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Multiple Solutions For Semilinear Elliptic

Boundary Value Problems At Resonance ∗

Steve B. Robinson

Abstract

In recent years several nonlinear techniques have been very successful
in proving the existence of weak solutions for semilinear elliptic bound-
ary value problems at resonance. One technique involves a variational
approach where solutions are characterized as saddle points for a related
functional. This argument requires that the Palais-Smale condition and
some coercivity conditions are satisfied so that the saddle point theorem
of Ambrossetti and Rabinowitz can be applied. A second technique has
been to apply the topological ideas of Leray-Schauder degree. This argu-
ment typically creates a homotopy with a uniquely solvable linear problem
at one end and the nonlinear problem at the other, and then an a priori
bound is established so that the homotopy invariance of Leray-Schauder
degree can be applied. In this paper we prove that both techniques are ap-
plicable in a wide variety of cases, and that having both techniques at our
disposal gives more detailed information about solution sets, which leads
to improved existence results such as the existence of multiple solutions.

1 Introduction

The fundamental question that we address in this paper is: Under what condi-
tions are both topological and variational existence theorems applicable to the
problem

∆u+ λku+ g(u) + h = 0 , x ∈ Ω ,

u|∂Ω = 0 ,
(1)

where Ω is a smooth bounded domain in Rn, λk is an eigenvalue of −∆, g : R→
R is a continuous function, and h ∈ L2(Ω)? Of particular interest are double
resonance problems where the term (λk + g(u)/u) ranges between consecutive
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eigenvalues of −∆ for large |u|. One-sided resonance is similar except that the
given term is strictly bounded away from one of the eigenvalues.

As an application we prove the existence of multiple nontrivial solutions for
a class of problems where h = 0 and g is a C1 function such that g(0) = 0
and g′(0) is known. Problems such as this often arise in applications such
as Population Biology, where u represents a steady-state population density,
(λk + g(u)/u) represents a population dependent growth rate, and (λk + g′(0))
represents a growth rate in the absence of certain environmental restrictions
such as crowding.

Our results improve upon previous work in the following ways: Theorem
1 improves upon the basic existence result in [18] by including a saddle point
characterization of at least one solution. This characterization is an important
part of the subsequent multiplicity result. This improvement comes at the price
of a somewhat less general solvability condition than in [18]. Theorems 2 and 3
improve upon the multiplicity results of [1] and [21]. In [1] it is assumed that g
is bounded, and the argument relies on a standard Landesman-Lazer condition.
In [21] the results of [1] are extended by allowing g to have linear growth, and
by using a generalized Landesman-Lazer condition. However, the variational
argument in [21] assumes one-sided resonance at the principal eigenvalue. In this
paper g is allowed linear growth and we provide a variational argument that is
valid for double resonance problems between arbitrary consecutive eigenvalues.
Moreover, we rely on a Landesman-Lazer type condition that is more general
than that in [21].

For purposes of clarity we consider only boundary value problems for the
Laplace operator and with Dirichlet boundary conditions. However, it will be
clear that our variational arguments apply to boundary value problems with
more general elliptic operators, more general boundary conditions, and with
nonlinear terms of the form g(x, u) where g is Caratheodory.

The discussion begins in Section 2, where we state Theorem 1 along with
some clarifying comments. Sections 3 and 4 provide the elements of a variational
existence proof using an Ambrossetti-Rabinowitz type saddle point argument.
Theorem 1 then follows as a consequence of these arguments combined with the
basic degree-theoretic result of [18], and so we get a theorem that provides a
better description of the solution set than either the variational or topological
arguments do separately. In Section 5 we use the combined topological and
variational characteristics of the solution set to prove the existence of multiple
solutions for a certain class of problems. The proofs in Section 5 are similar to
those in [1] and [21].

It is well known that the Landesman-Lazer condition implies coerciveness
statements and the Palais-Smale condition in a natural way, see [1] for details.
One consequence of the work in this paper is that generalized Landesman-Lazer
conditions imply a similar structure. However, there are some interesting dif-
ferences. For example, although the functional related to problem (1) will be
coercive over one subspace and anticoercive over its orthogonal complement, its
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growth in either direction might be relatively slow. This possibility of slower
growth makes it more difficult to establish a compactness condition. In fact, we
will not prove the usual Palais-Smale condition in Section 4, but rather a less
restrictive version often credited to G. Cerami. For a detailed discussion of this
compactness condition and for additional references see [4].

Before continuing it is helpful to establish the notation that will be used
throughout the paper.

H1
0 (Ω) is the completion of C∞0 (Ω) in L2(Ω) with respect to the norm ‖u‖ =(∫

Ω
|∇u|2

)1/2
.

λj := jth distinct eigenvalue of −∆, where 0 < λ1 < λ2 < · · ·.

V j := Ker(∆ + λj), V
− =

⊕
j<k V

j , and V + :=
⊕

j>k+1 V
j .

Given u ∈ H1
0 (Ω), then u−, uk, uk+1, and u+ are its orthogonal components

in V −, V k, V k+1, and V +, respectively.

G(x, u) :=
∫ u

0
(g(s) + h(x))ds.

g̃(u) := (λk+1 − λk)u− g(u).

G̃(x, u) :=
∫ u

0
(g̃(s)− h)ds =

(
λk+1−λk

2

)
u2 −G(x, u).

f(u) := 1
2

∫
Ω |∇u|

2 − 1
2λk

∫
Ω u

2 −
∫

Ω G(x, u), for u ∈ H1
0 (Ω).

Notice that under reasonable conditions on g, f is a functional on H1
0 (Ω)

that is twice Frechet-differentiable with

f ′(u)v =

∫
Ω

∇u · ∇v − λk

∫
Ω

uv −

∫
Ω

(g(u) + h)v , and

f ′′(u)(v, w) =

∫
Ω

∇v · ∇w − λk

∫
Ω

vw −

∫
Ω

g′(u)vw .

It is a standard fact that solutions of (1) correspond to critical points of f ,
and that f ′ has the form Identity-Compact, see [17], so that Leray-Schauder
techniques are applicable. We will use the notation degLS(f ′, U, 0) for the Leray-
Schauder degree of f ′ with respect to the set U and the value 0.

2 A General Existence Theorem For Double Res-
onance Problems

Theorem 1 If g satisfies

(g1): 0 ≤ lim inf
|s|→∞

g(s)

s
≤ lim sup
|s|→∞

g(s)

s
≤ λk+1 − λk,
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(g2): If ‖un‖ → ∞ such that ‖ukn‖/‖un‖ → 1, then ∃N, δ > 0 such that〈
g(un) + h, ukn

〉
L2 ≥ δ for all n > N , and

(g3): If ‖un‖ → ∞ such that ‖uk+1
n ‖/‖un‖ → 1, then ∃N, δ > 0 such that〈

g̃(un)− h, uk+1
n

〉
L2 ≥ δ for all n > N ,

then problem (1) has a nonempty solution set, S, and there is an R > 0 such that
S ⊂ BR(0) and degLS(f ′, BR(0), 0) = (−1)m, where m represents the dimension
of V −

⊕
V k. Moreover, we have the following saddle point result: There are

real constants β > α and a bounded neighborhood D of 0 in V −
⊕
V k such that

f |∂D ≤ α and f |V k+1
⊕

V + ≥ β, and there is a critical value c ≥ β such that

c = inf
h∈Γ

max
u∈D

f(h(u)) ,

where
Γ = {h ∈ C(D,H1

0 (Ω))|h = id on ∂D}.

The proof of the the degree computation in this theorem is given in [18] by
establishing an a priori bound for the solution set of the family of equations

∆u+ 1
2 (λk + λk+1)u+ t

(
g(u) + h− 1

2 (λk+1 − λk)u
)

= 0, x ∈ Ω, t ∈ [0, 1]

u|∂Ω = 0 . (2)

The homotopy invariance of Leray-Schauder degree is then applicable, and it is
straight forward to compute the degree for the linear problem at t = 0.

The saddle point characterization will follow from the arguments in the next
two sections below. For later reference we remark that if Γ is simply a collection
of curves with fixed endpoints, then we refer to the corresponding solution as
a solution of mountain pass type. This would occur, for example, if we had
λk = λ1 so that V − ≡ 0 and V 1 is one dimensional.

The existence of at least one solution is true in a much more general setting.
For example, in [18] a theorem of this type is proved for a class of boundary
value problems over unbounded domains. Also, in [19] it is shown that δ can be
replaced by 0 in (g2) and (g3), although the boundedness of the solution set is
lost, and so no compactness condition of Palais-Smale type is possible.

It has also been shown that many well-known solvability conditions are spe-
cial cases of (g2) and (g3). For example the standard Landesman-Lazer condi-
tion (see [15]), the solvability conditions used by Fucik, Krbec, and Hess (see [12]
and [9]), the double resonance conditions used by Berestycki and DeFigueredo
(see [5]), and some cases of the density conditions at infinity (see [7]). For com-
parisons of solvability conditions see [20], [18], and [19]. A notable exception is
the sign condition used in [13] and many other recent papers. The sign condi-
tion is a special case of the more general theorem where we replace δ by 0 in
(g2) and (g3), see [19], but will not be included in the results of this paper. A
second interesting exception is the well-known solvability condition of Ahmad,
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Lazer, and Paul, see [2], for problems with bounded nonlinear terms. It can be
shown that the ALP condition is not a consequence of the most general form of
(g2) and (g3) and vice versa.

3 Coercivity

In this section we prove

Lemma 1 Assume that g is a continuous function satisfying (g1)-(g3). Then
f is coercive on V k+1

⊕
V + and is anticoercive on V −

⊕
V k.

The proof of this lemma requires several technical preliminary results. We
will concentrate on proving that f is coercive on V k+1

⊕
V + and remark that

the anticoercive statement follows by a similar argument. In fact the second
argument can be simplified by using the fact that V −

⊕
V k is finite dimensional.

The interested reader can verify that f |V + and f |V k+1 are coercive as a direct
consequence of conditions (g1) and (g3), respectively. The technical difficulty
arises when we study the functional over the combined space.

Claim 1 Given any r > 0, f is coercive on the solid cone

Cr := {u ∈ V k+1
⊕

V + : ‖u+‖ ≥ r‖u‖}.

Proof: Rewrite f as

f(u) =
1

2

∫
Ω

|∇u|2 −
λk+1

2

∫
Ω

u2 +

∫
Ω

G̃(x, u) , (3)

and f ′ as

f ′(u)v =

∫
Ω

∇u · ∇v − λk+1

∫
Ω

uv +

∫
Ω

(g̃(u)− h)v .

Applying the right hand side of the inequality (g1), we can say that given any
ε > 0 there is a constant ρ > 0 such that g̃(s)s ≥ −εs2 for every |s| > ρ. Thus
there is a constant, a, depending on g and ρ, such that∫

Ω

g̃(u)u ≥ −ε

∫
Ω

u2 − a ,

≥ −
1

λ1
ε‖u‖2 − a ,



6 Multiple solutions EJDE–1995/01

where we have applied Poincare’s Inequality. Further,∫
Ω

|∇u|2 − λk+1

∫
Ω

u2 =

∫
Ω

|∇u+|2 − λk+1

∫
Ω

(u+)2 for u ∈ V k+1
⊕

V +

≥ (1−
λk+1

λk+2
)‖u+‖2 for u ∈ V k+1

⊕
V +

≥ r2(1−
λk+1

λk+2
)‖u‖2 for u ∈ Cr .

The previous inequalities imply

f ′(tu)u ≥ t(b−
ε

λ1
)‖u‖2 − t‖h‖ ‖u‖ − a, t ≥ 0,

where b = r2(1− λk+1

λk+2
) > 0. Therefore

f(u) = f(0) +

∫ 1

0

f ′(tu)u dt ≥ f(0) +
1

2

[
(b−

ε

λ1
)‖u‖2 − ‖h‖ ‖u‖

]
− a ,

and so an appropriate choice of ε finishes the proof.

Claim 2 Given any r > 0 f achieves a minimum on the cylinder

Kr := {u ∈ V k+1
⊕

V + : ‖uk+1‖ = r} .

Proof: Applying Claim 1, it is easy to see that f is coercive when restricted
to Kr . Thus if {un} is a sequence in H1

0 (Ω) such that {f(un)} is bounded, then
{un} must be bounded as well. If we also know that f ′(un) → 0, then, using
the fact that f ′ is of the form Identity-Compact, we can show that {un} must
have a converging subsequence. In other words f |Kr satisfies the Palais-Smale
condition. It is then an easy exercise to show that f |Kr achieves a minimum.

Proof of Lemma 1: We prove that f is coercive by examining its behavior on
a sequence of “minimizers,” as described in Claim 2. Let {un} ⊂ V k+1

⊕
V +

such that ‖un‖ → ∞, and such that

f(un) ≤ f(u) for all u ∈ K‖uk+1
n ‖ . (4)

We will show that f(un)→∞ for some subsequence of {un}. It will follow that
no sequence of minimizers is bounded above, and hence that

lim
‖u‖→∞

f(u) =∞ for u ∈ V k+1
⊕

V + .

If {un} is contained in any solid cone, Cr, as in Claim 1, then f(un)→∞, so
we need only consider the case where ‖uk+1

n ‖/‖un‖ → 1, which brings condition
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(g3) into play. Since this implies ‖uk+1
n ‖ → ∞, we may also assume that

‖uk+1
n+1‖ > ‖u

k+1
n ‖ for all n. For any n it is clear that (‖uk+1

n ‖/‖uk+1
n+1‖)u

k+1
n+1 +

u+
n+1 ∈ K‖uk+1

n ‖, so property (4) implies

f(un+1)− f(un) ≥ f(un+1)− f

(
‖uk+1

n ‖

‖uk+1
n+1‖

uk+1
n+1 + u+

n+1

)
.

By substituting into expression (3), we get

f(un+1)− f(un) ≥

∫
Ω

[
G̃(x, un+1)− G̃

(
x,
‖uk+1

n ‖

‖uk+1
n+1‖

uk+1
n+1 + u+

n+1

)]
.

Let

γn(t) = t+ (1− t)
‖uk+1

n ‖

‖uk+1
n+1‖

,

and let
vn(t) = γn(t)uk+1

n+1 + u+
n+1,

so vn(0) = (‖uk+1
n ‖/‖uk+1

n+1‖)u
k+1
n+1 + u+

n+1 and vn(1) = un+1. Next let

Fn(t) =

∫
Ω

G̃(x, vn(t)) ,

so

f(un+1)− f(un) ≥ Fn(1)− Fn(0)

=

∫ 1

0

F ′n(t) dt

=

∫ 1

0

〈
g̃(vn(t)), γ

′
n(t)uk+1

n+1

〉
L2 dt

=

∫ 1

0

〈
g̃(vn(t)), γn(t)uk+1

n+1

〉
L2 (

γ′n(t)

γn(t)
) dt .

We claim that, without loss of generality, there is a δ > 0 such that〈
g̃(vn(t)), γn(t)u

k+1
n+1

〉
L2 ≥ δ

for every n and every t ∈ [0, 1]. If not there would be a subsequence {un} and
a corresponding sequence {tn} ⊂ [0, 1], such that

lim sup
n→∞

〈
g̃(vn(tn)), γn(tn)u

k+1
n+1

〉
L2 ≤ 0 .

Observe that ‖vn(tn)+‖ = ‖u+
n+1‖, and ‖vn(tn)k+1‖ = γn(tn)‖uk+1

n+1‖, so

‖uk+1
n ‖ ≤ ‖vn(tn)k+1‖ ≤ ‖uk+1

n+1‖ .
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It follows that limn→∞ ‖vn(tn)k+1‖/‖vn(tn)‖ = 1, but this contradicts (g3).
Applying this result we have

f(un+1)− f(un) ≥ δ

∫ 1

0

γ′n(t)

γn(t)
dt ∀ n

= δ [ln(γn(1))− ln(γn(0))]

= δ

[
ln(1)− ln(

‖uk+1
n ‖

‖uk+1
n+1‖

)

]
= δ

[
ln(‖uk+1

n+1‖)− ln(‖uk+1
n ‖)

]
.

Hence

f(un+1) = f(u1) +
n∑
j=1

[f(uj+1)− f(uj)]

≥ f(u1) + δ

n∑
j=1

[
ln(‖uk+1

j+1‖)− ln(‖uk+1
j ‖)

]
= f(u1)− δ ln(‖uk+1

1 ‖) + δ ln(‖uk+1
n+1‖) ,

therefore f(un)→∞ , and coerciveness is proved.
In the next section we will give more thought to the fact that f might grow

only as fast as a logarithm.

4 A Compactness Condition

In this section we show that f satisfies a less restrictive form of Palais-Smale
condition that is still sufficient to imply mountain pass and saddle point theo-
rems.

It is a simple task to prove the Palais-Smale condition as a consequence of
the Landesman-Lazer condition, or as a consequence of the following generalized
conditions:

(g2)′: If ‖un‖ → ∞ such that ‖ukn‖/‖un‖ → 1, then ∃N, δ > 0 such that〈
g(un) + h, ukn/‖u

k
n‖
〉
L2 ≥ δ for all n > N , and

(g3)′: If ‖un‖ → ∞ such that ‖uk+1
n ‖/‖un‖ → 1, then ∃N, δ > 0 such that〈

g̃(un)− h, uk+1
n /‖uk+1

n ‖
〉
L2 ≥ δ for all n > N ,

We remark that (g2)′ and (g3)′ were satisfied in both [1] and [21], and we
refer to these papers for the simple Palais-Smale argument.

A similarly easy argument based upon the conditions (g2) and (g3) does not
appear to be available. In order to understand why this new situation is more
delicate it is worthwhile considering a simple but instructive example. Notice
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that in the previous section the estimates revealed that, over the eigenspaces V k

and V k+1, the functional might have only logarithmic growth. Thus we consider
the following situation: Let z : R2 → R : z(x, y) = log(1 + x2) − log(1 + y2).
This function is coercive over the x-axis, anticoercive over the y-axis and satisfies
conditions (g2) and (g3), since, for example, 〈∇z, (x, 0)〉 = 2x2/(1 + x2)→ 2 as
x→∞. However, z does not satisfy the Palais-Smale condition, because z = 0
on the level set |x| = |y|, but ∇z = (2x/(1 + x2),−2y/(1 + y2)) → (0, 0) as
x, y →∞.

It turns out that the functional f , as well as the example above, satisfies the
following compactness condition, which is a special case of the condition used
in [4].

Lemma 2 If {un} ⊂ H1
0 (Ω) such that (1 + ‖un‖)‖f ′(un)‖ → 0, then {un}

contains a converging subsequence.

Proof: Suppose {un} is such a sequence. Once again, f ′ is of the form Identity-
Compact, so it suffices to show that {un} is bounded. We argue by contradiction,
so suppose that ‖un‖ → ∞. Since bounded sets in H1

0 (Ω) are weakly compact,
and since H1

0 (Ω) embeds compactly in L2(Ω), without loss of generality we may
assume that there is a unit vector w ∈ H1

0 (Ω) and a bounded measurable γ(x)
such that

un

‖un‖
⇀ w in H1

0 (Ω) ,

un

‖un‖
→ w in L2(Ω) , and

g(un)

‖un‖
⇀ γw in L2(Ω) ,

where 0 ≤ γ ≤ λk+1 − λk. The last statement follows directly from writing
g(un)/‖un‖ = (g(un)/un)(un/‖un‖) for un(x) 6= 0 and then applying condition
(g1).

Notice that for any v ∈ H1
0 (Ω)

f ′(un)v

‖un‖
=

∫
Ω

(
∇un
‖un‖

)
· ∇v − λk

∫
Ω

(
un

‖un‖

)
v −

∫
Ω

(
g(un)

‖un‖

)
v −

1

‖un‖

∫
Ω

hv .

Allowing n→∞ we get

0 =

∫
Ω

∇w · ∇v − λk

∫
Ω

wv −

∫
Ω

γwv ∀v ∈ H1
0 (Ω) .

Thus w is a nontrivial weak solution of the boundary value problem

∆w + (λk + γ)w = 0, x ∈ Ω ,

u|∂Ω = 0 .
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Since λk ≤ λk + γ ≤ λk+1, a standard argument involving the maximum prin-
ciple and the unique continuation property implies that either λk + γ ≡ λk a.e.
and w ≡ wk, or λk+γ ≡ λk+1 a.e. and w ≡ wk+1. (The details of this argument
are available in many papers, see [18] or [14], for example.) Thus we have that
either ‖ukn‖/‖un‖ → 1 or ‖uk+1

n ‖/‖un‖ → 1, so either condition (g2) or (g3) is
applicable. Suppose w ≡ wk (The argument for w ≡ wk+1 is similar). Then
by (g2), and by passing to a subsequence if necessary, we can assume there is a
δ > 0 such that

f ′(un)u
k
n = −

∫
Ω

(g(un) + h)ukn ≤ −δ ∀n .

Therefore
‖f ′(un)‖ ‖u

k
n‖ ≥ δ ∀n ,

which contradicts (1 + ‖un‖)‖f ′(un)‖ → 0, and the proof is done.
As a consequence of Lemma 2 we know that the functional f satisfies a

variant of the Palais-Smale condition discussed in [4]. We refer to this paper for
proofs of a deformation lemma as well as the standard mountain pass and saddle
point theorems. Hence Lemmas 1 and 2 imply the variational characterization
in Theorem 1.

5 Existence of Multiple Solutions

In this section we consider the following restricted version of problem (1).

∆u+ λku+ g(u) = 0, x ∈ Ω ,

u|∂Ω = 0 ,
(5)

where g is a C1 function such that g(0) = 0. Thus it is given that there is a
trivial solution to the problem and we are interested in proving the existence of
nontrivial solutions. Observe that weak solutions are classical solutions in this
case.

Most of the work for proving the following theorems has already been ac-
complished in the preceding sections. The general outline of the arguments is
similar to that used in [1] and [21], and we will make use of the results in [3]
and [11]. Ambrossetti’s result in [3] states that if f has a nondegenerate crit-
ical point of mountain pass type, then the Morse index of f at this point is 1.
We will use the notation indM (f, u) for the Morse index of f at a nondegener-
ate critical point u. Recall that this quantity is the dimension of the subspace
where f ′′(u) is negative definite. Hofer’s result in [11] states that if f has an
isolated critical point of mountain pass type, then the Leray-Schauder index
of f ′ at this point is −1. We will use the notation indLS(f ′, u) for the Leray-
Schauder index of f ′ at a critical point u. Recall that this quantity is defined as
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limr→0 degLS(f ′, Br(u), 0), if this limit exists, where Br(u) is the r-ball centered
at u. The computation of indLS(f ′, 0) in the following proofs is standard, but
for more detail see Theorem 2.8.1 in [16].

Both theorems of this section generalize the results in [21] by allowing double
resonance rather than just one-sided resonance, and by allowing a more general
Landesman-Lazer type solvability condition. Further, the first theorem of this
section allows double resonance between any two consecutive eigenvalues rather
than just between the first two eigenvalues.

A particular example of a nonlinear term that does not satisfy the conditions
in [1] or [21] would be g(u) = u/(1 + u2). Since lim|u|→∞ g(u) = 0 it follows
that neither the standard Landesman-Lazer condition used in [1] nor the gen-
eralization used in [21] can be satisfied. However it was shown in [19], using a
simple dominated convergence argument, that this nonlinear term does satisfy
(g2) and (g3). A number of modifications can be made to this example without
changing its basic characteristics, e.g. adding certain types of terms with linear
growth. For a detailed discussion with examples see [19]. Finally, it is easy to
see that this example can be modified for u within any specified interval [−r, r]
so that g′(0) satisfies the hypotheses of the following theorems. For further re-
marks and examples on how generalized Landesman-Lazer conditions compare
to solvability conditions used in other variational arguments, such as in [6], see
[21].

Theorem 2 Suppose g satisfies (g1)-(g3) and λk + g′(0) < λ1. Then problem
(5) has at least two nontrivial solutions.

Proof: Notice that for any v ∈ H1
0 (Ω)

f ′′(0)(v, v) =

∫
Ω

|∇v|2 − λk

∫
Ω

v2 − g′(0)

∫
Ω

v2 .

If λk + g′(0) ≥ 0, then by Poincare’s inequality

f ′′(0)(v, v) ≥

(
1−

λk + g′(0)

λ1

)
‖v‖2,

and if λk + g′(0) ≤ 0, then

f ′′(0)(v, v) ≥ ‖v‖2.

It follows that 0 is a nondegenerate critical point of f with indM (f, 0) = 0 and
indLS(f ′, 0) = 1. Moreover, 0 is a strict local minimum of f , so there is an
r > 0 and an α > 0 such that f |∂Br(0) ≥ α. Since f |V −

⊕
V k is anticoer-

cive, we can find a w ∈ Br(0)
c

such that f(w) ≤ 0. Now let Γ = {h ∈
C([0, 1],H1

0 (Ω))|h(0) = 0, h(1) = w}. The compactness condition of Lemma 2
justifies a standard deformation argument to show that

c = inf
h∈Γ

max
0≤t≤1

f(h(t))
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is a critical value for f . Thus there is at least one critical point, u0, of mountain
pass type, and, since f(u0) ≥ α > 0, it is clear that u0 is nontrivial.

Suppose {0, u0} is the entire solution set of (5). Then u0 is an isolated
critical point of mountain pass type, and it is justified to apply the result in
[11] to get indLS(f ′, u0) = −1. The addition property of Leray-Schauder degree
implies that for R as in Theorem 1

degLS(f ′, BR(0), 0) = indLS(f ′, 0) + indLS(f ′, u0) = 0,

but this contradicts the conclusion of Theorem 1. Hence there must be at least
one more nontrivial solution.

Theorem 3 Suppose g satisfies (g1)-(g3), k = 1, and there is an m ≥ 2 such
that
λm < λ1+g′(0) < λm+1. Then problem (5) has at least two nontrivial solutions.

Proof: Observe that since k = 1 we have

f ′′(0)(v, v) =

∫
Ω

|∇v|2 − λ1

∫
Ω

v2 − g′(0)

∫
Ω

v2,

so for v ∈
⊕

j≤m V
j we have

f ′′(0)(v, v) ≤ (λm − λ1 − g
′(0))

∫
Ω

v2,

and, since the L2 and H1
0 norms are equivalent on the finite dimensional space⊕

j≤m V
j , there is a constant c > 0 such that

f ′′(0)(v, v) ≤ −c‖v‖2.

For v ∈
⊕

j≥m+1 V
j we have

f ′′(0)(v, v) ≥

(
1−

λ1 + g′(0)

λm+1

)
‖v‖2.

Therefore 0 is a nondegenerate critical point of f with indM(f, 0) = d and
indLS(f ′, 0) = (−1)d, where d is the dimension of

⊕
j≤m V

j .
Clearly d ≥ 2 so, by the result in [3], 0 cannot be a critical point of mountain

pass type, else the Morse index would be 1. But Theorem 1 for the case k = 1
states that f must have at least one critical point of mountain pass type, call it
u0, and so there is at least one nontrivial solution.

Suppose {0, u0} is the entire set of solutions. As in the proof of the previ-
ous theorem, apply Hofer’s result and the additive property of Leray-Schauder
degree to get

degLS(f ′, BR(0), 0) = indLS(f ′, 0) + indLS(f ′, u0) = (−1)d − 1.

Observe that the right hand side of this equality is even, which contradicts the
conclusion of Theorem 1. Hence there must be at least one more nontrivial
solution.
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