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Blow-up for p-Laplacian parabolic equations *

Yuxiang Li & Chunhong Xie

Abstract

In this article we give a complete picture of the blow-up criteria for
weak solutions of the Dirichlet problem

ue = V(|Vu|?>Vau) + Mu|* u, in Qr,

where p > 1. In particular, for p > 2, ¢ = p is the blow-up critical
exponent and we show that the sharp blow-up condition involves the first
eigenvalue of the problem

—V( VY|P 2VY) = Al$|P %), in Q;  Ploa = 0.

1 Introduction
In this paper we study the Dirichlet problem

ug = V(| VulP?Vu) + AMu|?%u, in Qp,
uvw=0, on Sr, (1.1)
U(JL‘,O) = uO(‘T)a in Q:

ug(x) € Co(Q), where p > 1, ¢ > 2, A > 0 and Q C R¥ is an open bounded
domain with smooth boundary 0.

When p = 2, the blow-up properties of the semilinear heat equation (1.1)
hasve been investigated by many researchers; see the recent survey paper [11].
For p # 2, the main interest in the past twenty years lies in the regularities
of weak solutions of the quasilinear parabolic equations; see the monograph [4]
and the references therein. When Q = RY, the Fujita exponents have been
calculated; see [7, 8, 9, 10] and also the survey papers [3, 12].

To the best of our knowledge, when € is a bounded domain, the blow-up
conditions are not fully established, especially, in the case ¢ = p > 2. In [23],
the author showed that ¢ = p is the critical case, that is, if ¢ < p, (1.1) has a
unique nonnegative global weak solution for all nonnegative initial values, and if
q > p, there are both nonnegative, nontrivial global weak solutions and solutions
which blow up in finite time. The blow-up result for ¢ > p is also proved in [14].
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Furthermore, in [24] the author proved that in the critical case ¢ = p > 2, if the
Lebesgue measure of 2 is sufficiently small, (1.1) has a global solution and if £
is a sufficiently large ball, it has no global solution.

In this paper we shall give a complete picture of the blow-up criteria for
(1.1). In particular, in the critical case ¢ = p > 2, we will prove that if A > Ay,
there are no nontrivial global weak solutions, and if A < Ay, all weak solutions
are global, where A; is the first eigenvalue of the nonlinear eigenvalue problem

—V(IV[P72Ve) = A[Y|P~2%p, in Q;  |oq = 0. (1.2)

The following lemma concerns the properties of the first eigenvalue Ay and
the first eigenfunction ¢(z).

Lemma 1.1 There exists a positive constant A\ (2) with the following proper-
ties:

(a) For any A < A\ (), the eigenvalue problem (1.2) has only the trivial solu-
tion ¢ = 0.

(b) There exists a positive solution ¢ € WyP(Q) N C(Q) of (1.2) if and only
if A= XM(Q).

(c) The collection consisting of all solutions of (1.2) with A = A\(Q) is 1-
dimensional vector space.

(d) If Q;, j =1,2 are bounded domain with smooth boundary satisfying 1 €
QQ, then )\1(91) > )\1(92)

(e) Let {Q,} be a sequence of bounded domains with smooth boundaries such
that Q,, € Qi1 and U, —; Uy = Q, then lim,, oo A1(Qr) = M1 ().

Proof (a)-(d) follow from [5, Lemma 2.1, 2.2]. The continuity of ¢(z) is
asserted in [22, Corollary 4.2]. We now prove (e). It follows from (d) that
A1(9,,) is strictly decreasing and so it tends to some nonnegative constant Af (€2)
asn — oo. Denote by 1, (x) the positive solution of (1.2) on Q,, with A = A1 (Qy,)
such that an Yndr = 1. By (c¢), ¥y, is unique. By the similar method in the
proof of [5, Theorem 2.1], one can obtain from {¢,} a positive solution ¥* of
(1.2) with A = A3(€2). Then by (b), we have A\7(2) = A (Q). &

We note that the blow-up conditions for (1.1) are similar to that of the
porous media equations; see [6, 15, 16, 18]. Also our results clearly illustrate
the observation that larger domains are more unstable than smaller domains;
see [12].

To prove that ¢ = p is the critical case, we shall use the method of comparison
with suitable blowing-up self-similar sub-solutions introduced by Souplet and
Weissler [21]. This method enables us to treat the singular case 1 < p < 2, which
is not considered in [23, 24], as well as the degenerate case p > 2. Recently,
the self-similar sub-solution method is proven to be useful in proof of blow-up
theorems in the semilinear and porous media equations with gradient terms and
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nonlocal problems; see also [1, 17, 20]. This paper shows that this method can
apply to the quasilinear problems with gradient diffusion. In the discussion
of the critical case, we use a technique of comparison combined with the so-
called “concavity” method, which is a different treatment with respect to the
eigenfunction method for the porous media equations.

This paper is organized as follows: In the next section we consider compar-
ison principles of the weak solutions of (1.1). In section 3 we first discuss the
critical case ¢ = p > 2. The last section is devoted to the proof of the blow-up
results for (1.1) with large initial values.

2  Weak solutions and comparison principles

Following the book [4], we give the definition of the weak solutions of (1.1).

Definition 2.1 A weak sub(super)-solution of the Dirichlet problem (1.1) is a
measurable function u(z,t) satisfying

u e C(0,T; L2(Q)) N LP(0,T; Wy () N L=(Qr), us € L2(Qr)

and for all ¢ € (0, 7]

¢
/ up(z,t)dx +/ /{fucpt + |VulP~2Vu - Voldr dr
Q 0 Jo

t
< (2)/ uowp(x,0)dr + A/ / |ul"?up da dr
Q 0 Ja
for all bounded test functions
© € WHP(0,T; LA(Q)) N LP(0, T; Wy P () N L=(Qp), ¢ > 0.

A function u that is both a sub-solution and a super-solution is a weak solution
of the Dirichlet problem (1.1).

It would be technically convenient to have a formulation of weak solutions
that involves u. The following notion of weak sub(super)-solutions in terms of
Steklov averages involves the discrete time derivative of u and is equivalent to
(2.1),

/ {un,eo + [[VulP =2 Vuly - Voo — AlJul " ulpp}da < (2)0, (2.1)
Qx{t}

for all 0 < t < T — h and for all ¢ € Wy (Q) N L=(Q), ¢ > 0. Moreover the
initial datum is taken in the sense of L?(Q), i. e.,

(uh(-, O) - uO)Jr(,) - 0, in L2(Q).
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The Steklov average up(+,t) is defined for all 0 < ¢t < T by

L [RE atar te 0.7 -],
"o, t>T—h.

The equivalence of (2.1) and (2.1) can be proven by the simple properties of
Steklov averages.

Lemma 2.2 ([4, Lemma 1.3.2]) Let v € L¥"(Qr). Then let h — 0, vy, con-
verges to v in LY (Qp_.) for every e € (0,T). If v € C(0,T;L9(QY)), then as
h — 0, vp(-,t) converges to v(-,t) in LI(Q) for everyt € (0,T —¢), Ve € (0,T).

The Holder continuity of the above weak solution has been studied by many
researchers in the past twenty years; see [4]. The following lemma is a special
case.

Lemma 2.3 Forp > 1, let u be a bounded weak solution of the Dirichlet prob-
lem (1.1). If ug € Co(R2), then uw € C(Qr). Moreover, let T* < oo be the
mazimal ezistence time of u, then limsup,_,p- ||u(-, t)]|c = 00.

The existence of the local weak solutions of the Dirichlet problem (1.1) can
be proven by Galerkin approximations using the a priori estimates presented in
the book [4, Theorem III.1.2 and Theorem IV.1.2]. For details for p > 2, we
refer to [24, Theorem 2.1].

To establish the comparison principle, we begin with a simple lemma that
provides the necessary algebraic inequalities.

Lemma 2.4 For all n,n' € RN, there holds

- - ea(lnl + 1')P=2n =12, ifp>1,
(Inl*=*n — ' IP=20) - (n — ') = o .
Cl|77_77|7 pr>2a
where ¢1 and co are positive constants depending only on p.
For the detailed proof of this lemma, we refer to [2, Lemma 2.1].
Theorem 2.5 Let u,v € C(Qr) be weak sub- and super-solutions of (1.1) re-
spectively and u(x,0) < v(z,0), then u < v in Q.

Proof We write (2.1) for u,v against the testing function

ol =} [ o]

+

with h € (0,T) and ¢ € [0,T — h). Differencing the two inequalities for u, v and
integrating over (0,t) gives

‘AKU_U%El%th+2[;L“VMFQVU—¢VMVQVMh~VKu—U%hdﬂh

< /gKu——vﬁJ+(xJDdx—%2ALK;/2Huﬁ‘2u~—|UW_QULJ(u——vﬁJ+dxdT
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As h — 0 the first term on the right tends to zero since (u — v)y € C(Qr).
Applying Lemma 2.2 and Lemma 2.4, we arrive at

/Q(U —v)3 (2, t)dz < c3 /Ot/ﬂ(u —v)% dadr.

The Gronwall’s Lemma gives the desired result. O
In the following we consider the positivity of the weak solutions of the prob-
lem

v, = V([Vo[P72Vv), in Q xRy,
v=0, ondQ xRy, (2.2)
v(x,0) = vo(z) >0, in Q,
where p > 2. Let

ug(z — xo,t —to) = Ap N[T+ (t — to)]fN/[(pf2)N+p]

o1 |z — 2ol p/(p=1)
x { {ap ’ ([7' +(t— to)]l/[(p_Q)N“’]) L

}(p—l)/(p—2)

)

where 5 1
P —4a\(»p-1)/(p—2) 1/(p—2)
&) { (p—2)N + p}

7 > 0, a > 0 are arbitrary constants. According to [19, p. 84 ], us(z —xg,t—to)
satisfies the first equation of (2.2). Without loss of generality, we assume that
vo(z) > 0 in a ball B(xg,d1). Let T € Q be another point. In the following we
prove that there exists a finite time ¢ and a neighborhood V& such that v(zx,t) > 0
in V. Since € is connected, there exists a continuous curve I' : ~(s) C Q,
0 < s < 1, such that v(0) = z¢ and v(1) = Z. Denote 2 = dist(I', Q) and
d = min{dy,d2}. Let 21 = TNOB(x0,d/2), - -, xp = TNOB(xk—-1,0/2), - - -, such
that x # xp_o. It is clear that T € B(z,,d/2) for some n. Since B(x1,d/4) C
B(xg,0), then vo(x) > 0 in B(z1,d/4). Choose suitable 7 and a such that
suppus C B(x1,6/4) and |lus|loc < Mingep(a,,s5/4) vo(x), then ug(z — 1,1)

Ap,N =

)

is a weak sub-solution of (2.2) in B(x1,0). The comparison principle implies
that there exists 7y > 0 such that v(x,7) > 0 in B(x;,d). Thus v(z,7) > 0
in B(z2,d/2) since B(xa,0/2) C B(x1,9). Repeating the above procedure, by
finite steps, there exists a finite time ¢ such that v(z,t) > 0 in B(z,,d/2). The
proof is completed. Thus we have the following lemma.

Lemma 2.6 Assume that vo € Co(Q2) is nontrivial. Denote Q, = {z € Q :
dist(z, 00) > p}. Let v be the weak solution of (2.2). Then there exists a finite
time t, > 0 such that v(x,t,) > 0 in Q,.

Proof It follows from the above proof that for any = € €, there exist ¢, > 0
and a neighborhood V,, C €2 such that v(x,t;) > 0 in V. Since (J,cq Ve D §TP,
by the finite covering theorem, Q, C |/, Va,. Put t, = max{t,,, - ,ts,}.
This lemma is proved. &
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3 The critical case g =p > 2

Since in [23, 24], the authors have been established that ¢ = p > 2 is the critical
case of (1.1), we first consider what happens if ¢ = p. Zhao showed in [24] that
if the Lebesgue measure of 2 is sufficiently small, (1.1) has a global solution and
if Q is a sufficiently large ball, it has no global solution. In this section we shall
prove that if ¢ = p > 2, the crucial role is played by the first eigenvalue A; of
the eigenvalue problem (1.2), as in the porous media equations.

First we consider the global existence case A < \;.

Theorem 3.1 Assume that ug € Co(Q) and ¢ =p > 2. If

A< A, (31)
then the unique weak solution of (1.1) is globally bounded.
Proof Since A < A1, by Lemma 1.1, there exists . 3 {2 such that A < A\ <
A1. Let . (x) be the first eigenfunction with sup,cq ¥ (2) = 1 of the eigenvalue

problem (1.2) with Q@ = Q.. Choose K to be so large that ug(z) < Kt (x) =
v(z). Forall 0 <t < T — h and for all ¢ € W, P(2) N L>®(R), ¢ >0,

/ {one + [[V0[P2V0], - Voo = AlJoP 0]} da
Qx{t}
= /{|Vv\p_2Vv -V — AP~ 2vp}dr

Q

=(Me— /\)/ |v\p_21)g0da; > 0.
Q

Hence v(x) = K(z) is a weak super-solution of (1.1) in terms of Steklov
averages. The comparison principle implies this theorem. &

Remark 3.2 The global existence is still true for A = A; if ug satisfies the
stronger assumption that ug < K (z) for K > 0 large.

Remark 3.3 Theorem 3.1 and Remark 3.2 hold for mixed sign solutions as
well. To see this, just use —K. in Theorem 3.1 and —K1 in Remark 3.2 as
weak subsolutions of (1.1).

Now we consider the blow-up case A > A;. In [24, Theorem 4.1}, using the
so-called “concavity” method, the author showed that if ug € Wy () N L>(Q)
and

1 A
E(up) = f/ |Vug|Pdx — 7/ |ug|Pdz < 0, (3.2)
P Ja P Ja
then there exists T* < oo such that
i [ () [l )= oo (3:3)

See also [13]. The result is crucial in the proof of the blow-up case A > A;. The
following lemma reproves the result using another version of the “concavity”
argument.
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Lemma 3.4 Assume that ug € Wy P (Q)NCo(Q) satisfies (3.2), then (3.3) holds.

Proof Unlike in the usual “concavity” argument, we put
1 2
H(t) == | udz.
2 Ja

Taking v and u; as testing functions in the weak formulation of (1.1), modulo
a Steklov average, gives

SH() = —pE(w), in D'(R,),
i o (3.4)
_%5( u) = /Q(Ut) dx, in D'(Ry).

Differentiating (3.4), we have

—H(t) = —p%g(u)7 in D'(R,).

Note that
H() /uutdx, in D'(R,).
dt o

Then using the Holder inequality, we have

Slaro] =51 [ [ b s =0 s

in D’(R, ), which implies

dt2H1 2(t) <0, in D' (Ry).

It follows that T* < oo. Indeed, otherwise, taking into account (3.2) and the

continuity of H(t), there exists T' < oo such that lim, 7 H(t) = co: a contra-

diction. The proof is completed. &
The following theorem follows from the above lemma.

Theorem 3.5 For g =p > 2, the unique weak solution of the Dirichlet problem
(1.1) with nontrivial, nonnegative ug € Co(S) blows up in finite time provided
that

A > Aq. (3.5)

Proof Let ¢)(z) > 0 be the first eigenfunction of the eigenvalue problem (1.2)
with max,cq ¥(z) = 1. Then we have, for any k > 0,

E(ky) = / IV (k) [Pdz — %/(kn/;)pd —kpAlp A/dﬂ”daz <0.
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Therefore, by Lemma 3.4, the solution of (1.1) with the initial datum ki (x)
blows up in finite time. Given any nontrivial initial datum wg(z) > 0, denote
by T* the maximal existence time of the weak solution of (1.1). Suppose by
contradiction that T* = oco. Combining (3.5) with Lemma 1.1, there exists
Q, € Q such that A > A; , > A;. By Lemma 2.6 and the comparison principle,
there exists t, > 0 such that

u(z,ty,) >0, x€Q, (3.6)

Consider the problem (1.1) in Q, with the initial datum k1,, where 1, is the
first eigenfunction of (1.2) in Q, with maxy, = 1. We know that the weak
solution w,(x,t) blows up in finite time for any k& > 0. Choose k so small that
u(x,t,) > ki), in Q,, then a contradiction follows from the comparison principle.
The theorem is proved. &

4 Global nonexistence for large initial values

In [24], the author used the so-called “concavity” method to prove that if ¢ >
p > 2, the unique weak solution of (1.1) blows up in finite time if E(ug) < 0.
In this section we use the method of comparison with suitable blowing-up self-
similar sub-solution to give a uniform treatment for all p > 1. In the following
theorem we construct a suitable blowing-up self-similar subsolution.

Theorem 4.1 Assume that ¢ > p > 1 and ¢ > 2. Given a nonnegative, non-
trivial initial datum ug € Co(Q), there exists g > 0 (depending only upon ug)
such that for all p > o, the weak solution u(x,t) of the Dirichlet problem (1.1)
with initial data pug blows up in a finite time T*. Moreover, there is some
C(ug) > 0 such that

N C(u
7 (o) < S, e (4.1)

Proof We seek an unbounded self-similar sub-solution of (1.1) on [tg, 1/€) X
RN, 0 <ty < 1/, of the form

v(z,t) = ! V<( i ), (4.2)

(1—et)k 1—et)m
where V(y) is defined by

A y° P
V — 1+ — s = —, ZO, 43
(y) ( )+ =T (4.3)

with A, k,m,e > 0 and ¢y to be determined. First note that Vt € [tg,1/¢),

supp(v(-,t)) € B(0, R(1 — ety)™), (4.4)
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with R = (A°~1(0 + A))Y/?. We compute (by setting y = |z|/(1 — et)™ for
convenience),

Pv =v; — V(|Vu[P2Vv) — A|o|7 v
_ V) +myV'(y)  (V'@PV' (@) + (N = DIV )PV (y)/y
(1 —et)h+t (1 — et)kFm)E=1tm
A -
~ VW)

It is easy to verify that

A
1<V(y) <1+=, -1<V'(y)<0, for0<y<A,

<V'(y) < -1, for A<y<R, (4.5)

(V' @)P2V' @)+ (N = DIV @)P 2V )y =~ Sxtyemy + 200y,

where Y is the indicator function. We choose

1 q—p
k=——, 0<m< )
q—2 p(q—2)
k
A> — —_—
> 0<€<k(1+A/g)

For to <t < 1/e with ¢, sufficiently close to 1/, we have, in the case 0 < y < A,

ek(1+ Afo) — A N/A

Pu(z,t) < (1 — et)k+1 (1 — et)(ktm)(p—1)+m <0
In the case A <y < R, we get
k—mA N/A
Po(a, ) < 2B =mA) / <0.

(]_ _ 6t)k+1 (1 _ Et)(k+m)(p—1)+7n -

Obviously, we also have Pv = 0 for y > R. Since v(x,t) is continuous and
piecewise C? and due to the sign of the singular measure in (4.5) , then v(z,t)
is a local weak sub-solution of the Dirichlet problem (1.1).

Now by translation, one can assume without loss of generality that 0 €
and up(0) = max,eq uo(z). It follows from the continuity of uy that

uo(x) > C, for all z € B(0,p),
for some ball B(0,p) € © and some constant C' > 0. Taking ¢, still closer to
1/e if necessary, one can assume that B(0, R(1 — etg)™) C B(0, p). Therefore,

pug(x) = pC' > 40

> m >v(z,tp), z€Q, (4.6)
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for all > pp = V(0)/C(1 — etp)*. By the Theorem 2.5, it follows that
1
u(z,t) > v(z, t+1t0), ze€Q, 0<t<min{T", - to}-

Hence T* < 1/e — tp.

To prove (4.1), given p > V(0)/C(1 — etg)*, by the previous calculation,
whenever ¢y < T < 1/e such that u > V(0)/C(1 — eT)*, we have T*(pug) <
1/e —T. Then

. 1 /(14+A/0c\"? V(0)
T (pug) < - (HO ) , forall p=> c(1— Eto)l/(Q*Q)'

The proof is completed. &
Under the conditions of the above theorem, the solutions of (1.1) exist glob-
ally for small initial data.

Theorem 4.2 Assume that ¢ > p > 1 and q > 2. There exists n > 0 such that
the solution of (1.1) exists globally if ||uollcc < 7.

Proof Let Q.  Q be a bounded domain and . be the first eigenfunction
of (1.2) on Q. with sup,cq®:(x) = 1. Denote 6 = infycqt(x). Choose
k97P = X\ /X and n = kd. A direct computation yields that k. (x) and —ki).(x)
is a weak super- and sub-solution of (1.1) respectively. This theorem follows the
comparison principle. O

Theorem 4.3 Assume that 2 < q < p. Then the solution of (1.1) exists globally
for any initial datum.

Proof The proof is very similar to the above. Let 2. ©  be a bounded
domain and . be the first eigenfunction on Q. with inf,cq¢.(z) = 1. We
choose the super- and sub-solution to be K. (z) and —Kv.(z) for K so large
that |Jug|| < K in Q. o
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