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EXISTENCE OF POSITIVE SOLUTIONS FOR
NONLINEAR BOUNDARY-VALUE PROBLEMS IN

UNBOUNDED DOMAINS OF Rn

FATEN TOUMI, NOUREDDINE ZEDDINI

Abstract. Let D be an unbounded domain in Rn (n ≥ 2) with a nonempty

compact boundary ∂D. We consider the following nonlinear elliptic problem,
in the sense of distributions,

∆u = f(., u), u > 0 in D,

u
˛̨
∂D

= αϕ,

lim
|x|→+∞

u(x)

h(x)
= βλ,

where α, β, λ are nonnegative constants with α + β > 0 and ϕ is a nontrivial
nonnegative continuous function on ∂D. The function f is nonnegative and

satisfies some appropriate conditions related to a Kato class of functions, and

h is a fixed harmonic function in D, continuous on D. Our aim is to prove the
existence of positive continuous solutions bounded below by a harmonic func-

tion. For this aim we use the Schauder fixed-point argument and a potential

theory approach.

1. Introduction

In this paper, we are concerned with the existence and asymptotic behavior
of positive solutions for the following nonlinear elliptic equation, in the sense of
distributions,

∆u = f(., u) in D, (1.1)

where D is an unbounded domain in Rn (n ≥ 2) with a nonempty compact bound-
ary ∂D and f is a nonnegative measurable function on D that may be singular
or sublinear with respect to the second variable. More precisely we will study the
problem

∆u = f(., u), u > 0 in D,

u
∣∣
∂D

= αϕ,

lim
|x|→+∞

u(x)
h(x)

= βλ ≥ 0,

(1.2)
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where α ≥ 0, β ≥ 0, ϕ is a nontrivial nonnegative continuous function on ∂D, h is
the harmonic function in D given by (2.2) below and f satisfies some appropriate
conditions related to a Kato class (see Definition 2.3) introduced by Bachar et al
in [3] for n ≥ 3 and Mâagli and Maâtoug in [11] for n = 2.

In [2], Athreya considered (1.1) with a special case of nonlinearity f(x, u) =
g(u) ≤ max(1, u−α) for 0 < α < 1, on a simply connected bounded C2-domain Ω.
He showed that if h0 is a fixed positive harmonic function in Ω and ϕ is a nontrivial
nonnegative continuous function on ∂Ω, there exists a constant c > 1 such that if
ϕ ≥ c h0 on ∂Ω, then (1.1) has a positive continuous solution u satisfying u = ϕ on
∂Ω and u ≥ h0 in Ω.

This result was extended by Bachar et al [5] on the half space Rn+ = {x =
(x1, . . . , xn) ∈ Rn : xn > 0} (n ≥ 2). More precisely, they proved that the problem

∆u = f(., u) in Rn+,
u = ϕ in ∂Rn+,

lim
xn→+∞

u(x)
xn

= c ≥ 0,

has a positive solution u satisfying u(x) ≥ cxn + ρ0(x) in Rn+, where ρ0 is a fixed
positive continuous bounded harmonic function in Rn+.

In the sublinear case where f(x, u) = p(x)uα, 0 < α ≤ 1, Lair and Wood [8]
studied the existence of positive large solutions and bounded ones for the equa-
tion (1.1). In particular they proved the existence of entire bounded nonneg-
ative solutions in Rn provided that p is locally hölder continuous and satisfies∫∞
0
tmax|x|=t(p(x))dt <∞.

This result was extended by Bachar and Zeddini in [4] to more general function
f(x, u) = q(x)g(u). More precisely it is shown in [4] that the equation (1.1) has
at least one positive continuous bounded solution in Rn, provided that the Green
potential of q is continuous bounded in Rn and for all α > 0, there exists a constant
k > 0 such that the function x→ kx− g(x) is nondecreasing on [α,∞).

In this work, we will give two existence results for the problem (1.2). For this
aim, we fix a positive harmonic function h0 in D, which is continuous and bounded
in D such that lim|x|→+∞ h0(x) = 0, whenever n ≥ 3. We suppose that the function
f satisfies combinations of the following hypotheses:

(H1) f : D × (0,+∞) → [0,+∞) is measurable, continuous with respect to the
second variable.

(H2) There exists a nonnegative measurable function θ on D×(0,+∞) such that
the function t 7→ θ(x, t) is nonincreasing on (0,+∞), and satisfies

f(x, t) ≤ θ(x, t), for (x, t) ∈ D × (0,+∞).

(H3) The function ψ defined on D by ψ(x) = θ(x,h0(x))
h0(x)

belongs to the class
K∞(D).

(H4) For each α ≥ 0 and β ≥ 0 with α+β > 0, there exists a nonnegative function
qα,β = q ∈ K∞(D) such that for each x ∈ D and t ≥ s ≥ αh0(x) + βh(x),
we have

f(x, t)− f(x, s) ≤ (t− s)q(x), (1.3)

f(x, t) ≤ tq(x). (1.4)
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For the rest of this paper, we denote by HDϕ the bounded continuous solution of
the Dirichlet problem

∆w = 0 in D,

w
∣∣
∂D

= ϕ,

lim
|x|→+∞

w(x)
h(x)

= 0,

(1.5)

where ϕ is a nonnegative continuous function on ∂D and h is the harmonic function
given by (2.2).

The outline of this paper is as follows. In the second section we recall and
improve some useful results concerning estimates on the Green function GD of the
Laplace operator ∆ in D and some properties of functions belonging to the Kato
class K∞(D). In section 3, we will prove a first existence result for the problem
(1.2), by using the Schauder fixed-point theorem. More precisely, we prove the
following

Theorem 1.1. Under the assumptions (H1)–(H3), there exists a constant c > 1
such that if ϕ ≥ ch0 on ∂D, then for each λ ≥ 0, the problem (1.2) with α = β = 1
has a positive continuous solution u satisfying for each x ∈ D,

λh(x) + h0(x) ≤ u(x) ≤ λh(x) +HDϕ(x).

In the last section, we use a potential theory approach to prove a second existence
result for the problem (1.2). More precisely, we will prove the following result.

Theorem 1.2. Under the assumptions (H1) and (H4), if α ≥ 0 and β ≥ 0 with
α + β > 0, then there exists a constant c1 > 1 such that if ϕ ≥ c1h0 on ∂D and
λ ≥ c1, the problem (1.2) has a positive continuous solution u satisfying: For each
x ∈ D,

αh0(x) + βh(x) ≤ u(x) ≤ αHDϕ(x) + βλh(x).

Notation and preliminaries. Throughout this paper, we will adopt the following
notation.

i. D is an unbounded domain in Rn (n ≥ 2) such that the complement of D in
Rn, Dc

=
⋃d
j=1Dj where Dj is a bounded C1,1-domain and Di

⋂
Dj = ∅,

for i 6= j.
ii. For a metric space S, we denote by B(S) the set of Borel measurable func-

tions and Bb(S) the set of bounded ones. C(S) will denote the set of con-
tinuous functions on S. The exponent + means that only the nonnegative
functions are considered.

iii. C0(D) = {f ∈ C(D) : lim|x|→+∞ f(x) = 0}.
iv. Cb(D) = {f ∈ C(D) : f is bounded in D}. We note that C0(D) and Cb(D)

are two Banach spaces endowed with the uniform norm

‖f‖∞ = sup
x∈D

|f(x)|.

v. For x ∈ D, we denote by δD(x) the distance from x to ∂D,

ρD(x) =
δD(x)

δD(x) + 1
, λD(x) = δD(x)(δD(x) + 1).
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vi. Let f and g be two positive functions on a set S. We denote f ∼ g, if there
exists a constant c > 0 such that

1
c
g(x) ≤ f(x) ≤ cg(x) for all x ∈ S.

vii. For f ∈ B+(D), we denote by V f the Green potential of f defined on D by

V f(x) =
∫
D

GD(x, y)f(y)dy.

Recall that if f ∈ L1
loc(D) and V f ∈ L1

loc(D), then we have in the distribu-
tional sense (see [6, p. 52])

∆(V f) = −f in D. (1.6)

Furthermore, we recall that for f ∈ B+(D), the potential V f is lower semi-
continuous in D and if f = f1 + f2 with f1, f2 ∈ B+(D) and V f ∈ C+(D),
then V fi ∈ C+(D) for i ∈ {1, 2}.

viii. Let (Xt, t > 0) be the Brownian motion in Rn and P x be the probability
measure on the Brownian continuous paths starting at x. For q ∈ B+(D),
we define the kernel Vq by

Vqf(x) = Ex
( ∫ τD

0

e−
R t
0 q(Xs)dsf(Xt)dt

)
, (1.7)

where Ex is the expectation on P x and τD = inf{t > 0 : Xt /∈ D}.
If q ∈ B+(D) such that V q < ∞, the kernel Vq satisfies the resolvent

equation (see [6, 9])

V = Vq + Vq(qV ) = Vq + V (qVq). (1.8)

So for each u ∈ B(D) such that V (q|u|) <∞, we have

(I − Vq(q.))(I + V (q.))u = (I + V (q.))(I − Vq(q.))u = u. (1.9)

ix. We recall that a function f : [0,∞) → R is called completely monotone if
(−1)nf (n) ≥ 0, for each n ∈ N. Moreover, if f is completely monotone on
[0,∞) then by [15, Theorem 12a] there exists a nonnegative measure µ on
[0,∞) such that

f(t) =
∫ ∞

0

exp(−tx)dµ(x).

So, using this fact and the Holder inequality we deduce that if f is com-
pletely monotone from [0,∞) to (0,∞), then log f is a convex function.

x. Let f ∈ B+(D) be such that V f < ∞. From (1.7), it is easy to see that
for each x ∈ D, the function F : λ → Vλqf(x) is completely monotone on
[0,∞).

xi. Let a ∈ Rn\D and r > 0 such that B(a, r) ⊂ Rn\D. Then we have

GD(x, y) = r2−nGD−a
r

(
x− a

r
,
y − a

r
), for x, y ∈ D,

δD(x) = rδD−a
r

(
x− a

r
), for x ∈ D,

So without loss of generality, we may suppose that B(0, 1) ⊂ Rn�D. More-
over, we denote by D∗ the open set

D∗ = {x∗ ∈ B(0, 1) : x ∈ D ∪ {∞}},
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where x∗ = x/|x|2 is the Kelvin inversion from D ∪ {∞} onto D∗ (see
[3, 11]). Then for x, y ∈ D,

GD(x, y) = |x|2−n|y|2−nGD∗(x∗, y∗).
Also we mention that the letter C will denote a generic positive constant which

may vary from line to line.

2. Properties of the Green function and the Kato class

In this section, we recall and improve some results concerning the Green function
GD(x, y) and the Kato class K∞(D), which are stated in [3] for n ≥ 3 and in [11]
for n = 2.

Theorem 2.1 (3G-Theorem). There exists a constant C0 > 0 depending only on
D such that for all x, y and z in D

GD(x, z)GD(z, y)
GD(x, y)

≤ C0

(ρD(z)
ρD(x)

GD(x, z) +
ρD(z)
ρD(y)

GD(y, z)
)
.

Proposition 2.2. On D2 (that is x, y ∈ D), we have

GD(x, y) ∼

{
1

|x−y|n−2 min
(
1, λD(x)λD(y)

|x−y|2

)
, n ≥ 3,

log(1 + λD(x)λD(y)
|x−y|2 ), n = 2.

Moreover, for M > 1 and r > 0 there exists a constant C > 0 such that for each
x ∈ D and y ∈ D satisfying |x− y| ≥ r and |y| ≤M , we have

GD(x, y) ≤ C
ρD(x)ρD(y)
|x− y|n−2

. (2.1)

Definition 2.3. A Borel measurable function q in D belongs to the Kato class
K∞(D) if q satisfies

lim
α→0

(sup
x∈D

∫
D∩B(x,α)

ρD(y)
ρD(x)

GD(x, y)|q(y)|dy) = 0,

lim
M→∞

(sup
x∈D

∫
D∩(|y|≥M)

ρD(y)
ρD(x)

GD(x, y)|q(y)|dy) = 0.

In this paper, h denotes the function defined, on D, by

h(x) = cn|x|2−nGD∗(x∗, 0) = cn lim
|y|→+∞

|y|n−2GD(x, y), (2.2)

where cn =

{
2π for n = 2,

4π
n
2

Γ( n
2−1) for n ≥ 3.

. Then we have the following statement.

Proposition 2.4. The function h defined by (2.2) is harmonic in D and satisfies
limx→z∈∂D h(x) = 0,

lim
|x|→∞

h(x)
log |x|

= 1 for n = 2,

lim
|x|→∞

h(x) = 1 for n ≥ 3.

Moreover,

h(x) ∼

{
ρD(x) for n ≥ 3,
log(1 + ρD(x)) for n = 2.

(2.3)
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The proof of the above proposition can be found in [11, Lemma 4.1] and in [13].

Remark 2.5 ([7, p.427]). The functionHDϕ defined in (1.5) belongs to C(D∪{∞})
and satisfies

lim
|x|→+∞

|x|n−2HDϕ(x) = C > 0.

In the sequel, we use the notation

‖q‖D = sup
x∈D

∫
D

ρD(y)
ρD(x)

GD(x, y)|q(y)|dy (2.4)

αq = sup
x,y∈D

∫
D

GD(x, z)GD(z, y)
GD(x, y)

|q(z)|dz. (2.5)

It is shown in [3, 11] that if q ∈ K∞(D), then

‖q‖D <∞. (2.6)

Now, we remark that from the 3G-Theorem,

αq ≤ 2C0‖q‖D,
where C0 is the constant. Next, we prove that αq ∼ ‖q‖D.

Proposition 2.6. The following assertions hold
(i) For any nonnegative superharmonic function v in D and any q in K∞(D),∫

D

GD(x, y)v(y)|q(y)|dy ≤ αqv(x), ∀x ∈ D. (2.7)

(ii) There exists a constant C > 0 such that for each q ∈ K∞(D),

C‖q‖D ≤ αq.

Proof. (i) Let v be a nonnegative superharmonic function in D. Then by [14,
Theorem 2.1] there exists a sequence (fk)k of nonnegative measurable functions in
D such that the sequence (vk)k defined on D by

vk(y) :=
∫
D

GD(y, z)fk(z)dz

increases to v. Since for each x ∈ D, we have∫
D

GD(x, y)vk(y)|q(y)|dy ≤ αqvk(x),

the result follows from the monotone convergence theorem.
(ii) We will discuss two cases: Case 1 (n ≥ 3). Using Fatou’s Lemma and (2.2)

we obtain∫
D

h(z)
h(x)

GD(x, z)|q(z)|dz ≤ lim inf
|y|→+∞

∫
D

GD(x, z)GD(z, y)
GD(x, y)

|q(z)|dz ≤ αq.

Hence, the result follows from (2.3).
Case 2 (n = 2). Let ϕ1 be a positive eigenfunction associated to the first eigenvalue
of the Laplacian in D∗. From [10, Proposition 2.6], we have

ϕ1(ξ) ∼ δD∗(ξ), ∀ξ ∈ D∗.

Let v(x) = ϕ1(x∗) for x ∈ D. Then v is superharmonic in D and

v(x) ∼ δD∗(x∗) ∼ ρD(x).

Applying the assertion (i) to this function v we deduce the result. �
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Proposition 2.7 ([3, 11]). Let q be a function in K∞(D) and v be a positive
superharmonic function in D.

(a) Let x0 ∈ D. Then

lim
r→0

(sup
x∈D

∫
B(x0,r)∩D

v(y)
v(x)

GD(x, y)|q(y)|dy) = 0, (2.8)

lim
M→+∞

(sup
x∈D

∫
(|y|≥M)∩D

v(y)
v(x)

GD(x, y)|q(y)|dy) = 0. (2.9)

(b) The potential V q is in Cb(D), limx→z∈∂D V q(x) = 0, and for n ≥ 3,
lim|x|→+∞ V q(x) = 0.

(c) The function x→ δD(x)
|x|n−1 q(x) is in L1(D).

Example 2.8. Let p > n/2 and γ, µ ∈ R such that γ < 2 − n
p < µ. Then using

the Hölder inequality and the same arguments as in [3, Proposition 3.4] and [11,
Proposition 3.6], it follows that for each f ∈ Lp(D), the function defined in D by

f(x)
|x|µ−γ(δD(x))γ belongs to K∞(D). Moreover, by taking p = +∞, we find again the
results of [3, 11].

Proposition 2.9. Let v be a nonnegative superharmonic function in D and q ∈
K∞

+ (D). Then for each x ∈ D such that 0 < v(x) <∞, we have

exp(−αq)v(x) ≤ v(x)− Vq(qv)(x) ≤ v(x).

Proof. Let v be a nonnegative superharmonic function in D. Then by [14, Theorem
2.1] there exists a sequence (fk)k of nonnegative measurable functions in D such
that the sequence (vk)k given in D by

vk(x) :=
∫
D

GD(x, y)fk(y)dy

increases to v. Let x ∈ D such that 0 < v(x) <∞. Then there exists k0 ∈ N such
that 0 < V fk(x) <∞, for k ≥ k0.

Now, for a fixed k ≥ k0, we consider the function χ(t) = Vtqfk(x). Since the
function χ is completely monotone on [0,∞), then logχ is convex on [0,∞). There-
fore,

χ(0) ≤ χ(1) exp
(
− χ′(0)
χ(0)

)
,

which implies

V fk(x) ≤ Vqfk(x) exp
(V (qV fk)(x)

V fk(x)
)
.

Hence, it follows from Proposition 2.6(i) that

exp(−αq)V fk(x) ≤ Vqfk(x).

Consequently, from (1.8) we obtain

exp(−αq)V fk(x) ≤ V fk(x)− Vq(qV fk(x))(x) ≤ V fk(x).

By letting k →∞, we deduce the result. �
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3. Proof of Theorem 1.1

Recall that h0 is a fixed positive harmonic function in D, which is continuous
and bounded in D and h is the function defined by (2.2). For a fixed nonnegative
function q ∈ K∞(D), we define

Γq = {p ∈ K∞(D) : |p| ≤ q}.

To prove Theorem 1.1 we need the following result.

Lemma 3.1. Let q be a nonnegative function belonging to K∞(D). Then the family
of functions

Fq =
{ ∫

D

GD(., y)h0(y)p(y)dy : p ∈ Γq
}

is uniformly bounded and equicontinuous in D∪{∞}. Consequently, it is relatively
compact in C(D ∪ {∞}).

Proof. Let q ∈ K∞
+ (D) and L the operator defined on Γq by

Lp(x) =
∫
D

GD(x, y)h0(y)p(y) dy.

Then by (2.7), we have for each p ∈ Γq and x ∈ D,

|Lp(x)| ≤
∫
D

GD(x, y)h0(y)q(y)dy ≤ αqh0(x) ≤ αq‖h0‖∞.

Hence the family Fq := L(Γq) is uniformly bounded.
Now, let us prove that L(Γq) is equicontinuous on D ∪ {∞}. Let x0 ∈ D and

r > 0. Let x ∈ B(x0, r) ∩D and p ∈ Γq. Since h0 is bounded, for M > 0 we have

1
‖h0‖∞

|Lp(x)− Lp(x0)| ≤
∫
D

|GD(x, y)−GD(x0, y)|q(y)dy

≤ 2 sup
z∈D

∫
B(x0,2r)∩D

GD(z, y)q(y)dy

+ 2 sup
z∈D

∫
(|y|≥M)∩D

GD(z, y)q(y)dy

+
∫

Ω

|GD(x, y)−GD(x0, y)|q(y)dy,

where Ω = Bc(x0, 2r) ∩ B(0,M) ∩ D. On the other hand, for every y ∈ Ω and
x ∈ B(x0, r) ∩D, using (2.1), we obtain

|GD(x, y)−GD(x0, y)| ≤ C[
ρD(x)

|x− y|n−2
+

ρD(x0)
|x0 − y|n−2

]ρD(y)

≤ CδD(y) ≤ C
δD(y)
|y|n−1

.

Now, since GD is continuous outside the diagonal, we deduce by the dominated
convergence theorem and Proposition 2.7 (c) that∫

Ω

|GD(x, y)−GD(x0, y)|q(y)dy → 0 as |x− x0| → 0.
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So, using Proposition 2.7(a) for v ≡ 1, we deduce that |Lp(x) − Lp(x0)| → 0 as
|x− x0| → 0, uniformly for all p ∈ Γq. On the other hand, on D, we have

|Lp(x)| ≤ ‖h0‖∞V q(x), (3.1)

which tends to zero as x→ ∂D. Hence, L(Γq) is equicontinuous on D.
Next, we shall prove that L(Γq) is equicontinuous at ∞. First, we claim that

lim
|x|→∞

Lp(x) =

{
0 for n ≥ 3,∫
D
h0(y)p(y)h(y)dy for n = 2.

Using (3.1) and Proposition 2.7(b), we obtain Lp(x) → 0 as |x| → ∞, for n ≥ 3,
uniformly in p ∈ Γq.

Finally, we assume that n = 2 and we put l =
∫
D
h0(y)p(y)h(y)dy. Since

lim|x|→+∞GD(x, y) = h(y), then using Fatou’s lemma and Proposition 2.7(b), we
obtain

|l| ≤
∫
D

h0(y)q(y)h(y)dy

≤ lim inf
|x|→+∞

∫
D

G(x, y)h0(y)q(y)dy

≤ ‖h0‖∞‖V q‖∞ < +∞.

Now, we shall prove that lim|x|→+∞ Lp(x) = l. Let ε > 0, then by (2.9), there
exists M > 1 such that for each x ∈ D with |x| ≥ 1 +M we have

|Lp(x)− l| ≤
∫
D

|GD(x, y)− h(y)|h0(y)q(y)dy

≤ ε+
∫
B(0,M)∩D

|GD(x, y)− h(y)|h0(y)q(y)dy.

On the other hand, using (2.1), for y ∈ B(0,M) ∩D and |x| ≥ 1 +M , we have

|GD(x, y)− h(y)|h0(y) ≤ C(
δD(y)
|y|

+ h(y)).

We deduce from Proposition 2.7(c) and Lebesgue’s theorem that lim|x|→+∞ Lp(x) =
l, uniformly in p ∈ Γq. Thus by Ascoli’s theorem Fq is relatively compact in
C(D ∪ {∞}). This completes the proof. �

Proof of Theorem 1.1. We shall use a fixed-point argument. Let c = 1+αψ, where
αψ is the constant defined by (2.5) associated to the function ψ given in (H3) and
suppose that

ϕ(x) ≥ ch0(x), ∀x ∈ ∂D.
Since h0 is a harmonic function in D, continuous and bounded in D, then the
function w := HDϕ− ch0 is a solution to the problem

∆w = 0 in D,

w
∣∣
∂D

= ϕ− ch0 ≥ 0,

lim
|x|→+∞

w(x)
h(x)

= 0,

and by the maximum principle it follows that

HDϕ(x) ≥ ch0(x), ∀x ∈ D. (3.2)
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Let λ ≥ 0 and let Λ be the non-empty closed bounded convex set

Λ = {v ∈ C(D ∪ {∞}) : h0 ≤ v ≤ HDϕ}.
Let S be the operator defined on Λ by

Sv(x) = HDϕ(x)−
∫
D

GD(x, y)f(y, v(y) + λh(y))dy.

We shall prove that the family SΛ is relatively compact in C(D∪{∞}). Let v ∈ Λ,
then by (H2) and (H3) and the fact that h0 is positive in D, we have for each y ∈ D,

1
h0(y)

f(y, v(y) + λh(y)) ≤ θ(y, h0(y))
h0(y)

= ψ(y).

Hence, we deduce that the function

y 7→ 1
h0(y)

f(y, v(y) + λh(y)) ∈ Γψ.

It follows that the family

{
∫
D

GD(., y)f(y, v(y) + λh(y))dy : v ∈ Λ} ⊆ Fψ.

Thus, from Lemma 3.1, the family {
∫
D
GD(., y)f(y, v(y) + λh(y))dy : v ∈ Λ} is

relatively compact in C(D ∪ {∞}). Since HDϕ ∈ C(D ∪ {∞}), we deduce that the
family S(Λ) is relatively compact in C(D ∪ {∞}).

Next, we shall prove that S maps Λ to itself. It’s clear that for all v ∈ Λ we have
Sv(x) ≤ HDϕ(x),∀x ∈ D. Moreover, from hypothesis (H2) and (2.7), it follows
that ∫

D

GD(x, y)f(y, v(y) + λh(y))dy ≤
∫
D

GD(x, y)θ(y, h0(y))dy

=
∫
D

GD(x, y)ψ(y)h0(y)dy

≤ αψh0(x).

Hence, using (3.2) we obtain Sv(x) ≥ HDϕ(x) − αψh0(x) ≥ h0(x), which proves
that S(Λ) ⊂ Λ.

Now, we prove the continuity of the operator S in Λ in the supremum norm. Let
(vk)k be a sequence in Λ which converges uniformly to a function v in Λ. Then, for
each x ∈ D, we have

|Svk(x)− Sv(x)| ≤
∫
D

GD(x, y)|f(y, vk(y) + λh(y))− f(y, v(y) + λh(y))|dy.

On the other hand, by hypothesis (H2), we have

|f(y, vk(y) + λh(y))− f(y, v(y) + λh(y))| ≤ 2h0(y)ψ(y) ≤ 2‖h0‖∞ψ(y).

Since by Proposition 2.7(b), V ψ is bounded, we conclude by the continuity of f
with respect to the second variable and by the dominated convergence theorem that
for all x ∈ D,

Svk(x) → Sv(x) as k → +∞.

Consequently, as S(Λ) is relatively compact in C(D ∪ {∞}), we deduce that the
pointwise convergence implies the uniform convergence, namely,

‖Svk − Sv‖∞ → 0 as k → +∞.
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Therefore, S is a continuous mapping of Λ to itself. So since SΛ is relatively
compact in C(D ∪ {∞}) it follows that S is compact mapping on Λ.

Finally, the Schauder fixed-point theorem implies the existence of v ∈ Λ such
that

v(x) = HDϕ(x)−
∫
D

GD(x, y)f(y, v(y) + λh(y))dy.

Put u(x) = v(x) + λh(x), for x ∈ D. Then u ∈ C(D) and u satisfies

u = HDϕ+ λh−
∫
D

GD(., y)f(y, u(y))dy. (3.3)

Now, we verify that u is a solution of (1.2) with α = β = 1. Since ψ ∈ K∞(D),
it follows from Proposition 2.7(c), that ψ ∈ L1

loc(D). Furthermore, by hypotheses
(H2) and (H3) we have f(., u) ≤ h0ψ. This shows that f(., u) ∈ L1

loc(D) and
V (f(., u)) ∈ Fψ. Then, from Lemma 3.1, we have V (f(., u)) ∈ C(D ∪ {∞}) ⊂
L1

loc(D). Thus, by applying ∆ on both sides of (3.3) and using (1.6), we obtain
that u satisfies the elliptic equation (in the sense of distributions)

∆u = f(., u) in D .

Since HDϕ = ϕ on ∂D, limx→z∈∂D h(x) = 0, and limx→z∈∂D V (f(., u))(x) = 0, we
conclude that limx→z∈∂D u(x) = ϕ(z). On the other hand, since

λh(x) + h0(x) ≤ u(x) ≤ λh(x) +HDϕ(x)

and lim|x|→+∞
HDϕ(x)
h(x) = lim|x|→+∞

h0(x)
h(x) = 0, we deduce lim|x|→+∞

u(x)
h(x) = λ.

This completes the proof. �

Example 3.2. Let D = Bc(0, 1), p > n
2 , σ > 0 and ν > 0. Let ϕ and g in C+(∂D)

and put h0 = HDg. Then from [1, p. 258], there exists a constant c0 > 0 such that
for each x ∈ D,

c0(|x| − 1)
|x|n−1

≤ h0(x)

Moreover, suppose that the function f satisfies (H1) and

f(x, t) ≤ t−σ
v(x)

|x|ν−1+n(σ+1)(|x| − 1)1−2σ−n
p
,

where v ∈ Lp+(D). Then, there exists a constant c > 1 such that if ϕ ≥ cg on ∂D,
the problem (1.2) with α = β = 1 has a positive solution u in C(D) satisfying that
for each x ∈ D,

λh(x) + h0(x) ≤ u(x) ≤ λh(x) +HDϕ(x),

where h is the function given by (2.2).
Indeed, (H1) and (H2) are satisfied and by taking γ = 2−σ− n

p and µ = 2− n
p +ν

in Example 2.8, we deduce that the function

x 7→ (h0(x))−1−σ v(x)
|x|ν−1+n(σ+1)(|x| − 1)1−2σ−n

p
∈ K∞(D),

which implies that hypothesis (H3) is satisfied.
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4. Proof of Theorem 1.2

Recall that for a fixed nonnegative function q ∈ K∞(D), we have defined the
set Γq = {p ∈ K∞(D) : |p| ≤ q}. Using Propositions 2.6 and 2.7, with similar
arguments as in [11, Lemma 4.3], we establish the following lemma.

Lemma 4.1. Let q be a nonnegative function in K∞(D) and let h be the function
given by (2.2). Then the family of functions

Fq(h) =
{ 1
h

∫
D

G(., y)h(y)p(y)dy : p ∈ Γq
}

is uniformly bounded and equicontinuous in D∪{∞}. Consequently, it is relatively
compact in C0(D).

Proof of Theorem 1.2. Let α ≥ 0, β ≥ 0 with α + β > 0 and let q := qα,β be the
function in K∞(D) given by (H4). Let c1 := eαq > 1, where αq is the constant
given by (2.5). Suppose that

ϕ(x) ≥ c1h0(x), ∀x ∈ ∂D.
Then by the maximum principle it follows that

HDϕ(x) ≥ c1h0(x), ∀x ∈ D. (4.1)

Now, let λ ≥ c1 and put
w(x) := βλh(x) + αHDϕ(x), for x ∈ D,

v(x) := αh0 + βh(x), for x ∈ D.
(4.2)

Consider the nonempty convex set

Ω := {u ∈ B(D) : v ≤ u ≤ w}.
Let T be the operator defined on Ω by

Tu(x) := w(x)− Vq(qw)(x) + Vq(qu− f(., u))(x).

From hypothesis (H4) we have for each u ∈ Ω

0 ≤ f(., u) ≤ uq. (4.3)

Let us prove that the operator T maps Ω to itself. By (2.7), it follows that∫
D

GD(x, y)w(y)q(y)dy ≤ αqw(x). (4.4)

Since w is a harmonic function in D and V q <∞, by (4.3) and Proposition 2.9, we
have for each x ∈ D,

Tu(x) ≥ w(x)− Vq(qw)(x) ≥ e−αqw(x) = e−αq (βλh(x) + αHDϕ(x)).

Therefore, as λ ≥ c1 and by (4.1) we obtain

Tu(x) ≥ βh(x) + αh0(x) = v(x).

On the other hand, we have for each x ∈ D,

Tu(x) ≤ w(x)− Vq(qw)(x) + Vq(qu)(x) ≤ w(x).

So T (Ω) ⊂ Ω. Now, let u1, u2 ∈ Ω such that u1 ≥ u2, then by (H4) we have

Tu1 − Tu2 = Vq(q[u1 − u2]− [f(., u1)− f(., u2)]) ≥ 0.

Hence, T is a nondecreasing operator on Ω.
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Next, we consider the sequence (um)m∈N defined by

u0 = βh+ αh0 and um+1 = Tum for m ∈ N.

Since Ω is invariant under T , we obtain v = u0 ≤ u1 ≤ w. Therefore, from the
monotonicity of T on Ω, we have

v = u0 ≤ u1 ≤ · · · ≤ um ≤ um+1 ≤ w.

Thus, from the monotone convergence theorem and the fact that f is continuous
with respect to the second variable, the sequence (um)m∈N converges to a function
u satisfying

u = (I − Vq(q.))w + Vq(qu− f(., u)). (4.5)
By (2.6) and (2.7), we obtain for each x ∈ D,

0 ≤ V (qu)(x) ≤ V (qw)(x) ≤ αqw(x) <∞.

Applying (I + V (q.)) on both sides of (4.5), it follows from (1.8) and (1.9) that

u = βλh+ αHDϕ− V (f(., u)). (4.6)

Now, let us verify that u is a solution of the problem (1.2). Since q ∈ K∞(D)
then by Proposition 2.7, we obtain q ∈ L1

loc(D). By (4.3) we have

f(., u) ≤ qu ≤ qw. (4.7)

Therefore, since w is continuous in D, we obtain that f(., u) ∈ L1
loc(D). Using

Proposition 2.6 and (4.7), for each x ∈ D, we have

V (f(., u))(x) ≤
∫
D

GD(x, y)w(y)q(y)dy ≤ αqw(x).

Then V (f(., u)) ∈ L1
loc(D). Thus, by applying ∆ on both sides of (4.6), we deduce

that u is a solution of
∆u = f(., u) in D

(in the sense of distributions). Using (4.7) we obtain that

f(., u) ≤ βλhq + αqHDϕ ≤ βλhq + α‖ϕ‖∞q .
Let g := βλhq+α‖ϕ‖∞q. Since f(., u) and (g−f(., u)) are in B+(D) then V (f(., u))
and V (g − f(., u)) are two lower semi-continuous functions.

On the other hand, by Proposition 2.7(b) we have V (q) ∈ C(D) and by Lemma
4.1 the function 1

hV (hq) ∈ C0(D). So V g is a continuous function. This implies
that V (g − f(., u)) = V g − V (f(., u)) is also an upper semi-continuous function.
Consequently V (g − f(., u)) is in C(D). Thus V (f(., u)) = V g − V (g − f(., u)) ∈
C(D). Therefore u is in C(D).

Now using Proposition 2.6(i) and the fact that limx→z∈∂D h(x) = 0 we de-
duce that limx→∂D V (hq)(x) = 0. In addition from Proposition 2.7(b) we have
limx→∂D V (q)(x) = 0. So that limx→∂D V (g)(x) = 0. This in turn implies that
limx→∂D V (f(., u)) = 0. Then by (4.6), we obtain that u

∣∣
∂D

= αϕ. On the other
hand, we have

1
h
V (f(., u)) ≤ βλ

1
h
V (hq) + α‖ϕ‖∞

1
h
V q.

Using Propositions 2.4 and 2.7(b), we obtain that 1
h(x)V (f(., u))(x) tends to 0 as

|x| → +∞ and consequently lim|x|→+∞
u(x)
h(x) = βλ. Hence, u is a positive continuous

solution in D of the problem (1.2). This completes the proof. �
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Example 4.2. Let D = Bc(0, 1) and 0 < γ ≤ 1. Let p be a nonnegative function
such that the function q(x) = ( |x|

n−1

|x|−1 )1−γp(x) is in K∞(D). Let ϕ ∈ C+(∂D) and
h0 be a positive harmonic function in D, which belongs to Cb(D). Then, for each
α ≥ 0 and β ≥ 0 with α+β > 0, there exists a constant c1 > 1 such that if ϕ ≥ c1h0

on ∂D and λ ≥ c1, the problem

∆u = p(x)uγ in D,

u
∣∣
∂D

= αϕ,

lim
|x|→+∞

u(x)
h(x)

= βλ ≥ 0,

has a positive continuous solution on D satisfying that for each x ∈ D,

βh(x) + αh0(x) ≤ u(x) ≤ βλh(x) + αHDϕ(x).
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