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The bowed narrow plate model ∗

David L. Russell & Luther W. White

Abstract

The derivation of a narrow plate model that accommodates shear-
ing, torsional, and bowing effects is presented. The resulting system has
mathematical and computational advantages since it is in the form of a
system of differential equations depending on only one spatial variable.
A validation of the model against frequency data observed in laboratory
experiments is presented. The models may be easily combined to form
more complicated structures that are hinged along all or portions of their
junction boundaries or are coupled differentiably as through the insertion
of dowels between the narrow plates. Computational examples are pre-
sented to illustrate the types of deformations possible by coupling these
models.

1 Introduction

In this paper, we consider a class of models for elastic structures, so-called nar-
row plate models [6,7], of an intermediate nature between beams and plates. Of
particular interest are models that include linear shearing effects. Additionally,
linear torsion and quadratic bending terms reflecting narrowness of the body are
included. In [6, 7] we introduced models of this type, whose derivation was based
on the energy form for the Mindlin-Timoshenko plate equations, by imposing
restrictions to account for the geometry. The resulting dynamic model involves
a system of linear symmetric hyperbolic equations in two independent variables,
time and the longitudinal beam coordinate x, which are a special case of the
Mindlin-Timoshenko plate equations [5]. Alternatively, they may be viewed as
an extension of the familiar Timoshenko beam system, as described in [1] for
example, to include torsional vibrations. The Mindlin-Timoshenko system is
itself a generalization of the Kirchhoff model, modified to include shearing and
rotatory inertia [10].
In previous work, validation and parameter identification have been carried

out on the affine model in which the structure is sufficiently narrow that only
linear torsional deformations across the width occur. In this work we present a
validation of the so-called bowed model in which the width of the narrow plate
is sufficiently large that parabolic deformations may occur across the width.
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The inclusion of such terms is significant in that it enables us to model more
complicated structures that are coupled in a variety of ways. Moreover, the
mathematical justification of coupling conditions and point loads are simplified
since the resulting models involve only one spatial dimension. This approach
enables us to model more complicated structures with relatively simple systems.
Finally, we give a model expressing the deformation of a structure associated
with a point force.
In Section 2, we present the bowed narrow plate model along with a brief

discussion of the well-posedness of solutions. In Section 3, we give a numerical
formulation of the problem and a validation of the model using natural frequency
data collected in the laboratory. In Section 4, we present several examples
of models of structures composed of narrow plates coupled in various ways
continuously and differentiably along sides and also at various points along the
plates.

2 Derivation of the bowed narrow plate equa-

tions

We begin by giving the stress-strain relations obtained under the following as-
sumption, cf [2].

(E) The gradient of the deformation is small so that products of derivatives of
the deformation are neglected.

Assumption (E) results in the following linear stress-strain relations, using
the standard notation in [2].

σ11 =
E

(1 + µ)(1− 2µ)
[(1− µ)ε11 + µε22 + µε33]

σ22 =
E

(1 + µ)(1− 2µ)
[µε11 + (1− µ)ε22 + µε33] (2.1)(i)

σ33 =
E

(1 + µ)(1− 2µ)
[µε11 + µε22 + (1 − µ)ε33]

σ12 = Gε12, σ13 = Gε13, σ23 = Gε23

where E is the Young’s modulus, µ is the Poisson’s ratio, and G = 2E/(1 + µ)
is the shear modulus.
We suppose that the body occupies an open domain Ω in R3 given by

Ω = {(x, y, z) : 0 ≤ x ≤ L, −k(x) ≤ y ≤ k(x), and − h(x, y) ≤ z ≤ h(x, y)}.

To facilitate our analysis, we assume that

(i) The functions h and k are bounded nonnegative piecewise continuous with
finitely many jump discontinuities.
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(ii) For each x ∈ [0, L] the mapping y 7→ h(x, y) of (−k(x), k(x)) into R is an
even function.

The underlying assumptions for the linear plate approximation are

(P1) Normal stresses in the z-direction are absorbed into the body force

(P2) No stretching or shearing of the neutral surface occurs.

Under assumption (P1), σ33 is set to zero and the resulting relation is used to
eliminate ε33 from the expressions for σ11 and σ22. In this case from (2.1)(i),
one obtains

σ11 =
E

1− µ2
[ε11 + µε22] , (2.1)(ii)

σ22 =
E

1− µ2
[µε11 + ε22].

The assumption (P2) implies there are no geometric nonlinearities resulting
from large deformations that would result, for example, in von Karman-type
plate models, [10]. The displacements in the x, y, and z directions are given by
the functions

U = U(x, y, z, t), V = V (x, y, z, t), W =W (x, y, z, t) .

The strain-displacement relations under the assumption (E) are given by

ε11 =
∂U

∂x
, ε12 =

1

2
(
∂U

∂y
+
∂V

∂x
),

ε13 =
1

2
(
∂W

∂x
+
∂U

∂z
), ε22 =

∂V

∂y
, (2.2)

ε23 =
1

2
(
∂W

∂y
+
∂V

∂z
) .

Assumptions (E), (P1), and (P2) imply the resulting model being linear. The
Mindlin-Timoshenko model assumes that the displacements U , V , and W can
be expressed as

U(x, y, z, t) = zu(x, y, t), V (x, y, z, t) = zv(x, y, t), W (x, y, z, t) = w(x, y, t) .

In this work the displacements are further specialized by assuming

U(x, y, z, t) = z[φ0(x, t) + yφ1(x, t)],

V (x, y, z, t) = z[ψ0(x, t) + yψ1(x, t)], (2.3)

W (x, y, z, t) = w0(x, t) + yw1(x, t) + y
2w2(x, t) .

These assumptions are motivated by our desire to develop a model of an elastic
body that includes shearing as well as torsion and bending across the width.
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Substitution of equations (2.3) into equations (2.1)(ii) and (2.2) allows us to
express the strain and the stress in terms of the displacement functions φ0, φ1,
ψ0, ψ1, w0, w1, and w2 to obtain

ε11 = z[φ0x + yφ1x], ε12 =
z

2
[(φ1 + ψ0x) + yψ1x],

ε13 =
1

2
[(φ0 + w0x) + y(φ1x + w1x) + y

2w2x],

ε22 = zψ1 , ε23 =
1

2
[(ψ0 + w1) + y(ψ1 + 2w2)],

and

σ11 =
zE

1− µ2
[(φ0x + µψ1) + yφ1x],

σ12 =
zG

2
[(φ1 + ψ0x) + yψ1x],

σ13 =
G

2
[(φ0 + w0x) + y(φ1 + w1x) + y

2w2x],

σ22 =
zE

1− µ2
[(µφ0x + ψ1) + yµφ1x],

σ23 =
G

2
[(ψ0 + w1) + y(ψ1 + 2w2)],

We next formulate the potential energy due to strain as the quadratic func-
tional

V(t) =
1

2

∫ L
0

∫ k(x)
−k(x)

∫ h(x,y)
−h(x,y)

{ z2E

1− µ2
[(φ0x + µψ1) + yφ1x][φ0x + yφ1x]

+
z2E

1− µ2
[(µφ0x + ψ1) + yµφ1x]ψ1 + z

2G

4
[(φ1 + ψ0x) + yψ1x]

2

+
G

4
[(φ0 + w0x) + y(φ1 + w1x) + y

2w2x]
2 (2.4)

+
G

4
[(ψ0 + w1) + y(ψ1 + 2w2)]

2
}
dz dy dx .

Define the following functions

K0(x) =
2E

3(1− µ2)

∫ k(x)
−k(x)

h3(x, y)dy ,

K2(x) =
2E

3(1− µ2)

∫ k(x)
−k(x)

y2h3(x, y)dy , (2.5)

σ0(x) =
G

2

∫ k(x)
−k(x)

h(x, y)dy , σ2(x) =
G

2

∫ k(x)
−k(x)

y2h(x, y)dy ,

τ0(x) =
G

6

∫ k(x)
−k(x)

h3(x, y)dy , τ2(x) =
G

6

∫ k(x)
−k(x)

y2h3(x, y)dy ,
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σ4(x) =
G

2

∫ k(x)
−k(x)

y4h(x, y)dy .

We make the positivity assumption

(P) There is a positive number ν0 such that the functions

K0(x), K2(x), σ0(x), σ2(x), τ0(x), τ2(x), σ4(x)

are bounded below by a positive number ν0.

The potential energy is now expressed by

V(t) =
1

2

∫ L
0

{
K0[(φ0x + µψ1)

2 + (1 − µ2)ψ21 ] +K2φ
2
1x

+σ0[(ψ0 + w1)
2 + (φ0 + w0x)

2] (2.6)

+σ2[(ψ1 + 2w2)
2 + (φ1 + w1x)

2 + 2(φ0 + w0x)w2x]

+τ0(φ1 + ψ0x)
2 + τ2ψ

2
1x + σ4w

2
2x

}
dx .

Remark 2.1 It will be shown that under the positivity assumption (P), the
potential energy functional given in (2.6) is positive definite.

We next consider the kinetic energy of the system. Assuming a constant
density function ρ, the kinetic energy is expressed as an integral by

T (t) =
1

2

∫ L
0

∫ k(x)
−k(x)

∫ h(x,y)
−h(x,y)

ρ{U2t (x, y, z, t) + V
2
t (x, y, z, t)

+W 2
t (x, y, z, t)} dz dy dx .

Define the functions

Iρ,0(x) =
2ρ

3

∫ k(x)
−k(x)

h3(x, y)dy , Iρ,2(x) =
2ρ

3

∫ k(x)
−k(x)

y2h3(x, y)dy ,

ρ0(x) = 2ρ

∫ k(x)
−k(x)

h(x, y)dy , ρ2(x) = 2ρ

∫ k(x)
−k(x)

y2h(x, y)dy , (2.7)

ρ4(x) = 2ρ

∫ k(x)
−k(x)

y4h(x, y)dy .

From these assignments and from (2.3), we find, after performing integrations
with respect to z and y, that

T (t) =
1

2

∫ L
0

1

6
{Iρ,0φ

2
0t + Iρ,2φ

2
1t + Iρ,0ψ

2
0t + Iρ,2ψ

2
1t

+ρ0w
2
0t + ρ2w

2
1t + 2ρ2w0tw2t + ρ4w

2
2t} dx (2.8)
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Let us suppose that a body force, F, is exerted normal to the x-y plane. The
work due to this force is

W(t) =

∫ L
0

∫ k(x)
−k(x)

∫ h(x,y)
−h(x,y)

F (x, y, z, t)W (x, y, z, t) dz dy dx .

Define the functions

F0(x, t) =

∫ k(x)
−k(x)

∫ h(x,y)
−h(x,y)

F (x, y, z, t) dz dy ,

F1(x, t) =

∫ k(x)
−k(x)

∫ h(x,y)
−h(x,y)

yF (x, y, z, t) dz dy , (2.9)

F2(x, t) =

∫ k(x)
−k(x)

∫ h(x,y)
−h(x,y)

y2F (x, y, z, t) dz dy .

From (2.3) the work may be expressed upon integration as

W(t) =

∫ L
0

{F0w0 + F1w1 + F2w2}dx . (2.10)

The Lagrangian is given by

L(t) = T (t)− V(t) +W(t).

Hamilton’s principle indicates that the deformation experienced by the body is
obtained as an extremal of the integral

∫ t
0
L(s)ds, cf [4]. That is, the deformation

assumed by the body has the property that the variation of the Lagrangian
functional is zero:

δ

∫ t
0

L(s)ds = 0

with respect to functions δφ0, δφ1, δψ0, δψ, δw0, δw1, and δw2 satisfying the
essential boundary conditions and equal to zero at times 0 and t. Upon inte-
gration by parts with respect to time and the spatial variable, we obtain the
following equations of motion.

Iρ,0φ0tt − (K0(φ0x + µψ1))x + σ0(φ0 + w0x) + σ2w2x = 0

Iρ,2ψ1tt − (τ2ψ1x)x + µK0(φ0x + ψ) + σ2(ψ1 + w2) = 0

ρ0w0tt + ρ2w2tt − (σ0(φ0 + w0x))x − (σ2w2x)x = F0

ρ2w0tt + ρ4w2tt − (σ4w2x)x − 2(σ2(φ0 + w0x))x = F2 (2.11)

Iρ,2φ1tt − (K2φ1x)x + σ2(φ1 + w1x) + τ0(φ1 + ψ0x) = 0

Iρ,0ψ0tt − (τ0(φ1 + ψ0x))x + σ0(ψ0 + w1) = 0

ρ2w1tt − ((σ2(φ1 + w1x))x + σ0(ψ0 + w1) = F1

where we have written the equations in an order which emphasizes the couplings
between them.
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The boundary conditions at 0 and L are associated with conditions

(φ0x + µψ1)δφ0|
L
0 = 0 , ψ1xδψ1|

L
0 = 0 ,

(σ0(φ0 + w0x) + σ2w2x)δw0|
L
0 = 0 ,

(2σ2(φ0 + w0x) + ν0w2x)δw2|
L
0 = 0 ,

φ1xδφ1|
L
0 = 0 , (φ1 + ψ0x)δψ0|

L
0 = 0 ,

(φ1 + w1x)δw1|
L
0 = 0 .

For example, if the narrow plate is clamped at x = 0 and free at x = L, we see
that

φ0(0) = φ1(0) = ψ0(0) = ψ1(0) = w0(0) = w1(0) = w2(0) = 0

and

(φ0x + µψ1)(L) = 0 , φ1x(L) = 0 ,

(φ1 + ψ0x)(L) = 0 , ψ1x(L) = 0 ,

(σ0(φ0 + w0x) +
1

2
σ2w2x)(L) = 0

(φ1 + w1x)(L) = 0 ,

(2σ2(φ0 + w0x) + ν0w2x)(L) = 0 .

It is convenient to rewrite the equations using vector notation. Towards this
end, we introduce the column vector-valued function

v = col(φ0, ψ1, w0, w2, φ1, ψ0, w1)

and the matrices

E0 =




0 µ 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0



, E1 =


 0 1 0 0 0 0 0
0 1 0 2 0 0 0
0 0 0 0 0 1 1


 ,

A =




K0 0 0 0 0 0 0
0 τ2 0 0 0 0 0
0 0 σ0 σ2 0 0 0
0 0 σ2 σ4 0 0 0
0 0 0 0 K2 0 0
0 0 0 0 0 τ0 0
0 0 0 0 0 0 σ2



, C =


 (1− µ

2)K0 0 0
0 σ2 0
0 0 σ0


 .

Under the above assumptions we see that the matrix functions A(x) and C(x)
are positive definite for each x in [0, L].
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Lemma 2.2 There exists a positive constant κ0 such that for any vector u ∈
R
7,

u∗A(x)u ≥ κ0u
∗u

and
u∗C(x)u ≥ κ0u

∗u .

Proof. Clearly, by choosing κ0 sufficiently small, but positive, the condition
holds for C(x). From assumption (P), we have

u∗A(x)u ≥ ν0{u
2
1 + u

2
2 + u

2
4 + u

2
5 + u

2
6 + u

2
7}+ [u3, u4]

[
σ0 σ2
σ2 σ4

] [
u3
u4

]

But

[u3, u4]

[
σ0 σ2
σ2 σ4

] [
u3
u4

]
≥ λ0(x)(u

2
3 + u

2
4)

where

λ0(x) =
1

2
{σ0(x) + σ4(x) − [(σ0(x) + σ4(x))

2 − 4(σ0(x)σ4(x) − σ
2
2(x))]

1
2 }.

From assumption (P) we find that the function

x 7→ λ0(x)

is piecewise continuous on [0, L] and there is a positive number ν1 such that
λ0(x) ≥ ν1 for any x ∈ [0, L] if σ0(x)σ4(x) − σ22(x) > 0 for all x ∈ [0, L]. Using
the definitions from the equations (2.5), we find that for each x ∈ [0, L]

σ0(x)σ4(x)−σ
2
2(x) =

∫ k(x)
−k(x)

h(x, y)dy

∫ k(x)
−k(x)

y4h(x, y)dy−(

∫ k(x)
−k(x)

y2h(x, y)dy)2.

Thus, σ0(x)σ4(x)−σ22(x) is positive on [0, L] by the Cauchy-Schwarz inequality.
It follows that λ0(x) is real-valued and bounded away from zero. Selecting κ0
to be less than ν0 or ν1 now yields the result.
With the above definitions, we may express the strain potential energy func-

tional (2.6) as

V(t) =
1

2

∫ L
0

{(vx + E0v)
∗A(vx + E0v) + v

∗(E∗1CE1)v}dx . (2.12)

The form of the kinetic energy is obtained by introducing the matrix

M =




Iρ,0 0 0 0 0 0 0
0 Iρ,2 0 0 0 0 0
0 0 ρ0 ρ2 0 0 0
0 0 ρ2 ρ4 0 0 0
0 0 0 0 Iρ,2 0 0
0 0 0 0 0 Iρ,0 0
0 0 0 0 0 0 ρ2



.
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The kinetic energy functional is now expressed as

T (t) =
1

2

∫ L
0

vt
∗Mvtdx. (2.13)

Finally, defining the column vector

F = col(0, 0, F0, F2, 0, 0, F1),

the linear functional expressing the work done by external forces is

W(t) =

∫ L
0

F ∗vdx.

The system of partial differential equations becomes

Mvtt − (A(vx + E0v))x + E
∗
0A(vx + E0v) + E

∗
1CE1v = F

with cantilevered boundary conditions

v(0) = 0 and (vx + E0v)(L) = 0 .

Of course, initial conditions v(0) = v0 and vt(0) = v1 must be specified as well.

We next discuss the weak formulation for our problems. Towards this end,
we designate the Sobolev space

V = H1(0, L;R7) = {(v1, v2, v3, v4, v5, v6, v7) : vi ∈ H
1(0, L) i = 1, ..., 7}

with norm

‖v‖V = (
7∑
i=1

‖vi‖
2
H1(0,L))

1/2

and the Hilbert space H = L2(0, L;R7).
We now define the bilinear form a(·, ·) on V by

a(u, v) =

∫ L
0

{(ux + E0u)
∗A(vx + E0v) + u

∗E∗1CE1v}dx. (2.14)

Note from Lemma 2.2 that for any u ∈ V

a(u, u) ≥ κ0

∫ L
0

{|ux + E0u|
2 + |E1u|

2}dx .

Remark 2.3 From the positive definiteness of a(u, u) and from the Cauchy-
Schwarz inequality, it follows that there are positive numbers γ0 and γ1 such
that

a(u, u) + γ0‖u‖
2
H ≥ γ1‖u‖

2
V. (2.15)

By the Cauchy Schwarz inequality it follows that there is a positive constant γ2
such that

|a(u, v)| ≤ γ2‖u‖V‖v‖V. (2.16)
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Proposition 2.4 Suppose that V0 is a closed subspace of V with the property

if u ∈ V0 is such that a(u, u) = 0, then u = 0, (2.17)

then there exists a positive number γ such that for any u ∈ V0

a(u, u) ≥ γ‖u‖2V.

Proof. We show there is a positive constant α′ such that

a(u, u) ≥ α′‖u‖2H

for any u ∈ V0. If this were not the case, then for each n there exists un with
‖un‖H = 1 and such that

0 ≤ a(un, un) ≤ 1/n.

It follows from (2.15) that

1/n+ γ0 ≥ γ1‖un‖
2
V.

Thus, there is a subsequence again denoted by {un}∞n=1 such that

un → u weakly in V ,

un → u strongly in H

since V embeds compactly in H. The limit satisfies ‖u‖H = 1. The continuity
condition (2.16) implies the weak lower semicontinuity of the bilinear form a(·, ·)
on V, i. e.,

lim inf a(un, un) ≥ a(u, u).

Moreover, since V0 is a closed subspace of V, it follows that u ∈ V0. Thus, we
conclude that a(u, u) = 0 and therefore, u = 0, contradicting ‖u‖H = 1. The
results follow by setting γ = 1/(1 + µα′),

Remark 2.5 The previous proposition applies to those subspaces ofV for which

ux + E0u = 0 (2.18)(i)

and
E1u = 0 (2.18)(ii)

imply that u = 0.

Note that the two conditions (2.18)(i) and (2.18)(ii) imply that

ψ1 = w2 = φ1 = φ0x = ψ0x = w1x = w0x + φ0 = 0 . (2.19)

Suppose V0 is specified as above and that V0 is dense in H. Designating
H as the pivot space, let V′0 be the dual of V0. Let F be in V

′
0. The weak

formulation of the static problem is then given as follows:
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Find u ∈ V0 such that

a(u, v) = (F, v) for any v ∈ V0 (2.20)

where (·, ·) expresses the duality pairing between V0 and V′0. The existence of a
unique solution of (2.20) is classical and follows from Proposition 2.4. Further,
it satisfies the estimate

γ‖u‖V0 ≤ ‖F‖V0.

Furthermore, results for the hyperbolic system and the associated eigenvalue
problem are classical as well [3,8].

The weak formulation of the dynamic problem is obtained by introducing
the bilinear form

m(u, v) =

∫ L
0

u∗Mvdx

on H. Observe, that under the assumptions above, there are positive constants
β0 and β1 such that for any u and v in H,

m(u, u) ≥ β0‖u‖
2
H

and
m(u, v) ≤ β1‖u‖H‖v‖H.

The weak form of the dynamic problem is stated as follows:
Find u ∈ L2(0, T ;V0) such that for any v ∈ V0

m(utt(t), v) + a(u(t), v) = (F (t), v)H (2.21)

and
(u(0), v)H = (u0, v)H

(ut(0), v)H = (u1, v)H

for any v ∈ V0.

The associated eigenvalue problem is posed as follows:
Find those numbers λ2 such that there exist nontrivial solutions of the equa-

tion
a(u, v) = λ2m(u, v). (2.22)

3 Numerical approximation and model valida-

tion

In this section, we give a finite element formulation of the above problems. The
starting point is the weak formulation. Once we have obtained the system of
approximating equations, we present results that constitute a validation of the
model by comparing calculated natural frequencies for our model to compare
with those observed experimentally in the laboratory.
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To obtain the finite dimensional analogue, we specify a set of linearly inde-
pendent real valued functions, {bi}Mi=1 defined on the interval (0, L) contained
in the Sobolev space, V . We define the M -row vector-valued function

b(x) = (b1(x), . . . , bM (x))

and the 7× 7M matrix-valued function

B(x) =




b(x) 0 0 0 0 0 0
0 b(x) 0 0 0 0 0
0 0 b(x) 0 0 0 0
0 0 0 b(x) 0 0 0
0 0 0 0 b(x) 0 0
0 0 0 0 0 b(x) 0
0 0 0 0 0 0 b(x)




(3.1)

where here, 0 represents a M − row vector whose components are all zeros.
Further, let

c = col(c1, . . . , c7M ).

For this approximation we look for vector-valued functions expressed as

uM (x) = B(x)c.

In equation (2.20) setting v(x) = B(x)d, we obtain using (2.14)

c∗{

∫ L
0

[(Bx + E0B)
∗A(Bx + E0B) +B

∗E∗1CE1B]dx}d = {

∫ L
0

F ∗Bdx}d.

It follows that we seek the solution of the linear system

{

∫ L
0

[(Bx + E0B)
∗A(Bx + E0B) +B

∗E∗1CE1B]dx}c = {

∫ L
0

F ∗Bdx}. (3.2)

In a similar manner for the dynamic system (2.21), we set u(t) = Bc(t) to obtain
the initial value problem

{

∫ L
0

B∗MBdx}ctt + {

∫ L
0

[(Bx + E0B)
∗A(Bx + E0B) +B

∗E∗1CE1B]dx}c

= {

∫ L
0

F (t)∗B dx} (3.3)

with initial conditions

{

∫ L
0

B∗Bdx}c(0) =

∫ L
0

B∗u0dx

and

{

∫ L
0

B∗Bdx}ct(0) =

∫ L
0

B∗u1dx.
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Finally, the generalized eigenvalue problem is given by

{

∫ L
0

[(Bx+E0B)
∗A(Bx+E0B)+B

∗E∗1CE1B]dx}c = λ
2{

∫ L
0

B∗MBdx}c. (3.4)

Remark 3.1 The error analysis for the above approximations is standard and
discussions may be found for example in [9].

To test the model, we measured the natural frequencies for an aluminum
structure in the shape of a paddle composed of 2 rectangles with the larger atop
the smaller. The dimensions of the structure are as follows:

Total length 35 in
Length of the lower rectangle 14 in
Length of the upper rectangle 21 in
Thickness 0.125 in
Width of the lower rectangle 8 in
Width of the upper rectangle 22 in

Note that the width k is a piecewise constant function of x given by

k(x) =

{
4 , x ∈ (0, 14)
11 , x ∈ [14, 35] .

The observed frequencies are:

2.81 9.69 20.94 28.12 44.37 85.31 95.62 99.06 115.94 .

Because the shearing and inplane motion is small compared to the motion
normal to the plane, we set

φ0 = φ1 = ψ0 = ψ1 = 0 .

We may also obtain affine motions with only linear cross-sectional deformations
admissible by neglecting w2 as well. We use a uniform mesh with 14 subdivi-
sions on which the functions bi are taken to be “hat” functions with boundary
condition bi(0) = 0 imposed to reflect the clamped boundary conditions at
x = 0.
We calculate the following frequencies

3.16 9.42 19.7 26.0 45.1 84.7 95.6 99.1 118.4 .

By calculating the frequencies in the affine case, we find that

3.16 9.42 19.7 26.0 95.6 99.1

d appear to be related to the affine motion of the structure while the frequencies

45.1 84.7 95.62 118.4

appear to be associated with bowed motions.
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4 Coupling of Bowed Plates

In this section, we present models for structures that may be viewed as coupled
narrow plates. Our approach is to designate the plates by assigning local coor-
dinate systems. In a manner similar to that of the previous sections, we then
determine the potential energy functional for each of the separate plates. The
sum of these functionals forms the total potential energy of the deformations of
the structure. Coupling and boundary constraints are imposed to determine the
class of admissible deformations. The resulting constraints are then included
in the functional by means of penalization. Inclusion of the constraints by pe-
nalization in the potential energy functional amounts to inclusion of certain
potential energy functionals with large elastic constants.

We present our approach for several cases. Examples of mode shapes result-
ing from our formulation are given. For convenience, we assume that the plates
are of the same length and constant thickness and width. Thus, in all cases
the functions h and k are considered constants. We first explicitly give stiffness
matrices corresponding to those in Section 3. The material functions given in
the equations (2.5) are the constants

K0 =
4h3kE

3(1− µ2)
, K2 =

4h3k3E

9(1− µ2)
,

σ0 = hkG , σ2 =
hk3G

3
, σ4 =

hk5G

5
,

τ0 =
h3kG

3
, τ2 =

h3k3G

9
.

Let the matrices E0, E1, A, and C be as defined in Section 2. The matrix
valued function B is defined with a full basis without regard to boundary condi-
tions so that essential boundary conditions are not imposed directly on the basis
elements. Hence, dividing the interval (0, L) into N subintervals and using piece-
wise linear elements with respect to the resulting mesh yields vector functions
b(x) with M = N +1 terms. The essential boundary conditions are imposed by
penalization in the potential energy functional. With these assignments

Bx(x) + E0B(x) =




bx(x) µb 0 0 0 0 0
0 bx(x) 0 0 0 0 0
b(x) 0 bx(x) 0 0 0 0
0 0 0 bx(x) 0 0 0
0 0 0 0 bx(x) 0 0
0 0 0 0 b(x) bx(x) 0
0 0 0 0 b(x) 0 bx(x)



.

Define the M ×M matrices

g0 =

∫ L
0

b∗(x)b(x) dx , g1 =

∫ L
0

b∗x(x)b(x) dx , g2 =

∫ L
x

b∗x(x)bx(x) dx .
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We now obtain

G2 =

∫ L
0

[(Bx(x) + E0B(x) ∗A(Bx(x) + E0B(x)) +B(x)
∗E∗1CE1B(x)]dx

=

[
G2(1, 1) 0
0 G2(2, 2)

]

G2(1, 1) =



K0g2 + σ0g0 µK0g1 σ0g

∗
1 σ2g

∗
1

µK0g
∗
1 τ2g2 + (σ2 + µ

2K0)g0 0 2σ2g0
σ0g1 0 σ0g2 σ2g2
σ2g1 2σ2g0 σ2g2 σ4g2 + 4σ2g0




G2(2, 2) =


K2g2 + (τ0 + σ2)g0 τ0g

∗
1 σ2g

∗
1

τ0g1 τ0g2 + σ0g0 σ0g0
σ2g1 σ0g0 σ2g2 + σ0g0




To formulate equations describing the motion of two narrow plates 1 and 2
that are coupled along one side, we view the plates as being situated in such a
way that they lie in the x-y plane. The junction between the two plates lies along
the x-axis. Local coordinate systems for 1 and 2 are given by x1, y1, and z1
and x2, y2, and z2, respectively, where 0 < x1 < L and 0 < x2 < L with

−h1 < z1 < h1 and − h2 < z2 < h2

as well as
−k1 < y1 < k1 and − k2 < y2 < k2 .

For ease we suppose that k1 = k2 = k, h1 = h2 = h and L1 = L2 = L. It follows
that x1 = x2 = x, y1 = y + k, y2 = y − k, and z1 = z2 = z. For i = 1, 2, the
displacement functions are given by

Ui(x, yi, z) = z(φ0i + yiφ1i) ,

Vi(x, yi, z) = z(ψ0i + yiφ1i) , (4.1)

Wi(x, yi, z) = w0i(x) + yiw1i + y
2
iw2i .

For a coupling that gives rise to the two narrow plates behaving as a single
plate, conditions are imposed at y1 = k and y2 = −k to assure continuity of the
displacements and the first derivatives across the junction. These must be

U1(x, k, z) = U2(x,−k, z)

V1(x, k, z) = V2(x,−k, z) (4.2)

W1(x, k, z) =W2(x,−k, z)

and

U1y1(x, k, z) = U2y2(x,−k, z)

V1y1(x, k, z) = V2y2(x,−k, z) (4.3)

W1y1(x, k, z) =W2y2(x,−k, z)
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From the narrow plate displacement relations for the i-th plate (4.1), we obtain
the constraints for x ∈ (0, L)

φ01(x) + kφ11(x) − φ02(x) + kφ12(x) = 0

ψ01(x) + kψ11(x) − ψ02(x) + kψ12(x) = 0 (4.4)

w01(x) + kw11(x) + k
2w21(x) − w02(x) + kw12(x)− k

2w22(x) = 0

and

φ11(x) + φ12(x) = 0

ψ11(x) + ψ12(x) = 0 (4.5)

w11(x) + 2kw21(x) + w12(x)− 2kw22(x) = 0 .

Let vi = col(φ0i, ψ1i, w0i, w2i, φ1i, ψ0i, w1i). Define the matrices

C1 =




1 0 0 0 k 0 0
0 k 0 0 0 1 0
0 0 1 k2 0 0 k
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 2k 0 0 0




(4.6)

C2 =




−1 0 0 0 k 0 0
0 k 0 0 0 −1 0
0 0 −1 −k2 0 0 k
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 −2k 0 0 1



. (4.7)

The system (4.2)-(4.3) now becomes

C1v1 + C2v2 = 0. (4.8)

Remark 4.1. To model a hinged junction requires only that the deformation
be continuous across the junction. Hence, it suffices to take only (4.5) as a
constraint:

C1 =


 1 0 0 0 k 0 0
0 k 0 0 0 1 0
0 0 1 k2 0 0 k




and

C2 =


−1 0 0 0 k 0 0
0 k 0 0 0 −1 0
0 0 −1 −k2 0 0 k




with the condition given in equation (4.8) as a constraint.
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Figure 1: Sample mode shape with continuous junction

x

Remark 4.2. Plates may be coupled at points. For example, requiring the
plates to be hinged at a point x0 amounts to requiring

C1v1(x0) + C2v2(x0) = 0

where C1 and C2 are given in Remark 4.1. Differentiable coupling at points,
such as would occur by coupling the plates with dowels, may be modeled by
using the matrices C1 and C2 in equations (4.6) and (4.7).
In Figures 1 and 2, we give two example modal shapes to illustrate the types

of couplings possible. In Figure 1, the junction is hinged with a continuity
condition between the plates so that a corner is allowed along the junction. In
Figure 2, the differentiability across the point x0 = L/2 may be thought as a
mathematical idealization of a dowel connecting the two plates at that point.

Conclusions

The derivation of a narrow plate model that accommodates shearing, torsional,
and bowing effects is presented. The model is validated against frequency data
observed in laboratory experiments. The resulting system of boundary value
problems has mathematical and computational advantages in the sense that it
consists of a system of differential equations depending on only one spatial vari-
able. Thus, it is easy to give formulations involving point effects even when
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Figure 2: Sample mode shape with differentiable junction at L/2
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structural properties may have discontinuities. Moreover, boundary value prob-
lems may be formulated to model complicated elastic structures obtained by
coupling across all or portions of junctions between adjacent narrow plates.
Thus, it is possible to model structures that are hinged or differentiable along
interfaces or at points on the interfaces. Mode shapes of various couplings are
presented as examples of the deformations that are possible under this model.
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