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MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR
SEMI-POSITONE DELAY DIFFERENTIAL EQUATION

XIAN XU

Abstract. In this paper, we obtain new existence results for multiple positive
solutions of a delay singular differential boundary-value problem. Our main

tool is the fixed point index method.

1. Introduction

Singular differential boundary-value problems arise from many branches of basic
mathematics and applied mathematics. Many techniques have been developed to
establish the existence of positive solutions of various classes of singular differential
boundary-value problems; [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13] and the references
therein. In particular, the authors of [1, 5] obtained some existence results for
positive solutions of some singular functional differential equations. Motivated by
[1, 5], in this paper we will consider the following singular delay differential equation

y′′ + f(t, y(t− a)) = 0, t ∈ (0, 1]\{a},
y(t) = µ(t), t ∈ [−a, 0],

y(1) = 0,
(1.1)

where 0 < a < 1,

µ(t) ∈ C[−a, 0], µ(0) = 0, µ(t) > 0, ∀t ∈ [−a, 0), (1.2)

and the nonlinear term f(t, y) satisfies

φ0(t)h0(y)− p(t) ≤ f(t, y) ≤ φ(t)(g(y) + h(y)), (1.3)

φ, φ0, p are in C((0, 1], R+), g is in C((0,+∞), R+), h0, h are in C(R+, R+), and
R+ = [0,+∞).

Problem (1.1) is a singular semi-positone boundary-value problem because p is
allowed to be nonnegative on interval (0, 1) and f may have singularity at t = 0
and y = 0. Recently, there have been many papers considered the singular semi-
positone boundary-value problems; see [2, 8, 13, 11, 7] and the references therein.
But most of these papers paid attention to the existence of positive solutions of the
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singular semi-positone boundary-value problems and there were fewer papers that
discuss the existence of multiple positive solutions of the singular semi-positone
problems. To cover up this gap, in this paper we will establish some existence
results for multiple positive solutions of singular delay differential semi-positone
boundary value problem (1.1). It is difficult to show the existence and multiplicity
results for positive solutions of semi-positone problems. For our purpose, a special
cone will be needed to establish the multiplicity results for positive solutions of
semi-positone problems.

Let P = {x ∈ C[−a, 1] : x(t) ≥ 0 for all t ∈ [−a, 1]}. It is well known that
C[−a, 1] is a real Banach space with the maximum norm ‖x‖ = maxt∈[−a,1] |x(t)|,
and P a normal cone of C[−a, 1]. By a positive solution of (1.1) we mean a function
x ∈ P satisfying (1.1) and x(t) 6≡ 0.

Throughout this paper, we will assume that (1.2) and (1.3) hold.

2. Preliminary Lemmas

Let us list some assumptions to be used.

(H1) g : (0,+∞) → R+ is continuous and decreasing, h, h0 : R+ → R+ are
continuous and increasing.

(H2) For any constant k0 > 0,∫ a

0

[φ(s)g(µ(s− a)) + g(k0s) + p(s)]ds < +∞.

(H3) There exists R0 ≥ 2
∫ 1

0
p(s)ds such that

R0 − 2
√
B(R0) > A, (2.1)

where

A =
∫ a

0

[φ(s)(g(µ(s− a)) + h(µ(s− a) + 1)) + p(s)]ds+
∫ 1

a

φ(s)g(
1
2
R0a(s− a))ds,

B(R0) = 2 sup
t∈[a,1]

[φ(t) + p(t)]
∫ R0

0

[g(
1
2
s) + h(s+ 1) + 1]ds.

(H4) There exist u1 > R0 and [α, β] ⊂ (a, 1) such that

α(1− β − a)h0(
1
2
u1)

∫ β+a

α+a

φ0(s)ds > u1.

Remark 2.1. The nonlinear term f of the form (1.3) in the case φ0(t) = p(t) = 0
for all t ∈ [0, 1] has been studied by many authors [1, 10, 5, 11].

Let Q = {x ∈ P : x(t) ≥ ‖x‖t(1 − t) for t ∈ [0, 1]}. It is easy to see that Q is a
cone of C[−a, 1]. For each x ∈ P , let

[x(t− a)]∗ = max{x(t− a) + x0(t− a)− w(t− a), x̃0(t− a)}, ∀t ∈ [0, 1],
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where

x0(t) =

{
µ(t), t ∈ [−a, 0],
0, t ∈ (0, 1],

x̃0(t) =

{
0, t ∈ [−a, 0],
1
2R0t(1− t), t ∈ (0, 1],

w(t) =

{
0, t ∈ [−a, 0],∫ 1

0
G(t, s)p(s)ds, t ∈ (0, 1],

G(t, s) =

{
s(1− t), s ≤ t,

t(1− s), s > t.

For each positive integer n, let us define an operator Tn : P → P by

(Tnx)(t) =

{
0, t ∈ [−a, 0];∫ 1

0
G(t, s)[f(s, [x(s− a)]∗ + n−1) + p(s)]ds, t ∈ (0, 1].

(2.2)

Lemma 2.2 ([6]). Let X be a retract of the real Banach space E and X1 be a
bounded convex retract of X. Let U be a nonempty open set of X and U ⊂ X1.
suppose that A : X1 → X is completely continuous, A(X1) ⊂ X1 and A has no
fixed points on X1\U . Then i(A,U,X) = 1.

Lemma 2.3. Suppose that (H1) and (H2) hold. Then Tn : P → Q is a completely
continuous operator for each positive integer n.

Proof. Let n be a fixed positive integer, and y = Tnx for some x ∈ P . Suppose
that ‖y‖[0,1] = y(t0) for some t0 ∈ (0, 1), where ‖y‖[0,1] = maxt∈[0,1] |y(t)|. Since

y(t) ≥ y(s) = 0, t ∈ [−a, 1], s ∈ [−a, 0],

it follows that ‖y‖ = ‖y‖[0,1]. It is easy to see that

y′′(t) = −f(t, [x(t− a)]∗ + n−1)− p(t) ≤ 0, ∀t ∈ (0, 1].

Therefore, the graph of y(t) is concave down on (0, 1). For any 0 ≤ t ≤ t0, we have

y(t) = y((1− t

t0
) · 0 +

t

t0
t0) ≥ ‖y‖t(1− t).

Similarly,

y(t) = y(
1− t

1− t0
t0 + (1− 1− t

1− t0
) · 1) ≥ ‖y‖t(1− t), ∀t0 ≤ t ≤ 1.

Hence, Tn : P → Q.
Now, we show that Tn is a completely continuous operator for every positive

integer n. It is easy to see that Tn is a continuous and bounded operator for every
positive integer n. Let B ⊂ P be a bounded set such that ‖x‖ ≤ L for all x ∈ B
and some L > 0. Then, we can easily see that

x0(t−a)+x̃0(t−a) ≤ [x(t−a)]∗ ≤ ‖x‖+‖w‖+‖µ‖+R0, ∀x ∈ B, t ∈ [0, 1]. (2.3)
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Thus, for any t1, t2 ∈ [0, 1], we have

|(Tnx)(t1)− (Tnx)(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)|[φ(s)(g(x0(s− a) + x̃0(s− a))

+ h(L+ ‖w‖+ ‖µ‖+R0 + 1)) + p(s)]ds.

(2.4)

Then the uniform continuity of G(t, s) on [0, 1] × [0, 1], (2.4) and the assumption
(H2) imply that Tn(B) is an equicontinuous set on [0,1]. Obviously, Tn(B) is
equicontinuous on [−a, 0]. Thus, Tn : P → Q is a completely continuous operator.
The proof is complete. �

Lemma 2.4. Let Ω0 = {x ∈ Q : ‖x‖ < R0}. Suppose that (H1)-(H3) hold. Then
for every positive integer n,

i(Tn,Ω0, Q) = 1 .

Proof. We claim that

z 6= λTnz, λ ∈ [0, 1], z ∈ ∂Ω0. (2.5)

where ∂Ω0 denotes the boundary of Ω0 in Q. In fact, if (2.5) is not true, then there
exist λ0 ∈ [0, 1], z0 ∈ ∂Ω0, and positive integer n0 such that z0 = λ0Tn0z0. From
z0 ∈ Q, we have

z0(t) ≥ ‖z0‖t(1− t) = R0t(1− t), t ∈ [0, 1]. (2.6)

On the other hand, using the fact that G(t, s) ≤ t(1 − t) for (t, s) ∈ [0, 1] × [0, 1],
we have

w(t) =
∫ 1

0

G(t, s)p(s)ds ≤
( ∫ 1

0

p(s)ds
)
t(1− t), ∀t ∈ [0, 1]. (2.7)

It follows from (2.6) and (2.7) that

z0(t)− w(t) ≥ 1
2
z0(t) ≥

1
2
R0t(1− t),∀t ∈ [0, 1]. (2.8)

From z0 = λ0Tn0z0, by direct computation, we have

z′′0 (t) + λ0[f(t, [z0(t− a)]∗ + n−1) + p(t)] = 0, t ∈ (0, 1],

z0(t) = 0, t ∈ [−a, 0),

z0(1) = 0.

(2.9)

By (2.8) and (2.9), we get that

[z0(t− a)]∗ =

{
µ(t− a), t ∈ [0, a],
z0(t− a)− w(t− a), t ∈ (a, 1].

(2.10)

It follows from (2.9) that z′′0 (t) ≤ 0 for t ∈ (0, 1]. Thus, the graph of z0(t) is concave
down on (0, 1), and so, there exists t0 ∈ (0, 1) such that

‖z0‖ = z0(t0), z′(t0) = 0, z′0(t) ≥ 0 on (0, t0),

andz′(t) ≤ 0 on (t0, 1).

Therefore, we have the following two cases:
Case (a): t0 ≤ a. By (2.9) and (2.10), we have

−z′′0 (t) ≤ φ(t)(g(µ(t− a)) + h(µ(t− a) + 1)) + p(t), ∀t ∈ (0, t0).
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Integrating from t(t ∈ (0, t0)) to t0, we have

z′0(t) ≤
∫ t0

0

[φ(s)(g(µ(s− a) + h(µ(s− a) + 1)) + p(s)]ds, t ∈ (0, t0].

Then integrating from 0 to t0, we have

z0(t0) ≤
∫ t0

0

s[φ(s)(g(µ(s− a)) + h(µ(s− a) + 1)) + p(s)]ds ≤ A. (2.11)

Case (b): t0 > a. By (2.8), (2.9) and (2.10), we have

−z′′0 (t) ≤ φ(t)(g(z0(t− a)− w(t− a)) + h(z0(t− a) + 1)) + p(t)

≤ φ(t)(g(
1
2
z0(t− a)) + h(z0(t− a) + 1)) + p(t), ∀t ∈ [a, t0].

Since z′0(t− a) ≥ z′0(t) for t ∈ [a, t0], we have

−z′′0 (t)z′0(t) ≤ [φ(t)(g(
1
2
z0(t− a)) + h(z0(t− a) + 1)) + p(t)]z′0(t− a),

for all t ∈ [a, t0]. Integrating from t(t ∈ [a, t0]) to t0, we have

[z′0(t)]
2

≤ 2 sup
t∈[a,1]

[φ(t) + p(t)]
∫ t0

t

[g(
1
2
z0(s− a)) + h(z0(s− a) + 1) + 1]z′0(s− a)ds

≤ 2 sup
t∈[a,1]

[φ(t) + p(t)]
∫ z0(t0−a)

z0(t−a)

[g(
1
2
s) + h(s+ 1) + 1]ds

≤ 2 sup
t∈[a,1]

[φ(t) + p(t)]
∫ z0(t0)

0

[g(
1
2
s) + h(s+ 1) + 1]ds

= B(R0)

and so
z′0(t) ≤

√
B(R0), ∀t ∈ [a, t0]. (2.12)

Then integrating from a to t0, we have

z0(t0) ≤ z0(a) +
√
B(R0). (2.13)

On the other hand, by (2.9) and (2.10), we have

−z′′0 (t) ≤ φ(t)[g(µ(t− a)) + h(µ(t− a) + 1)] + p(t), ∀t ∈ (0, a].

Integrating from t(t ∈ (0, a)) to a, by (2.12), we have

z′0(t) ≤ z′0(a) +
∫ a

0

[φ(s)(g(µ(s− a)) + h(µ(s− a) + 1) + p(s)]ds ≤
√
B(R0) +A.

Then integrating from 0 to a, we have

z0(a) ≤
√
B(R0) +A. (2.14)

It follows from (2.13) and (2.14) that

z0(t0) ≤ 2
√
B(R0) +A (2.15)

Since z0(t0) = R0, from (2.11) and (2.15), we have

R0 ≤ 2
√
B(R0) +A,
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which is a contradiction to (H3). Thus (2.5) holds. By the properties of fixed point
index, we have

i(Tn,Ω0, Q) = i(θ,Ω0, Q) = 1.

The proof is completed. �

Remark 2.5. The inequality (2.1) played an important role in the proof of Lemma
2.4. This type of inequality has been employed extensively in the literature [1, 5, 9].
The main idea of our proof of Lemma 2.4 is derived from [1].

3. Main Results

Theorem 3.1. Suppose that (H1)-(H4) hold. Assume that

lim
x→+∞

h(x)
x

= 0. (3.1)

Then (1.1) has at least two positive solutions.

Proof. For each positive integer n, let us define the operator Tn by (2.2). It follows
from Lemma 2.3 that Tn : Q→ Q is a completely continuous operator for every n.
Let δ be a positive number such that

0 < δ < min
{
1, (

∫ 1

0

φ(s)ds)−1
}
.

It follows from (3.1) that there exists R > u1 such that h(x) ≤ δx for all x ≥ R.
Since h : R+ → R+ is increasing, then

h(x) ≤ δx+ h(R), ∀x ∈ R+.

By (H4), there exists ũ1 > u1 such that

α(1− β − a)h(
1
2
ũ1)

∫ β+a

α+a

φ0(s)ds > ũ1. (3.2)

Put

R1 = max
{
2ũ1,

2[A+ ‖w‖+ (‖w‖+ ‖µ‖+R0 + 1 + h(R))
∫ 1

0
φ(s)ds]

1− δ
∫ 1

0
φ(s)ds

}
, (3.3)

Ω0 = {x ∈ Q : ‖x‖ < R0},
Ω1 = {x ∈ Q : ‖x‖ < R1},

Ω01 = {x ∈ Q : ‖x‖ < R1, inf
t∈[α,β]

x(t) > u1},

U01 = {x ∈ Q : ‖x‖ < R1 inf
t∈[α,β]

x(t) > ũ1}.

It is easy to see that Ω0, Ω1, Ω01 and U01 are bounded open convex sets of Q, and
that

Ω0 ⊂ Ω1, Ω01 ⊂ Ω1, U01 ⊂ Ω1, Ω0 ∩ Ω01 = ∅, U01 ⊂ Ω01.
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For each positive integer n and x ∈ Ω1, by (2.3) and (3.3), we have

(Tnx)(t)

≤
∫ 1

0

G(t, s)[φ(s)(g([x(s− a)]∗ + n−1) + h([x(s− a)]∗ + n−1)) + p(s)]ds

≤
∫ a

0

φ(s)(g(µ(s− a))ds+
∫ 1

a

φ(s)(g(
1
2
R0a(s− a))ds

+ h(‖x‖+ ‖w‖+ ‖µ‖+R0 + 1))
∫ 1

0

φ(s)ds+ ‖w‖

≤ A+ ‖w‖+ [δ(‖x‖+ ‖w‖+ ‖µ‖+R0 + 1) + h(R)]
∫ 1

0

φ(s)ds

≤ A+ ‖w‖+ [δR1 + ‖w‖+ ‖µ‖+R0 + 1 + h(R)]
∫ 1

0

φ(s)ds

< R1, ∀t ∈ [0, 1].

(3.4)

Since (Tnx)(t) = 0 for t ∈ [−a, 0], it follows that ‖Tnx‖ < R1 for all x ∈ Ω1. Hence,
Tn(Ω1) ⊂ Ω1 for all positive integer n. By Lemma 2.2, we have for each positive
integer n

i(Tn,Ω1, Q) = 1. (3.5)
For any x ∈ Ω01, by (3.4), we have ‖Tnx‖ < R1. It is easy to see that for x ∈ Ω01

[x(t− a)]∗ = x(t− a)− w(t− a) ≥ 1
2
x(t− a) ≥ 1

2
u1, t ∈ [α+ a, β + a].

Then the assumption (H4) implies

(Tnx)(t) ≥
∫ β+a

α+a

G(t, s)φ0(s)h0([x(s− a)]∗)ds

≥ α(1− β − a)h0(
1
2
u1)

∫ β+a

α+a

φ0(s)ds

> u1, ∀t ∈ [α, β],

and so, Tn(Ω01) ⊂ Ω01 for every positive integer n. Also by Lemma 2.2, we have

i(Tn,Ω01, Q) = 1 (3.6)

for every positive integer n. Similarly, by (3.2) we can show that

i(Tn, U01, Q) = 1 (3.7)

for every positive integer n. It follows from (3.7) that for every positive integer n,
Tn has at least one fixed point x̃n ∈ U01. It is easy to see that

[x̃n(t− a)]∗ =

{
µ(t− a), t ∈ [0, a]
x̃n(t− a)− w(t− a), t ∈ (a, 1]

≥

{
µ(t− a), t ∈ (0, a]
1
2 x̃n(t− a), t ∈ (a, 1]

≥ x0(t− a) + x̃0(t− a), t ∈ [0, 1],

and so

g([x̃n(t− a)]∗ + n−1) ≤ g(x0(t− a) + x̃0(t− a)), t ∈ (0, 1]\{a}. (3.8)
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Using essentially the same argument as in Lemma 2.4, we see that there exists
tn ∈ (0, 1) such that x̃′n(tn) = 0, and

−x̃′′n(t) ≤ φ(t)[g(x0(t− a) + x̃0(t− a) + n−1) + h(R1 + 1)] + p(t),

for all t ∈ (0, 1]. Integration yields

|x̃′n(t)| ≤
∫ 1

0

[φ(s)(g(x0(s− a) + x̃0(s− a)) + h(R1 + 1)) + p(s)]ds,

for all t ∈ (0, 1]. This means that {x̃n} is equicontinuous on [0, 1]. Since x̃n(t) = 0
for t ∈ [−a, 0], {x̃n} is equicontinuous on [−a, 0]. Therefore, the Arzela-Ascoli
Theorem guarantees the existence of a subsequence {x̃ni

} of {x̃n} and a function
x01 ∈ U01 with x̃ni

converging uniformly on [−a, 1] to x01 as i → ∞. From
x̃n = Tnx̃n, by (3.8) and using the Lebesgue dominated convergence Theorem, we
have

x01(t) =

{
0, t ∈ [−a, 0];∫ 1

0
G(t, s)[f(s, [x01(s− a)]∗) + p(s)]ds, t ∈ (0, 1].

=


0, t ∈ [−a, 0];∫ 1

0
G(t, s)[f(s, x01(s− a) + x0(s− a)

−w(s− a)) + p(s)]ds, t ∈ (0, 1].

Let y01(t) = x01(t) + x0(t)− w(t) for t ∈ [−a, 1]. Then, we have

y01(t) =

{
µ(t), t ∈ [−a, 0];∫ 1

0
G(t, s)f(s, y01(s− a))ds, t ∈ (0, 1].

It is easily verfied that y01 is a positive solution of (1.1). It follows from (3.5), (3.6)
and Lemma 2.4 that for every positive integer n

i(Tn,Ω1\(Ω̄01 ∪ Ω̄0), Q) = i(Tn,Ω1, Q)− i(Tn,Ω01, Q)− i(Tn,Ω0, Q) = −1.

Therefore, Tn has at least one fixed point x̄n ∈ Ω1\(Ω̄01 ∪ Ω̄0) for every positive
integer n. For every positive integer n, there is at least one point tn ∈ [α, β]
such that x̄n(tn) ≤ u1. In a similar way as above, we can show that there exist
a subsequence {x̄ni

} of {x̄n}, x1 ∈ Ω1\(Ω̄01 ∪ Ω̄0) and a point t0 ∈ [α, β] such
that x̄ni

convergence uniformly on [-a,1] to x1 as i → ∞, and x1(t0) ≤ u1. Let
y1(t) = x1(t) + x0(t)− w(t) for t ∈ [−a, 1]. Then y1 is a positive solution of (1.1).
Since

x1(t0) ≤ u1 < ũ1 ≤ x01(t0),

y01 and y1 are two distinct positive solutions of (1.1). �

Theorem 3.2. Suppose that (H1)-(H4) hold, and that there exists R1 > u1 such
that

A+ ‖w‖+ h(R1 + ‖w‖+ ‖µ‖+ 1)
∫ 1

0

φ(s)ds < R1,

lim
x→+∞

h0(x)
x

= +∞.

Then (1.1) has at least three positive solutions.
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Proof. For every positive integer n, let us define an operator Tn by (2.2). By (3.2),
there exists a positive number R̄1 > R1 such that

A+ ‖w‖+ h(R̄1 + ‖w‖+ ‖µ‖+ 1)
∫ 1

0

φ(s)ds < R̄1. (3.9)

Let us define the open sets Ω0, Ω01, Ω1 and U01 as in Theorem 3.1. Let U1 = {x ∈
Q : ‖x‖ < R̄1}. It is easy to see that for any x ∈ Ω̄1 and t ∈ [0, 1]

R1 + ‖w‖+ ‖µ‖ ≥ [x(t− a)]∗ ≥

{
µ(t− a), t ∈ [0, a];
1
2R0a(t− a), t ∈ [a, 1].

Since h : R+ → R+ is increasing, we have

h([x(t− a)]∗ + n−1) ≤ h(R1 + ‖w‖+ ‖µ‖+ 1),∀t ∈ [0, 1].

Therefore, by (3.2), we have

|(Tnx)(t)| ≤ A+ ‖w‖+ h(R1 + ‖w‖+ ‖µ‖+ 1)
∫ 1

0

φ(s)ds

< R1, ∀x ∈ Ω̄1, t ∈ [0, 1]

for any positive integer n. This means that Tn(Ω̄1) ⊂ Ω1. Similarly, by (3.9), we
can show Tn(Ū1) ⊂ U1 for every positive integer n. By Lemma 2.2, we have

i(Tn, U1, Q) = 1. (3.10)

In a similar way as Theorem 3.1, we can show that (1.1) has at least two positive
solutions y1 and y01 such that

y1(t) = x1(t) + x0(t)− w(t), y01(t) = x01(t) + x0(t)− w(t), ∀t ∈ [−a, 1],

where x1 ∈ Ω1\(Ω̄01 ∪ Ω̄0) and x01 ∈ Ū01.
Now, we shall show the existence of the third positive solution of (1.1). Let

M > 2(α(1− β) sup
t∈[0,1]

∫ β+a

α+a

G(t, s)φ0(s)ds)−1. (3.11)

By (3.2), there exists R̃ > R̄1 such that h0(y) ≥ My for any y ≥ R̃. Set R2 =
2R̃α−1(1 − β)−1, Ω2 = {x ∈ Q : ‖x‖ < R2}. Let ψ0 ∈ Q\{θ}. We claim that for
every positive integer n

y 6= Tny + λψ0, λ ≥ 0, y ∈ ∂Ω2. (3.12)

If not, then there exist n0 ∈ N, y0 ∈ ∂Ω2 and λ0 ≥ 0 such that

y0 = Tn0y0 + λ0ψ0

It is easy to see that

[y0(t− a)]∗ = y0(t− a)− w(t− a)

≥ 1
2
‖y0‖(t− a)(1− t+ a)

≥ 1
2
R2α(1− β) > R̃, t ∈ [α+ a, β + a].
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Therefore,

R2 ≥ y0(t) ≥
∫ 1

0

G(t, s)φ0(s)h0([y0(s− a)]∗)ds

≥
∫ β+a

α+a

G(t, s)φ0(s)h0(y0(s− a)− w(s− a))ds

≥ 1
2
MR2α(1− β)

∫ β+a

α+a

G(t, s)φ0(s)ds, t ∈ [0, 1].

Hence

M ≤ 2(α(1− β) sup
t∈[0,1]

∫ β+a

α+a

G(t, s)φ0(s)ds)−1,

which is a contradiction to (3.11). Hence, (3.12) holds. From the properties of the
fixed point index, we have

i(Tn,Ω2, Q) = 0.
It follows from (3.10) and (3) that

i(Tn,Ω2\Ū1, Q) = i(Tn,Ω2, Q)− i(Tn, U1, Q) = −1

for every positive integer n. Hence, Tn has at least one fixed point x̃n ∈ Ω2\Ū1.
Using essentially the same argument as in Theorem 3.1, we can show that there
exist a subsequence {x̃ni} of {x̃n}, and x3 ∈ Ω2\Ū1 such that x̃ni → x3(i→ +∞),
and y3 = x3 + x0 − w is a positive solution of (1.1). The proof is completed. �

Corollary 3.3. Suppose that (H1)-(H3) hold. Moreover, there exist Ri, ui(i =
1, 2, . . . , n) with R0 < u1 < R1 < u2 < R2 < · · · < un < Rn such that

A+ ‖w‖+ h(Ri + ‖w‖+ ‖µ‖+ 1)
∫ 1

0

φ(s)ds < Ri, i = 1, 2, . . . , n,

α(1− β − a)h0(
1
2
ui)

∫ β+a

α+a

φ0(s)ds > ui, i = 1, 2, . . . , n,

lim
x→+∞

h0(x)
x

= +∞.

Then (1.1) has at least 2n+ 1 positive solutions.

Corollary 3.4. Suppose that (H1)-(H3) hold, and limx→+∞
h0(x)

x = +∞. Then
(1.1) has at least one positive solution.

We remark that the multiplicity results for positive solutions of singular semi-
positone delay differential equations are new. Obviously, we can use the ideas of
this paper to establish multiplicity results for positive solutions of the more general
delay equation.

Example. Consider the delay differential boundary-value problem

y′′ + 40
[ 1√

y(t− 1
4 )

+ h(y(t− 1
4
))

]
=

1
t1/4

, t ∈ (0, 1]\{1
4
},

y(t) = −t, t ∈ [−1
4
, 0],

y(1) = 0,

(3.13)
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where h : R+ → R+ is increasing, h(y) = y1/4 for y ∈ [0, 2× 104], and

lim
x→+∞

h(x)
x

= 0 .

Claim: If there exits u1 > 2×104 such that h( 1
2u1) > 2u1, then the boundary-value

problem (3.13) has at least two positive solutions.

Proof. Let φ(t) = φ0(t) = 40 for t ∈ [0, 1], a = 1/4, g(y) = 1/
√
y, p(t) = 1/t1/4,

µ(t) = −t for t ∈ [− 1
4 , 0]. It is easy to see (H1) and (H2) hold. Set R0 = 104.

Then, we have

A ≤
∫ 1/4

0

[
40(

1√
1
4 − s

+ h(
1
4
− s+ 1)) +

1
s1/4

]
ds+

∫ 1

1/4

40√
R0
8 (s− 1

4 )

≤ 80

√
1
4
− s

∣∣∣0
1/4

+ 10h(
5
4
) +

4
3

+
320√
R0

= 40 + 10h(
5
4
) +

4
3

+
320√
R0

≤ 80,

B(R0) = 2× (40 +
√

2)
∫ R0

0

( 1√
s/2

+ (s+ 1)
1
4 + 1

)
ds

< 84(2
√

2R0 +
4
5
(R0 + 1)5/4 +R0)

< 340
√
R0 + 80(R0 + 1)5/4 + 84R0 < 8875040,

and
R0 − 2

√
B(R0) > R0 − 2

√
8875040 > 80,

which implies (H3). Put [α, β] = [ 13 ,
1
2 ], h(y) = h0(y) for y ∈ R+. It is easy to

check that (H4) holds. Thus, by Theorem 3.1, the conclusion holds. The proof is
completed. �

References

[1] R. P. Agarwal and D. O’Regan; Singular boundary value problems for superlinear second

order ordinary and delay differential equations, J. Differential Equations, 130, (1996), 333-

355.
[2] Ravi P. Agarwal and D. O’Regan; A note on existence of nonnegative solutions to singular

semi-positone problems, Nonlinear Anal., 36(1999), 615-622.

[3] Y. S. Choi; A singular boundary value problem arising from near-ignition analysis of flame
structure, Diff. Integral Eq., 4(4), 1991, 891-895.

[4] R. Dalmasso; Positive solutions of singular boundary value problems, Nonlinear Anal., 27(6),
1996, 645-652.

[5] L. H. Erbe, Qingkai Kong; Boundary value problems for singular second-order functional

differential equations, J. Comput. & Appl. Math., 53(1994), 377-388.
[6] Guo Dajun, V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic press,

Inc, New York, 1988.

[7] J. Janus, J. Myjak; A generalized Emden-Fowler equation with a negative exponent, Nonlinear
Anal., 23(1994), 953-970.

[8] Liu Xiyu, Yan Baoqiang; Boundary Irregular solutions to singular boundary value problems,

Nonlinear Anal., 32(5), 1998, 633-646.
[9] Donal O’Regan; Singular second order boundary value problems, Nonlinear Anal.,15(12),

1990, 1097-1109.

[10] D. O’Regan; Existence principles and theory for singular Dirichlet boundary value problems,
Differential Equations Dynam. Systems, 3(1995), 289-304.



12 X. XU EJDE-2005/70

[11] Xu Xian; Positive solutions for singular semi-positone boundary value problems, J. Math.
Anal. Appl., 273(2002), 480-491.

[12] Xian Xu; Positive solutions of generalized Emden-Fowler equation, Nonlinear Anal., 53(1),

2003, 23-44.
[13] Junyu Wang, Wenjie Gao; A note on singular nonlinear two-point boundary value problems,

Nonlinear Anal., 39(2000), 281-287.

Xu Xian
Department of Mathematics, Xuzhou Normal University, Xuzhou, Jiangsu, 221116, China

E-mail address: xuxian68@163.com


