some

overhead in obtaining the intentional locks, it appears that, at least in some

circumstances, the additional overhead is more than compensated by increased

parallelism in reads.

Finally we added an upgrade lock into our enhanced fair and efficient

algorithm with intent to read and intent to write locks. Even though the efficiency

is not improved when compared to the fair and efficient readers and writers with

intent to read and intent to write algorithm, the deadlock problem that all the

previous five algorithms suffer from can be completely avoided. Thus, there

exists a tradeoff between using the upgrade lock and not using the upgrade lock.

87

Not using the upgrade lock can lead to better efficiency at least in some

circumstances, but leaves the potential deadlock problem when more than one

transaction first reads from a database then sequentially wants to write to the

database. By using the upgrade lock, avoids potential deadlock problem but is

less efficient due to the fact that the algorithm allows only one upgrader in the

same arbitration and blocks the subsequent processes followed by the second

upgrader. Algorithm 6a(described in Section 5.3.1) provides a better solution but

still not resolve the problem. We believe that the separate upgrade queue(s)

actually denimishes by making additional pools of concurrent locks.

6.3 Future Work

One of future work in this area would be developing an alternate algorithm for

algorithm 6 which not only avoiding potential deadlock problem but also

increasing the reasonable degree of concurrency and efficiency.

Another future work in this area including providing a better GUI for our test

bed and testing these algorithms over a wide large benchmarks.

The third area of research could be construction of benchmark that provides

data points including hierarchical and sequential locking operations.

88

Another issue not addressed by current research is dealing with situation

where faults have either caused processes to not release locks or caused two or

more processes to hold incompatible locks on the same resource.

APPENDICES

89

90

APPENDIX A

PROGRAMING SOURCE CODE OF READER AND WRITER
PROBLEM

The following material is the Java source code of Verbose

implementation of reader and writer problem using semaphore.

1. RW_Server.java

2. RW_Server_ 1.java

3. RW_Server_2.java

4. RW_Server _3.java

5. RW_Server _ 4.java

6. I_RW_Server_S.java

7. I_RW_U_Server _6.java

File
RW _ Server Java

Description

The RW_Server class serves as the benchmark for all six algorithms Users can
choose how many requests to be run Those requests will be translated mto
table read request, record read request, table write request, record write
request, table upgrade request and record upgrade request by a random number
generator Users are also allowed to choose the time duration for table read,
table write, table upgrade, record read, record wnte, record upgrade as well
as the interval time between the requests The various requests and time
durations will be the test input data for all six algorithms for the reader
and writer problems The time spent by each algorithm 1s obtained for
comparison

Note the program uses the screen as the STDOUT and the keyboard as the STDIN
Exess1ve output 1s used for keeping track of the order of the execution of
the program and calculating the average waiting time for each lock type under
the different algorithms

Author
Mei L1

Date
April 24, 2004

91

1rlt*irlt1rlt**1rlr**'lrlr*'lrlrlt*frlr*-lrlrlt'1rlt*'irlr1rlr**-lrlrlrlr***..,,****1rlr*1rlr*-lrlttrlt'irlrlt****-lrk***1rltfrlttrlrldrlr**'1rk*1rlr1rlt**1rlt*1rlrirlt1rlrlrlt'lrlrlt**'lrlf*'lrlt**'irlt*'irlt1rlrlrlt/

import Java 10 *,
import Java ut1I *,

public class RW _ Server
{
/*--
Function
convertStrTolnt

Description
This 1s a helper function that converts a stnng to an integer

Parameters
str - the string to be converted mto an integer

Return
An integer Error 1s returned 1f the string 1s not m vahd number format such as when the string
contains any character that 1s not numeric)
--*/
private
static mt convertStrTolnt(Strmg str)
{

mt anlnt,

try
{

anlnt = Integer parselnt(str), // convert string to an integer
}
catch (NumberFormatExcept1on e)
{

}

anlnt = ERROR,
}

1f (anlnt == ZERO II anlnt == ERROR)
{

}

System out println("Your mput \"" + str + "\" 1s mvahdl"),
System out println("Please make sure your mput 1s m the correct "

+ "number format and also greater than QI"),

return anlnt,

92

/"-------------------------------------
Fun ct 10 n-
running

Description
This function generates the request types and the record numbers that the
requests want to access These requests includes table reader, table writer,
table upgrader, record reader, record writer and record upgrader The
function spec1f1es the interval time between each request and the access time
for the six requests Then, the function calls the six algorithm
1mplementat1on functions

Parameters
num_requests - the number of requests the user wants to run
br - a buffereReader obJect that Is use to get mput from the user
------------------------------------*/
private
static void runnmg(mt num_requests, BufferedReader br)
throws IOExcept1on
{

String str,
II set up a repeatable random number generator
Random rand = new Random(888),
II array of record numbers the requests will access
mt recNum□ = new mt[num_requests],
II array of the types of requests(record reader, table writer, etc)
mt threadType□ = new mt[num_requests],

/* The following loop generates table read, table write, table upgrade,
record read, record write, record upgrade requests randomly and 1t also
randomly spec1fIes which of the records or the table the readers writers
and upgraders try to access Assume there are 5 records m a table */

for (mt 1 = 0, 1 < num_requests, 1++) {
II generates a record number between O and 5, inclusively
recNum[1] = rand nextlnt(6),
II generates a request type between O and 2, inclusively
threadType[1] = rand nextlnt(3),

}

mt T _readT1me = 0,
mt R_readT1me = 0,
mt T _write Time = 0,
mt R_wnteT1me = 0,
mt interval = 0,

do
{

II the access time for table read
II the access time for record read

II the access time for table write
II the access time for record write
II the interval time between each request

System out print("Please enter the access time for table read "),
str = br readlme(),

T_readT1me = convertStrTolnt(str),
}
while (T_readT1me == ERROR 11 T_readT1me == ZERO),

do
{

}

System out pnnt("Please enter the access time for record read "),
str = br readline0,

R_readT1me = convertStrTolnt(str),

while (R_readT1me == ERROR II R_readTIme == ZERO),

do
{

}

System out pnnt("Please enter the access time for table wnte "),
str = br readline0,

T_wnteT1me = convertStrTolnt(str),

while (T _wnteTIme == ERROR II T _wnteT1me == ZERO),

do
{

System out pnntC'Please enter the access time for record wnte "),
str = br readline0,

R_wnteTIme = convertStrTolnt(str),
} while (R_wnteT1me == ERROR 11 R_wnteT1me == ZERO),

do
{

System out pnnt("Please enter the interval time "),
str = br readline0,

interval= convertStrTolnt(str),
} while (interval == ERROR II interval == ZERO),

II call the ImplementatIon function of algorithm_ 1
RW_Server_ 1 RW_Server_ 1_Main(threadType,

recNum,
num_requests,
T _readT1me,
R_readT1me,
T _wnteTIme,
R_wnteT1me,
interval),

II call the ImplementatIon function of algonthm_2
RW_Server_2 RW_Server_2_Main(threadType,

recNum,
num_requests,
T _readT1me,
R_readTIme,
T _wnteT1me,
R_wnteT1me,
interval),

II call the implementation function of algonthm_3
RW_Server_3 RW_Server_3_Main(threadType,

recNum,

93

}

num_requests,
T _readT1me,
R_readTIme,
T _wnteTIme,
R_wnteTIme,
interval),

// call the 1mplementat1on function of algorithm_ 4
RW_Server_ 4 RW_Server_ 4_Main(threadType,

recNum,
num_requests,
T _readTIme,
R_readT1me,
T_wnteT1me,
R_wnteT1me,
interval),

// call the 1mplementat1on function of algonthm_5
I_RW_Server_5 I_RW_Server_5_Main(threadType,

recNum,
num_requests,
T _readTIme,
R_readT1me,
T _wnteTIme,
R_wnteTIme,
interval),

II call the 1mplementat1on function of algonthm_6
I_RW_U_Server_6 I_RW_U_Server_6_Main(threadType,

recNum,
num_requests,
T _readT1me,
R_readT1me,
T _wnteT1me,
R_wnteTIme,
interval),

94

/"-------------------------------------
Function
main

Description
This Is the entry point of the program In this function, the user specifies
the number of requests via STDIN (the screen) If the user simply types ENTER
after the prompt, a default value of 15 will be assumed This function also
checks the user input to make sure It Is in correct number format and value
range (1 e , the number must be greater than O) This function may throw
IOExceptIon exception The function finally call the running function to
convert the requests to the type and record number

Parameters
args□ -An array of strings corresponding to the command line arguments

Return
None
------------------------------------*/
public
static void main(Stnng args□)
throws IOExceptIon
{

BufferedReader br = new BufferedReader(new lnputStreamReader(System m)),
String str,
mt num_requests_default = 15,
mt num_requests,

do
{

do
{

}

}

System out pnntln(""),
System out pnnt(''Please enter the number of requests (default ="

+ num_requests_default + ", q to quit) "),
str = br readlme(),

1f (str equals("''))
num_requests = num_requests_default,

else 1f (str equals(''q") II str equals("Q"))
num_requests = QUIT,

else
num_requests = convertStrTolnt(str),

while (num_requests == ERROR II num_requests == ZERO),

1f (num_requests I= QUIT)
runmng(num_requests, br),

while (num_requests I= QUIT),
}

final static mt QUIT= -1011,
final static mt ERROR= -1012,
final static mt ZERO = 0,

}

95

File
RW_Server_ 1 Java

Description
This 1s the implementation of the reader pnv1lege algonthm From the running
result, reader starvation will be observed

Author
Mei L1

Date
April 24, 2004

96

******-lrlt************'lrlt1rit*******-lrlt*-lrlt-lrlt******-lrlt****1rlr*1rlt-lrlt'lrlt-lrlt1rlt**'lrlt*****-lrlt1rlt*******'lrlf1rltt*1rlt****irli:1rit******1rlt*'k'k**-lrlt*1ri:*****/

import Java 10 *,
import Java ut1I *,

The node class 1s used to declare obJects that are used to sort the request
types based on the average lock wa1tmg time
*****'irlt*1rlt**1rlt*1rlrlt****1rit1rlrlt1rltt***1rlt-lrlt'irlt'irlt**"irlt1rlrlrll"irlt'lrlr1rlrlrlf*'lrlt**1rlt'lrlrlrlrlr**'irlrlrlt'irlt***"irlt1ririt'lrlt**1rlt1rlt*-lrlt1rlrlt**-lrlrlt**-lrlrlt-lrl:***'lrlt**"'"'"kk/

class node
{

long avg,
mt type,

node0
{

}

avg= -1,
type= -1,

node(long a, mt t)
{
avg= a,
type= t,

}
}

pubhc class RW _Server_ 1
{
/*--
Function
average

Description
It calculates the average of the long integers contained m the arr array

Parameters
arr - An array of obJects of ObJect type These obJects contains long

integers corresponding to the lock waiting times for a request type

Return
The average It returns -1 1f the number of obJects 1s O
--*/
static long average(ObJect□ arr)
{

long total = 0,
mt count= 0,

for (mt 1 = O; 1 < arr length, 1++)

}

{
count++,
total += ((Long)arr[1]) longValue0,

}

1f (count == 0)
return -1,

return total / count,

97

r-------------------------------------
F u n ct 10 n
display

Description
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

Return
None
------------------------------------*/
static void d1splay(Object□ array)
{

for (mt 1 = 0, 1 < array length, 1++)
{

}
}

1f (1 == array length - 1)
{

System out pnnt(((Long)array[1]) longValueO),
}
else
{

System out prmt(((Long)array[I]) longValue0 +" "),
}

r------------------------------------
Funct1on
bubbleSort

Description
It sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort Is used since we only have
a small number (6) of request types to sort

Parameters
nodeArray - An array of nodes These nodes contains the average waiting time

for a request type and the request type
size - The size of the nodeArray array

Return
None
------------------------------------*/

static void bubbleSort(node□ nodeArray, mt size)
{

node tmp = new node0,

}

for (mt 1 = srze-1, 1 > 0, 1--)
{
for (mtJ = 0, J < 1, J++)
{

1f (nodeArrayU] avg> nodeArrayu+1] avg)
{

}
}

}

tmp avg= nodeArrayu+1] avg,
tmp type= nodeArrayu+1] type,
nodeArrayu+1] avg= nodeArrayu) avg,
nodeArrayu+1] type= nodeArrayU] type,
nodeArrayu) avg = tmp avg,
nodeArrayU] type = tmp type,

98

/"-------------------------------------
Fun ct I0 n
RW_Server_ 1_Mam

DescnptIon
This function generates threads that emulates the table read, record read,
table wnte, record wnte, table upgrade and record upgrade requests Then
It starts the threads and wart for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock waiting
times) for the various requests are calculated and displayed

Parameter
thread_ Type - An array of the request types (namely read, wnter or

upgrader)
rec_Num - The 1dent1ficat1on number of the record a request tnes to access
num_threads - The number of requests
table_r_tIme - The access time of table read
record_r_tIme - The access time of record read
table_w_tIme- The access time of table wnte
record_w_trme - The access time of record wnte
interval - The interval time between the requests

Return
None
-------------------------------------*/
pubhc static void RW_Server_ 1_Mam(mt□ thread_ Type,

mt□ rec_Num,

{

mt num_threads,
mt table_r_t,me,
mt record_r_trme,
mt table_w_t1me,
mt record_w_t1me,
mt interval)

mt reader Id = 0, wnter 1d = 0,
Database=: 1 db = new Database_ 1 O,
ArraylIst threadArrayllst = new ArraylIst(),

for (mt 1 = 0, 1 < num_threads, 1++)
{

1f (thread_ Type[I] == 0)
{ // readers are added to hst

1f (rec_Num[1] == 5) // this Is a table level reader
threadArraylrst add(new Reader_ 1 (reader_Id++,

}

db,
0,
table_r_t1me)),

else II this Is a record level reader
threadArrayL1st add(new Reader_ 1 (reader_1d++,

db,
1,
record_r_t1me)),

else 1f(thread_ Type[I] == 1)
{//writers are added to hst

}

1f (rec_Num[1] == 5) // this Is a table level writer
threadArrayL1st add(new Writer_ 1 (writer_1d++,

db,
0,
0,
table_w_t1me)),

else //this Is a record level writer
threadArrayLIst add(new Writer_ 1 (writer_1d++,

db,
1,
0,
record_w_t1me)),

else
{ // 1f It Is a upgrader, add It to the hst as a writer

1f (rec_Num[1] == 5) // this 1s a table level upgrader
threadArrayL1st add(new Writer_ 1 (wnter_1d++,

db,
0,
1,
table_r_tIme + table_w_tIme)),

else II this Is a record level upgrader
threadArrayL1st add(new Writer_ 1 (wnter_1d++,

db,
1,
1,
record_r_t1me + record_w_t1me)),

}
}

II converts the ArraylIst containing the readers and writers to an Array
ObJect□ threadArray = threadArrayL1st toArray0;
System out println(""),
System out pnntln(''Start running algorithm_ 1 "),
Date startDate = new Date(), II starting time

for (mt 1 = 0, 1 < threadArray length, 1++)
{

}

1f (threadArray[1] instanceof Reader_ 1)
{

((Reader_ 1)threadArray[1]) start(),
Break_ 1 durat1on(interval),// interval

}
else
{

((Writer_ 1)threadArray[1]) start(),
Break_ 1 durat1on(interval), // interval

}

// block until all threads terminates

99

try
{
for (mt , = 0, , < threadArray length, 1++)
{
If (threadArray[I] mstanceof Reader_ 1)

((Reader_ 1)threadArray[1]) Jom0,
else

((Wnter_ 1)threadArray[1]) jom0,
}

}
catch (lnterruptedException e)
{

System out pnntln(11 lnterrupted11
),

}

// ending time
Date endDate = new Date0,

II calculate and print to stdout the time spent m seconds
long tImeDiff = endDate getTime0 - startDate getTime0,
System out println(1111),

System out prmtln(11\nTime spent for algorithm_ 1 11

+ (double)timeD,ff/1000 + 11 seconds 11),

ArrayLIst TR_hst = new ArrayList(),
ArrayList RR_hst = new ArrayListO,
ArrayList lW_hst = new ArrayL1st0,
ArrayList TU_hst = new ArrayL1st(),
ArrayList RW_hst = new ArrayL1st(),
ArrayLIst RU_hst = new ArrayLIst(),

for (mt 1 = 0, 1 < threadArray length, 1++)
{

If (threadArray[1] mstanceof Reader_ 1)
{

1f (((Reader_1)threadArray[I]) getType() == ReaderWriterType TR)
{
TR_hst add(new Long(

((Reader_ 1)threadArray[1]) getLockWa,tmgTime0)),
}
else
{

RR_hst add(new Long(
((Reader_ 1)threadArray[1]) getLockWa1tmgT1me())),

}
}
else
{

1f (((Writer_ 1)threadArray[I]) getType() == ReaderWriterType TW)
{
lW_hst add(new Long(

((Wnter _ 1)threadArray[I]) getLockWa1tmg Time())),
}
else 1f (((Wnter_ 1)threadArray[1]) getType() == ReaderWnterType TU)
{
TU_hst add(new Long(

((Writer_ 1)threadArray[I]) getLockWa1tmgT1meO)),
}
else 1f (((Writer_ 1)threadArray[1]) getType() == ReaderWriterType RW)
{

RW_hst add(new Long(
((Writer_ 1)threadArray[I]) getLockWaitmgTIme())),

100

}
else
{

RU_hst add(new Long(
((Wnter _ 1)threadArray[1]) getLockWa1tmgT1meO)),

}
}

}

Object□ TR_arr = TR_hst toArrayQ,
Object□ RR_arr = RR_hst toArrayQ,
Object□ TW_arr = TW_hst toArrayQ,
Object□ TU_arr = TU_hst toArrayQ,
Object□ RW_arr = RW_hst toArray(),
Object□ RU_arr = RU_hst toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray□ = {
new node(avgTR, ReaderWnterType TR),
new node(avgRR, ReaderWnterType RR),
new node(avgTW, ReaderWnterType TW),
new node(avgTU, ReaderWnterType TU),
new node(avgRW, ReaderWnterType RW),
new node(avgRU, ReaderWnterType RU)},

bubbleSort(nodeArray, 6),

System out pnntln("\nThe average times spent m milliseconds to obtain a "
+ "lock m algorithm_ 1 \n"),

for (mt 1 = 0, 1 < 6, 1++)
{

switch (nodeArray(1] type)
{

case ReaderWnterType RR
System out pnnt("RR Average="+ avgRR +" ["),
d1splay(RR_arr),
System out pnntln("]\n"),
break,

case ReaderWnterType RU
System out pnnt("RU Average = " + avgRU + " r'),
d1splay(RU_arr),
System out pnntln("]\n"),
break,

case ReaderWnterType RW
System out prmt("RW Average = " + avgRW + " ["),
d1splay(RW _arr),
System out prmtln("]\n"),
break,

case ReaderWnterType TR
System out pnnt("TR Average="+ avgTR +" ["),
d1splay(TR_arr),
System out pnntlnC']\n"),
break,

case ReaderWnterType TU
System out pnnt("TU Average="+ avgTU +" ["),
d1splay(TU_arr),

101

}

}
}

}

System out prmtln(11]\n11),

break,
case ReaderWriterType TW

System out print(11TW Average = II + avgTW + II r'),
d1splay(TW_arr),
System out println(11]\n11),

break,
default

System out println(11Oop1 Somerthmg must be wrong 11),

break,

102

This class 1s emulates a physical database It contains methods that will be
called by Reader_ 1 and Writer_ 1 classes
**************************1rlr***************************1rlr*1rlr****-1t1t*******1rlr*1rlr**1rlr*****1rlr*********-lrlr******************1rlr* I

class Database_ 1
{
l"--
F u n ct 10 n Database_ 1

Description
Constructor for the Database_ 1 class It 1mt1allzes readCount, and the
semaphores re and w

Parameters
None

Return
None
--*/
public Database_ 1 O
{

}

readCount = 0,
re= new Semaphore_ 1 (1),
w = new Semaphore_ 1 (1),

/*--
Function
startRead

Description
start a read process according to the reader prev1lege algorithm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading
--*/
public mt startRead(mt readerNum)
{

System out prmtln(''reader 11 + readerNum + "wants to read 11
),

re P(),
++readCount,
1f (read Count == 1) // the first reader will block writer

w P(),
re V(),

103

return readCount,
}

/"-------------------------------------
Fun ct 10 n
endRead

Description·
end a read process according to the reader prev1lege algorithm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading
------------------------------------*/
public mt endRead(mt readerNum)
{

rcPO,

}

--read Count,
System out println("reader " + readerNum + " 1s done reading Count = " +

readCount),
1f (readCount == 0) // the last reader will unblock writer
wVO,

rcVO,
return readCount,

/*-------------------------------------
Function
startWrite

Description
start a write process according to the reader prev1lege algorithm

Parameters
wnterNum - the ID number of a writer

Return
None
------------------------------------*/
public void startWrite(mt writerNum)
{

}

System out println("writer" + writerNum +"wants to write"),
wPO,

/"-------------------------------------
Fun ct 10 n
endWnte

Description.
end a write process according to the reader privilege algonthm

Parameters
writerNum - the ID number of a writer

Return
None
------------------------------------*/
public void endWrite(mt writerNum)
{

}

}

System out prmtln{11writer 11 + writerNum + 11 Is done writing "),
wVQ,

private mt readCount, II the number of active readers
Semaphore_ 1 re, // controls access to readCount
Semaphore_ 1 w, // controls access to the Database_ 1

This class defines the reader and writer types and provides methods for
retrievmg the types

104

********* ... ********1rlt******..,,***************...,****1rlr*1rlr****1rlr1rlr*"irlt***1rlr**1rlr*irlt1rlr1rlt*1rlr****1rlt*1rlr****1rlr******..,,*1rlr**1rlr**1rlr-lrlf I
class ReaderWnterType
{

}

private mt value,

ReaderWnterType(mt type)
{

value = type,
}

mt getReaderWnterTypeQ
{

return value,
}

fmal static mt TR= 0x100,
fmal static mt RR = 0x101,
final static mt TW = 0x102,
fmal static mt TU = 0x103,
fmal static mt RW = 0x104,
fmal static mt RU = 0x105,

This class calls the methods of Database_ 1 to start and end a read process

class Reader_ 1 extends Thread
{
f"--
Funct1on
Reader_1

Description
Constructor for Reader_ 1 class. It spec1f1es which reader Is reading from
which database and how long the reading time Is

Parameters
r- reader ID
w - the database the reader Is reading from
n - indicates the reader Is a table reader or a record reader
r_tIme - reader access time

Return
None
--*/
pubhc Reader_ 1 (mt r, Database_ 1 w, mt n, mt r_t1me)
{

readerNum = r,
db=w,
read_tIme = r_tIme;

105

1f (n == 0) II Table Reader
t_r = new ReaderWnterType(ReaderWnterType TR),

else II Record Reader
t_r = new ReaderWnterType(ReaderWnterType RR),

}

/"-------------------------------------
Fun ct 10 n
getType

Description
Get the type of the reader (TR or RR)

Parameters
None

Return
An integer that corresponds to the reader's type
------------------------------------*/
pubhc mt getType()
{

return t_r getReaderWnterType(},
}

/*-------------------------------------
Function
getlockWa1t1ngT1me

Description
Get the lock wa1tmg time for the reader

Parameters
None

Return
A long integer that corresponds to the lock wa1tmg time
------------------------------------*/
pubhc long getlockWa1tmgT1me()
{

return lockWa1tmgT1me,
}

/*-------------------------------------
Function
run

Descnpt1on
This function specifies how a reader thread runs

Parameters
None

Return
None
------------------------------------*/
pubhc void run()
{

mtc,

Date start_req = new Date(),
c = db startRead(readerNum),

}

}

Date obtam_req = new Date0,

System out prmtlnC'reader 11 + readerNum + 11 Is reading Count = 11 + c),
Break_ 1 durat1on(read_t1me), II read read_time mllhseconds

c = db endRead(readerNum),

// waItmg time for obtaining a reader lock
lockWa1tingT1me = obtam_req getTlme0 - start_req getTlme(),

private Database_ 1 db, II the database that the reader tries to access
private mt readerNum, // 1dent1f1cat1on number of the reader
private mt read_t1me, // access time spent by the reader
private ReaderWnterType t_r, // the type of the reader (TR or RR)
private long lockWa1tmgTIme, // the lock waItmg time of the reader

106

/**********************1t1t**********1t1t1rlr**************************1t1t-lr'k***1rlr***'1rlr1t1t******************1t1t******1t1t**************

This class calls the method of Database_ 1 to start and end a write process

class Wnter_ 1 extends Thread
{
/*--
Function
Writer_1

Description
Constructor for Writer_ 1 class It specifies the type of the process(table
writer, record writer, table upgrader, record upgrader)and its duration time

Parameters
w- writer ID
d - the database the writer and upgrader are writing to
n - indicates table writer or record writer
u - indicates an upgrader or not
w_tIme - writer access time

Return
None
---------------------------------------*/
pubhc Writer_ 1 (mt w, Database_ 1 d, mt n, mt u, mt w_t1me)
{

}

wnterNum = w,
db= d,
wnte_tIme = w_tIme,

If (n == 0)
{

1f (u == 0) // Table Writer
t_w = new ReaderWnterType(ReaderWnterType TW),

else // Table Upgrader
t_w = new ReaderWriterType(ReaderWnterType TU),

}
else
{

1f (u == 0) // Record Writer
t_w = new ReaderWnterType{ReaderWnterType RW),

else // Record Upgrader
t_w = new ReaderWnterType(ReaderWriterType RU),

}

107

!"------------------------------------
Function
getType

Description
Get the type of the writer rrw. RW, TU or RU)

Parameters
None

Return
An integer that corresponds to the writer's type
------------------------------------*/
pubhc mt getType()
{
return t_w getReaderWnterType(),

}

!"-------------------------------------
Function
getlockWaItmgT1me

Description
Get the lock waItmg time for the writer

Parameters·
None

Return
A long integer that corresponds to the lock waItmg time
------------------------------------*/
pubhc long getlockWa1tmgT1me()
{

return lockWa1tmgT1me,
}

f"-------------------------------------
F u n ct 10 n
run

Description
This function specifies how a writer thread runs

Parameters
None

Return
None
-------------------------------------*/
pubhc v01d run()
{

Date start_req = new Date(), II start tImmg
db startWrite(writerNum), II start a write process
Date obtam_req = new Date(), II end tImmg

System out println("writer" + writerNum + " Is writing "),
Break_ 1 durat1on(write_tIme); II writer or upgrader writes write_tIme mllhseconds

db endWrite(writerNum),

II the wa1tmg time to obtain a writer lock

}

lockWa1tmgT1me = obtam_req getTimeQ - start_req getTimeQ,
}

private Database_ 1 db, // the database that the writer tries to access
private mt writerNum, II 1dent1f1cat1on number of the writer
private mt write_t1me, // access time spent by the writer
private ReaderWriterType t_w, II the type of the writer (fW, TR, TU or RU)
private long lockWa1tmgT1me, II the lock wa1tmg time of the reader

108

Semaphore_ 1 class usmg Java syschromzat1on

*******-lrlr1rlt**1rlrl:***********1rlt*'irlt1rlt**"rldrlt1rlt*1rlt**1rlt*********'lrlt****-lrlr-lrlr***'k'lt-lrlr***-lrlr"irlr*******-lrlr-lrlr****'irlt*******'lrlt-lrlrlt*****1rlr*1rlt*j

fmal class Semaphore_ 1
{

/"--
Fun ct 10 n
Semaphore_ 1

Description
default constructor for Semaphore_ 1

Parameters
None

Return
None
--*/
public Semaphore_ 1 O
{
value= 1,

}

/"--
Fun ct 10 n
Semaphore_ 1

Description
constructor for Semaphore_ 1

Parameter
v - An integer value for the semaphore

Return
None
---------------------------------------*/
public Semaphore_ 1 (mt v)
{
value =v,

}

/"'-------------------------------------
Function
p

Description
This function call the wa1tQ to sleep when the value of Semaphore less than
or equal O If the value of Semaphore 1s a pos1t1ve number, decrements by 1

Parameters

}

None

Return
None

109

---------------------------------------*/
pubhc synchronized void PO
{

}

while (value <= 0)
{

try
{
wait(),

}
catch (lnterruptedExcept1on e) O

}
value--,

r---------------------------------------
F u n ct 10 n
V

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that 1s waiting on the semaphore 1f 1t has any

Parameters
None

Return
None
--*/
pubhc synchronized void V()
{

++value,
not1fyQ,

}

private mt value, // the value of the semaphore

The class specifies the duration of access time

*******irlr'it'lt*******1rlt1rlt****irlr*'lrlt*************"lrlf'lrlt*****1rlt1rlt****-lrlll*'lrlt*-lrlt*****-lrlf****'lrlt*'lrlf'lrlf**'irlt****1rltirlr**"lrlf****'irlt*1rltirlr*-lrlf*****/

final class Break_ 1
{
r--
F u n ct 10 n
duration

Description
The function spec1f1es the duration of access time m m1ll1seconds

Parameter
mllhseconds - how many m1lhseconds the access time 1s

Return
None
--*/
pubhc static void durat1on(mt m1ll1seconds)
{

}
}

try
{

Thread sleep(m1lhseconds),
}
catch (lnterruptedExcept1on e) O

110

111

r1rlt*****"irlr* ... ******1rlt1rlt** .. -k'lr*'lrlr-lrlf***'irlt1rlt*******1rlt*******1rlt1rlt1rlt*-lrlt***1rlt'lrlt1rlt*************1rlt**-lrlt1rlt*****-lrlt*'k'k*'k'k*****"lrlf******

File
RW_Server_2 Java

Description
This 1s the implementation of the writer privilege algorithm From the running
result, reader starvation will be observed

Author
Mei L1

Date
April 24, 2004
1rlrlr1rlt1rlt*-lrlt1rlnWl'*1rlt1rlrlr*1r-k'lr'lr*1rlt1rlt*1rlt1rlrlr*"irlr-lrlr-lrlr*1rlt1rlt1rlt1rlt*1rlrlr1rlr*1rlrlrlt1t**~1rlt1rlrlr1rlt*1rlt1rlt*1rlt1rlrlr*1rlt1rlt*1rlrlrlrlr*1rlt1rlr1rlrlr**~1rlrlt,

import Java 10 *,
import Java ut1I *,

The node class 1s used to declare obJects that are used to sort the request
types based on the average lock waiting time

****************1rlt*******1rlt****1rlr**1rlt***1rlt*1r1r****1rlt1rlr*****"""rlr****1rlr***1rlt1rltrlr*1rlt1rlt*******1rlt****1rlt-lrlt**1rlt***1rlt*1rlt********1rlt*/

class node
{

}

long avg,
mt type,

nodeO
{
avg= -1,
type= -1,

}

node(long a, mt t)
{
avg= a,
type= t,

}

class RW_Server_2
{
/*--
Function
average

Description
It calculates the average of the long integers contained m the arr array

Parameters
arr - An array of objects of ObJect type These objects contains long

integers corresponding to the lock waiting times for a request type

Return
The average It returns -1 1f the number of obJects 1s 0
--*/
static long average(ObJect□ arr)
{

long total = 0,
mt count= 0,

}

for (mt 1 = 0, 1 < arr length, 1++)
{

count++,
total += ((Long)arr[1]) longValue(),

}

1f (count== 0)
return -1,

return total I count,

112

/*-------------------------------------
Fun ct 10 n
display

Description
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

Return
None
------------------------------------*/
static void dIsplay(Object□ array)
{

for (mt 1 = 0, 1 < array length, 1++)
{

}
}

1f (1 == array length - 1)
{

System out prmt(((Long)array[1]) longValue()),
}
else
{

System out prmt(((Long)array[1]) longValue() + " "),
}

/*------------------------------------
Function
bubbleSort

Description
It sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort Is used since we only have
a small number (6) of request types to sort

Parameters
nodeArray - An array of nodes These nodes contains the average waiting time

for a request type and the request type
size - The size of the nodeArray array

Return
None
------------------------------------*/
static void bubbleSort(node0 nodeArray, mt size)
{

}

node tmp = new nodeO,

for (mt 1 = size -1, 1 > 0, 1--)
{

for (mt J = 0, J < ,, J++)
{

rf (nodeArrayrn avg> nodeArrayu + 1] avg)
{

}
}

}

tmp avg= nodeArrayu + 1] avg,
tmp type= nodeArrayu + 1] type,
nodeArrayu + 1] avg= nodeArrayu] avg,
nodeArrayu + 1] type = nodeArrayrn type,
nodeArrayu] avg = tmp avg,
nodeArrayu] type = tmp type,

113

/*-------------------------------------
Funct,on
RW_Server_2_Mam

Description
This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
1t starts the threads and wait for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock wa1tmg
times) for the various requests are calculated and displayed

Parameter
thread_Type -An array of the request types (namely read, writer or

upgrader)
rec_Num - The 1dent1ficat1on number of the record a request tries to access
num_threads - The number of requests
table_r_t1me - The access time of table read
record_r_t1me - The access time of record read
table_w_t1me - The access time of table write
record_w_t,me - The access trme of record write
interval - The interval time between the requests

Return
None
------------------------------------*/
public static void RW_Server_2_Mam(mt□ thread_Type,

mt□ rec_Num,

{

mt num_threads,
mt table_r_t1me,
mt record_r_t1me,
mt table_w_t1me,
mt record_w_t,me,
mt interval)

mt reader_rd = 0, wnter_1d = 0,
Database_2 db = new Database_2(),
ArrayL1st threadArrayL1st = new ArrayL1st(),

for (mt 1 = 0, 1 < num_threads, 1++)
{

rf (thread_Type[r] == 0) // readers are added to hst
{

}

1f (rec_Num[1) == 5) II this 1s a table level reader
threadArrayL1st add(new Reader_2(reader_1d++,

db,
0,
table_r_t1me)),

else II this 1s a record level reader
threadArrayL1st add(new Reader_2(reader_1d++,

db,
1,
record_r_t1me)),

else 1f (thread_ Type[1) == 1) II writers are added to hst
{

}

1f (rec_Num[1] == 5) II this 1s a table level writer
threadArrayL1st add(new Writer_2(writer_1d++,

db,
0,
0,
table_w_t1me)),

else //this 1s a record level writer
threadArrayL1st add(new Writer_2(writer_1d++,

db,
1,
0,
record_w_tlme)),

else
{ II 1f 1t 1s a upgrader, add 1t to the hst as a writer

1f (rec_Num[1] == 5) II this 1s a table level upgrader
threadArrayL1st add(new Writer_2(writer_1d++,

db,
0,
1,
table_r_t1me + table_w_t1me)),

else II this 1s a record level upgrader
threadArrayL1st add(new Writer_2(writer_1d++,

db,
1,
1,
record_r_tlme + record_w_t1me)),

}
}

II converts the Arrayl1st containing the readers and writers to an Array
Object□ threadArray = threadArrayL1st toArray(),
System out println(""),
System out println("\n\nStart running algorithm_2 "),
Date startDate = new Date(), II starting time

for (mt 1 = 0, 1 < threadArray length, 1++)
{

1f (threadArray[1) mstanceof Reader_2)
{

}

((Reader_2)threadArray[1]) start(),
Break_2 durat1on(mterval),

else
{

((Writer_2)threadArray[1]) start(),
Break_2 durat1on(mterval),

}
}

114

\
try {

for (mt 1 = 0, 1 < threadArray length, 1++)
{

}
}

1f (threadArray[1] mstanceof Reader_2)
((Reader_2)threadArray[1]) Jom0,

else
((Wnter_2)threadArray[1]) Jom0,

catch (lnterruptedExcept1on e)
{

System out pnntln{11 lnterrupted11
),

}

II ending time
Date endDate = new Date0,

II calculate and pnnt to stdout the time spent m seconds
long t1meDiff = endDate getTlme0 - startDate getTlme0,
System out pnntln("'),
System out pnntln{11\nT1me spent for algonthm_2 11 +

(double) t1meD1ff / 1000 + 11 seconds 11
),

ArrayL1st TR_hst = new ArrayL1st0,
ArrayL1st RR_hst = new ArrayL1st(),
ArrayL1st lW_hst = new ArrayL1st(),
ArrayL1st TU_hst = new ArrayL1st(),
ArrayL1st RW_hst = new ArrayL1st(),
ArrayL1st RU_hst = new ArrayL1st(),

1 for (mt 1 = 0, 1 < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_2)
{

1f (((Reader_2)threadArray[1]) getType() == ReaderWnterType TR)
{
TR_hst add(new Long(

((Reader _2)threadArray[1]) getLockWa1tmgT1me())),
}
else
{

RR_hst add(new Long(
((Reader_2)threadArray[1]) getLockWa1tmg T1me0)),

}
}
else
{

1f (((Wnter_2)threadArray[1]) getType{) == ReaderWnterType TW)
{
lW_hst add(new Long(

((Wnter_2)threadArray[1]) getLockWa1tmgT1me())),
}
else 1f (((Wnter_2)threadArray[1]) getType{) == ReaderWnterType TU)
{
TU_hst add{new Long(

((Wnter _2)threadArray[1]) getLockWa1tmgT1me())),
}
else 1f (((Wnter_2)threadArray[1]) getType{) == ReaderWnterType RW)
{ t,

RW_hst add(new Long(
((Wnter_2)threadArray[1]) getLockWa1tmgT1me())),

}

115

}
}

else
{

RU_hst add(new Long(
((Wnter_2)threadArray[1]) getLockWa1tmgT1me0)),

}

Object[] TR_arr = TR_hst toArray0,
Object[] RR_arr = RR_hst toArray0,
Object[] TW_arr = TW_hst toArray(),
Object[] TU_arr = TU_hst toArray(),
Object[] RW_arr = RW_hst toArray0,
Object[] RU_arr = RU_hst toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray[] = {
new node(avgTR, ReaderWnterType TR),
new node(avgRR, ReaderWnterType RR),
new node(avgTW, ReaderWnterType TW),
new node(avgTU, ReaderWnterType TU),
new node(avgRW, ReaderWnterType RW),
new node(avgRU, ReaderWnterType RU)},

bubbleSort(nodeArray, 6),

System out pnntln("\nThe average times spent m m1lhseconds to obtain a "
+ "lock m algonthm_2 \n"),

for (mt 1 = 0, 1 < 6, 1++)
{

switch (nodeArray[1] type)
{

case ReaderWnterType RR
System out pnnt("RR Average = " + avgRR + " ["),
d1splay(RR_arr),
System out pnntln(")\n"),
break;

case ReaderWnterType RU
System out prmt("RU Average="+ avgRU +" ["),
d1splay(RU_arr),
System out pnntln("]\n"),
break,

case ReaderWnterType RW
System out prmt("RW Average = " + avgRW + " r'),
d1splay(RW_arr),
System out pnntln("]\n"),
break,

case ReaderWnterType TR
System out pnnt("TR Average="+ avgTR +" ["),
d1splay(TR _arr),
System out pnntlnf']\n"),
break,

case ReaderWnterType TU
System out pnnt("TU Average="+ avgTU +" ["),
d1splay(TU_arr),
System out prmtln("]\n"),

116

}

}
}

}

break,
case ReaderWnterType TW

System out pnnt("TW Average = " + avgTW + " r'),
d1splay(TW _arr);
System out pnntlnC']\n"),
break,

default
System out pnntln("Oopl Somerthmg must be wrong "),
break,

117

This class emulates a physical database It contains methods that will be
called by Reader_2 and Wnter_2 classes

class Database_2
{
r--
Funct,on Database_2

DescnptIon
Constructor for the Database_2 class It ImtIallzes readCount, writecCount
and the semaphores r, re, we, pr, and w

Parameters·
None

Return
None
--*/
Database_2()
{

}

readCount = 0,
writeCount = 0,
r = new Semaphore_2(1),
re = new Semaphore_2(1),
we= new Semaphore_2(1),
pr= new Semaphore_2(1);
w = new Semaphore_2(1),

/"'-------------------------------------
Function.
startRead

Description.
start a read process according to the writer privilege algorithm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading
--*/
mt startRead(mt readerNum)
{

System out pnntln("reader" + readerNum +"wants to read."),

}

pr P(), // requests pre_read
r P(), // requests read semaphore
re P(), // requests reader count
++read Count,
1f (readCount == 1) // the first reader blocks writer
w P(), // blocks writers

re V(), // release reader count
r V(), // release read semaphore

pr V(), // release pre_read semaphore
return readCount,

118

r------------------------------------
F u n ct 10 n
endRead

Description
end a read process according to the writer privilege algorithm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading
------------------------------------*/
int endRead(int readerNum)
{

}

re P(), // requests the reader count
--readCount,
System out pnntln("reader " + readerNum + " 1s done reading Count = " +

readCount),

1f (readCount == 0) II The last reader will unblock the writer
wV(),

re V(), II releases the reader count

return readCount,

r------------------------------------
F u n ct 10 n
startWnte

Description
start a wnte process according to the writer prev1lege algorithm

Parameters
writerNum - the ID number of a writer

Return
None
------------------------------------*/
void startWnte{int wnterNum)
{

System out pnntln("wnter" + wnterNum + "wants to write "),
we P(), II requests the wnter count
++writeCount,
1f (writeCount == 1) // the first writer locks the read semaphore

r P(),
we V(), // release the writer count

119

w PO, II release the database
}

/*--

}

Function
endWrite

Description
end a write process according to the writer privilege algorithm

Parameters
writerNum - the ID number of a writer

Return
None
---*/

void endWrite(mt writerNum)
{

System out println(11writer 11 + writerNum + 11 Is done writmg 11),

wVO,

}

we PO,
--writeCount,
1f (writeCount == 0) II The last writer releases the read semaphore

rV(),
we VO, II release the writer count

private mt readCount, II the number of active readers
private mt writeCount, II the number of active writers
Semaphore_2 r, II control access to reader
Semaphore_2 re, II control access to reader count
Semaphore_2 we, II control access to writer count
Semaphore_2 pr, II control access to pre_read
Semaphore_2 w, II controls access to the database

r**********************************1rlt***********************1rlt***********-lrlr*********-lrlr*******1rlr1rlt:***************-lrlt*'lrlc*****

This class defines the reader and writer types and provides methods for
retrievmg the types

class ReaderWriterType
{

}

private mt value,

ReaderWriterType(mt type)
{

value = type,
}

mt getReaderWriterType()
{

return value,
}

fmal static mt TR= 0x100,
fmal static mt RR = 0x101,
fmal static mt TW = 0x102,
fmal static mt TU = 0x103,
fmal static mt RW = 0x104,
fmal static mt RU = 0x105,

120

This class calls the method of Database_2 to start and end a read process
*********************1rlr****1rlt*1rlt1rlt**1rlt******1rlt1rlt*******1rlr**********1rlt*oJrlt*****************'irlt**1t-lr'irlt**'lrlrlr1rlr*1rlr***1rlr"""'*1rlr*1rlt"kk I
class Reader_2 extends Thread
{

/*--
Function
Reader_2

Description
Constructor for Reader_2 class It spec1f1es which reader 1s reading from
which database and how long the reading time 1s

Parameters
r - reader ID
db - the database the reader 1s reading from
n - 1nd1cates the reader 1s a table reader or a record reader
r_ttme - reader access time

Return
None
--*/
Reader_2(mt r, Database_2 db, mt n, mt r_t1me)
{

readerNum = r,
server= db,
readT1me = r_t1me,

1f (n == 0) II Table Reader
t_r = new ReaderWnterType(ReaderWnterType TR),

else // Record Reader
t_r = new ReaderWnterType(ReaderWnterType RR),

}

/*-------------------------------------
Function
getType

Description
Get the type of the reader (TR or RR)

Parameters
None

Return
An integer that corresponds to the reader's type
--*/
public mt getType()
{
return t_r getReaderWnterType(),

}

/*-------------------------------------
Fun ct 10 n
getlockWait1ngT1me

Description
Get the lock waiting time for the reader

Parameters
None

}

121

Return
A long integer that corresponds to the lock waiting time
--*/
public long getLockWa1tmgT1me()
{

return lockWa1tmgT1me,
}

/*--
Function
run

Description
This function specifies how a reader thread runs

Parameters
None

Return
None
--*/
public void run()
{

}

mtc,

Date start_req = new Date();
c = server startRead(readerNum),
Date obtam_req = new Date(),

System out pnntln("reader" + readerNum + " 1s reading Count = " + c),
Break_2.durat1on(readT1me), II read read_t1me m1lllseconds

c = server endRead(readerNum),

II the waiting time to obtain a reader locl
lockWa1tmgT1me = obtam_req getTlme() - start_req getTlme(),

private Database_2 server, II the database that the reader tries to access
private mt readerNum, II 1dentlf1cat1on number of the reader
private mt readT1me, II access time spent by the reader
private ReaderWriterType t_r; II the type of the reader (TR or RR)
private long lockWa1tmgT1me, II the lock waiting time of the reader

This class calls the method of Database_2 to start and end a write process

class Wnter_2 extends Thread
{
/*'-------------------------------------
Function.
Writer_2

Description
Constructor forWriter_2 class It specifies the type of the process(table
writer, record writer, table upgrader, record upgrader)and its duration time

Parameters
w-writer ID
db - the database the writer and upgrader are writing to

n - indicates table writer or record writer
u - indicates an upgrader or not
w_time - writer access time

Return
None

122

------------------------------------*!
Writer_2(mt w, Database_2 db, mt n, mt u, mt w_time)
{

}

writerNum = w,
server= db,
writeT1me = w_t1me,

If (n == 0)
{

If (u == 0)
t_w = new ReaderWriterType(ReaderWnterType TW),

else
t_w = new ReaderWriterType(ReaderWriterType TU),

}
else
{

If (u == 0)
t_w = new ReaderWnterType(ReaderWriterType RW),

else
t_w = new ReaderWnterType(ReaderWriterType RU),

}

/*-------------------------------------
Fun ct 10 n
getType

Description
Get the type of the writer (TW, RW, TU or RU)

Parameters
None

Return
An integer that corresponds to the writer's type
------------------------------------*/
public mt getTypeO
{

return t_w getReaderWriterType(),
}

/*------------------------------------
Function
getlockWa1tingT1me

Description
Get the lock wa1tmg time for the writer

Parameters
None

Return
A long integer that corresponds to the lock wa1tmg time
------------------------------------*/
public long getlockWa1tmgT1me()
{

}

123

return lockWa1tmgT1me,
}

/"-------------------------------------
Fun ct 10 n
run

Description
This function specifies how a writer thread runs

Parameters
None

Return
None
--*/
public void runO
{

Date start_req = new DateO,
server startWrite(writerNum), II start a write process
Date obta1n_req = new DateO,

System out prmtln("writer" + writerNum +" 1s writing"),
Break_2 durat1on(writeT1me), II write write_t1me m1ll1seconds

server endWrite(writerNum),

II waiting time to obtain a write lock
lockWa1tmgT1me = obtam_req getTrmeO - start_req getTrmeO,

}

private Database_2 server, II the database that the writer tries to access
private mt writerNum, II 1dent1f1cat1on number of the writer
private mt write Time, II access time spent by the writer
private Reade!WriterType t_w, II the type of the writer (TW, TR, TU or RU)
private long lockWa1tmgT1me, II the lock waiting time of the reader

Semaphore class using Java synchronization

final class Semaphore_2
{
/"--
Fun ct 10 n
Semaphore_2

Description
default constructor for Semaphore_2

Parameters·
None

Return·
None
--*/
Semaphore_20
{
value= 1,

}

124

/*·-------------------------------------
Function
Semaphore_2

Description
constructor for Semaphore_2

Parameter
v - An integer value for the semaphore

Return
None
------------------------------------*/
Semaphore_2(int v)
{
value= v,

}

/*-------------------------------------
Function
p

Description
This function call the wa1tO to sleep when the value of Semaphore less than
or equal O If the value of Semaphore 1s a pos1t1ve number, decrements by 1

Parameters
None

Return
None
------------------------------------*/
pubhc synchronized void PO
{

}

while (value <= 0)
{
try
{
wait(),

}
catch (lnterruptedException e) {}

}
value--,

f*•-------------------------------------
Funct1on·
V

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that 1s waiting on the semaphore 1f 1t has any

Parameters
None

Return
None
------------------------------------*/

pubhc synchronized void VO
{

++value,

}

not1fyO,
}

private mt value, II the value of the semaphore

125

/**********************************1rlt********-lrlr****-lrlr************-1t<1t***-lrlr-lrlr"it1t'k'k***1rlt*

The class specifies the duration of access time

fmal class Break_2
{
f"--
F u n ct 10 n
duration

Description
The function spec1f1es the duration of access time m m1lhseconds

Parameter
m1lhseconds - how many m1lhseconds the access time 1s

Return
None
--*/
public static void durat1on(mt milliseconds)
{

try
{

Thread sleep(m1lhseconds),
}
catch (lnterruptedExcept1on e) O

}
}

File
RW_Server_3 Java

Descnpt1on
This Is the implementation of the fair reader and writer algorithm
From the running result, FIFO order will be observed

Author
Mei L1

Date
April 24, 2004

import Java 10 *,
import Java ut1I *,

The node class 1s used to declare obJects that are used to sort the request
types based on the average lock waItmg time

class node
{

}

long avg,
mt type,

nodeQ
{
avg= -1,
type= -1,

}

node(long a, mt t)
{
avg= a,
type= t,

}

pubhc class RW_Server_3
{

126

f"-------------------------------------
F u n ct 10 n
average

Description
It calculates the average of the long integers contained m the arr array

Parameters
arr - An array of obJects of ObJect type These obJects contains long

integers corresponding to the lock wa1tmg times for a request type

Return
The average It returns -1 1f the number of obJects 1s 0
--*/
static long average(ObJect[] arr)
{

long total= 0,
mt count= 0,

}

for (mt 1 = 0, 1 < arr length, 1++)
{

count++,
total += ((Long)arr[1]) longValueO,

}

1f (count == 0)
return -1,

return total / count,

127

/"-----------------------------------
Function
display

Description
It displays on the screen the wartmg times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These obJects contains long

integers corresponding to the lock wartmg times for a request type

Return
None
-----------------------------------*/
static void drsplay(Object□ array)
{

for (mt 1 = 0, 1 < array length, 1++)
{

}
}

1f (1 == array length - 1)
{

System out pnnt({{Long) array[1]) longValueO),
}
else
{

System out print(((Long) array[I]) longValueO + " "),
}

/*·-----------------------------------
Function
bubbleSort

Description
It sorts an array of nodes based on the average wartmg times the nodes
contain The sorting algorithm of bubble sort rs used smce we only have
a small number (6) of request types to sort

Parameters
nodeArray - An array of nodes These nodes contains the average wartmg time

for a request type and the request type
size - The size of the nodeArray array

Return
None
------------------------------------*/
static void bubbleSort(node□ nodeArray, mt size)
{

}

node tmp = new nodeO,

for (mt 1 = size - 1, 1 > 0, 1-)
{
for (mtJ = 0, J < ,, J++) {

1f (nodeArray[J] avg> nodeArray[J + 1] avg)
{

}
}

}

tmp avg= nodeArray[J + 1] avg,
tmp type= nodeArray[J + 1] type,
nodeArray[J + 1] avg= nodeArray[J] avg,
nodeArray[J + 1] type = nodeArray[J] type,
nodeArray[J] avg= tmp avg,
nodeArray[J] type = tmp type,

128

/"-------------------------------------
Fun ct I0 n
RW_Server_3_Mam

DescnptIon
This function generates threads that emulates the table read, record read,
table wnte, record wnte, table upgrade and record upgrade requests Then
It starts the threads and wait for threads to terminate After that, the
throughput time for this algonthm and the turnaround times (lock waItmg
times) for the various requests are calculated and displayed

Parameter
thread_ Type - An array of the request types (namely read, writer or

upgrader)
rec_Num - The 1dent1ficat1on number of the record a request tnes to access
num_threads - The number of requests
table r time - The access time of table read
record]_t,me - The access time of record read
table w time - The access time of table write
record_w_t1me - The access time of record wnte
interval - The interval time between the requests

Return
None
------------------------------------*/
public static void RW_Server_3_Mam(mt□ thread_Type,

mt□ rec_Num,

{

mt num_threads,
int table_r_tIme,
mt record_r_tIme,
mt table_w_tIme,
mt record_w_tIme,
mt interval)

mt reader_1d = 0, writer_1d = 0,
Database_3 db= new Database_3Q;
Arrayl1st threadArrayL1st = new Arrayllst(),

for (mt 1 = 0, i < num_threads, 1++)
{

1f (thread_ Type[1] == 0)
{ // readers are added to hst

1f (rec_Num[1] == 5) // this Is a table level reader

}

threadArrayL1st add(new Reader_3(reader_1d++,
db,
0,
table_r_tIme)),

else // this 1s a record level reader
threadArrayL1st add(new Reader_3(reader_1d++,

db,
1,
record_r_t1me)),

else 1f (thread_ Type[1] == 1)
{ II writers are added to hst

}

1f (rec_Num[I] == 5) II this 1s a table level writer
threadArrayL1st add(new Wnter_3(writer_1d++,

db,
0,
0,
table_w_t1me)),

else //this Is a record level writer
threadArrayL1st add(new Wnter_3(writer_1d++,

db,
1,
0,
record_w_t1me)),

else
{ II if 1t 1s a upgrader, add 1t to the hst as a writer

1f (rec_Num[I] == 5) II this 1s a table level upgrader
threadArrayL1st add(new Writer_3(writer_1d++,

db,
0,
1,
table_r_t1me + table_w_t1me)),

else II this Is a record level upgrader
threadArrayL1st add(new Writer_3(writer_1d++,

db,
1,
1,
record_r_t1me + record_w_t1me)),

}
}

II converts the Arrayl1st contammg the readers and writers to an Array
Object□ threadArray = threadArrayLIst toArrayQ,
System out printlnC"'),
System out prmtlnC'Start running algorithm_3 "),
Date startDate = new DateQ, II starting time

for (mt 1 = 0, 1 < threadArray length, 1++)
{

}

1f (threadArray[1] mstanceof Reader_3)
{

}

((Reader_3)threadArray[1]) start(),
Break_3 durat1on(mterval),

else
{

}

((Writer_ 3)threadArray[1]) start(),
Break_3 durat1on(mterval),

try

129

{
for (mt, = 0, , < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_3)
((Reader_3)threadArray[1]) Jom0,

else
((Wnter_3)threadArray[1]) Jom(),

}
}
catch (lnterruptedExcept,on e)
{

System out pnntln("lnterrupted"),
}

II ending time
Date endDate = new Date0,
// calculate and pnnt to stdout the time spent m seconds
long t1meD1ff = endDate getTlme0 - startDate getTlme(),
System out prmtlnC"'),
System out pnntln("\nT,me spent for algonthm_3 "+ (double) t1meD1ff / 1000 +"seconds"),

ArrayL1st TR_hst = new Arrayllst(),
ArrayL,st RR_hst = new ArrayL1st(),
ArrayL,st TW_hst = new ArrayL1st(),
ArrayL1st TU_hst = new ArrayL1st0,
ArrayL1st RW_hst = new ArrayL1st(),
ArrayL1st RU_hst = new ArrayL1st(),

for (mt, = 0, , < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_3)
{

1f (((Reader_3)threadArray[1]) getType0 == ReaderWnterType TR)
{
TR_hst add(new Long(

((Reader_3)threadArray[1]) getLockWa1tmgT1me0)),
}
else
{

RR_hst add(new Long(
((Reader_ 3)threadArray[1]) getLockWa1tmgT1me0)),

}
}
else
{

1f (((Wnter_3)threadArray[1]) getType{) == ReaderWnterType TW)
{
TW_hst add(new Long(

((Wnter_3)threadArray[1]) getLockWa1tmgT1me())),
}
else 1f (((Wnter_3)threadArray[1]) getType() == ReaderWnterType TU)
{
TU_hst add(new Long(

((Wnter_3)threadArray[1]) getLockWa1tmgT1me0)),
}
else 1f (((Wnter_3)threadArray[1]) getType() == ReaderWnterType RW)
{

RW_hst add(new Long(
((Wnter_3)threadArray[1]) getLockWa1tmgT1me0)),

}
else
{

130

RU_hst add(new Long(
((Wnter_3)threadArray[1]) getlockWa1tmgT1me())),

}
}

}

Object□ TR_arr = TR_hst toArray(),
Object□ RR_arr = RR_hst toArray(),
Object□ TW_arr = TW_hst toArray(),
ObJect0 TU_arr = TU_hst toArray(),
Object□ RW_arr = RW_hst toArray(),
Object□ RU_arr = RU_hst toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray0 = {
new node(avgTR, ReaderWnterType TR),
new node(avgRR, ReaderWnterType RR),
new node(avgTW, ReaderWnterType TW),
new node(avgTU, ReaderWnterType TU),
new node(avgRW, ReaderWnterType RW),
new node(avgRU, ReaderWnterType RU)},

bubbleSort(nodeArray, 6),

System out pnntln("\nThe average times spent m m1lhseconds to obtain a "
+ "lock m algonthm_3 \n"),

for (mt 1 = 0, 1 < 6, 1++)
{
switch (nodeArray[1) type)
{

case ReaderWnterType RR
System out pnntC'RR Average = " + avgRR + " ["),
d1splay(RR_arr),
System out pnntln("]\n"),
break,

case ReaderWnterType RU
System out pnnt("RU Average = " + avgRU + " ["),
d1splay(RU_arr),
System out pnntlnC')\n"),
break,

case ReaderWnterType RW
System out prmt("RW Average = " + avgRW + " ["),
d1splay(RW_arr),
System out pnntlnC']\n"),
break,

case ReaderWnterType TR
System out pnnt("TR Average = " + avgTR + " ["),
d1splay(TR_arr),
System out pnntln("]\n"),
break,

case ReaderWnterType TU
System out pnnt("TU Average = " + avgTU + " ["),
d1splay(TU_arr),
System out pnntln("]\n"),
break,

case ReaderWnterType TW

131

}
}

}
}

System out prrnt("lW Average="+ avglW +" ["),
d1splay(1W_arr),
System out prrntln("]\n"),
break,

default
System out prrntln("Oopl Somerthrng must be wrong "),
break,

This class emulates a physical database It contains methods that will be
called by Reader_3 and Wnter_3 classes

class Database_3
{

132

/*--
Function Database_3

Description
Constructor for the Database_3 class It 1mt1allzes readCount, and the
semaphores re, w and pw

Parameters
None

Return
None
--*/
public Database_3()
{

readerCount = 0,

}

re= new Semaphore_3(1),
w = new Semaphore_3(1),
pw = new Semaphore_3(1),

/*--
Function
startRead

Description
start a read process according to the fair reader and writer algorithm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading
--*/
public mt startRead(rnt reader~um)
{

System out pnntln("reader" + readerNum +"wants to read"),
pw P(), II requests the outer semaphore
re P(), II request the reader count
++readerCount,
1f (readerCount == 1) II the first reader blocks the writer
w.P(),

}

re VO, II release the reader count
pw VO, II releases the outer semaphore
return readerCount,

133

/*-----------------------------------
Fun ct 10 n
endRead

Description
end a read process according to the fair reader and writer algorithm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading
------------------------------------*/
public mt endRead(mt readerNum)
{

}

re PO,
--readerCount;
System out println("reader 11 + readerNum + 11 1s done reading Count = " +

readerCount),
1f (readerCount == 0) II the last reader unblocks the writer
wVO,

re VO,

return readerCount,

r------------------------------------
Funct1on.
startWnte

Description-
start a write process according to the fair reader and writer algorithm

Parameters
writerNum - the ID number of a writer

Return
None
------------------------------------*/
public void startWrite(mt writerNum)
{

System out println("writer 11 + writerNum + 11 wants to write 11
),

pw PO, II requests the outer semaphore
w PO, II requests the database access
pw VO, II releases the outer semaphore

}

/*-------------------------------------
Function
endWrite

Description
end a write process according to the fair reader and writer algorithm

Parameters.
wnterNum - the ID number of a writer

Return
None

134

---*/

}

pubhc void endWrite(mt writerNum)
{

}

System out printlnf'writer 11 + writerNum + 11 Is done writing 11),

wV(),

private mt readerCount, If the number of active readers
Semaphore_3 re, If controls access to readerCount
Semaphore_3 w, If controls access to the database
Semaphore_3 pw, If controls access to outer semaphore

/*****************1rlt************************1rlt**1rlt1rlt*******-lrlt'lr<l:**1rlt*1rlt*************

This class defines the reader and writer types and provides methods for
retrieving the types

*******'lrlf*****1rlt********1rlt1rlt********"rlrlt1t****1rlt1rlt1rlt1rlt*1rlt******'lrlt****1rlr***-lrlr-lr****-lrlt****'lrlr*1rlt*1rlr*1rlt1rlt********-lrl:********1rli:*1rlt*/

class ReaderWnterType
{

}

private mt value,

ReaderWnterType(mt type)
{

value = type,
}

mt getReaderWriterType()
{

return value,
}

final static mt TR= 0x100,
final static mt RR = 0x101,
final static mt TW = 0x102,
final static mt TU = 0x103,
final static mt RW = 0x104,
final static mt RU = 0x105,

/*****1rlt**********************1rlt*****1rlr1rlt*1rlt*1rlt***1rlt**1rlr*********1rlr********1rlt1rlrlt****************1rlrlt*1rlt1rlt*********1rlr*****1rlt*

This class calls the method of Database_3 to start and end a read process

******************************1rlt1rlt************1rlt*1rlr**1rlt1rlt*********************** I
class Reader_3 extends Thread
{
/*-------------------------------------
Function
Reader_3

Description
Constructor for Reader_3 class It spec1f1es which reader Is reading from
which database and how long the reading time Is

Parameters
r- reader ID
db - the database the reader Is reading from
n - indicates the reader Is a table reader or a record reader
r_tIme - reader access time

Return
None

135

------------------------------------*/
public Reader_3(mt r, Database_3 db, mt n, mt r_t1me)
{

readerNum = r,
server= db,
readT1me = r_t1me,

If (n == 0)
t_r = new ReaderWnterType(ReaderWnterType TR),

else
t_r = new ReaderWnterType(ReaderWnterType RR),

}

r------------------------------------
F u n ct 10 n
getType

Descnpt1on
Get the type of the reader (TR or RR)

Parameters
None

Return
An integer that corresponds to the reader's type
------------------------------------*/
public mt getTypeQ
{

return t_r getReaderWnterTypeQ,
}

r-------------------------------------
F u n ct 10 n
getlockWa1tmgT1me

Descnpt1on
Get the lock waiting time for the reader

Parameters
None

Return
A long integer that corresponds to the lock waiting time
------------------------------------*/
public long getlockWa1tmgT1me0
{

return lockWa1tmgT1me,
}

r-------------------------------------
Funct1on
run

Descnpt1on
This function specifies how a reader thread runs

Parameters
None

}

Return
None

136

--------------------------------------*/
pubhc VOid runo
{

}

mtc,

Date start_req = new Date(),
c = server startRead(readerNum),
Date obtam_req = new DateO,

System out pnntln(''reader " + readerNum + " 1s reading Count = " + c),
Break_3 durat1on(readT1me), II read read_t1me m1lhseconds

c = server endRead(readerNum),11 end a read process

lockWa1tmgT1me = obtam_req getTlmeO - start_req getTlmeO,

private Database_3 server, II the database that the reader tries to access
private mt readerNum, II 1dent1f1cat1on number of the reader
private mt readT1me, II access time spent by the reader
private ReaderWriterType t_r, II the type of the reader (TR or RR)
private long lockWa1tmgT1me, II the lock wa1tmg time of the reader

r****-lrlt**1rlt*****-lnt*******'irlt-lrlr*""'**********-lrlr'lrlt**""'**-Ht.,,.*'irlt1rit1rlt**-lrlt.,.*'lrlt*****1rlt***-lrlf-lrlf**'irlt'irlt****'irlt*'irlt******1rlt**-lrlrlt****1rlt1rlr

This class calls the method of Database_3 to start and end a wnte process

class Wnter_3 extends Thread
{
/*--------------------------------------
Function
Writer_3

Description
Constructor for Writer_ 3 class It specifies the type of the process(table
writer, record writer, table upgrader, record upgrader)and its duration time

Parameters
w-writer ID
db - the database the writer and upgrader are writmg to
n - indicates table writer or record wnter
u - indicates an upgrader or not
w_t1me - writer access time

Return
None
--------------------------------------*/
pubhc Wnter_3(mt w, Database_3 db, mt n, mt u, mt w_t1me)
{

writerNum = w,
server= db,
writeT1me = w_t1me,

if (n == 0)
{

1f (u == 0) II Table Wnter
t_w = new ReaderWnterType(ReaderWnterType TW),

else II Table Upgrader
t_w = new ReaderWnterType(ReaderWriterType TU),

}

else
{

}
}

1f (u == 0) II Record Wnter
t_w = new ReaderWriterType(ReaderWnterType RW),

else // Record Upgrader
t_w = new ReaderWnterType(ReaderWriterType RU),

137

f"------------------------------------
F u n ct 10 n
getType

Description
Get the type of the writer (TW, RW, TU or RU)

Parameters
None

Return
An integer that corresponds to the writer's type
------------------------------------*/
public mt getType{)
{

return t_w getReaderWnterType{),
}

f"------------------------------------
F u n ct 10 n
getlockWa1t1ngT1me

Description
Get the lock waiting time for the writer

Parameters
None

Return
A long integer that corresponds to the lock waiting time
------------------------------------*/
public long getlockWa1tmgT1me()
{

return lockWa1tmgT1me,
}

/*-------------------------------------
Function
run

Description
This function specifies how a writer thread runs

Parameters
None

Return
None
------------------------------------*/
public void run()
{

Date start_req = new Date(),
server startWnte(wnterNum), II start a wnte process

}

}

Date obtam_req = new DateO,

System out prmtln("writer" + writerNum +" 1s writing"),
Break_3 duratlon(writeT1me), II write write_tlme milliseconds

server endWrite(writerNum), II end a write process

lockWa1tmgT1me = obtam_req getTlmeO - start_req gefflme(),

private Database_3 server, II the database that the writer tries to access
private mt writerNum, II 1dent1f1cat1on number of the writer
private mt writeT1me, II access time spent by the writer
private ReaderWriterType t_w, II the type of the writer (TW, TR, TU or RU)
private long lockWa1tmgT1me, // the lock waiting time of the reader

138

r***1rlt*1rlt*******************1rlt********1rlt**1rlt********1rlt***1rlt****1rlt*1rlt********1rlt******

Semaphore_3 class using Java syschrornzat1on

1rlrk*****1rlr*"lrlr**-lrlt****1rlt*1rk*1rlt*1rlt1rlt*"lrlrk**-Jrlt****1rlt**1rlt*'lrlt'irlt*******-lrlt-lrlrlt***1rlt***-lrlrlrlt****'lrlf*"kk'kk**1rlt-lrlf**1rlr****trlt*'lrlt**1rlt1rlrlt1rlt**I

final class Semaphore_3
{

!"--
Function
Semaphore_3

Description
default constructor for Semaphore_3

Parameters
None

Return
None
---*I
public Semaphore_3()
{

value= 1,
}

/*--
Function
Semaphore_3

Description
constructor for Semaphore_3

Parameter
v - An integer value for the semaphore

Return
None
---*/
public Semaphore_3(mt v)
{

value= v,
}

!"-------------------------------------
Function
p

Description
This function call the wa1tO to sleep when the value of Semaphore less than
or equal O If the value of Semaphore 1s a pos1t1ve number, decrements by 1

Parameters.
None

Return
None

139

--*/
public synchronized void PO
{

}

while (value <= 0)
{
try
{
wait(),

}
catch (lnterruptedExcept1on e) {}

}
value--,

/*--
Fun ct 10 n
V

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that 1s waiting on the semaphore 1f 1t has any

Parameters
None

Return.
None
--*/
public synchronized void V()
{
++value,
notify(),

}

private mt value, II the value of the semaphore
}

The class specifies the duration of access time

final class Break_3
{
/*--
Function
duration

Description
The function spec1f1es the duration of access time m m1lllseconds

Parameter
m1lllseconds - how many milliseconds the access time 1s

}

Return
None

140

-----------------------------------*/
pubhc statrc vord duratron(rnt mrllrseconds)
{

try
{

Thread sleep(mrllrseconds),
}
catch (lnterruptedExceptron e) {}

}

File
RW_Server_ 4 Java

Description
This Is the ImplementatIon of the fair and efficient reader and writer
algonthm From the running result, We can observe this Is more efficient
than the fair reader and writer algonthm under most circumstances

Author
Meil1

Date
April 24, 2004

141

********1rlt*1rlt**1rlt1rlr*******1rlr**********1rlt***1rlt1rlt*****1rlt1rlr**1rlt1rlt****1rlt*****1rlt*******1rlr1rlr*1rlt****1rlr****1rlt***1rlr*1rlt***1rlr1rlt***** I

import Java 10 *,
import Java utll *,

r*1rlt***************1rlt****1rll***************1rlt****1rlt*******1rlr1rlt1rlt**1rlt*****1rlt1rlt*1rlt1rlt*******1rlt1rlr** 1rlr**1rlt***1rlr*****1rlt****1rlt1rlt

The node class Is used to declare obJects that are used to sort the request
types based on the average lock waItmg time

class node
{

}

long avg,
mt type,

node0
{
avg=-1,
type= -1,

}

node(long a, mt t)
{
avg= a,
type= t,

}

pubhc class RW_Server_ 4
{

/"-------------------------------------
Function
average

Description
It calculates the average of the long integers contained m the arr array

Parameters.
arr - An array of obJects of Object type These obJects contains long

integers corresponding to the lock waItmg times for a request type

Return
The average It returns -1 1f the number of obJects Is 0
--*/
static long average(ObJectU arr)
{

long total = 0,
mt count= 0,

}

for (mt 1 = 0, 1 < arr length, 1++)
{

count++,
total += ((Long)arr[1]) longValue(),

}

1f (count == 0)
return -1,

return total / count,

142

/*-------------------------------------
Function
display

Descnpt1on
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

Return
None
------------------------------------*/
static void d1splay(Object□ array)
{

for (mt 1 = 0, 1 < array length, 1++)
{

}
}

1f (1 == array length - 1)
{

System out pnnt(((Long)array[1]) longValue()),
}
else
{

System out prmt(((Long)array[1]) longValue() + " "),
}

/*------------------------------------
Fun ct 10 n
bubbleSort

Description
It sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort 1s used since we only have
a small number (6) of request types to sort

Parameters
nodeArray - An array of nodes These nodes contains the average waiting time

for a request type and the request type
size - The size of the nodeArray array

Return
None
------------------------------------*/
static void bubbleSort(node□ nodeArray, mt size)
{

}

node tmp = new node(),

for (mt 1 = size - 1, 1 > 0, 1-)
{

for (Int J = 0, J < 1, J++)
{

1f (nodeArrayW avg> nodeArrayu + 1] avg)
{

}
}

}

tmp avg= nodeArrayu + 1] avg,
tmp type= nodeArrayu + 1] type,
nodeArrayu + 1] avg= nodeArrayW avg,
nodeArrayu + 1] type= nodeArrayW type,
nodeArrayW avg= tmp avg,
nodeArrayW type = tmp type,

143

f"------------------------------------
F u n ct 10 n
RW_Server_ 4_Mam

Description
This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
It starts the threads and wait for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock wa1tmg
times) for the various requests are calculated and displayed

Parameter
thread_ Type - An array of the request types (namely read, writer or

upgrader)
rec_Num - The 1dent1ficat1on number of the record a request tries to access
num_threads - The number of requests
table_r_t1me- The access time of table read
record_r_t1me - The access time of record read
table_w_t1me - The access time of table write
record_w_t1me - The access time of record write
interval - The interval time between the requests

Return
None
------------------------------------*/
public static void RW_Server_ 4_Mam(mt□ thread_Type,

mt□ rec_Num,

{

mt num_threads,
mt table_r_t1me,
mt record_r_t1me,
mt table_w_t1me,
mt record_w_t1me,
mt interval)

mt reader 1d = 0, writer 1d = 0,
Database= 4 db = new Database_ 4(),
ArrayL1st threadArrayL1st = new ArrayL1st(),

for (mt 1 = 0, 1 < num_threads, 1++)
{

1f (thread_ Type[1] == 0)
{ // readers are added to hst

}

1f (rec_Num(1] == 5) // this 1s a table level reader
threadArrayL1st add(new Reader_ 4(reader_1d++,

db,
0,
table_r_t1me)),

else II this 1s a record level reader
threadArrayL1st add(new Reader_ 4(reader_1d++,

db,
1,
record_r_t1me)),

else 1f(thread_Type[1] == 1)
{ // writers are added to hst

}

1f (rec_Num[1] == 5) // this 1s a table level writer
threadArrayL1st add(new Writer_ 4(writer_1d++,

db,
0,
0,
table_w_t1me)),

else //this 1s a record level writer
threadArrayL1st add(new Writer_ 4(writer_1d++,

db,
1,
0,
record_w_t1me)),

else
{ // 1f 1t 1s a upgrader, add 1t to the hst as a writer

1f (rec_Num[1] == 5) // this 1s a table level upgrader
threadArrayL1st add(new Writer_ 4(writer_1d++,

db,
0,
1,
table_r_t1me + table_w_t1me)),

else II this 1s a record level upgrader
threadArrayLlst add(new Writer_ 4(writer_1d++,

db,
1,
1,
record_r_t1me + record_w_t1me)),

}
}

II converts the ArrayL1st contammg the readers and writers to an Array
ObJect□ threadArray = threadArrayL1st toArray0,
System out prmtln(""),
System out println("Start running algorithm_ 4 "),
II start time
Date startDate = new Date0,

for (mt 1 = 0, 1 < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_ 4)
{

}

((Reader_ 4)threadArray[1]) start0,
Break_ 4 durat1on(mterval),

else
{

}

((Writer_ 4)threadArray[1]) start0,
Break_ 4 durat1on(mterval),

144

}
try
{
for (mt 1 = 0, 1 < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_ 4)
((Reader_ 4)threadArray[1]) JomO,

else
((Writer_ 4)threadArray[1]) Jom(),

}
}
catch (lnterruptedExcept1on e)
{
System out prmtln('lnterrupted"),

}

// ending time
Date endDate = new DateO,

II calculate and print to stdout the time spent m seconds
long t1meD1ff = endDate getTlmeO - startDate gemme(),
System out pnntln('"'),
System out pnntln("\nT1me spent for algorithm_ 4 "

+ (double) t1meD1ff / 1000 +"seconds"),

ArrayL1st TR_hst = new ArrayL1stO,
ArrayL1st RR_hst = new ArrayL1st(),
ArrayL1st lW_hst = new ArrayL1st(),
ArrayL1st TU_hst = new ArrayL1stO;
ArrayL1st RW_hst = new ArrayL1stO,
ArrayL1st RU_hst = new ArrayL1stO,

for (mt 1 = 0, 1 < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_ 4)
{

1f (((Reader_ 4)threadArray[1]) getType() == ReaderWnterType TR)
{
TR_hst.add(new Long(

((Reader_ 4)threadArray[1]) getLockWa1tmgT1me())),
}
else
{

RR_hst add(new Long(
((Reader_ 4)threadArray[1]) getLockWa1tmgT1meO)),

}
}
else
{

1f (((Wnter_ 4)threadArray[1]) getType() == ReaderWnterType lW)
{
lW_hst add(new Long(

((Wnter_ 4)threadArray[1]) getLockWa1tmgT1meQ)),
}
else 1f (((Writer_ 4)threadArray[1]) getTypeO == ReaderWnterType TU)
{
TU_hst add(new Long(

((Wnter_ 4)threadArray[1]) getLockWa1tmgT1meO)),
}
else 1f (((Writer_ 4)threadArray[1]) getType() == ReaderWnterType RW)
{
RW_hst.add(new Long(

145

((Wnter_ 4)threadArray[1]) getLockWa1tmgT1me0)),
}
else
{

RU_hst add(new Long(
((Writer_ 4) threadArray[1]) getLockWa1tmgT1me())),

}
}

}

Object[] TR_arr = TR_hst.toArray(),
Object[] RR_arr = RR_hst toArrayQ,
Object[] TW_arr = TW_hst toArray(),
Object[] TU_arr = TU_hst toArray(),
Object[] RW_arr = RW_hst toArray0,
Object[] RU_arr = RU_hst toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray[] = {
new node(avgTR, ReadetWnterType.TR),
new node(avgRR, ReadetWnterType RR),
new node(avgTW, ReadetWnterType TW),
new node(avgTU, Reade!WnterType TU),
new node(avgRW, Reade!WnterType RW),
new node(avgRU, ReadetWnterType RU)},

bubbleSort(nodeArray, 6),

System out pnntln("\nThe average times spent m m1lhseconds to obtam a"
+ "lock m algorithm_ 4 \n"),

for (mt 1 = 0, 1 < 6, 1++)
{
switch (nodeArray[1] type)
{
case ReadetWnterType RR

System out pnnt("RR Average = " + avgRR + " ["),
display(RR_arr),
System out pnntln("]\n"),
break,

case ReadetWnterType RU
System out pnnt("RU Average = " + avgRU + " ["),
d1splay(RU_arr),
System out pnntln("]\n"),
break,

case ReadetWnterType RW
System out pnnt("RW Average = " + avgRW + " r'),
d1splay(RW_arr);
System out pnntlnf']\n"),
break,

case ReadetWnterType TR
System out pnntf'TR Average =" + avgTR + " r'),
d1splay(TR_arr),
System out prmtln("]\n");
break,

case ReadetWnterType TU
System out pnntf'TU Average = " + avgTU + " r'),

146

}

}
}

}

d1splay(TU_arr),
System out prmtln("]\n"),

·break,
case ReaderWnterType TW

System out prmt("TW Average = " + avgTW + " ["),
d1splay(TW _arr),
System out prmtln("]\n"),
break,

default
System out prmtln("Oopl Somerthmg must be wrong "),
break,

147

r********..,.*****'irlt****'irlt****irlf*-lrlr*-lrlt'lrl:'lrlr*******-lrlr*..,,,*-lrlr'klt**'irlt'ltlt**<Ht**'klr*it'lr*irlc***..,.*..,.'lrk1rlt1rlt*'irlt1rlt****1rit*******1rit**'irlt1t1t*****

This class 1s emulates a physical database It contains methods that will be
called by Reader_ 4 and Writer_ 4 classes

I
class Database_ 4
{
f"--
F u n ct 10 n Database_ 4

Description
Constructor for the Database_ 4 class It m1t1alizes readCount, and the
semaphores re, w and pw

Parameters
None

Return
None
---------------------------------------*/
public Database_ 40
{

readerCount = 0,

re= new Semaphore_ 4(1);
w = new Semaphore_ 4(1),
pw = new Semaphore_ 4(1),

}

/"'-------------------------------------
Function
startRead

Descnpt1on
start a read process according to the reader prev1lege algorithm

Parameters
readNum - the ID number of a reader

Return.
The number of readers that are currently reading
--*/
public mt startRead(mt readerNum)
{

}

System out pnntlnC'reader 11 + readerNum + 11 wants to read 11),

pw PO, II requests the outer semaphore
pw VO, II releases the outer semaphore
re PO,
++readerCount,
II the first reader blocks writer and other process waiting on the outer semaphore
1f (readerCount == 1)
{
wP(),
pwPO,

}
re VO,
return readerCount,

148

/*-------------------------------------
Function
endRead

Description
end a read process according to the reader prev1lege algonthm

Parameters
readNum - the ID number of a reader

Return
The number of readers that are currently reading
------------------------------------*/
public rnt endRead(int readerNum)
{

System out printlnC'reader 11 + readerNum + 11 1s done reading Count = 11 +
readerCount);

re PO,
--readerCount,

II the last reader unblockd other processes waiting on the outer semaphore and database
1f (readerCount == 0)
{

pw V(),
wVO,

}
re V(),

return readerCount,
}

/*------------------------------------
Function
startWrite

Description
start a write process according to the reader prev1lege algorithm

Parameters·
writerNum - the ID number of a wnter

Return
None
------------------------------------*/
public void startWrite(rnt writerNum)
{

System out printlnC'wnter 11 + wnterNum + 11 wants to write 11
},

}

pw PO, II requests the outer semaphore
pw VO, II releases the outer semaphore
w PO, II requests the database access

149

f"·------------------------------------

}

Funct,on
endWrite

Description
end a wnte process according to the reader prev1lege algonthm

Parameters
writerNum - the ID number of a writer

Return
None
--*/
public void endWnte(rnt writerNum)
{

}

System out println('writer" + writerNum + " 1s done writing "),
w V(), II release the database access

II the number of active readers
private mt readerCount,

Semaphore_ 4 re, II controls access to readerCount
Semaphore_ 4 w, II controls access to the database
Semaphore_ 4 pw, II controls access to the outer semaphore

This class defines the reader and writer types and provides methods for
retrieving the types.

class ReaderWnterType
{

}

private mt value,

ReaderWnterType(rnt type)
{

value = type,
}

mt getReaderWnterTypeO
{

return value,
}

final static mt TR = 0x100,
final static mt RR = 0x101,
final static mt TW = 0x102,
final static mt TU = 0x103,
final static mt RW = 0x104,
final static mt RU = 0x105,

This class calls the method of Database_ 4 to start and end a read process
irlt*irlt1rlrlt*1rlrlt1rltirlt1rlrlt*irltirlt*irlt****irlr*irltirltH*'lrltit-lttrlr~*1rlt1W:1rlrirlt1rlrlrlrirltirlt*irlt1t1tirlt*irltirltirltfnhttr*'irlrlrlrli:*1rlt1rlrlr*irltirlt*irltlrlrkirlt'1rlrltirlt*1rlrlr/

class Reader_ 4 extends Thread

{

150

r-------------------------------------
Funct1on
Reader_4

Descnpt1on
Constructor for Reader_ 4 class It spec1f1es which reader 1s reading from
which database and how long the reading time 1s

Parameters
r- reader ID
db - the database the reader 1s reading from
n - indicates the reader 1s a table reader or a record reader
r_t1me - reader access time

Return
None
------------------------------------*/
public Reader_ 4(mt r, Database_ 4 db, mt n, mt read_bme)
{

readerNum = r,
server= db,
readT1me = read_t1me,

If (n == 0)
t_r = new ReaderWnterType(ReaderWnterType TR),

else
t_r = new ReaderWnterType(ReaderWnterType RR),

}

r------------------------------------
F u n ct 10 n
getType

Description
Get the type of the reader (TR or RR)

Parameters
None

Return
An integer that corresponds to the reader's type
------------------------------------*/
public mt getTypeO
{

return t_r getReaderWnterTypeQ,
}

r------------------------------------
F u n ct 10 n
getlockWa1tlngT1me

Description
Get the lock waiting time for the reader

Parameters
None

Return
A long integer that corresponds to the lock waiting time
------------------------------------*/
public long getlockWa1tmgT1meO

}

151

{
return lockWaItmgTIme,

}

/"-------------------------------------
Fun ct I0 n
run

Description
This function specifies how a reader thread runs

Parameters
None

Return
None
--*/
public void runQ
{

}

mtc,

Date start_req = new DateQ,
II start a read process
c = server startRead(readerNum),
Date obtam_req = new DateQ,

System out println(''reader 11 + readerNum + 11 Is reading Count = 11 + c),
Break_ 4 duratIon(readTIme), II read read_t1me milliseconds

c = server endRead(readerNum), II end a read process

lockWa1tmgT1me = obtam_req getTlmeQ - start_req getTlme(),

private Database_ 4 server, II the database that the reader tries to access
private mt readerNum, II 1dent1f1cat1on number of the reader
private mt readT1me, II access time spent by the reader
private ReaderWriterType t_r, II the type of the reader (TR or RR)
private long lockWa1tmgTIme, II the lock waiting time of the reader

This class calls the method of Database_ 4 to start and end a write process
***********trlt********1rlr****1t1t***1t1t****1rlrtrlt********1t1t*1t1t1rlr*1rlr*****1rlr1rlt***1rlr***1rlr1rlt1rlc*****1rlt******1rlt********1rlr1rlt***trlt*1rlr**** I
class Writer_ 4 extends Thread
{
/*--
Function
Writer_1

Description
Constructor for Writer_ 1 class It specifies the type of the process(table
writer, record writer, table upgrader, record upgrader)and its duration time

Parameters
w - writer ID
d - the database the writer and upgrader are writing to
n - indicates table writer or record writer
u - indicates an upgrader or not
w_tIme - writer access time
--*/
public Writer_ 4(mt w, Database_ 4 db, mt n, mt u, mt write_t1me)

{
writerNum = w,
server= db,
writeT1me = write_t1me,

If (n == 0)
{

1f (u == 0) // Table Writer
t_w = new ReaderWriterType(ReaderWriterType TW),

else // Table Upgrader
t_w = new ReaderWnterType(ReaderWnterType TU),

}
else
{

1f (u == 0) II Record Writer
t_w = new ReaderWnterType(ReaderWnterType RW),

else II Record Upgrader
t_w = new ReaderWnterType(ReaderWnterType RU),

}
}

152

/"'-----------------------------------
Function
getType

Description
Get the type of the writer (TW, RW, TU or RU)

Parameters
None

Return ,
An integer that corresponds to the writer's type
-----------------------------------*/
public mt getType0
{

return t_w getReaderWnterTypeQ,
}

f"-----------------------------------
F unction
getlockWa1tmgT1me

Description.
Get the lock waiting time for the writer

Parameters.
None

Return
A long integer that corresponds to the lock waiting time
-----------------------------------*/
public long getlockWaitmgT1me0
{

return lockWa1tmgT1me,
}

/"'-----------------------------------
Function
run

Description

}

This function specifies how a wnter thread runs

Parameters
None

Return
None

153

---------------------------------------*/
pubhc void runO
{

}

Date start_req = new DateO;
server startWnte(wnterNum), II start a write process
Date obtarn_req = new DateO;

System out prrntlnC'writer 11 + writerNum + 11 1s writing "),
Break_ 4 durat1on(writeT1me), II write write_t1me m1lhseconds

server endWrite(writerNum), II end a write process

lockWa1tingT1me = obtarn_req getTlmeO - start_req getTlmeO,

private Database_ 4 server, II the database that the writer tries to access
private mt writerNum, II 1dent1f1cat1on number of the writer
private mt wnteT1me, II access time spent by the writer
private ReaderWnterType t_w, II the type of the writer (TW, TR, TU or RU)
private long lockWa1trngT1me, II the lock wa1trng time of the reader

Semaphore_ 4 class usrng Java syschromzat1on

frnal class Semaphore_ 4
{
/*--
Function
Semaphore_ 4

Description·
default constructor for Semaphore_ 4

Parameters
None

Return
None
--*/
pubhc Semaphore_ 40
{
value= 1,

}

/*·-------------------------------------
Function:
Semaphore_ 1

Description
constructor for Semaphore_ 1

Parameter
v - An integer value for the semaphore

}

Return
None

154

--*/
pubhc Semaphore_ 4(mt v)
{
value= v,

}

r------------------------------------
Funct1on
p

Description.
This function call the wa1tO to sleep when the value of Semaphore less than
or equal O If the value of Semaphore 1s a pos1t1ve number, decrements by 1

Parameters
None

Return
None
--*/
pubhc synchronized void PO
{
while (value <= 0)
{

try
{
wait(),

}
catch (lnterruptedExcept1on e) O

}
value--,

}

r--
F u n ct 10 n.
V

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that 1s waiting on the semaphore 1f 1t has any

Parameters
None

Return
None
--*/
pubhc synchronized void VO
{
++value,
notify(),

}

private mt value,

1""'**1rlt1rlt**~**1rlt~1rlr*'lrk1rlt*1rlf'J\-lrlr1rlt'irlt'irlt****-Ht*1rlt1rlrlt1rlrlt'irlt1rlt'irlt****1rlt1rlrln1rlr1rlt1rlt***'k1nlr*'irlt:Hrlt-irlrlt*1rlt1rlt1rlt1rlrlrlrlt**1rlrlrlrlr**1rlt1rlrlt*'irlt'irlt

The class specifies the duration of access time
*********1rlt*****1rlt*1rlt'irlt*1rlt1t1tt*********irlt****1rlt1t1t*****1rlt****1rlr****1rlr***"irlt'irlt1rlt*1rlt1rlt'irlt**1rlt***1rlt*1rlt'irlt1rlt**1rlt***1rlt1rlrlt**1rlt1rlrlr****I

155

final class Break_ 4
{

}

/"------------------------------------
Function
duration

Descnpt1on
The function spec1f1es the duration of access time m m1lhseconds

Parameter
m1lhseconds - how many m1lhseconds the access time 1s

Return
None
------------------------------------*/
public static void durat1on(mt m1lhseconds)
{
try
{
Thread sleep(m1ll1seconds),

}
catch (lnterruptedExcept1on e) O

}

File
RW_Server_5 Java

Description
This 1s a Java program that implements "fair and eff1c1ent readers and writers
with intent to read and write" It 1s assumed that a 2-level resource (a table
and the records m that table) 1s accessed by a number of readers and writers
Among the readers and writers, some of them try to access the table as a whole
while the rest try to access the md1v1dual records of the table Readers and
writers are implemented as threads Whether a thread 1s a reader or writer,
whether 1t tries to access the table or a record, and 1f 1t tries to access a
record which record 1t 1s, 1s determined by the parameterized value that are
passed mto the method Note that we consider a table upgrade as a table write
and a record upgrade as a record write The duration time equals to a reader
time plus a writer time

Author
Mei L1

Date
April 24, 2004

156

**1rlr*1rlnlr*1rlt*1Wrlr'lr~......-'k-lr~* r1r*frlrfrlrfrlr'1rlrlrlrlt'lr*~1rlt1rlrlr1rlt*1rlt*1rlt1rlt*1rlt1rlt1rlt*1rlt1rlt1rlt*1rlt-k'lrlrlr'lrld1nTrlnTnt*1rlt1rlrlr~r1r1rfM\'1rlt1rlt'lrlrlrlrlrlt I

import Java 10 *,
import Java ut1I.*,

The node class 1s used to declare objects that are used to sort the request
types based on the average lock waiting time

class node
{
long avg,
mt type,

nodeQ
{

}

avg= -1,
type= -1,

node(long a, mt t)
{
avg= a,
type= t,

}
}

pubhc class I_RW_Server_5
{
/*------------------------------------
Function:
average

Description
t calculates the average of the long integers contained m the arr array

Parameters.
arr - An array of obJects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

157

Return
The average It returns -1 1f the number of objects Is O
-----------------------------------*/
static long average(Object[] arr)
{

long total = 0,
mt count= 0,

for (mt 1 = 0, 1 < arr length, 1++)
{

count++,
total += ((Long)arr[1]) longValueO,

}

1f (count== 0)
return -1,

return total I count,
}

r-----------------------------------
F u n ct 10 n-
display

Descnpt1on
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

Return·
None
-----------------------------------*/
static void d1splay(Object[] array)
{
for (mt 1 = 0, 1 < array length, 1++)
{

}
}

1f (1 == array length - 1)
{

System out prmt(((Long)array[1]) longValueO),
}
else
{

System out pnnt(((Long)array[1]) longValue0 + " "),
}

r·-----------------------------------
Funct1on·
bubbleSort

Descnpt1on-
lt sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort 1s used since we only have
a small number (6) of request types to sort

Parameters
nodeArray - An array of nodes These nodes contains the average waiting time

for a request type and the request type.

size - The size of the nodeArray array

Return
None

158

------------------------------------*/
static void bubbleSort(node□ nodeArray, mt size)
{

}

node tmp = new node(),

for (mt 1 = size - 1, 1 > 0, 1--)
{

for (mtJ = 0, J < 1, J++)
{

1f (nodeArrayrn avg> nodeArrayu + 1] avg)
{

tmp avg= nodeArrayu + 1] avg,
tmp type= nodeArrayu + 1] type,
nodeArrayu + 1] avg= nodeArrayrn avg,
nodeArrayu + 1] type = nodeArrayrn type,
nodeArrayrn avg= tmp avg,
nodeArrayrn type = tmp type,

}
}

}

/*-------------------------------------
Fun ct I0 n
I_RW_Server_5_Mam

Description
This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
It starts the threads and wait for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock wa1tmg
times) for the various requests are calculated and displayed

Parameter
thread_ Type - An array of the request types (namely read, writer or

upgrader)
rec_Num - The 1dent1ficat1on number of the record a request tries to access
num_threads - The number of requests
table_r_time - The access time of table read
record_r_time - The access time of record read
table_w_t1me - The access time of table write
record_w_t1me - The access time of record write
interval - The interval time between the requests

Return
None
------------------------------------*/
pubhc static void I_RW_Server_5_Mam(mtU thread_ Type,

mt□ rec_Num,

{

mt num_threads,
mt table_r_t1me,
mt record_r_tIme,
mt table_w_time,
mt record_w_time,
mt interval)

mt reader_1d = 0, wnter_1d = 0,
Table_5 tbl = new Table_5(5), II There are five records m a table

Arrayl1st threadArrayL1st = new ArrayL1st0,

for (mt 1 = 0, 1 < num_threads, 1++)
{

1f (thread_ Type[1] == 0)
{ II readers

}

1f (rec_Num[1] == 5) II table level readers
threadArrayL1st add(new Reader_5(reader_1d++,

-1,
tbl,
table_r_time)),

else II record level readers
threadArrayL1st add(new Reader_5(reader_1d++,

rec_Num[1],
tbl,
record_r_t1me)),

else 1f (thread_Type[1] == 1)
{ II writers

}

1f (rec_Num[1] == 5) II table level writers
threadArrayL1st add(new Writer_5(writer_1d++,

-1,
tbl,
0,
table_w_t1me)),

else II record level writers
threadArrayL1st add(new Wnter_5(wnter_1d++,

rec_Num[1],
tbl,
0,
record_w_t1me)),

else
{ II if 1t 1s a upgrader, add 1t to the fist of writers

1f (rec_Num[1] == 5) II table level upgrader
threadArrayL1st add(new Writer_5(wnter_1d++,

-1,
tbl,
1,
table_r_t1me + table_w_t1me)),

else II record level upgrader
threadArrayL1st add(new Writer_5(wnter_1d++,

rec_Num[1],
tbl,
1,
record_r_t1me + record_w_t1me)),

}
}

II converts the Arrayl1st contammg the readers and writers to an Array
ObJect□ threadArray = threadArrayL1st toArray0,

System out pnntln('"'),
System out println("Start running algonthm_5 "),
II starting time
Date startDate = new Date(),

for (mt 1 = 0, 1 < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_5)
{

((Reader_5)threadArray[1]) start(),

159

Break_5 durat1on(mterval),
}
else
{

((Wnter_5)threadArray[1]) start(),
Break_5 durat1on(mterval),

}
}
try
{
for (mt 1 = 0, 1 < threadArray length, 1++)
{

}
}

1f (threadArray[1) mstanceof Reader_5)
((Reader_5)threadArray[1]) Jom(),

else
((Wnter_5)threadArray[1]) Jom();

catch (lnterruptedExcept1on e)
{

System out pnntln("lnterrupted");
}

// ending time
Date endDate = new Date(),

II calculate and print to stdout the time spent m seconds
long t1meD1ff = endDate getTlme() - startDate getTlme(),
System out prmtln(""),
System out prmtln("TIme spent for algonthm_5 " +

(double) t1meD1ff / 1000 +"seconds"),

ArrayL1st TR_hst = new ArrayL1st(),
ArrayL1st RR_hst = new ArrayL1st(),
ArrayL1st lW_hst = new ArrayL1st(),
Arrayllst TU_hst = new ArrayL1st(),
ArrayL1st RW_hst = new ArrayL1st(),
ArrayL1st RU_hst = new ArrayL1st(),

for (mt 1 = 0, 1 < threadArray.length, 1++)
{

rf (threadArray[r] mstanceof Reader_5)
{

1f (((Reader_5)threadArray[1]) getType() == ReaderWnterType TR)
{
TR_hst add(new Long(

((Reader_5)threadArray[1]) getLockWa1tmgT1me())),
}
else
{

RR_hst add(new Long(
((Reader_ 5)threadArray[1]) getLockWa1tmg Time())),

}
}
else
{

1f (((Wnter_5)threadArray[1]) getType() == ReaderWnterType 1W)
{
lW_hst add(new Long(

((Writer_ 5)threadArray[1]) getLockWa1tmgT1me())),

~lse 1f (((Wnter_5)threadArray[1]).getType(} == ReaderWnterType TU) '

160

}
}

{
TU_llst add(new Long(

((Wnter _ 5)threadArray[1]) getLockWa1tmgT1me0)),
}
else 1f (((Wnter_5)threadArray[1]) getType() == ReaderWnterType RW)
{

RW_hst add(new Long(
((Wnter_5)threadArray[1]) getLockWa1tmgT1me0)),

}
else
{

RU_hst add(new Long(
((Writer_ 5)threadArray[1]) getLockWa1tmgT1me())),

}

Object□ TR_arr = TR_hst toArray0,
Object□ RR_arr = RR_hst toArray0,
Object□ TW_arr = TW_hst toArray0,
Object□ TU_arr = TU_hst toArray0;
Object□ RW_arr = RW_hst toArray0,
Object□ RU_arr = RU_hst toArray(),

long avgRR = average(RR_arr),
long avgRU = average(RU_arr),
long avgRW = average(RW_arr),
long avgTR = average(TR_arr),
long avgTU = average(TU_arr),
long avgTW = average(TW_arr),

node nodeArray□ = {
new node(avgTR, ReaderWnterType TR),
new node(avgRR, ReaderWnterType RR),
new node(avgTW, ReaderWnterType lW),
new node(avgTU, ReaderWnterType TU),
new node(avgRW, ReaderWnterType RW),
new node(avgRU, ReaderWnterType RU)},

bubbleSort(nodeArray, 6),

System out prmtlnf'\nThe average times spent m milliseconds to obtain a"
+ "lock in algonthm_5 \n"),

for (mt 1 = 0, 1 < 6, 1++)
{

switch (nodeArray[1] type)
{

case ReaderWnterType RR
System out pnnt("RR Average = " + avgRR + " ["),
d1splay(RR_arr),
System out prmtlnC']\n"),
break,

case ReaderWnterType RU·
System out pnnt("RU Average = " + avgRU + " r'),
d1splay(RU_arr);
System out pnntlnC']\n"),
break,

case ReaderWnterType RW
System out prmt("RW Average = " + avgRW + " [");
d1splay(RW _arr),
System out pnntlnC']\n"),
break;

161

}

}
}

}

case ReaderWnterType TR
System out pnnt(11TR Average = 11 + avgTR + 11 [11),

d1splay(TR_arr),
System out pnntln(11]\n11),

break,
case ReaderWnterType TU

System out pnnt(11TU Average= 11 + avgTU + 11 r'),
dIsplay(TU_arr),
System out prmtln('']\n11),

break,
case ReaderWnterType TW

System out pnnt(''TW Average= 11 + avgTW + 11 ["),

d1splay(TW_arr),
System out prmtln('']\n11

),

break,
default

System out pnntln(11OopI Somerthmg must be wrong 11),

break,

162

/**"lrlr*******"lrlt1rlt************************1rlt*-lrlr******-lrlr*1rlt******'lrlf*****1rlt******

This class defines the types of the share semaphores rc[0], rc[1] This type Is
Imtiahzed to be IR and the supported types are IR, IW, and R

class Type_5
{

private mt value,

/*--
Fun ct I0 n
Type_5

Description
Default constructor for Type_5 class The default type Is IR

Parameters
None

Return
None
--*/

Type_50
{

value= IR,
}

/*--
Function
getType

DescnptIon
get a type of a process

Parameters
None

Return
a value of a type

163

---*/

}

mt getType()
{

return value,
}

/*--
Function
setType

Description
set a type of a process

Parameters
a value of a type

Return
None
--*/

void setType(mt v)
{

value= v,
}

fmal static mt IR = 0x1000,
fmal static mt IW = 0x1001,
fmal static mt R = 0x1002,

/*************************************1rlr1rlr**1rlt1rlt**1rlr***1rlr**********1rlr***************************1rlt******************1rlr*****

This class spec1f1es the return value of some of the methods of Resource_5,
Table_5 and Record_5
************************1rlr'irlt******1rlr**1rlr*************************1rlrk*****1rlr**1rlr*********1rlrk*1rlr1rlr1rlr*************1rlr*1rlr***** I

class ReturnValue_ 1
{

mt smp, II The current sharing semaphore
mt count, II The count of current sharing semaphore

}

/**************1rlr****1rlr************1rlr1rlr******1rlr**1rlr*********1rlr****1rlr1rlr*1rlt1rlr1rlr*1rlr1rlr*1rlr****1rlr1rlr****trit*******1rlr******1rlr******

This Is the base class of Table_5 and Record_5 classes It simulates the
table that contains records It implements intent read and intent wnte
methods for record read and record wnte
1rlr**-lrlrk1rlr******1rlr**1rlr***1rlr1rlrlrlr*1rlt***********1rlr1rlr1rlr1rlr********1rlr*1rlr1rlt*1rlr*1rlrl:* I

class Resource_5
{

protected Semaphore_5 w, II controls access to the resource
protected Semaphore_5 pw, II controls access to the outer semaphore
protected Semaphore_5□ re, II share semaphore controlling access to count□
protected mt□ count, II counters for share semaphores rc[0] and rc[1]
protected Type_5□ type, II type for share semaphores rc[0] and rc[1]
protected mt prm, II which of share semaphores Is primary, ImtIally 0

/*·--
Function
Resource_5

Description
Constructor for Resource_5 class It 1mt1ahzes the various variable

Parameters
None

Return
None

164

-----------------------------------*/
public Resource_5()
{

}

w = new Semaphore_5(),
pw = new Semaphore_5(),
re= new Semaphore_5[3],
count = new mt[3],
type = new Type_5[3],
prm = 0,

for (mt 1 = 0, 1 < 3, 1++)
rc[1] = new Semaphore_5(),

for (mt 1 = 0, 1 < 3, 1++)
type[1] = new Type_5(),

/*-----------------------------------
Fun ct I0 n
startRead

Description
Starts a read process according to fair and effc1ent reader and writer
algorithm with intent to read and intent to write

Parameters
readerNum - the ID number of a reader

Return
a Return Value_ 1 obJect
-----------------------------------*/
public ReturnValue_ 1 startRead(mt readerNum)
{

mt smp, II indicates which of rc[0] or rc[1] currently to use
ReturnValue_ 1 retVal = new ReturnValue_ 1 (),

pw P(), II requests the outer semaphore

}

pw V(), II releases the outer semaphore

1f (type[prm] getType() I= Type_5 IW)
smp = prm;

else
smp = 1 - prm,

retVal smp = smp,
rc[smp] P(),
count[smp]++,
retVal count= count[smp],
1f (type[smp] getType() == Type_5 IR)
type[smp] setType(Type_5 R),
II the first reader blocks writer and other processes waiting on the outer
II semaphore

1f (count[smp] == 1)
{

w P(),
pw P(),

}
rc[smp] V(),

return retVal,

165

/*-----------------------------------
Function
endRead

Description
Ends a read process according to fair and eff1cent reader and writer
algorithm with intent to read and intent to write

Parameters
readerNum - the ID number of a reader
val - a Return Value_ 1 obJect

Return
None
------------------------------------*/
pubhc void endRead(int readerNum, Return Value_ 1 val)
{

rc[val smp] P(),
count[val smp]--,
II the last reader unblocks other processes waiting on the outer semaphore
II and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_5 IR),
prm = 1 - prm,
pwV(),
wV(),

rc[val smp] V(),
}

/*------------------------------------
Function
startWrite

Description
Starts a write process according to fair and effc1ent reader and writer
algorithm with intent to read and intent to write

Parameters
writerNum - the ID number of a writer

Return
None
------------------------------------*/
public void startWrite(int writerNum)
{

}

pw P(), // requests the outer semaphore
pw V(), // releases the outer semaphore
w P(), // requests the table access

/*'-------------------------------------
Function
endWrite

Description·
Ends a write process according to fair and eff1cent reader and writer
algorithm with intent to read and intent to write

Parameters

writerNum - the ID number of a writer

Return
None

166

------------------------------------*/
public void endWrite(mt writerNum)
{

w VO, II release the table access
}

/*------------------------------------
Fun ct I0 n
startlntentRead

Description
Starts a intent to read process according to fair and effc1ent reader and
writer algorithm with intent to read and intent to write

Parameters
readerNum - the ID number of a reader

Return
a Return Value_ 1 object
------------------------------------*/
public ReturnValue_ 1 startlntentRead(mt readerNum)
{

mt smp, // Ind1cates which of rc[O] or rc[1] currently to use
ReturnValue_ 1 retVal = new ReturnValue_ 1 O,

pw PO, II requests the outer semaphore
pw VO,// releases the outer semaphore
smp = prm,

}

retVal smp = smp,

rc[smp] PO,
count[smp]++,
retVal count= count[smp],
1f (count[smp] == 1)
{
w P(),
pw P(),

}
rc[smp] V{),

return retVal,

/*'------------------------------------
Function
endlntentRead

Description
Ends a Intent to read process according to fair and eff1cent reader and
writer algorithm with intent to read and intent to write

Parameters
readerNum - the ID number of a reader
val - a returnValue_ 1 object

Return
None
------------------------------------*/

pubhc void endlntentRead(mt readerNum, ReturnValue_ 1 val)
{

rc[val smp] PO,
count[val smp]--,
II the last reader unblocks other processes wa1tmg on the outer semaphore
II and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_5 IR),
prm = 1 - prm,
pwV(),
wVO,

rc[val smp] V(),
}

167

r-----------------------------------
Funct1on
start I ntentWnte

Description
Starts a intent to wnte process according to fair and effc1ent reader and
writer algorithm with mtent to read and intent to write

Parameters
wnteNum - the ID number of a wnter

Return
a ReturnValue_ 1 obJect
----------------------------------*/
pubhc ReturnValue_ 1 startlntentWnte(mt wnterNum)
{

}

mt smp, II mdIcates which of rc[O) or rc[1] currently to use
ReturnValue_1 retVal = new ReturnValue_10,

pw P(), II requests the outer semaphore
pw V(), II releases the outer semaphore

1f (type[prm] getType() == Type_5 IW II type[prm] getType() == Type_5 IR)
smp = prm,

else
smp = 1 - prm,

retVal smp = smp;

rc[smp] P(),
count[smp]++,
retVal count= count[smp],
1f (type[smp] getType() == Type_5 IR)

type[smp] setType(Type_5 IW),
1f (count[smp] == 1)
{
wPO,
pwPO,

}
rc[smp] VO,

return retVal,

r-----------------------------------
F u n ct 10 n
endlntentWnte

}

Description
Ends a Intent to write process according to fair and eff1cent reader and
writer algorithm with intent to read and intent to write

Parameters
writeNum - the ID number of a writer
val - a returnValue_ 1 object

Return
None

168

---------------------------------------*/
public void endlntentWnte(mt writerNum, ReturnValue_ 1 val)
{

rc[val smp] P(),
count[val smp]--,

1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_5 IR),
prm = 1 - prm,
pwV(),
w.V(),

rc[val smp] V(),
}

This class mherits the Resource_5 class It specifies a table operation

class Table_5 extends Resource_5
{

private mt num_of_records, II how many records m a table
private Record_5□ records, II a array of record objects

/*--
Fun ct 10 n
Table_5

Description
Constructor for Table_5 class It m1t1allzes the variours variables

Parameters
num - how many records are m a table

Return
None
--*/
pubhc Table_5(mt num)
{

super(),
num of records = num,
records-= new Record_5[num_of_records],

for (mt 1 = O; 1 < num_of_records, 1++)
records[•] = new Record_5(1),

}

/*-----------------------------------
Function

getNumOfRecords

Description
Gets the number of records m a table

Parameters
None

Return
The number of records

169

------------------------------------*/
public mt getNumOfRecords0
{

return num_of_records,
}

/*-------------------------------------
Function
getRecord

Description
Gets a record ID m a table

Parameters
index - the index of the records m the table

Return record ID
------------------------------------*/
public Record_S getRecord(mt index)
{

return records[mdex],
}

/*------------------------------------
Fun ct 10 n
startRead

Description
Starts a read process according to fair and effc1ent reader and writer
algorithm with intent to read and intent to write by overndmg the same
method m the base class

Parameters
readerNum - the ID number of a reader

Return
a Return Value_ 1 obJect
------------------------------------*/

public Return Value_ 1 startRead(mt readerNum)
{

}

System out printlnf'Reader" + readerNum +"wants to read from the TABLE"),
return super startRead(readerNum),

/*'------------------------------------
Function
endRead

Description
Ends a read process according to fair and eff1cent reader and writer
algorithm with intent to read and intent to write

Parameters
readerNum - the ID number of a reader
val - a ReturnValue_ 1 object

Return.
None

170

------------------------------------*/
public void endRead(int readerNum, ReturnValue_ 1 val)
{

rc[val smp] PO;
count[val smp]--,
System out printlnf'Reader" + readerNum +

"1s done reading from the TABLE"
+ " Count[" + val smp + "] = " + count[val smp]),

II the last reader unblocks other processes waiting on the outer semaphore
II and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_5 ,IR);
prm = 1 - prm,
pwVQ,
wV();

rc[val smp) V(),
}

II Overrides the same method in the base class
public void startWnte(int writerNum)
{

}

System out printlnfWnter" + wnterNum +"wants to write to the TABLE"),
super startWnte(wnterNum),

II Overrides the same method in the base class
public void endWrite(int writerNum)
{

}

System out printlnfWnter" + writerNum +" 1s done writing to the TABLE"),
super endWnte(writerNum),

II Overrides the same method in the base class
public ReturnValue_ 1 startlntentRead(int readerNum)
{

System out printlnf'Reader" + readerNum +
" wants to do intent read from the "
+"TABLE"),

return super.startlntentRead(readerNum),
}

/*------------------------------------
Funct,on
endlntentRead

Description·
Ends a Intent to read process according to farr and eff1cent reader and
writer algorithm with intent to read and intent to write

Parameters
readerNum - the ID number of a reader
val - a returnValue_ 1 object

Return.

}

171

None
-----------------------------------*/
pubhc void endlntentRead(int readerNum, Return Value_ 1 val)
{

rc[val smp] PO,
count[val smp]--,
System.out pnntlnf'Reader " + readerNum + " 1s done intent read from the "

+ "TABLE. Countr' + val smp + "] =" + count[val smp]),
II the last reader unblocks other processes waiting on the outer semaphore
// and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_5 IR),
prm = 1 - prm;
pwV0,
w.V(),

rc[val smp] V(),
}

II Overrides the same method in the base class
public ReturnValue_ 1 startlntentWnte(int wnterNum)
{

System out pnntln('Writer" + writerNum +
" wants to do intent write to the"
+ "TABLE");

return super startlntentWnte(writerNum),
}

/*-----------------------------------
Fun ct 10 n
endlntentWrite

Description
Ends a Intent to write process according to fair and eff1cent reader and
writer algorithm with intent to read and intent to write

Parameters
wnteNum - the ID number of a writer
val - a returnValue_ 1 obJect

Return
None
-----------------------------------*/
public void endlntentWrite(int wnterNum, Return Value_ 1 val)
{

rc[val smp] P(),
count[val smp]--,
System out println{'Wnter " + writerNum + " 1s done intent wnte to the"

+"TABLE Count["+ val smp + "] =" + count[val smp]),
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_5 IR),
prm = 1 - prm,
pwV(),
wV(),

rc[val smp] V(),
}

172

f"=**1rlt*****-lrlr*****'irlt************************'irlt1rlt*****1t1t***-lrlr1rlt***************************1rlt**1rlt*1rlt*1rlt*~1rlt*-lrlr***1rlt1rlt**1rlt1rlt
'lrlrl,

This 1s the record class that implements eff1c1ent read-write to simulate
read and write on the md1v1dual records m a table Along with others
this class also has an instance variable that keeps track of the record's
index m the table

class Record_5 extends Resource_5
{

private mt index;

/"--
Function.
Record_5

Description.
Constructor for Record_5 class It 1mt1alizes the various variables

Parameter
1 - record 1d m a table
--*/
public Record_5(mt 1)
{

}

super(),
index= 1,

II Overrides the same method m the base class
public ReturnValue_ 1 startRead(mt readerNum)
{

System out prmtlnC'Reader " + readerNum + " wants to read from RECORD "
+ index),

return super startRead(readerNum),
}

f"-------------------------------------
F u n ct 10 n
endRead

Description
Ends a read process according to fair and eff1cent reader and writer
algorithm with intent to read and intent to write This 1s the same as
Table_5 endReadQ

Parameters
readerNum - the ID number of a reader
val - a RetumValue_ 1 obJect

Return
None
--*/
public void endRead(mt readerNum, ReturnValue_ 1 val)
{
rc[val smp] P(),
count[val smp]--,
System out println("Reader" + readerNum + " 1s done reading from RECORD "

+ index + " Count_" + index + 'T' + val smp +
'1 = " + count[val smp]),

II the last reader unblocks other processes waiting on the outer semaphore
II and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_5 IR),
prm = 1 - prm,
pwVQ,
wV(),

rc[val smp] V(),
}

II Overrides the same method m the base class
pubhc void startWnte(mt writerNum)
{

}

System out prmtln('Writer 11 + writerNum + 11 wants to write to RECORD 11

+ mdex),
super.start'Nrite(writerNum),

II Overrides the same method m the base class
pubhc void endWrite(mt writerNum)
{

System out prmtln('Writer 11 + writerNum + 11 Is done writing to RECORD 11

+ index),
super endWrite(writerNum),

}
}

This class defines the reader and writer types and provides methods for
retrieving the types

class ReaderWriterType
{

}

private mt value,

ReaderWnterType(mt type)
{
value = type,

}

mt getReaderWriterTypeQ
{
return value,

}

fmal static mt TR = 0x100,
fmal static mt RR = 0x101,
fmal static mt TW = 0x102,
fmal static mt TU = 0x103,
fmal static mt RW = 0x104,
final static mt RU = 0x105,

This class calls the various methods to start and end a read process

class Reader_5 extends Thread
{

private mt readerNum, II the 1dent1ficat1on number of the reader
private mt recordNum, II the index number of the record
private Table_5 tbl, II the table that the reader tries to access
private mt readT1me, II access time spent by the reader
private ReaderWnterType t_r, II the type of the reader (TR or RR)
private long lockWa1tmgTIme, II the lock waiting time of the reader

173

174

/"-------------------------------------
Function
Reader_5

Description
Constructor function for the reader class If the value of the recNum
argument 1s -1, the reader wants to read the table as a whole Otherwise,
the reader wants to read a record whose mdex Is contained m recNum

Parameters
1d - the 1dent1ficat1on number of the reader thread
recNum - the 1dent1f1catlon number of the record the reader will read -1 1f

the reader reads the table only
table - the table the reader will work on
r_t1me - time the reader will spend for the reading operation
------------------------------------*/
pubhc Reader_5(mt 1d, mt recNum, Table_5 table, mt r_t1me)
{

}

readerNum = 1d,
recordNum = recNum,
tbl = table,
readT1me = r_t1me,

1f (recordNum == -1)
{ II table reader
t_r = new ReaderWnterType(ReaderWnterType TR),

}
else
{ II record reader
t_r = new ReaderWnterType(ReaderWnterType RR),

}

t"------------------------------------
F u n ct 10 n
getType

Description
Get the type of the reader (TR or RR)

Parameters
None

Return·
An integer that corresponds to the reader's type
----------------~-------------------*/
pubhc mt getType0
{

return t_r getReaderWnterTypeQ,
}

!"'-----------------------------------
Function
getLockWa1t1ngT1me

Description
Get the lock wa1tmg time for the reader

Parameters
None

175

Return
A long integer that corresponds to the lock waiting time
------------------------------------*/
public long getLockWa1tingT1meO
{

return lockWa1tingT1me,
}

/*------------------------------------
Function
run

Description
This function specifies how a reader thread runs

Parameters
None

Return
None
------------------------------------*/
public VOid runo
{

1f (recordNum == -1)
{ II Reader will read the table as a whole

Date start_req = new DateO,
ReturnValue_ 1 val = tbl startRead(readerNum),
Date obtain_req = new DateO,

System out pnntln("Reader " + readerNum + " 1s reading from the table "
+ "Count[" + val smp + "] = " + val count),

II read readT1me milliseconds
Break_5 durat1on(readT1me),

tbl endRead(readerNum, val),

lockWa1tingT1me = obtain_req gefflmeO - start_req gefflmeO,
}
else
{ II Reader will read an ind1v1dual record

Date start_req = new DateO,
II do intent read on table first
ReturnValue_ 1 val_ 1 = tbl startlntentRead(readerNum),
System out pnntln("Reader " + readerNum + " 1s doing intent read from "

+ "the table Countr' + val_ 1 smp + "] = " +
val_ 1 count),

II then read the record
Return Value_ 1 val_2 = tbl getRecord(recordNum) startRead(readerNum),
Date obtain_req = new DateO,

System out pnntln("Reader" + readerNum + " 1s reading from record "
+ recordNum + " Count_" + recordNum + "[" + val_2 smp
+ "] = " + val_2 count),

II read readT1me milliseconds
Break_5 durat1on(readT1me),

tbl getRecord(recordNum) endRead(readerNum, val_2),
tbl endlntentRead(readerNum, val_ 1),

lockWa1tingT1me = obtain_req gefflmeO - start_req gefflmeO,
}

}

}

This class calls the various methods to start and end a write process

class Writer_5 extends Thread
{

private mt writerNum, // the 1dent1ficat1on number of the writer
private int recordNum, II the index number of the record
private Table_5 tbl, II the table that the reader tries to access
private mt writeT1me, II access time spent by the writer
private ReaderWriterType t_w, II the type of the reader (fW, TU, RW or RU)
private long lockWa1tmgT1me, // the lock waiting time of the reader

176

/*-------------------------------------
Function
Writer_5

Description
Constructor function for the Writr_5 class If the value of the recNum
argument 1s -1, the writer wants to write the table as a whole Otherwise,
the writer wants to write a record whose index 1s contained m recNum

Parameters
id - 1d of the writer
recNum - index number of the record
table - the table the write tries to access
u - indicates whether the writer 1s an upgrader or not
w_t1me - access time of the writer

Return
None
--------------------------------------/
pubhc Writer_5(mt 1d, mt recNum, Table_5 table, mt u, mt w_t1me)
{
writerNum = 1d,
recordNum = recNum,
tbl = table;
writeT1me = w_t1me,

1f (recordNum == -1)
{ // table level write

}

1f (u == 0) II table writer
t_w = new ReaderWriterType(ReaderWnterType TW),

else II table upgrader
t_w = new ReaderWnterType(ReaderWriterType TU),

}
else
{ // record level write

1f (u == 0) II record writer
t_w = new ReaderWriterType(ReaderWriterType RW),

else // record upgrader
t_w = new ReaderWnterType(ReaderWriterType RU),

}

/*--------------------------------------
Function
getType

Description
Get the type of the writer (fW, RW, TU or RU)

Parameters
None

Return
An integer that corresponds to the writer's type

177

------------------------------------'*/
public mt getTypeO
{

return t_w getReaderWnterTypeO,
}

/*--------------------------------
Function
getLockWa1tmgT1me

Description
Get the lock waiting time for the writer

Parameters
None

Return
A long integer that corresponds to the lock waiting time
------------------------------------*/
public long getLockWa1tmgT1me()
{

return lockWa1tmgT1me,
}

/*-------------------------------------
Function
run

Description
This function specifies how a writer thread runs

Parameters
None

Return
None
------------------------------------*/
public VOid runo
{
II start a write process
1f (recordNum == -1)
{//writer will write to the table as a whole

Date start_req = new DateO,

}

tbl startWrite(wnterNum),
Date obtam_req = new DateO,

System out println('Writer" + wnterNum + " 1s writing to the table"),
Break_5 durat1on(writeT1me), II write writeT1me m1lhseconds

tbl endWnte(writerNum),

lockWa1tmgT1me = obtam_req getTlmeO - start_req getTlmeO,

else
{//writer will write to an md1v1dual record

Date start_req = new Date(),

}
}

}

II do intent to wnte first
ReturnValue_ 1 val = tbl startlntentWnte(wnterNum),
System out prmtln('Wnter" + wnterNum +

" Is doing intent wnte to the "
+ "table Countf' + val smp + "] = " + val count),

tbl getRecord(recordNum) startWnte(wnterNum), II wnte to the record
Date obtam_req = new DateO,

System out pnntln('Wnter " + wnterNum + " Is wnting to record "
+ recordNum),

Break_5 durat1on(wnteT1me), II wnte wnteTIme m1lhseconds

tbl getRecord(recordNum) endWnte(wnterNum), II end wnte to record
tbl endlntentWnte(wnterNum, val), II end intent to wnte

lockWa1tingTIme = obtain_req gemmeO - start_req gemme(),

This class implements semaphore usmg Java syschrornzat1on

fmal class Semaphore_5
{

pnvate mt value, II the value of the semaphore

178

/"--------------------------------------
Function:
Semaphore_5

Descnpt1on
default constructor for Semaphore_5

Parameters
None

Return
None

-*/
pubhc Semaphore_50
{
value= 1,

}

/"-------------------------------------
Function
Semaphore_5

Description
constructor for Semaphore_5

Parameter:
v - An integer value for the semaphore

Return
None
--------------------------------------*/
pubhc Semaphore_5(mt v)
{

}

179

value= v,
}

r--------------------------------------
F u n ct 10 n
p

Description
This function call the wa1tO to sleep when the value of Semaphore less than
or equal O If the value of Semaphore 1s a positive number, decrements by 1

Parameters.
None

Return
None
--*/
public synchronized void PO
{
while (value <= 0)
{

try
{
wait(),

}
catch (lnterruptedExcept1on e) O

}
value--,

}

r-------------------------------------
F u n ct 10 n
V

Description
This function increments the semaphore value by 1 and call the notify()
function to wakeup a process that 1s wa1tmg on the semaphore 1f 1t has any

Parameters
None

Return
None
--*/

public synchronized void VO
{
++value,
notify(),

}

The class specified the duration of access time

fmal class Break_S
{
r·-------------------------------------
Funct1on·
duration

Description

The function spec1f1es the duration of access time m milliseconds

Parameter
milliseconds - how many milliseconds the access time 1s

Return
None

180

------------------------------------*/
public static void durat1on(mt milliseconds)
{

try
{

}
}

Thread sleep(m1ll1seconds),
}
catch (lnterruptedExcept1on e) O

181

/**********1rlt-lrlt**********'lrlt**********'irlt'irlt*'irlt'irlt-lrlt*****:Hr*********'irlt'irlt***********************-lrlt**'irlt**-k'k***-k'lrk'irlt***'irlt*1rlt*****

File
RW_Server_6 Java

Descnpt1on
This 1s a Java program that implements "fair and eff1c1ent readers and writers
with mtent to read and write lock and upgrade lock" It 1s assumed that a
2-level resource (a table and the records m that table) 1s accessed by a
number of readers, writers and upgraders Among the readers, writers and
upgraders, some of them try to access the table as a whole while the rest try
to access the md1v1dual records of the table Readers and writers are
implemented as threads Whether a thread 1s a reader or a writer or a
upgrader, whether 1t tries to access the table or a record, and 1f 1t tries
to access a record which record 1t 1s, 1s determined by the parameterized
value that are passed into the method Note that we consider a table upgrade
as a table write and a record upgrade as a record write The duration time
equals to a reader time plus a writer time

Author
Mei L1

Date
April 24, 2004
*****'irlt*********1rlr************************-lrlr****'irlt*******-lrlr'irlt****1rlt*****'irlt********************1rlr*********1rlr*****1rlt*1rlr** I

import Java 10 *,
import Java ut1I *,

/***************1rlt*******1rlf1rltt*************1rlt****1rlt*********1rlt****'irlt***'irlt**-lrlr*'irlt'irlt************1rlt*************'irlt**1rlt****'irlt*

The node class 1s used to declare objects that are used to sort the request
types based on the average lock waiting time
**************************'lf'k*******'lrlt****1rlr1t1t********1rlt'irlt****'irlt**********************1rlt************1rlt1t1t***1rlt1rlt**1rlt****** I

class node
{

}

long avg,
mt type,

nodeO
{
avg= -1,
type= -1,

}

node(long a, mt t)
{
avg= a,
type= t,

}

pubhc class I_RW_U_Server_6
{
/*--
Function
average

Description
It calculates the average of the long integers contained m the arr array

Parameters
arr - An array of objects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

182

Return
The average It returns -1 1f the number of objects Is O
-----------------------------------*/
static long average(Object□ arr)
{

}

long total = 0,
mt count= 0,

for (mt 1 = 0, 1 < arr length; 1++)
{

count++,
total += ((Long) arr[1]) longValue0,

}

1f (count== 0)
return -1,

return total / count,

/*·-----------------------------------
Function
display

Description.
It displays on the screen the waiting times for a request type, separated
with a space

Parameters
arr - An array of objects of Object type These objects contains long

integers corresponding to the lock waiting times for a request type

Return
None
-----------------------------------*/
static void d1splay(Object□ array)
{
for (mt 1 = 0, 1 < array length, 1++)
{

}
}

1f (1 == array length - 1)
{

System out prmt(((Long)array[1]) longValueO);
}
else{

System out prmt(((Long)array[1]) longValue0 + " "),
}

/*-----------------------------------
Fun ct 10 n
bubbleSort

Description
It sorts an array of nodes based on the average waiting times the nodes
contain The sorting algorithm of bubble sort 1s used since we only have
a small number (6) of request types to sort.

Parameters·
nodeArray - An array of nodes These nodes contains the average waiting time

for a request type and the request type

size - The size of the nodeArray array

Return
None

183

------------------------------------*/
static void bubbleSort(node□ nodeArray, mt size)
{

}

node tmp = new nodeO;

for (mt 1 = size - 1, 1 > 0, 1-)
{
for (mt J = 0, J < 1, J++)
{

1f (nodeArray[I) avg> nodeArray[I + 1) avg)
{

}
}

}

tmp avg= nodeArray[I + 1) avg,
tmp type = nodeArray[I + 1] type,
nodeArray[I + 1) avg= nodeArray[I) avg,
nodeArray[I + 1] type= nodeArray[I) type,
nodeArray[I) avg= tmp avg,
nodeArray[I) type = tmp type,

/*-------------------------------------
Funct1on·
I_RW_Server_6_Mam

Description
This function generates threads that emulates the table read, record read,
table write, record write, table upgrade and record upgrade requests Then
1t starts the threads and wait for threads to terminate After that, the
throughput time for this algorithm and the turnaround times (lock wa1tmg
times) for the various requests are calculated and displayed

Parameter
thread_ Type - An array of the request types (namely read, writer or

upgrader)
rec_Num - The 1dent1ficat1on number of the record a request tries to access
num_threads - The number of requests
table r time - The access time of table read
record]_t1me - The access time of record read
table w time - The access time of table write
record_w_t1me - The access time of record write
interval - The interval time between the requests

Return·
None
------------------------------------*/
public static void 1_RW_U_Server_6_Mam(mt□ thread_ Type,

mt□ rec_Num,
mt num_threads,
mt table_r_t1me,
mt record_r_tIme,
mt table_w_t1me,
mt record_w_tIme,
mt interval)

{
mt reader_1d = 0, writer_1d = 0, upgrader_Id = 0,
Table_6 tbl = new Table_6(5), // there're initially 5 records m the table

Arrayl1st threadArrayL1st = new ArrayL1stO,

for (mt 1 = 0, 1 < num_threads, 1++)
{

1f (thread_ Type[1] == 0)
{// readers

}

1f (rec_Num[1] == 5) // table level readers
threadArrayL1st add(new Reader_6(reader_1d++,

-1,
tbl,
table_r_t1me)),

else II record level readers
threadArrayL1st add(new Reader_6(reader_1d++,

rec_Num[1],
tbl,
record_r_t1me)),

else 1f (thread_ Type[1] == 1)
{ //writers

}

1f (rec_Num[1] == 5) // table level writers
threadArrayL1st add(new Wnter_6(writer_1d++,

-1,
tbl,
table_w_t1me)),

else // record level writers
threadArrayL1st add(new Wnter_6(writer_1d++,

rec_Num[1],
tbl,
record_w_t1me)),

else
{ // upgraders

1f (rec_Num[1] == 5) // table level upgrader
threadArrayL1st add{new Upgrader(upgrader_1d++,

-1,
tbl,
table_r_t1me,
table_w_t1me)),

else // record level upgrader
threadArrayL1st add(new Upgrader(upgrader_1d++,

rec_Num[1],
tbl,
record_r_time,
record_w_t1me)),

}
}

II converts the Arrayl1st to an Array
ObJect□ threadArray = threadArrayL1st toArrayQ,
System out prmtlnf"'),
System out printlnf'Start running algorithm_6 "),

II starting time
Date startDate = new Date0,

for (mt 1 = 0, 1 < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_6)
{

}

((Reader_6)threadArray[1]) startQ,
Break_6 durat1on(1nterval),

184

else 1f (threadArray[1] mstanceof Wnter_6)
{

}

((Wnter_6)threadArray[1]) start0,
Break_6 durat,on(mterval),

else
{

((Upgrader)threadArray[1]) start0,
Break_6 durat,on(mterval),

}
}
try
{
for (mt,= 0,, < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_6)
((Reader_6)threadArray[1]) Jom(),

else 1f (threadArray[1] mstanceofWnter_6)
((Wnter_6)threadArray[1]) Jom0,

else
((Upgrader)threadArray[1]) Jom(),

}
}
catch (lnterruptedExcept1on e)
{

System out pnntln("lnterrupted"),
}

// ending time
Date endDate = new Date(),

// calculate and print to stdout the time spent m seconds
long timeD1ff = endDate getTlme0 - startDate getTlme(),
System out prmtln(""),
System out prmtln(''T1me spent for algonthm_6 " +

(double) t1meD1ff / 1000 +"seconds"),

ArrayL,st TR_hst = new ArrayL1st(),
ArrayL1st RR_hst = new ArrayL1st0,
ArrayL1st TW_hst = new ArrayL1st0,
ArrayL1st TU_hst = new ArrayL1st0,
ArrayL1st RW_hst = new ArrayL1st0,
ArrayL1st RU_hst = new ArrayL1stO;

for (mt 1 = 0, 1 < threadArray length, 1++)
{

1f (threadArray[1] mstanceof Reader_6)
{

1f (((Reader_6)threadArray[1]) getType() == ReaderWnterType TR)
{
TR_hst add(new Long(

((Reader_6)threadArray[1]) getLockWa1tmgT1me0)),
}
else
{

}
}

RR_hst add(new Long(
((Reader_6)threadArray[1]) getLockWa1tmgT1me0)),

else 1f (threadArray[1] mstanceof Wnter_6)
{

1f (((Wnter_6)threadArray[1]) getType{) == ReaderWnterType TW)

185

{
lW_hst add(new Long(

((Wnter _ 6}threadArray[1]) getLockWa1tmgT1me0}},
}
else
{

RW_hst add(new Long(
((Wnter_6}threadArray[1]) getLockWa1t1ngT1me0}},

}
}
else
{

1f (((Upgrader}threadArray[1]) getType0 == ReaderWnterType TU}
{
TU_hst add(new Long(

((Upgrader}threadArray[1]) getLockWa1tmgT1me(}}},
}
else
{

RU_hst add(new Long(
((Upgrader}threadArray[1]) getLockWa1tmgT1me(}}},

}
}

}

Object□ TR_arr = TR_hst toArray(},
Object□ RR_arr = RR_hst toArray(},
Object□ lW_arr = lW_hst toArray(},
Object□ TU_arr = TU_hst toArray(},
Object□ RW_arr = RW_hst toArray(},
Object□ RU_arr = RU_hst toArray(},

long avgRR = average(RR_arr},
long avgRU = average(RU_arr},
long avgRW = average(RW_arr},
long avgTR = average(TR_arr},
long avgTU = average(TU_arr},
long avglW = average(TW_arr},

node nodeArrayO = {
new node(avgTR, ReaderWnterType TR},
new node(avgRR, ReaderWnterType RR},
new node(avglW, ReaderWnterType lW},
new node(avgTU, ReaderWnterType TU),
new node(avgRW, ReaderWnterType RW},
new node(avgRU, ReaderWnterType RU}},

bubbleSort(nodeArray, 6),

System out prmtlnf'\nThe average times spent m m1lhseconds to obtain a "
+ "lock m algonthm_6 \n"},

for (mt 1 = 0, 1 < 6, 1++)
{

switch (nodeArray[1] type}
{
case ReaderWnterType RR

System out prmt("RR Average = " + avgRR + " ["},
d1splay(RR_arr);
System out pnntlnf']\n"},
break,

case ReaderWnterType RU
System out pnnt("RU Average = " + avgRU + " ["),

186

}

}
}

}

d1splay(RU_arr),
System out pnntlnC']\n"),
break;

case ReaderWnterType RW
System out pnnt(11RW Average = 11 + avgRW + " [11),

d1splay(RW_arr),
System out pnntln('']\n");
break,

case ReaderWnterType TR
System out pnnt(11TR Average = 11 + avgTR + 11 ["),

d1splay(TR_arr),
System out pnntln('']\n"),
break,

case ReaderWnterType TU
System out prmt("TU Average = 11 + avgTU + 11 [11),

dIsplay(TU _arr),
System out pnntln('']\n"),
break,

case ReaderWnterType TW
System out prmt(11TW Average = 11 + avgTW + 11 [11),

d1splay(TW_arr);
System out pnntln('1\n11

),

break,
default

System out prmtln(11OopI Somerthmg must be wrong 11),

break,

This class defines the types of the share semaphores rc[0], rc[1] and rc[2]
This type Is 1mtIahzed to be IR and the supported types are IR, IW, R and U

class Type_6
{

private mt value,

187

r-------------------------------------
F u n ct 10 n-
Type_6

Descnptron
Default constructor for Type_5 class The default type Is IR

Parameters
None

Return
None
--------------------------------------*/

Type_6Q
{
value= IR,

}

r--------------------------------------
Functron
getType

188

Description
get a type of a process

Parameters
None

Return
a value of a type
--*/

}

mt getType()
{

return value,
}

/*·--
Function
setType

Description
set a type of a process

Parameters
a value of a type

Return
None
--*/

void setType(mt v)
{

value= v,
}

final static mt IR = 0x1000,
final static mt IW = 0x1001,
final static mt R = 0x1 002,
final static mt U = 0x1003,

r****************-1t1t*****************-lrlt*********-/rlt1rlt*******1rlr*********1rlr1rlt-/rlt***'lrlf*******-lrlt******1rlr****-/rlt****1rlt**1rlt*-/rlt******

This class spec1f1es the return value of some of the methods of Resource_6,
Table_6 and Record_6

1rlt*****1rlr************1rlr**************1rlt1rlt**1rlt1rl:*******1rlt****1rlt********"lrlr**** I
class ReturnValue_2
{

mt smp, // The current sharing semaphore
mt count, II The count of current sharing semaphore

}

l************'lrlr**'frlr*******1t1tt*****'lrlr*1rlt1rlr*****'it'lt****-lrlt*-/rlt-lrlt****1rlr**-lrlt****************-lrlt-lrlt*****1rlt****trit******1rlt*******1rlt*****

This Is the base class of Table_6 and Record_6 classes It simulates the
table that contains records It implements fair and eff1c1ent readers and writers
with intent to read and write lock and upgrade lock

1rlr********-lrir*******1rlt***********1rlt*-lrlt****-/rlt****1rlr'lrk*******1rlt********-lrlt**** I

class Resource_6
{

protected Semaphore_6 pu, II controls access to the pre_upgrade
protected Semaphore_6 u, II controls access to upgrade
protected Semaphore_6 w, II controls access to the resource
protected Semaphore_6 pw, II controls access to the outer semaphore

protected Semaphore_6□ re, II share semaphore controlling access to count□
protected mt□ count; II counters for share semaphores rc[0], rc[1] and rc[2]
protected Type_6□ type, II type for share semaphores rc[0], rc[1] and rc[2]
protected mt prm, II which of share semaphores Is primary, ImtIally 0

189

/*-------------------------------------
Function
Resource_6

Descnpt1on
Constructor for Resource_6 class It 1mt1ahzes the various variable

Parameters
None

Return·
None
------------------------------------*/
pubhc Resource_6()
{

pu = new Semaphore_6(),
u = new Semaphore_6(),
w = new Semaphore_6(),
pw = new Semaphore_6(),
re= new Semaphore_6[3],
count= new mt[3],
type = new Type_6[4],
prm = 0,

}

for (mt 1 = 0, 1 < 3, 1++)
rc[1] = new Semaphore_6(),

for (mt 1 = 0, 1 < 4, 1++)
type[1] = new Type_6(),

/*-------------------------------------
Fun ct I0 n
startRead

Description
Starts a read process according to fair and efficient readers and writers
with mtent to read and write lock and upgrade lock

Parameters·
readerNum - the ID number of a reader

Return
a ReturnValue_2 obJect
------------------------------------*/
pubhc ReturnValue_2 startRead(mt readerNum)
{

mt smp, II mdIcates which of rc[0], rc[1] and rc[2] currently to use
ReturnValue_2 retVal = new ReturnValue_2(),

pu.P(), II requests the pre_upgrade
pu V(), II releases the pre_upgrade
pw P(), II requests the outer semaphore
pw V(), II releases the outer semaphore

1f (type[prm] getType() I= Type_6 1W}
smp = prm,

else

}

smp = (prm + 1) % 3,
retVal smp = smp,

rc[smp] PO,
count[smp]++,
retVal count = count[smp],
1f (type[smp] getType() == Type_6 IR)
type[smp] setType(Type_6 R),

II the first reader blocks writer and other processes waiting on the outer
II semaphore
1f (count[smp] == 1)
{
w P(),
pwP(),

}
rc[smp] V(),

return retVal,

190

/*-----------------------------------
Function
endRead

Description
Ends a read process according to fair and eff1c1ent readers and writers
with intent to read and write lock and upgrade lock

Parameters
readerNum - the ID number of a reader
val - a ReturnValue_2 obJect

Return·
None
-----------------------------------*/
pubhc void endRead(int readerNum, ReturnValue_2 val)
{

rc[val smp] P(),
count[val.smp]--,
II the last reader unblocks other processes waiting on the outer semaphore
II and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_6 IR),
prm = (prm + 1) % 3;
pwV(),
wV(), ,

rc[val smp] V(),
}

/*-----------------------------------
Fun ct 10 n
startWrite

Descnpt1on
Starts a write process according to fair and eff1c1ent readers and writers
with intent to read and write lock and upgrade lock

Parameters
wnterNum - the ID number of a writer

Return
None

191

------------------------------------*/
public void startWrite(mt writerNum)
{

}

pu PO, II requests the pre_upgrade
pu VO, II releases the pre_upgrade
pw PO, II requests the outer semaphore
pw VO, II releases the outer semaphore
w PO, II requests the table access

/*-------------------------------------
Fun ct IO n
endWrite

Description
Ends a write process according to fair and eff1c1ent readers and writers
with intent to read and write lock and upgrade lock

Parameters
writerNum - the ID number of a writer

Return
None
------------------------------------*/
public void endWrite(mt writerNum)
{
w VO, II release the table access

}

/*-------------------------------------
Fun ct 1O n ·
startlntentRead

Description
Starts an intent to read process according to fair and eff1c1ent readers and writers
with intent to read and write lock and upgrade lock.

Parameters
readerNum - the ID number of a reader

Return
a ReturnValue_2 obJect
------------------------------------*/
public ReturnValue_2 startlntentRead(mt readerNum)
{

mt smp, II indicates which of rc[O], rc[1] and rc[2] currently to use
ReturnValue_2 retVal = new ReturnValue_2(),

pu P(), II requests the pre_upgrade
pu V(), II releases the pre_upgrade
pw PO, II requests the outer semaphore
pw VO, II releases the outer semaphore

smp = prm,
retVal smp = smp,

rc[smp] P(),
count[smp]++,
retVal.count = count[smp],
1f (count[smp] == 1)

}

{
wPO,
pwPO,

}
rc[smp] V(),

return retVal,

192

/*------------------------------------
Function
endlntentRead

Description
Ends an Intent to read process according to fair and efficent reader and
writer algorithm with intent to read and intent to write

Parameters
readerNum - the ID number of a reader
val - a returnValue_2 obJect

Return
None
------------------------------------*/
public void endlntentRead(mt readerNum, ReturnValue_2 val)
{

rc[val smp] P(),
count[val smp]--,
II the last reader unblocks other processes waiting on the outer semaphore
II and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_6 IR),
prm = (prm + 1) % 3,
pwVO,
wV(),

rc[val smp] VO,
}

/*·------------------------------------
Function
start I ntentWnte

Description
Starts an intent to write process according to fair and eff1c1ent readers and writers
with intent to read and write lock and upgrade lock

Parameters
writeNum - the ID number of a writer

Return
a ReturnValue_2 obJect
------------------------------------*/
public ReturnValue_2 startlntentWnte(mt writerNum)
{

mt smp; II indicates which of rc[O], rc[1] and rc[2] currently to use
ReturnValue_2 retVal = new ReturnValue_20,

pu P(), II requests the pre_upgrage
pu V(), // releases the pre_upgrade
pw P(), II requests the outer semaphore

}

pw V(), // releases the outer semaphore

1f (type[prm] getType() == Type_6 IW II type[prm] getType() == Type_6 IR)
smp = prm,

else 1f (type[(prm + 1) % 3] getType() == Type_6 IW II
type[(prm + 1) % 3] getType() == Type_6 IR)

smp = (prm + 1) % 3,
else

smp = (prm + 2) % 3,
retVal smp = smp,

rc[smp] P(),
count[smp]++,
retVal count = count[smp],
1f (type[smp] getType() == Type_6 IR)
type[smp] setType(Type_6 IW),

1f (count[smp] == 1)
{
wP(),
pw P(),

}
rc[smp] V(),

return retVal,

193

r-----------------------------------
Funct1on
endlntentRead

Description
Ends an Intent to read process according to fair and efficient readers and
writers with intent to read and write lock and upgrade lock

Parameters
readerNum - the ID number of a reader
val - a returnValue_2 obJect

Return
None
-----------------------------------*/
pubhc void endlntentWnte(int writerNum, RetumValue_2 val)
{

rc[val smp] P(),
count[val smp]--,

1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_6 IR),
prm = (prm + 1) % 3,
pwV(),
wV(),

rc[val smp] V(),
}

/*-----------------------------------
Function
startUpgrade

Description
Starts an upgrade process according to fair and eff1c1ent readers and writers

with intent to read and wnte lock and upgrade lock

Parameters
upgraderNum - the ID number of the upgrader

Return
a ReturnValue_2 object

194

-----------------------------------*/
public ReturnValue_2 startUpgrade(mt upgraderNum)
{

mt smp, II indicates which of rc[0], rc[1] and rc[2] currently to use
ReturnValue_2 retVal = new ReturnValue_2(),

pu P(),
LIP(),
pu V(),
pw P(),
pwV(),

1f (count[prm] == 0)
smp = prm,

else 1f (count[(prm + 1) % 3] == 0)
smp = (prm + 1) % 3,

else
smp = (prm + 2) % 3,

retVal smp = smp,

rc[smp] P(),
count[smp]++,
retVal count= count[smp],
type[smp] setType(Type_6 U),
1f (count[smp] == 1)
{
w P(),
pw PO,

}
rc[smp] V(),

return retVal,
}

/*-----------------------------------
Function
busyWa1tmg

Descnpt1on
Loops mdefm1tely 1f the count Is greater than 1

Parameters
val - a ReturnValue_2 object

Return
None
-----------------------------------*/
public void busyWaItmg(ReturnValue_2 val)
{

while (count[val smp] > 1),
}

/*'----------------------------------
Function
end Upgrade

Description
Ends an upgrade process according to fair and efficient readers and writers
with intent to read and write lock and upgrade lock

Parameters
upgraderNum - the ID number of a writer
val - a ReturnValue_2 object

Return
None

195

---*/
public void endUpgrade(mt upgraderNum, ReturnValue_2 val)
{

count[val smp] = 0,
type[val smp] setType(Type_6 IR);
prm = (prm + 1) % 3,
pwVQ,
wVQ,
uVQ,

}
}

/**********1rlr**"""'****1rlt'lrlt**-lrlt*'lrlt**********1rlr****-lrlr'lrlt*******'lrlt'lrlt****-lrlr****************'lrlt*'lrlt*1rlt*'lrlt****1rlt***1rlr*1rlt**-lrlrlt****1rlt1rlt

This class inherits the Resource_6 class It specifies a table operation

-lrlr******************1rlt**1rlt1rlt****1rlt**'irlt****1rlt1rlt'irlt1rlr1rlt***irlr*******'irlr*1rlt**1rlt1rlt1rlt***1rlt*1rlt1rlr****'irlt****-lrlt*******'irlt*'irlt**-lrlt*'irlt*-lrlt*/

class Table_6 extends Resource_6
{

private int num_of_records, II how many records m a table
private Record_60 records, II a array of record objects

/*--
Fun ct I0 n
Table_6

Description
Constructor for Table_6 class It 1rnt1ahzes the variours variables

Parameters
num - how many records are m a table

Return
None
--*/
public Table_6(mt num)
{

superQ,
num_of_records = num,
records = new Record_6[num_of_records],

for (mt 1 = O; 1 < num_of_records, 1++)
records[1] = new Record_6(1),

}

/*-------------------------------------
Function
getNumOfRecords

Description·
Gets the number of records m a table

Parameters
None

Return
The number of records

196

------------------------------------*/
public mt getNumOfRecords0
{

return num_of_records,
}

/*------------------------------------
Function
getRecord

Description
Gets a record ID ma table

Parameters
mdex - the mdex of the records m the table

Return record ID
-----------------------------------*/
public Record_6 getRecord(mt mdex)
{

return records[mdex],
}

/*-----------------------------------
Function
startRead

Description
Starts a read process according to farr and eff1c1ent readers and writers
with intent to read and write lock and upgrade lock by overndmg the same
method m the base class

Parameters
readerNum - the ID number of a reader

Return
a ReturnValue_2 object
-----------------------------------*/

pubhc ReturnValue_2 startRead(mt readerNum)
{

}

System out prmtln("Reader" + readerNum +" wants to read from the TABLE"),
return super startRead(readerNum),

/*-----------------------------------
Function
endRead

Description
Ends a read process according to fair and eff1c1ent readers and writers
with intent to read and write lock and upgrade lock

Parameters
readerNum - the ID number of a reader
val - a ReturnValue_2 object

Return

197

None
-----------------------------------*/
public void endRead(int readerNum, ReturnValue_2 val)
{

rc[val smp] PO,
count[val smp]--,
System out printlnf'Reader " + readerNum +

"1s done reading from the TABLE"
+ H Countr· + val smp + "] = " + count[val smp]),

// the last reader unblocks other processes waiting on the outer semaphore
// and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_6 IR),
prm = (prm + 1) % 3,
pwVO,
wVO,

rc[val smp] VO,
}

// Overrides the same method in the base class
public void startWnte(int writerNum)

{ '
System out println('Writer" + writerNum +"wants to write to the TABLE"),
super startWrite(writerNum),

}

// Overrides the same method in the base class
public void endWrite(int writerNum)
{

}

System out println('Wnter" + wnterNum +" 1s done writing to the TABLE"),
super endWrite(writerNum),

// Overrides the same method in the base class
public ReturnValue_2 startlntentRead(int readerNum)
{

}

System out println("Reader " + readerNum + " wants to do intent read from "
+ "the TABLE"),

return super startlntentRead(readerNum),

/*------------------------------------
Function
endlntentRead

Description
Ends an Intent to read process according to fair and efficient readers and
writers with intent to read and write lock and upgrade lock

Parameters
readerNum - the ID number of a reader
val - a ReturnValue_2 obJect

Return
None
------------------------------------*/
public void endlntentRead(int readerNum, ReturnValue_2 val)
{

rc[val smp] PO,
count[val smp]--,

II the last reader unblocks other processes waItmg on the outer semaphore
II and table
System out prmtln("Reader " + readerNum + " 1s done intent read from the "

+ "TABLE Count[" + val smp + "] =" + count[val smp]),

1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_6 IR),
prm = (prm + 1) % 3,
pwVO,
wVO,

rc[val smp] VO,
}

II Overrides the same method in the base class
public ReturnValue_2 startlntentWnte(int wnterNum)
{

}

System out pnntln('Wnter " + wnterNum +
" wants to do mtent write to the"
+ "TABLE");

return super startlntentwnte(wnterNum),

198

/"----------------------------------
Function
endlntentWnte

Description
Ends an Intent to write process according to fair and efficient readers and
writers with mtent to read and write lock and upgrade lock

Parameters
wnteNum - the ID number of a writer
val - a ReturnValue_2 obJect

Return
None
----------------------------------*/
public void endlntentWrite(int writerNum, ReturnValue_2 val)
{

rc[val smp] PO,
count[val smp]--,
System out pnntln('Wnter " + wnterNum + " Is done intent write to the"

+"TABLE Count["+ val smp + '1 =" + count[val smp]),

1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_6 IR),
prm = (prm + 1) % 3,
pwVO,
wVO,

rc[val smp] VO,
}

II Overrides the same method in the base class
public ReturnValue_2 upgrader_startlntentWrite(int upgraderNum)
{

System out println(''Upgrader" + upgraderNum +
" wants to do intent write to the"
+ "TABLE");

199

return super startlntentWnte(upgraderNum),
}

/"--------------------------------
Fun ct 10 n
upgrader_endlntentWnte

Descnpt1on.
Ends an Intent to wnte process according to fair and efficent reader and
wnter algorithm with intent to read, intent to wnte and upgrade lock

Parameters
upgraderNum - the ID number of a upgrader
val - a returnValue_2 obJect

Return
None
-------------------------------------*/
public void upgrader_endlntentWnte(int upgraderNum, ReturnValue_2 val)
{

rc[val smp] PO,
count[val smp]--,
System out printlnf'Upgrader " + upgraderNum +

" 1s done intent wnte to the"
+"TABLE Count["+ val smp + "] =" + count[val smp]),

1f (count[val smp] == 0)
{

}

type[val smp] setType{Type_6 IR),
prm = (prm + 1) % 3,
pwVQ,
wVQ,

rc[val smp] V(),
}

II Overrides the same method in the base class
public ReturnValue_2 startUpgrade(int upgraderNum)
{

}

System out pnntlnC'Upgrader " + upgraderNum +
"wants to upgrade the TABLE"),

return super startUpgrade(upgraderNum),

// Overrides the same method in the base class
public void endUpgrade(int upgraderNum, RetumValue_2 val)
{

System out pnntlnC'Upgrader " + upgraderNum +
"1s done upgrading the TABLE"),

super endUpgrade(upgraderNum, val),
}

}

This 1s the record class that implements eff1c1ent read-wnte to simulate
read and write on the ind1v1dual records in a table Along with others
this class also has an instance variable that keeps track of the record's
index in the table

class Record_6 extends Resource_6
{

200

private mt index,

/*------------------------------------
Function
Record_6

Description
Constructor for Record_6 class It ImtIahzes the various variables

Parameter
1 - record Id m a table
------------------------------------*/
pubhc Record_6(mt 1)
{

}

super(),
index= 1,

// Overrides the same method m the base class
pubhc ReturnValue_2 startRead(mt readerNum)
{

System out prmtln("Reader " + readerNum + " wants to read from RECORD "
+ index),

return super startRead(readerNum),
}

/*------------------------------------
Function
endRead

Description
Ends a read process according to fair and eff1cent reader and writer
algorithm with intent to read, intent to write and upgrade lock

Parameters
readerNum - the ID number of a reader
val - a ReturnValue_2 obJect

Return
None
------------------------------------*/
pubhc void endRead(mt readerNum, ReturnValue_2 val)
{

rc[val smp] P(),
count[val smp]--,
System out println("Reader " + readerNum + " Is done reading from RECORD "

+ index + " Count_" + index + "[" + val smp +
"] = " + count[val smp]),

II the last reader unblocks other processes waiting on the outer semaphore
II and table
1f (count[val smp] == 0)
{

}

type[val smp] setType(Type_6 IR),
prm = (prm + 1) % 3,
pwV(),
wV(),

rc[val smp] VO,
}

// Overrides the same method m the base class

}

public void startWnte(mt wnterNum)
{

}

System out pnntlnfWnter " + wnterNum + " wants to wnte to RECORD "
+ index),

super startWnte(writerNum),

II Overrides the same method m the base class
public void endWrite(mt writerNum)
{

System out printlnCWriter " + wnterNum + " Is done wntmg to RECORD "
+ index),

super endWnte(wnterNum),
}

// Overrides the same method m the base class
pubhc ReturnValue_2 startUpgrade(mt upgraderNum)
{

System out prmtlnf'Upgrader " + upgraderNum + " wants to upgrade RECORD "
+ index),

return super startUpgrade(upgraderNum),
}

II Overrides the same method m the base class
pubhc void endUpgrade(mt upgraderNum, ReturnValue_2 val)
{

}

System out prmtlnf'Upgrader " + upgraderNum + " Is done upgrading "
+ "RECORD " + index),

super endUpgrade(upgraderNum, val),

This class defines the reader and writer types and provides methods for
retnevmg the types

class ReaderWriterType
{

}

private mt value,

ReaderWnterType(mt type)
{

value = type;
}

mt getReaderWnterType()
{

return value,
}

final static mt TR = 0x100,
final static mt RR = 0x101,
final static mt TW = 0x102,
final static mt TU = 0x103,
final static mt RW = 0x104,
final static mt RU = 0x105,

201

/**-lrlc*1rlt***1rlr1rlf-lrlr******1ril*****1rlt1rlt*1rlt1rlt1rlt*1rlt1rlt****'lrlt*'irlt'irlt'irlt"lrlt****1rltirlt*1rlt1rlf'irlt*1rlt'irlt****-lrlr****1rlr*1rlt****'lrlf***'irlrl('irlt**1rlrlt-lrlrlr*'irlt*

This class calls the various methods to start and end a read process
********irlt*****'lrlf****'irlt*******'lrlf1rlt**'irlt1rlt'irlt*'irlt1rlt*******'irlt'irlt'irlt-lrlr**'irldrlt***1rlt1rlt'irlt*-lrlc*1rlt*'irlt1rlt**1rlt*1rlt1rlt*****'lrlt***trlc*'irlt1rlt'irlt**1rlt1rlt/

class Reader_6 extends Thread

{
private mt readerNum, II the 1dentlf1cat1on number of the reader
private mt recordNum, II the index number of the record
private Table_6 tbl, II the table that the reader tries to access
private mt readT1me, // access time spent by the reader
private ReaderWriterType t_r, II the type of the reader (TR or RR)
private long lockWa1tmgT1me, II the lock waiting time of the reader

202

/"-----------------------------------
Function
Reader_6

Description
Constructor function for the reader class If the value of the recNum
argument 1s -1, the reader wants to read the table as a whole Otherwise,
the reader wants to read a record whose index 1s contained m recNum

Parameters
1d - the 1dentlficat1on number of the reader thread
recNum - the 1dent1f1cat1on number of the record the reader will read -1 1f

the reader reads the table only
table - the table the reader will work on
r_t1me - time the reader will spend for the reading operation

Return
None
------------------------------------*/
public Reader_6(mt 1d, mt recNum, Table_6 table, mt r_t1me)
{

readerNum = 1d,
recordNum = recNum,
tbl = table,
readT1me = r_t1me,

1f (recordNum == -1)
{ II table reader
t_r = new ReaderWnterType(ReaderWnterType TR),

}
else
{ // record reader

t_r = new ReaderWriterType(ReaderWnterType RR),
}

}

r·------------------------------------
Funct1on
getType

Description
Get the type of the reader (TR or RR)

Parameters·
None

Return
An integer that corresponds to the reader's type
------------------------------------*/
public mt getType0
{

return t_r getReaderWriterType{),
}

203

/*-------------------------------------
Function
getlockWa1t1ngT1me

Description
Get the lock waiting time for the reader

Parameters
None

Return
A long integer that corresponds to the lock waiting time
------------------------------------*/
public long getlockWaItingT1me()
{

return lockWa1tingT1me,
}

r------------------------------------
FunctIon
run

Description
This function specifies how a reader thread runs

Parameters
None

Return
None
------------------------------------*/
public void run()
{

1f (recordNum == -1) { II reader will read the table as a whole
Date start_req = new Date(),

}

ReturnValue_2 val = tbl startRead(readerNum),
Date obtain_req = new Date(),

System out pnntln("Reader" + readerNum + " Is reading from the table "
+ "Count[" + val smp + "] = " + val count),

Break_6 durat1on(readTIme), II read reaT1me m1lllseconds

tbl endRead(readerNum, val),

lockWa1tingT1me = obtain_req gefflme() - start_req gemme(),

else
{ II reader will read an indIv1dual record

Date start_req = new Date(),
II do intent read on table first
ReturnValue_2 val_ 1 = tbl startlntentRead(readerNum),
II then read the record
System out pnntln(11Reader " + readerNum + " Is doing intent read from "

+ "the table Count[" + val_ 1 smp + "] = " +
val_ 1 count),

ReturnValue_2 vaI_2 = tbl getRecord(recordNum) startRead(readerNum),
Date obtain_req = new Date(),

System out pnntln("Reader 11 + readerNum + " Is reading from record "
+ recordNum + 11 Count_" + recordNum + 11

[" + vaI_2 smp
+ "] =" + val_2 count),

Break_6 durat1on(readT1me), II read readTIme milliseconds

}
}

tbl getRecord(recordNum) endRead(readerNum, val_2), //end reading
tbl endlntentRead(readerNum, val_ 1), //end intent to reading

II time to obtain a read lock
lockWa1tmgT1me = obtam_req getTlme0 - start_req getTlmeQ,

}

This class calls the various methods to start and end a write process

class Writer_6 extends Thread
{

private mt writerNum, II the 1dent1f1cat1on number of the writer
private mt recordNum, II the index number of the record
private Table_6 tbl, II the table that the reader tries to access
private mt write Time, // access time spent by the writer
private ReaderWriterType t_w, II the type of the reader (TW, TU, RW or RU)
private long lockWa1tmgT1me, II the lock waiting time of the reader

204

/*--------------------------------------
Function
Wnter_6

Description
Constructor function for the writer class If the value of the recNum
argument 1s -1, the writer wants to read the table as a whole Otherwise,
the writer wants to write to a record whose index 1s contained m recNum

Parameters
1d - the 1dentificat1on number of the writer thread
recNum - the 1dent1f1cat1on number of the record the writer will write -1

1f the writer writes the table only
table - the table the writer will work on
w_t1me - time the writer will spend for the writing operation

Return
None
--------------------------------------*/
public Wnter_6(mt 1d, mt recNum, Table_6 table, mt w_time)
{

writerNum = 1d,
recordNum = recNum,
tbl = table,
writeT1me = w_t1me,

1f (recordNum == -1)
{ // table writer

t_w = new ReaderWriterType(ReaderWriterType TW),
}
else
{ // record writer

}
}

t_w = new ReaderWriterType(ReaderWriterType RW),

/*-------------------------------------
Fun ct 10 n
getType

205

Description
Get the type of the writer [fW, or RW)

Parameters
None

Return
An integer that corresponds to the writer's type
-----------------------------------*/
public mt getTypeO
{
return t_w getReaderWnterTypeO,

}

r------------------------------------
F u n ct 10 n
getlockWa1tmgT1me

Description·
Get the lock waiting time for the wnter

Parameters
None

Return.
A long integer that corresponds to the lock waiting time
------------------------------------*/
public long getlockWa1tingT1meO
{

return lockWa1tmgT1me,
}

r------------------------------------
Funct1on
run

Descnpt1on
This function specifies how a writer thread runs

Parameters
None

Return
None
------------------------------------*/
public VOid runo
{
II start a wnte process
1f (recordNum == -1) { II writer will write to the table as a whole

Date start_req = new Date(),
tbl startWrite(writerNum),
Date obtam_req = new Date();

System out pnntln('Wnter" + writerNum + " 1s writing to the table"),
Break_6 durat1on(wnteT1me), II write write Time milliseconds

tbl endWnte(writerNum),

II the waiting time for obta1mng a write lock
lockWa1tmgT1me = obtam_req getTlmeO - start_req getTlmeO,

}

else
{ II writer will write to an md1v1dual record
II start t1mmg

}
}

}

Date start_req = new Date(),
II do intent write to table first
ReturnValue_2 val = tbl startlntentWrite(writerNum),
System out println('Writer" + writerNum +

" 1s doing intent write to the "
+ "table Count[" + val smp + "] = " + val count),

tbl getRecord(recordNum) startWrite(writerNum), II write to the record
II end t1mmg
Date obtam_req = new Date(),

System out println('Writer " + writerNum + " 1s writmg to record "
+ recordNum),

Break_6 durat1on(writeT1me), II write write Time m1lhseconds

tbl getRecord(recordNum) endWrite(writerNum),
tbl endlntentWrite(writerNum, val),

II the waiting time for obtaining a write lock
lockWa1tmgT1me = obtam_req getTlme() - start_req getTlme(),

206

/***1rlt*****1rlt1rlt**1rlr*'kk*1rlr*1rlr***********************1rlr1rk'/rlt*1rlr'irlt-lrlt********************1rlt-lrlt*'lrk****1rlr-lrlr******1rlrlt****'lrlrlt1rlr***1rlt*

This class calls the various methods to start and end an upgrader process
***************-lrlr*******1rlc******'/rlt***"it'lt******-lrk**1rlr***1rlt*-lrlt****'k'lr*******1rlr1rlr***1rlr*1rlt************1rlt*1rlt******1rlt-lrlr1rlt'/rlt****trlt I
class Upgrader extends Thread
{

private mt upgraderNum, // the 1dent1f1cat1on number of the upgrader
private mt recordNum, II the index number of the record
private Table_6 tbl, II the table that the reader tries to access
private mt read_t1me, II read time spent by the upgrader
private mt write_t1me, II write time spent by the upgrader
private ReaderWnterType t_u, II the type of the upgrader (TU, or RU)
private long lockWa1tmgT1me, II the lock waiting time of the upgrader

/*--------------------------------------
Function
Upgrader

Description
Constructor function for the upgrader class If the value of the recNum
argument 1s -1, the upgrader wants to read the table as a whole Otherwise,
the upgrader wants to upgrade to a record whose index 1s contained m recNum
An upgrader spents r_t1me to read before spending w_time to update

Parameters
1d - the 1dentrficat1on number of the upgrader thread
recNum - the 1dent1f1cat1on number of the record the upgrader will upgrade

-1 1fthe upgrader upgrade the table only
table - the table the upgrader will work on
r_t1me - time the upgrader will spend for the reading operation
w_t1me - time the upgrader will spend for the writing operation

Return
None
-------------------------------------*/
public Upgrader(mt 1d, mt recNum, Table_6 table, mt r_t1me, mt w_t1me)
{

}

upgraderNum = rd,
recordNum = recNum;
tbl = table,
read_trme = r_trme,
wrrte_trme = w_t1me,

1f (recordNum == -1)
{ // table upgrader

t_u = new ReaderWrrterType(ReaderWnterType TU),
}
else
{ // record upgrader

t_u = new ReaderWnterType(ReaderWnterType RU),
}

207

/*-------------------------------------
Fun ct 10 n
getType

Descrrpt1on
Get the type of the writer (TU or RU)

Parameters
None

Return
An integer that corresponds to the writer's type
------------------------------------*/
public int getType()
{

return t_u getReaderWrrterType(),
}

/*------------------------------------
Function
getLockWa1t1ngT1me

Descrrpt1on
Get the lock waiting time for the wrrter

Parameters·
None

Return
A long integer that corresponds to the lock waiting time
------------------------------------*/
public long getLockWa1tingT1me()
{

return lockWa1tingT1me,
}

/*-------------------------------------
Function
run

Descrrpt1on
This function specifies how a wnter thread runs

Parameters
None

Return
None

208

------------------------------------*/
public void run()
{
II start a upgrade process
1f (recordNum == -1)
{ II Upgrader will upgrade to the table as a whole

}

Date start_req = new Date(), II start timing
ReturnValue_2 val = tbl startUpgrade(upgraderNum),
Date obtain_req = new Date(), II end timing

System out pnntln("upgrader " + upgraderNum +
" 1s reading from the table "
+ "Count[" + val smp + "] = 11 + val count),

II read read_t1me m1lhseconds
Break_6 durat1on(read_t1me),

tbl busyWa1ting(val),

System out pnntln("upgrader" + upgraderNum + 11 1s writing to the table"),
II update upgradeT1me m1lhseconds
Break_6 durat1on(write_t1me),

II end update
tbl endUpgrade(upgraderNum, val),

II obtain a waiting time for a table upgrader lock
lockWa1tingT1me = obtain_req gefflme() - start_req gemme(),

else
{ II Upgrader will upgrade an ind1v1dual record

Date start_req = new Date(),
II do intent write to table first
ReturnValue_2 val_ 1 = tbl upgrader_startlntentWrite(upgraderNum),
System out println("upgrader " + upgraderNum +

" 1s doing intent write to the "
+ "table Count[" + val_ 1 smp + "] = 11 + val_ 1 count),

ReturnValue_2 val_2 = tbl getRecord(recordNum) startUpgrade(upgraderNum),
Date obtain_req = new Date(),

System out pnntln("Upgrader 11 + upgraderNum + " 1s reading from record "
+ recordNum + " Count_" + recordNum + "[" + val_2 smp
+ "] =" + val_2 count),

II read read_t1me m1lhseconds
Break_6 durat1on(read_t1me),

II wait there 1s only the upgrader in the critical section
tbl getRecord(recordNum) busyWa1ting(va1_2),

System out println("Upgrader" + upgraderNum + " 1s writing to record "
+ recordNum),

II update wnte_t1me m1lhseconds
Break_6 durat1on(write_t1me),

II end update
tbl getRecord(recordNum) endUpgrade(upgraderNum, val_2),
II end intent to wnte
tbl upgrader_endlntentWrite(upgraderNum, val_ 1),

II obtain a waiting time for a record upgrader lock
lockWa1tingT1me = obtain_req gefflme() - start_req gemme(),

209

}
}

}

This class implements semaphore using Java syschrornzat1on
***************-lrlt****1rlt*******1rlt***1rlt1rlt-lrlr*1rlt****1rlr-lrlr*****""'1rlt1rlt*'frlt*****-lrlr***'lrlt*****1rlr1rlt**1rlt****1rlt**'lrlr1rlt**"k'k*****'k'k****1rlt*/

final class Semaphore_6
{

private mt value, // the value of the semaphore

/*--
Function
Semaphore_6

Descnpt1on
default constructor for Semaphore_6

Parameters
None

Return
None
--*/
public Semaphore_6()
{
value= 1,

}

/*--
Fun ct 10 n
Semaphore_6

Descnpt1on
constructor for Semaphore_6

Parameter
v - An integer value for the semaphore

Return
None
--*/
public Semaphore_6(mt v)
{
value =v,

}

/*--
Function
p

Descnpt1on
This function call the wait() to sleep when the value of Semaphore less than
or equal O If the value of Semaphore 1s a pos1t1ve number, decrements by 1

Parameters
None

Return
None
--*/
public synchronized void P()

}

{

}

while (value <= 0)
{
try
{

wa1tQ,
}
catch (lnterruptedExcept1on e) O

}
value--,

210

r--
F u n ct 10 n
V

Description
This function increments the semaphore value by 1 and call the not1fyQ
function to wakeup a process that 1s wa1tmg on the semaphore 1f 1t has any

Parameters
None

Return
None
--*/
pubhc synchronized void VO
{

++value,
notify(),

}

/***'lrk*'lrk***********'irlt1rlt**'lrlt***-lrlt**********1rlt****-lrlt***'irlrltt*******1rlt1rlt*******1rlt*1rlf*1rlt*1rlt***1rlt*****'lrlf*1rlt******'lrlr*1rlr******1rlr-lrlr*

The class specified the duration of access time

********'lrk****************************1rlt'irlt*.,.*************-1t1t-lrlr***1rlt'lr****************1rlt****-lrlt*1rlt****1rlt***********1rlr*1rlt***** I
fmal class Break_6
{

}

r--
Funct1on
duration

Description
The function spec1f1es the duration of access time m m1lhseconds

Parameter
m1lhseconds - how many m1lhseconds the access time 1s

Return
None
--*/
pubhc static void durat1on(mt m1fhseconds)
{

try
{

Thread sleep(m1fhseconds),
}
catch (lnterruptedExcept1on e) O

}

211

f

APPENDIX B

THE RUNNING RESULT

The following is the sample result of running three versions of program.

1. Sample result of running Verbose version

2. Sample result of running Throughput version

3. Sample result of running Turnaround version

II Sample result of running Verbose version

A - Rebuild verbose version
B - Rebuild throughput version
C - Rebuild turnaround version
D - Run verbose version
E - Run throughput version
F - Run turnaround version
Q - Quit

Choose an option A
Please enter the number of requests (default = 15, q to quit) 20
Please enter the access time for table read 40
Please enter the access time for record read 20
Please enter the access time for table wnte 60
Please enter the access time for record wnte 30
Please enter the interval time 0
Start running algorithm_ 1
wnter 0 wants to wnte
wnter 0 1s writing
wnter 1 wants to wnte
wnter 2 wants to wnte
wnter 3 wants to wnte
reader 0 wants to read
wnter 4 wants to wnte
reader 1 wants to read
wnter 5 wants to wnte.
reader 2 wants to read
reader 3 wants to read
wnter 6 wants to wnte
reader 4 wants to read
wnter 7 wants to wnte
reader 5 wants to read
wnter 8 wants to wnte
reader 6 wants to read
reader 7 wants to read
wnter 9 wants to wnte
wnter 1 0 wants to wnte
reader 8 wants to read
wnter 0 1s done writing
writer 1 1s writing
wnter 1 Is done writing
wnter 2 1s writing
wnter 2 1s done writing
wnter 3 1s writing
wnter 3 1s done writing
reader 0 1s reading Count = 1
reader 1 1s reading Count = 2
reader 2 1s reading Count = 3
reader 3 1s reading Count = 4
reader 4 1s reading. Count = 5
reader 5 1s reading Count = 6
reader 6 Is reading Count = 7
reader 7 Is reading Count = 8
reader 8 1s reading. Count = 9
reader 0 1s done reading Count = 8
reader 1 1s done reading Count = 7
reader 2 1s done reading Count = 6
reader 4 Is done reading Count = 5
reader 5 1s done reading Count = 4

212

reader 7 Is done reading Count = 3
reader 8 is done reading Count = 2
reader 3 Is done reading Count = 1
reader 6 Is done reading Count = 0
writer 4 Is writing
writer 4 Is done writing
writer 5 Is writing
writer 5 Is done writing
writer 6 Is writing
writer 6 Is done writing
writer 7 Is writing
writer 7 Is done writing
writer 8 Is writing
writer 8 Is done writing
writer 9 Is writing
writer 9 Is done writing
writer 1 0 Is writing
writer 1 0 Is done writing

Time spent for algorithm_ 1 0 531 seconds

The average times spent m mIlhseconds to obtain a lock m algorithm_ 1

TR Average = 105 [110 100]

RR Average= 105 [110 110 110 110 100 100 100]

RW Average= 183 [0 30 60 80 451 481]

TW Average = 200 [200]

RU Average= 240 [150 260 310]

TU Average = 350 [350]

Start running algorithm_2
writer 0 wants to write
writer 0 Is writing
writer 1 wants to write
writer 2 wants to write
writer 3 wants to write
reader 0 wants to read
writer 4 wants to write
reader 1 wants to read
writer 5 wants to write
reader 2 wants to read
reader 3 wants to read
writer 6 wants to write
reader 4 wants to read
writer 7 wants to write
reader 5 wants to read
writer 8 wants to write
reader 6 wants to read
reader 7 wants to read
writer 9 wants to write
writer 10 wants to write
reader 8 wants to read
writer 0 Is done writmg

213

writer 1 Is writing
writer 1 Is done writing
writer 2 Is writing
writer 2 Is done writing
writer 3 Is writing
writer 3 Is done writing
writer 4 Is writing
writer 4 Is done writing
writer 5 Is writing
writer 5 Is done writing
writer 6 Is writing
writer 6 Is done writing
writer 7 Is writing
writer 7 1s done writing
writer 8 Is writing
writer 8 Is done writing
writer 9 Is writing
writer 9 Is done writing
writer 10 Is writing
writer 10 Is done writing
reader 0 Is reading Count = 1
reader 1 Is reading Count = 2
reader 2 Is reading Count = 3
reader 3 Is reading Count = 4
reader 4 Is reading Count = 5
reader 5 Is reading Count = 6
reader 6 Is reading Count = 7
reader 7 Is reading Count = 8
reader 8 Is reading Count = 9
reader 0 Is done reading Count = 8
reader 1 Is done reading Count = 7
reader 2 Is done reading Count = 6
reader 4 Is done reading Count = 5
reader 5 Is done reading Count = 4
reader 7 Is done reading Count = 3
reader 8 Is done reading Count = 2
reader 3 Is done reading Count = 1
reader 6 Is done reading Count = 0

Time spent for algorithm_2 0 641 seconds

The average times spent in m1lhseconds to obtain a lock in algorithm_2

TW Average= 160 [160]

RU Average= 196 [110 220 260]

RW Average= 203 [0 20 50 80 520 551]

TU Average= 310 [310]

RR Average= 585 [591 591 591 581 581 581 581]

TR Average= 586 [591 581]

Start running algorithm_3
writer 0 wants to write
writer 0 Is writing
writer 1 wants to write
writer 2 wants to write

214

wnter 3 wants to write
reader O wants to read
wnter 4 wants to write
reader 1 wants to read
writer 5 wants to write
reader 2 wants to read
reader 3 wants to read
writer 6 wants to wnte
reader 4 wants to read
wnter 7 wants to write
reader 5 wants to read
writer 8 wants to write
reader 6 wants to read
reader 7 wants to read
writer 9 wants to wnte
writer 10 wants to wnte
reader 8 wants to read
wnter O 1s done writing
wnter 1 1s writing
writer 1 1s done writing
writer 2 1s writing
wnter 2 1s done writing
writer 3 1s writing.
writer 3 1s done writing
reader O 1s reading Count = 1
reader O 1s done reading Count = 0
writer 4 1s writing
writer 4 1s done writing
reader 1 1s reading Count = 1
reader 1 1s done reading Count = 0
writer 5 1s writing
writer 5 1s done writing
reader 2 1s reading Count = 1
reader 3 1s reading Count = 2
reader 2 1s done reading Count = 1
reader 3 1s done reading Count = 0
writer 6 1s writing
writer 6 1s done writing
reader 4 1s reading. Count = 1
reader 4 1s done reading Count = 0
writer 7 1s writing
writer 7 1s done writing
reader 5 1s reading Count = 1
reader 5 is done reading Count = 0
writer 8 1s writing
writer 8 1s done writing
reader 6 1s reading Count = 1
reader 7 1s reading Count = 2
reader 7 1s done reading Count = 1
reader 6 1s done reading Count = 0
writer 9 1s writing
writer 9 1s done writing
writer 10 1s writing
wnter 10 1s done writing
reader 8 1s reading. Count = 1
reader 8 1s done reading Count = 0

Time spent for algonthm_3 0 681 seconds

The average times spent in m1ll1seconds to obtain a lock in algonthm_3

215

TW Average= 210 [210]

RW Average= 228 [10 30 60 90 581 601]

RU Average= 270 [140 300 370]

RR Average= 358 [120 190 260 350 420 540 631]

TR Average= 400 [260 540]

TU Average = 440 [440]

Start running algorithm_ 4
writer 0 wants to write
writer 0 Is writing
writer 1 wants to write
writer 2 wants to write
writer 3 wants to write,
reader 0 wants to read
writer 4 wants to write.
reader 1 wants to read
writer 5 wants to write
reader 2 wants to read
reader 3 wants to read
writer 6 wants to write
reader 4 wants to read
writer 7 wants to write
reader 5 wants to read
writer 8 wants to write
reader 6 wants to read.
reader 7 wants to read
writer 9 wants to write
writer 1 0 wants to write
reader 8 wants to read
writer 0 Is done writing.
writer 1 Is writing
writer 1 Is done writing
writer 2 Is writing
writer 2 Is done writing
writer 3 Is writing
writer 3 Is done writing
reader 0 Is reading Count = 1
reader 1 Is reading. Count = 2
reader 2 Is reading Count = 3
reader 3 Is reading Count = 4
reader 4 Is reading Count = 5
reader 5 Is reading Count = 6
reader 6 Is reading Count = 7
reader 7 Is reading Count = 8
reader 8 Is reading Count = 9
reader 0 Is done reading Count = 9
reader 1 IS done reading Count = 8
reader 2 Is done reading Count = 7
reader 4 is done reading Count = 6
reader 5 Is done reading Count = 5
reader 7 is done reading Count = 4
reader 8 is done reading Count = 3
reader 3 Is done reading Count = 2
reader 6 Is done reading Count = 1
writer 4 Is writing
writer 4 1s done writing.

216

writer 5 Is writing
writer 5 Is done writing
writer 6 Is writing
writer 6 Is done writing
writer 7 Is writing
writer 7 Is done writing
writer 8 Is writing
writer 8 Is done wnting
writer 9 Is writing
writer 9 Is done writing
writer 10 Is writing.
writer 10 Is done writing

Time spent for algorithm_ 4 0 541 seconds

The average times spent in m1lhseconds to obtain a lock in algorithm_ 4

TR Average= 110 [110 110]

RR Average= 112 [120 120 120 110 110 110 100]

RW Average= 190 [10 30 60 90 460 490]

TW Average= 210 [210]

RU Average= 243 [160 260 310]

TU Average= 360 [360]

Start running algorithm_5
Writer 0 wants to do intent write to the TABLE
Wnter 0 Is doing intent write to the table Count[0] = 1
Wnter 0 wants to write to RECORD 3
Wnter 0 Is writing to record 3
Writer 1 wants to do intent write to the TABLE
Writer 2 wants to do intent write to the TABLE
Wnter 3 wants to do intent write to the TABLE
Reader 0 wants to do intent read from the TABLE
Writer 4 wants to do intent write to the TABLE
Reader 1 wants to do intent read from the TABLE
Writer 5 wants to write to the TABLE
Reader 2 wants to do intent read from the TABLE
Reader 3 wants to read from the TABLE
Wnter 6 wants to do intent write to the TABLE
Reader 4 wants to do intent read from the TABLE
Writer 7 wants to do intent write to the TABLE
Reader 5 wants to do intent read from the TABLE
Wnter 8 wants to write to the TABLE
Reader 6 wants to read from the TABLE
Reader 7 wants to do intent read from the TABLE
Wnter 9 wants to do intent write to the TABLE
Wnter 10 wants to do intent write to the TABLE
Reader 8 wants to do intent read from the TABLE
Writer 0 Is done writing to RECORD 3
Writer 0 Is done intent write to the TABLE. Count[0] = 0
Writer 1 Is doing intent write to the table Count[1] = 1
Writer 1 wants to write to RECORD 1
Writer 1 Is writing to record 1
Writer 1 Is done writing to RECORD 1
Writer 1 Is done intent wnte to the TABLE Count[1] = 0

217

Wnter 3 Is doing intent wnte to the table Count[0J = 1
Wnter 3 wants to wnte to RECORD 2
Wnter 3 Is wnting to record 2
Writer 3 Is done wnting to RECORD 2
Wnter 3 Is done intent wnte to the TABLE Count[0J = 0
Wnter 4Is doing intent write to the table Count[1] = 1
Wnter 4 wants to write to RECORD 0
Wnter 4 Is writing to record 0
Writer 4 IS done wnting to RECORD 0
Wnter 4 Is done intent wnte to the TABLE Count[1J = 0
Wnter 5 Is wnting to the table
Writer 5 Is done wnting to the TABLE
Reader 2 Is doing intent read from the table Count[0] = 1
Reader 2 wants to read from RECORD 2
Reader 2 Is reading from record 2 Count_2[0J = 1
Reader 3 Is reading from the table Count[0] = 2
Wnter 6 Is doing intent wnte to the table Count[0J = 3
Wnter 6 wants to wnte to RECORD 2
Reader 4 Is doing intent read from the table Count[0] = 4
Reader 4 wants to read from RECORD 0
Reader 4 Is reading from record 0 Count_0[0J = 1
Wnter 7 Is doing intent wnte to the table Count[0J = 5
Wnter 7 wants to wnte to RECORD 0
Reader 5 Is doing intent read from the table Count[0] = 6
Reader 5 wants to read from RECORD 2
Reader 6 Is reading from the table Count[0] = 7
Reader 7 Is doing intent read from the table Count[0J = 8
Reader 7 wants to read from RECORD 1
Wnter 9 Is doing intent wnte to the table Count[0] = 9
Wnter 9 wants to wnte to RECORD 4
Wnter 9 Is wnting to record 4
Wnter 2 Is doing intent wnte to the table Count[0] = 11
Writer 2 wants to wnte to RECORD 2
Wnter 10 Is doing intent wnte to the table Count[0] = 10
Wnter 10 wants to wnte to RECORD 4
Reader 7 Is reading from record 1 Count_ 1 [OJ = 1
Reader 8 Is doing intent read from the table Count[0J = 12
Reader 8 wants to read from RECORD 2
Reader 0 Is doing intent read from the table Count[0J = 13
Reader 0 wants to read from RECORD 1
Reader 1 Is doing intent read from the table Count[0] = 14
Reader 1 wants to read from RECORD 0
Reader 2 Is done reading from RECORD 2 Count_2[0J = 0
Reader 2Is done intent read from the TABLE Count[0J = 13
Reader 4 Is done reading from RECORD 0 Count_0[0J = 0
Reader 4 Is done intent read from the TABLE Count[0J = 12
Wnter 6 is wnting to record 2
Wnter 7 Is wnting to record 0
Writer 9 Is done wnting to RECORD 4
Writer 9 Is done intent wnte to the TABLE Count[0J = 11
Reader 7 Is done reading from RECORD 1. Count_ 1 [OJ = 0
Reader 7 Is done intent read from the TABLE. Count[0J = 10
Writer 10 Is wnting to record 4
Reader 0 Is reading from record 1 Count_1[1J = 1
Reader 3 Is done reading from the TABLE Count[0J = 9
Reader 6 Is done reading from the TABLE Count[0] = 8
Reader 0 Is done reading from RECORD 1. Count_ 1 [1 J = 0
Reader 0 Is done intent read from the TABLE Count[0] = 7
Wnter 10 Is done writing to RECORD 4
Wnter 10 is done intent wnte to the TABLE Count[0] = 6
Wnter 6 Is done wnting to RECORD 2
Wnter 2 Is wnting to record 2

218

Writer 6 Is done intent write to the TABLE Count[0] = 5
Wnter 7 Is done writing to RECORD 0
Writer 7 Is done intent write to the TABLE Count[0] = 4
Reader 1 Is reading from record 0 Count_0[1] = 1
Reader 1 Is done reading from RECORD 0 Count_0[1] = 0
Reader 1 Is done intent read from the TABLE Count[0] = 3
Writer 2 Is done writing to RECORD 2
Writer 2 Is done intent write to the TABLE Count[0] = 2
Reader 5 1s reading from record 2 Count_2[1] = 1
Reader 8 Is reading from record 2 Count_2[1] = 2
Reader 5 Is done reading from RECORD 2 Count_2[1] = 1
Reader 5 is done intent read from the TABLE Count[0] = 1
Reader 8 1s done reading from RECORD 2 Count_2[1] = 0
Reader 8 Is done intent read from the TABLE Count[0] = 0
Wnter 8 Is writing to the table
Wnter 8 1s done writing to the TABLE

Time spent for algorithm_5 0 48 seconds

The average times spent in m1lhseconds to obtain a lock in algorithm_5

RW Average = 150 [0 30 320 60 230 260]

TW Average= 180 [180]

RU Average= 220 [140 260 260]

TR Average = 240 [240 240]

RR Average= 282 [280 320 240 240 340 230 330]

TU Average = 360 [360]

Start running algorithm_6 .
Writer 0 wants to do intent write to the TABLE
Writer 0 Is doing intent write to the table Count[0] = 1
Writer 0 wants to write to RECORD 3
Writer 0 Is writing to record 3
Writer 1 wants to do intent write to the TABLE
Writer 2 wants to do intent write to the TABLE
Writer 3 wants to do intent write to the TABLE
Reader 0 wants to do intent read from the TABLE
Upgrader 0 wants to do intent write to the TABLE
Reader 1 wants to do intent read from the TABLE
Writer 4 wants to write to the TABLE
Reader 2 wants to do intent read from the TABLE
Reader 3 wants to read from the TABLE
Upgrader 1 wants to do intent write to the TABLE
Reader 4 wants to do intent read from the TABLE
Upgrader 2 wants to do intent write to the TABLE
Reader 5 wants to do intent read from the TABLE
Upgrader 3 wants to upgrade the TABLE
Reader 6 wants to read from the TABLE
Reader 7 wants to do intent read from the TABLE
Wnter 5 wants to do intent write to the TABLE
Wnter 6 wants to do intent write to the TABLE
Reader 8 wants to do intent read from the TABLE
Writer 0 Is done writing to RECORD 3
Wnter 0 Is done intent write to the TABLE Count[0] = 0
Wnter 1 Is doing intent write to the table Count[1] = 1
Wnter 1 wants to write to RECORD 1

219

Writer 1 Is writing to record 1
Writer 1 Is done writing to RECORD 1
Writer 1 Is done intent write to the TABLE Count[1J = 0
Writer 3 Is doing intent write to the table Count[2J = 1
Writer 3 wants to write to RECORD 2
Writer 3 Is writing to record 2
Wnter 3 Is done writing to RECORD 2
Writer 3 Is done intent write to the TABLE Count[2J = 0
upgrader 0 Is doing intent write to the table Count[0J = 1
Upgrader 0 wants to upgrade RECORD 0
Upgrader 0 Is reading from record 0 Count_0[0J = 1
Upgrader 0 Is wnting to record 0
Upgrader 0 Is done upgrading RECORD 0
Upgrader 0 Is done intent write to the TABLE Count[0J = 0
Writer 4 Is writing to the table
Writer 4 Is done writmg to the TABLE
Reader 2 ,s doing intent read from the table Count[1J = 1
Reader 2 wants to read from RECORD 2
Reader 2 Is reading from record 2 Count_2[0J = 1
Reader 3 Is reading from the table Count[1J = 2
upgrader 1 Is doing intent write to the table Count[1J = 3
Upgrader 1 wants to upgrade RECORD 2
Reader 4 Is doing intent read from the table Count[1J = 4
Reader 4 wants to read from RECORD 0
Reader 4 Is reading from record 0 Count_0[1J = 1
upgrader 2 Is doing intent wnte to the table Count[1J = 5
Upgrader 2 wants to upgrade RECORD 0
Reader 5 Is doing intent read from the table Count[1J = 6
Reader 5 wants to read from RECORD 2
Reader 6 Is reading from the table Count[1J = 7
Reader 7 Is doing intent read from the table Count[1J = 8
Reader 7 wants to read from RECORD 1
Reader 7 Is reading from record 1 Count_ 1 [OJ = 1
Writer 5 Is doing intent write to the table Count[1 J = 9
Writer 5 wants to write to RECORD 4
Writer 5 Is writing to record 4
Writer 6 Is doing intent write to the table Count[1] = 10
Writer 6 wants to write to RECORD 4
Reader 8 Is doing intent read from the table Count[1] = 11
Reader 8 wants to read from RECORD 2
Writer 2 Is doing intent write to the table Count[1] = 12
Writer 2 wants to write to RECORD 2
Reader 0 Is doing intent read from the table Count[1] = 13
Reader 0 wants to read from RECORD 1
Reader 1 Is doing intent read from the table Count[1] = 14
Reader 1 wants to read from RECORD 0
Reader 4 Is done reading from RECORD 0 Count_0[1J = 0
Reader 4 Is done intent read from the TABLE Count[1] = 13
Reader 7 Is done reading from RECORD 1 Count_ 1 [OJ = 0
Reader 7 Is done intent read from the TABLE Count[1J = 12
Upgrader 2 Is reading from record 0 Count_0[2J = 1
Reader 0 Is reading from record 1 Count_ 1 [1] = 1
Reader 2 Is done reading from RECORD 2 Count_2[0] = 0
Reader 2 Is done intent read from the TABLE Count[1] = 11
Upgrader 1 Is reading from record 2 Count_2[1] = 1
Reader 5 Is reading from record 2 Count_2[1] = 2
Reader 8 Is reading from record 2 Count_2[1] = 3
Writer 5 Is done writing to RECORD 4
Writer 5 Is done intent wnte to the TABLE Count[1] = 10
Writer 6 Is writing to record 4
Reader 3 Is done reading from the TABLE Count[1] = 9
Reader 0 1s done reading from RECORD 1 Count_ 1 [1] = 0

220

Reader 0 Is done intent read from the TABLE Count[1] = 8
Reader 5 Is done reading from RECORD 2 Count_2[1] = 2
Reader 5 Is done intent read from the TABLE Count[1] = 7
Reader 8 Is done reading from RECORD 2 Count_2[1] = 1
Reader 8 Is done intent read from the TABLE Count[1] = 6
Upgrader 1 Is writing to record 2
Reader 6 Is done reading from the TABLE Count[1] = 5
Upgrader 2 Is writing to record 0
Writer 6 Is done writing to RECORD 4
Writer 6 Is done intent write to the TABLE Count[1] = 4
Upgrader 1 Is done upgrading RECORD 2
Writer 2 1s writing to record 2
Upgrader 1 Is done intent write to the TABLE Count[1] = 3
Upgrader 2 Is done upgrading RECORD 0
Reader 1 Is reading from record 0 Count_0[0] = 1
Upgrader 2 Is done intent write to the TABLE Count[1] = 2
Reader 1 Is done reading from RECORD 0 Count_0[0] = 0
Reader 1 Is done intent read from the TABLE Count[1] = 1
Writer 2 Is done writing to RECORD 2
Writer 2 Is done intent write to the TABLE Count[1] = 0
upgrader 3 Is reading from the table Count[2] = 1
upgrader 3 Is writing to the table
Upgrader 3 Is done upgrading the TABLE

Time spent for algorithm_6 0 411 seconds

The average times spent in milliseconds to obtain a lock in algonthm_6

RW Average= 125 [0 30 271 61181 211]

TW Average= 131 [131]

RU Average= 167 [81 211 211]

TR Average= 186 [191 181]

RR Average= 208 [221 261191191 211181 201]

TU Average= 281 [281]

221

II Sample results of running turnaround version

A - Rebuild verbose version
B - Rebuild throughput version
C - Rebuild turnaround version
D - Run verbose version
E - Run throughput version
F - Run turnaround version
Q - Quit

Choose an option f

Please enter the number of requests (default= 15, 0 to terminate) 20
Please enter table reader access time 40
Please enter record reader access time 20
Please enter table wnter access time 60
Please enter record writer access time 30
Please enter interval time 0

The average times spent in m1ll1seconds to obtain a lock in algorithm_ 1

RR Average= 114 [120 120 120 110 110 110 110]

TR Average = 115 (120 110]

RW Average= 188 (0 30 60 90 461 491]

TW Average= 211 (211]

RU Average= 244 [160 261 311]

TU Average= 361 (361]

The average times spent in milliseconds to obtain a lock in algorithm_2

TW Average = 170 (170]

RW Average= 175 (0 30 60 90 421 451]

RU Average= 210 (120 230 280]

TU Average= 321 [321]

TR Average= 486 [491 481]

RR Average= 488 [491 491 491 491 491 481 481]

The average times spent in milliseconds to obtain a lock in algorithm_3

TW Average= 210 (210]

RW Average= 228 (0 30 60 90 581 611]

RU Average= 276 (140 310 380]

RR Average= 363 (120 190 270 360 421 541 641]

TR Average= 405 [270 541]

222

TU Average= 441 [441]

The average times spent in milliseconds to obtain a lock in algorithm_ 4

RR Average= 108[110110110110110110100]

TR Average= 110 [110 110]

RW Average= 182 [0 30 50 80 451 481]

TW Average = 200 [200]

RU Average= 240 [150 260 310]

TU Average = 360 [360]

The average times spent in milliseconds to obtain a lock in algonthm_5

RW Average = 28 [0 30 30 60 10 40]

RR Average = 70 [60 80 90 80 70 40 70]

RU Average = 76 [30 110 90]

TW Average= 160 [160]

TU Average= 200 [200]

TR Average= 310 [320 300]

The average times spent in milliseconds to obtain a lock m algonthm_6

RW Average= 31 [0 30 30 60 20 50]

RU Average= 76 [30 110 90]

RR Average= 84 [60 80 90 151 80 50 80]

TW Average= 171 [171]

TR Average= 226 [231 221]

TU Average= 261 [261]

223

II Sample results of running turnaround version

A - Rebuild verbose version
B - Rebuild throughput version
C - Rebuild turnaround version
D - Run verbose version
E - Run throughput version
F - Run turnaround version
Q-Quit

Choose an option e

Please enter the number of requests (default= 15, Oto terminate) 20
Please enter table reader access time 40
Please enter record reader access time 20
Please enter table writer access time 60
Please enter record writer access time 30
Please enter interval time 0

Time spent for algorithm_ 1 0 561 seconds

Time spent for algorithm_2 0 541 seconds

Time spent for algorithm_3 0 681 seconds

Time spent for algorithm_ 4 0 541 seconds

Time spent for algorithm_5 0 4 seconds

Time spent for algorithm_6 0 37 seconds

Please enter the number of requests (default = 15, 0 to terminate)

224

225

APPENDIX C

USER INSTRUCTIONS

The following material is the user instructions for building and running

the program.

Contents:

System Requirements
Steps for Running the Program
Steps for Bu1ldmg the Program

System Requirements:

226

User Instructions

This program 1s implemented m the Java programming language The software requires JDK 1 3

or JDK 1 4, which you may download from the following hnk

http /hava sun comh2se/downloads/mdex html

Smee 1t 1s m Java, theoretically the program 1s cross-platform However, the execution of the

program 1s automated for Windows only with a MS-DOS batch script So you will need to set up

the CLASSPATH environment variable, build and execute the program manually 1f you are usmg

a system other than Windows Note that steps for building the program and steps for running the

program below are both for Windows

Steps for Running the Program:

Normally, you do not have to build the program before running 1t smce all the necessary class

files are already included m the package However, 1f Java complains that 1t 1s unable to fmd a

class or any symbol 1s not defined when you run the program you will need to rebuild 1t Refer to

the "Steps for Bu1ldmg the Program" section for mstruct1ons on how to build the program Use

the following steps to run the program

1 Add "JAVA_HOME" to the system environment The user needs to do this only once To

do this, right chck on the "My Computer" icon on the desktop and select "Properties"

Select the "Advanced" tab and chck on the "Environment Variables" button CIiek on the

"New .. " button for "System variables" Enter "JAVA_HOME" m the "Variable" field and

the top directory of the JDK or JSDK m the "Variable Value" field CIiek on the OK

buttons to accept the selection

2 Download "Thes1s_Pr0Ject zip" and unzip 1t Note that the path to the folder

"Thes1s_Pr0Ject" should not contain any space

227

3 In Windows Explorer, double click on the file "MyProJectRunner bat" in the

"Thes1s_Pr0Ject" folder Alternatively, in a MS-DOS window, "cd " to the "Thes1s_Pr0Ject"

folder and then run "MyProJectRunner bat" The batch script runs in the MS-DOS

window, presenting a menu of options

4 If you want to run the verbose version of the program, type 'C' or 'c' after the prompt

Here the word "verbose" means 1f you run this version of the program, 1t will spew to the

screen other necessary information regarding the algorithms besides the time

information This 1s very helpful for investigating the algorithms in terms of the execution

order of the threads, deadlock and starvation But the costs for outputting these

excessive texts can make the time comparison data inaccurate

5. If you want to build the terse version of the program, type 'D' or 'd' after the prompt Here

the word "terse" means 1f you run this version of the program, 1t will put on the screen

only the time information of algorithms Use this 1f you only want to compare the relative

effectiveness of the algorithms

6 Enter the number of requests This corresponds to the total number of threads (writers,

readers, upgraders, etc) The program will then pseudo-randomly generate the writers,

readers, and/or upgraders They are generated pseudo-randomly so that we can

compare the effectiveness of the algorithms

7 Enter the access time for the readers

8 Enter the access time for the writers

Then depends on which version of the program you chose to run, the program prints out on the

screen the results of running the algorithms

Steps for Building the Program

You do not have to rebuild the program before running 1t, but 1f Java complains that 1t 1s unable to

find a class or any symbol 1s not defined when you run the program you will need to rebuild 1t

Refer to the "Steps for Running the Program" section for instructions on how to run the program

Use the following steps to rebuild the program

1 Add "JAVA_HOME" to the system environment The user needs to do this only once To

do this, right chck on the "My Computer'' ,con on the desktop and select "Properties"

Select the "Advanced" tab and click on the "Environment Variables" button Click on the

228

"New . "button for "System variables" Enter "JAVA_HOME" in the "Variable" field and

the top directory of the JDK or JSDK in the "Variable Value" field Click on the OK

buttons to accept the selections

2 Download "Thes1s_Pr0Ject zip" and unzip rt Note that the path to the folder

"Thes1s_Pr0Ject" should not contain any space

3 In Windows Explorer, double click on the file "MyProJectRunner bat" in the

"Thes1s_Pr0Ject" folder Alternatively, in a MS-DOS window, CD to the "Thes1s_Pr0Ject"

folder and then run "MyProJectRunner bat" The batch script runs in the MS-DOS

window, presenting a menu of options

4 If you want to build the verbose version of the program, type 'A' or 'a' after the prompt

Here the word "verbose" means 1f you run this version of the program, rt will put on the

screen other necessary information regarding the algorithms besides the time

information This 1s very helpful for investigating the algorithms in terms of the execution

order of the requests, deadlock and starvation But the costs for outputting these

excessive texts can make the time comparison data inaccurate.

5 If you want to build the terse version of the program, type 'B' or 'b' after the prompt Here

the word "terse" means rf you run this version of the program, rt will put on the screen

only the time information of algorithms Use this 1f you only want to compare the relative

effectiveness of the algorithms

The batch script will then delete all of the class fries recursively, build the program in the chosen

version and generate "clean" class files

REFERRENCE

[CoHP71]

P. Courtois, F. Heymans, and D. Parnas,

"Concurrent control with "readers"and "writers"",
Communications of the ACM, Vol. 14, No. 10, Oct. 1971,

pp. 667-668.

[Dijk65]
E.W. Dijkstra

"Co-operating Sequential Processes," in Programming Languages,
Genuys, F,(Ed), London: Academic Press,1965

[TaWo97]
Andrew S. Tanenbaum and Albert S. Woodhull,

"Operating system", second edition. 1997-1998, pp. 66.

[EuSt82]
Eugene W. Stark

"Semaphore primitives and starvation-free mutual exclusion"
Journal of the ACM, Vol 29, No. 4, Oct. 1982
pp. 1049-1051

[Hart03]
Justin Hartman
"Fair Readers and Writers with Semaphore"
Homework assignment ofEECS 338 class from Case Western
Reserve University. 2003
http:/ /vorlon.ces.cwru.edu/~jrh23/3 3 8/HW3 .pdf
pp. 1 - 2

229

[IONA0l]
IONA Technologies PLC 2001
"Chapter 7: Concurrency Control
Lock Modes
Read/Write Locking"

230

OrbixOTS programmer's and Administrator's Guide
http://www.iona.com/support/docs/manuals/orbix/33/pdf/orbixots3 3 pguide.p
df

pp. 105-107

[SiGG03]
A vi Siberschatz, Greg Gagne, Peter Galvin,
"Applied Operating Systems Concepts- Window XP Update",
first edition. 2003, pp. 184-198.

VITA

Mei Li was born in Lu Zhou, SiChuan, P.R. China, on March 5, 1968, the daughter of

Yunqing Li and Renyu, Wan. After completing her work at First Middle School, Lu

Zhou, SiChuan, P.R. China. She received the Bachelor of Art from SiChuan Foreign

Language University in July 1989. During the following years she was employed as a

Japanese translator with Lu Zhou Import and Export Company, P.R. China. In January

2001, she entered the Graduate College of Texas State University-San Marcos, Texas.

This thesis was typed by Mei Li.

