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ABSTRACT

The concept of self-stabilization was first proposed by Dijkstra. A self­

stabilization token ring can make guarantee for a system to recover to a legal 

state in finite time, regardless of what illegal state the system is in. This 

property makes it a very preferable way to tolerate arbitrary transient faults.

The thesis implements 4 self-stabilizing token ring algorithms, and 

compares their performance in terms of stabilization time and token delivery 

time in a distributed computing environment using a simulated application as 

the test bed.

Xll



CHAPTER 1 INTRODUCTION

1.1 Background

A distributed system is composed of a collection of processes as well as 

a collection of communications between two processes. There exists the 

mutual exclusion problem in such a system, and there are several ways to 

solve it.

One way of solving this problem is to collect the states of all the other 

processes. But there is the problem of heavy network traffic in this solution 

because each process must ask for the state of each other process and send 

its own state to all other processes. The huge amount of messages to be 

handled will make this method a non-practical solution.

Another way of solving this problem is to ask a central monitor for 

permission to access the critical section. But this solution also has 

shortcomings because using an external monitor can delay the recovery 

beginning time when an error occurs, and the monitor itself can also crash.

A preferable method to solve the problem is to let each process in the 

system determine its next activity by observing the current states of its 

neighbors before entering its critical section. Using this approach, traffic is 

minimal and exponential increases inflating with system expansion is avoided.

1
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Since various faults inherent to modern distributed system may occur, 

the quality of a distributed system also depends on its tolerance to the 

potential faults. Tolerance to arbitrary transient faults is one of the most 

important requirements in such systems.

Various tolerance methods to such transient faults have been proposed 

and implemented. The concept of self-stabilization proposed by Dijkstra in 

1974[Dijk74] is the most general technique.

Self-stabilization means that starting from an arbitrary initial state, it is 

guaranteed that the system will reach a desirable state in finite time, and if it is 

in a desirable state, it will remain in desirable states thereafter. That means if 

a transient fault leads a stabilizing system to an undesirable state, further 

execution of the system will be guaranteed to return to a desirable state, and 

will stay there in the absence of additional transient faults.

Token rings are a straightforward way of providing mutual exclusion in a 

physical or logical ring configuration of processes. Since Dijkstra proposed the 

first self-stabilizing token ring [Dijk74], Many variations have been proposed. 

In [Dijk74], no application of self-stabilization to fault tolerance was 

mentioned, but considerable effort has been done to use self-stabilization as a 

technique for fault tolérance in the area of distributed computing, this effort 

can be seen in [BYC88], [BYZ89], [YBL91], and [BY93],
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1.2 Goals

As mentioned above, there exist quite a number of proposals regarding 

token rings to be used in distributed systems. In this thesis work, four token 

ring algorithms, namely, enabler token rings, alternator token rings, shepherd 

token rings and companion token rings, are considered. The four token ring 

algorithms are all self-stabilizing algorithms, but their performance is not well 

known.

The goal of this thesis is to compare the performance of these four token 

rings in a simulated distributed computing environment. The comparison of 

the stabilization time and token delivery time of the four algorithms will be 

especially focused on.

1.3 Contribution

• Simulated multiple processors in a distributed environment

• Designed an algorithm to create a static logical ring configuration of 

processes

• Developed an application system to use as bench mark

• Designed a method to give each token ring algorithm exactly same test 

environment

• Implemented the four token ring algorithms for mutual exclusion

between writing processes



• Evaluated the performance of the four token ring algorithms on the 

stabilization time and privilege delivery time.

• Evaluated the performance of the four token ring algorithms under 

different levels of contention for the privilege of executing a critical 

section.

1.4 Thesis Organization

Chapter 1 of the thesis is an overview and introduction to this thesis 

work as a whole. Chapter 2 gives basic introduction to distributed systems 

and it also introduces the importance of transient fault tolerance in distributed 

systems. This chapter should be of interest to readers who are new to the 

field of distributed systems. Chapters 3 through 6 briefly introduce the four 

token ring algorithms. Chapter 7 describes the implementation for each token 

ring algorithm introduced in the previous 4 chapters. Chapter 8 describes the 

application that is used as the application to test the token ring algorithms, 

and the implementation for it is also covered in this chapter. Chapter 9 

explains how the performance of each token ring algorithm is measured. It 

also explains the methods used to make sure that the four algorithms are 

given identical test environments. In chapter 10, the performance results of 

each token ring algorithm are observed, compared and analyzed. Chapter 11

discusses the conclusions and potential future work.



CHAPTER 2 FAULT TOLERANCE IN DISTRIBUTED

SYSTEMS

2.1 The Definition of Distributed Systems

There are many definitions of distributed system, and they do not 

completely agree with each other, but in general, it is safe to say that a 

distributed system is composed of independent processors that have no 

shared memory, that these independent processors cooperate with each 

other and are linked by a high speed network, and that these facts are 

transparent to the user of the system. The user should be able to use such a 

system as if using a single system.

2.2 The Advantages of Distributed Systems

There are many advantages in using a distributed system, here listed 

are some of them.

• It is more powerful in computing than a single processor system

• It can share data easily

•  It allows more processors to be added to meet increasing demands.

• It should be more reliable than a single system

Nowadays, computers are used almost everywhere, and almost every

5
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large computer-based system is a distributed one. Distributed systems are 

becoming more and more important in both research and commercial fields.

2.3 Transient Faults in Distributed Systems

As described in section 2.2, distributed systems are powerful and 

important nowadays and there are advantages in using them, but that does 

not mean there are no problems to be solved. Transient faults are one of the 

important issues concerning such systems.

From the definition of distributed system, we know that a distributed 

system is composed of a collection of processors, and the processors of the 

participating nodes have no shared memory. Hence the only way for them to 

exchange information is to pass messages between each other through a 

network. This limitation introduces system faults caused by the occurring of 

errors during message passing, e.g. message loss, and this kind of faults are 

called transient faults: A practical distributed system must be able to recover 

from such transient faults quickly, and the quality of a distributed system 

depends on how fast it can recover from such faults.

2.4 Self-Stabilization as the Proposal for Transient Faults

An external monitor of system states can be used to help a distributed

system recover from a transient failure, but it is preferable if a distributed
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system begins its recovering process as soon as an error occurs, and such a 

method does not provide this capability.

The concept of self-stabilization is the most general tolerance method 

for handling arbitrary transient faults. There is no universally agreed upon 

formal definition for self-stabilization, however, it is generally acknowledged 

initial definition was from [Dijk74], which was already described in chapter 1. 

For more definitions about self-stabilization, [Dijk82a], [Dijk82b], [LL90], and 

[BGM93] can be referred. The ring topology is commonly used in distributed 

computing and network protocols [Herman98], and the subject of token rings 

is a straightforward way of providing mutual exclusion in a physical or logical 

ring configuration of processes.

A self-stabilizing token ring is useful for a distributed system where 

transient failures may occur and the system may enter an arbitrary illegal 

state after such transient failures [PV2000]. It is able to start recovering 

automatically as soon as it detects a fault in the system and is able to provide 

a high degree of fault tolerance.

For a distributed system, at any particular time, it will be either at a legal 

state or at an illegal state. For a self-stabilizing token ring algorithm, given an 

initial state (no matter if it is legal or illegal), the system can reach a legal state 

after a finite number of state transitions—if the initial state is an illegal state, 

the system is guaranteed to reach a legal state in finite time; if the initial state 

is a legal state, the system will remain in legal states thereafter. If an error
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occurs, again, the system will return to a legal state after a finite number of 

state transitions.

Since Dijkstra proposed the first self-stabilization ring [Dijk74], many 

variations have been suggested. In this thesis, four of them are considered in 

the following chapter. These four token ring algorithms are detailed in chapter 

3, chapter 4, chapter 5 and chapter 6, respectively.



CHAPTER 3 THE ENABLER TOKEN RING

3.1 Introduction

This is the first stabilizing, unidirectional, deterministic token ring where 

each process has a constant number of states.

Since Dijkstra proposed the first self-stabilizing, unidirectional token ring 

in 1974 [Dijk74], many variations were suggested. But all those introduced 

before the enabler token ring are not deterministic or have a much larger state 

space.

In the enabler token ring, the states are legal when there is exactly one 

token circulating around the ring, and the states are illegal when there is more 

than one circulating token. The construction of token ring precludes a state in 

which no token exists. Each process in this token ring has three Boolean 

variables and three actions. Each action in a process is of the form:

<guard> <multiple assignment statement

Where the guard is a Boolean expression over the variables of a 

process and its left neighbor. The conjunction of the guards of any two actions

9
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in the same process is false, in other words, at most one enabled action from 

each process can be executed at a time. Hence the processes in this token 

ring are deterministic.

3.2 Algorithm for Enabler Token Ring

Suppose a ring system is composed of n processes, and each process 

P[i] (0 <= i < n) has three Boolean variables named e.i, tkn.i and ready. The 

variable e.i and tkn.i can be read by the right neighbor of process i, while 

ready is a local variable used by process i only.

The algorithm for enabler token ring is as the following:

Case 1: i f O < i < n

X . i : e.i e.(i - 1) a  tkni = tkn.(i — 1)

—> e.i,ready := -nei, false
Y. i : e.i ^  e.(i - 1) a  tkn.i ^  tkn.(i - 1) a  —.tkni a  —iready

—> e.i, ready := -¡e.i, trae
Z  i  : e d * e.(i - l ) a  tk n i ^ tk n .ii — 1) a  (tk n i v  ready)

-»  e.i, tkni, ready := - i ei, —itkn.i, false

Case 2; i f i  = 0

X . O : e.O = e.(n -1 ) Atkn.O & tkn.in -1 )

-»  e.O,ready —ie.0, false
Y. O : e.O = e.(n -1 ) a  tkn.O = tkn.in -1 ) a  —¡tkn.O a  —¡ready 

—> e.O, ready := —ie.0,true
e.O = e.(n - 1) a  tkn.O = tkn.(n - 1) a  (tkn.O v ready) 

-»  e.O, tkn.O,ready := —¡e.O,->tkn.O, false
Z.O :
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In the algorithm, each process has an X action, a Y action and a Z 

action. The following is the explanation for these actions:

•  An X action allows an enabler to be passed from process p[i] to the 

next process p[i+1 mod n] when p[i] has no token;

•  A Y  action allows an enabler to be passed from process p[i] to the next 

process p[i+1 mod n] when p[i] has an F token and its variable ready is 

false. Its variable ready becomes true in this action;

•  A Z action allows both an enabler and a token to be passed from 

process p[i] to the next process p[i+1 mod n] when p[i] has an F token 

and its variable ready is true, or when it has a true token. Its variable 

ready becomes false in this action.

A state of the ring is legal iff in that state exactly one process has a 

token and at least one process has an enabler.

3.3 Algorithm When Combined with Application

When combined with application, two additional bits are needed, one of 

which is set by the token ring and read by the application, and the other is set

by the application and read by the token ring:



12

Case 1: i f O < i < n

X i  : e i & e.(i — 1) a  tim i — tkn.(i — 1)

—> e i, ready := - i e.i , fa lse

Y i : e.i ^ e.(i - 1) a  tim i ^ tkn .ii - 1) a  —itk n i a  —ready

—» e i, ready := -ie i, ¿rue

Z I i  : e i ^ e.(z - 1) a  tk n i ^ ¿&u.(z - 1) a  (¿&u.z v  ready) a  —re q i

e i, tk n i, ready, g r t i := —iei, —itim i, fa lse , fa lse

Z 2.i : e i ^ e .( i - 1) a  ¿&ui ^ ¿A«.(z - 1) a  (¿&ni v  ready) a  regi 

—> g r t i := ¿rue

Case 2: if i = 0

X . O: e.O = e .(« -l)A ^ .O ? i:^ . ( n - l )
—» e.O, ready := -ie.O, false

Y. 0 : e.O = e.(u - 1) a  ¿&n.O = tkn.in —1) a  —\tkn.0 a - iready

—» e.O, ready := —¡e.O, true

Z 1.0 : e.O = e.(n - 1) a  ¿An.O = ¿&n.(n - 1) a  (¿&n.O v ready) a  —¡req.O 

—> e.O, tkn.0, ready, g rt.0 := -ie.O, —itkn.O, false , false 

Z 2.0 : e.O = e.(n - 1) a  ¿&n.O = tkn.(n - 1) a  (¿&n.O v ready) a  reg.O 

—» gr/.O := ¿rue

In above algorithm, variable grt is set by the token ring and read by the 

application, while variable req is set by the application and read by the token 

ring.

Action Z1 is executed when the corresponding process has the privilege 

but variable req is false, and action Z2 is executed when the corresponding 

process has the privilege and variable req is true. [GH1996]



CHAPTER 4 THE RING ALTERNATOR TOKEN RING

4.1 Introduction

An alternator is an array of interacting processes that can be used in 

transforming a stabilizing system executed serially into a stabilizing system 

executed concurrently.

4.1.1 The Lower Level Protocol

A ring alternator is an array of n+1 processes p [i: 0...n], where n >= 2. 

Process p[0] and p[n] are actually one same process—the first process in the 

ring. When this first process communicates with its right neighbor p[1], it is 

p[0], while when it communicates with its left neighbor p[n-1], it is p[n]. Each 

other process has a left neighbor p[i-1] and a right neighbor[i+1].

The lower level algorithm:

X . O: 6.0 = 6.1 a b.n & b.(n-l)
—» 6.0, b.n, T := -.6.0, -ib.n, false

Y. 0: 6.0 = b. 1 a b.n -  b.{n -1) a SysClock -  Start > TimeOut a T
->6.0,r : - —¡b.0, false

Z. 0: 6.0 ^ 6.1 a b.n *  b.(n -1) a SysClock -  Start > Timeout a T
-» b.n, T := ->b.n, false

W.0 : ((6.0 = 6.1 a b.n = b.(n - 1)) v (6.0 ^ 6.1 a b.n ^ b.(n - 1)) a -¡T
—> Start, T := SysClock,true

U i: b.(i + 1) = bi a 6 i ^ b.(i - 1)
—» b.i := —b i

13
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Where i refers to the regular processes, whose IDs are ranging between 

0 and n, not included.

For the first process p[0] in the ring alternator, there are 3 Boolean 

variables and a timeout mechanism. The 3 Boolean variables are b.O, b.n and 

T, where T is the local variable indicating if timeout in progress, while bO and 

b.n can be read by process p[1] and process p[n-1], respectively.

For other processes, each of them has one Boolean variable b.i, which 

can be read by both of its neighbors.

X.O, Y.O, Z.O and W.O are the 4 possible actions that can be taken by 

process p[0], and U.i is the possible action that can be taken by all the other 

processes.

4.1.2 The Higher Level Protocol

In the token level, each process has 2 Boolean variables, which are tkn.i 

and ready. The variable ready is a local variable for each process, and the 

variable tkn.i can be read by the right neighbor of each process. Each action 

in a process is of the form:

<guard> <multiple assignment statement

Where the guard is a Boolean expression over the variables of a 

process and its neighbors. The conjunction of the guards of any two actions in
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the same process is false, in other words, at most one enabled action from 

each process can be executed at a time. Hence the processes in this token 

ring are also deterministic.

In the ring, the states are legal when there is exactly one token 

circulating around the ring, and the states are illegal when there is more than 

one circulating token. The construction of the ring precludes a state in which 

no token exists.

4.2 Algorithm for Ring Alternator Token Ring

Suppose a ring system is composed of n processes, where n is greater 

or equal to 2, the algorithm for ring alternator token ring is as the following: 

Case 1: if 0 < i  <n, we have the following three possible actions:

X .i: b.(i + 1) = b.i a  b.i ^  b.(i - 1) a  tkni ^  tkn.(i -1 ) a  (ready v  tkn.i)
—> b.i, tkni, ready := - ibi, —¡tkni, false 

Y i: b.(i + l) = bi a  bi *  b.(i -1 ) a  tkni ^  tkn.ii -1 ) a  —ready a  - i tkni
-> bi, r e a d y —¡bi, true 

Z i : b.(i +1) = b.i a  bi & b.(i - 1)

—> bi := - i bi

•  An X.i action allows alternator to be passed from process p[i] to its both 

neighbors, and allows token to be passed to the next process p[i+1 

mod n] when p[i] has the alternator, an F token and its variable ready is 

true, or when it has a true token. Its variable ready becomes false in

this action:
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•  A Y.i action allows alternator to be passed from process p[i] to its both 

neighbors when p[i] has the alternator, an F token and its variable 

ready is false. Its variable ready becomes true in this action.

•  A Z.i action allows alternator to be passed from process p[i] to its two 

neighbors;

Case 2: if i = 0

Process p[0] is a special case in the token ring, and it is much more 

complicated compared with other processes. The following figure listed all 

the possible actions for process p [0].

X.O : 6.0 = 6.1a  b.n ^  b.(n -1 ) a  tkn.O = tkn.(n- 1 )a  (ready v tkn.0)
—» 6.0 ,b.n,T, tkn.O,ready := -¡b.O,—¡b.n, false,—¡tkn.O, false 

7.0 : 6.0 = 6.1 a  b.n *  b.(n -1 )  a  tkn.0 = tkn.(n -1 )  a  - iready a  -¡tkn.O
—> 6 .0 ,b.n,T, ready := —¡b.O,—¡b.n, false,true 

Z.0: 6.0 = 6.1 a  b.n ^  b.(n -1 )

-» b.O,b.n,T := —,b.0,—ib.n, false
U. 0 : 6.0 = 6.1 a  b.n = b.(n -1 ) a  SysClock -  Start > TimeOut a  T

—» 6.0, T := - 16.O, false
V. O : 6.0 5* 6.1 a  b.n & b.(n - 1) a  SysClock -  satrt > Timeout a  T

-> b.n,T := -¡b.n, false
W. O : ((6.0 = 6.1 a  b.n = b.(n -1 )) v  (6.0 ^  6.1 a  b.n *  b.(n -1 )) a  —¡T

-> Start,T := SysClock,true

m Action X.O allows alternator b.O and token to be passed to process 

p[1], and allows alternator b.n to be passed to p[n-1]. Its local variables 

T and ready become false in this action;

•  Action Y.O allows alternator b.O to be passed to process p[1], and 

alternator b.n to be passed to p[n-1]. Its local variable T becomes false
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in this action, while its local variable ready becomes true in this action;

•  Action Z.O allows alternator b.O to be passed to process p[1], and 

alternator b.n to be passed to p[n-1]. Its local variable T becomes false 

in this action;

•  Action U.O allows alternator b.O to be passed to process p[1], and its 

local variables T becomes false in this action;

•  Action V.O allows alternator b.n to be passed to process p[n-1], and its 

local variable T becomes false in this action;

•  Action W.O sets local variable T to 1, and it also sets the start of 

timeout.

4.3 Algorithm When Combined with Application

When combined with application, two additional bits are needed, one of 

which is grt and it is set by the token ring and read by the application, and the 

other variable is req and it is set by the application and read by the token ring. 

Case 1: ifO < i < n ,  we have the following 4 possible actions:

X\ . i :  b.(i +1) = b.i a  b.i ^  b.(i - 1) a  tkn.i ^  tkn.{i — 1) a  (ready v  tkn.i) a  - ireq
—» b.i, tkn.i, grt, ready := - i b.i, —> tkn.i, false, false 

X 2 . i : b.(i +1) = b.i a  b.i ^  b.(i -1 )  a  tkn.i ■£ tkn.(i -1 )  a  {ready v  tkn.i) a  req 
—» grt := true

Y. i : b.(i +1) = b.i a b.i ^  b.(i - 1) a  tkn.i ± tkn.{i — 1) a —iready a  —i tknd
—> b.i, ready := - i b.i, true

Z. i : b.(i + 1) = b.i a b.i *  b.(i - 1)
—» b.i := - i b.i
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Case 2: i f i  = 0

When combined with req, we can have 7 possible actions as shown 

below:

X I .0 : 6.0 = b.l  a b.n & b. (n -  1) a  tkn.O = tkn.(n -  1) a  ( ready  v tkn.0) a  —i req
-» b . 0 , b . n , T  , tkn.O,grt ,  ready  := —i b . 0 , - ! b .n ,  false ,- itkn.O,  f a l s e ,  f a ls e

X  2.0 : 6.0 = 6.1 a  b.n & b. (n  -  1) a  tkn.O = tkn.(n -  1) a  ( r eady  v tkn.O) a  req  
g r t  := true

7.0  : 6.0 = 6.1 a  b.n ^ b.(n  -  1) a  tkn.O = tkn.{n — 1) a  - i ready  a - i tkn.O
-> 6.0, b.n,  T , rea d y  := -i 6.0 , - i6  .n , f a l s e ,  true

Z .0 : b.O = b. l  a b.n ^ b. (n -  \)
—> b . 0 , b . n , T  := -i 6 .0 ,—i b.n,  f a l s e

U .0 : 6.0 = 6.1 a  b.n = b.(n  - 1 ) a  Sys C lo ck  -  Start  > Tim eO ut a T
—» 6 .0 , T := -i 6.0, f a l s e

V .0 : 6.0 ^ 6.1 a  b.n ^ b.(n  - 1 )  a  Sys C lo ck  -  satrt > T im eo ut  a  T
—» b .n ,T  := -ib .n,  f a l s e

W .0 : ((6.0 = 6.1 a  b.n = b. (n -  l ) )  v (b.O & b.l  a  b.n ^ 6.(n - 1 ) )  a  -i 7
—> Start ,  T := S y s C l o c k , true

In above algorithm, variable grt is set by the token ring and read by the 

application, while variable req is set by the application and read by the token 

ring.

Action X1.0 and X1 .i are executed when the corresponding process has 

the privilege but variable req is false, and action X2.0 and X2.i are executed 

when the corresponding process has the privilege and variable req is true.

[GH1997]



CHAPTER 5 SHEPHERD TOKEN RINGS

5.1 Introduction

This is of interest because of some unique characteristics it possesses. 

Each process in the ring system has three variables—token, shepherd and 

ready. The right neighbor of each process can read the variables token and 

shepherd, but variable ready is the local variable used by each process itself 

only. Not only the presence of a token can grant a process to enter critical 

section, but also can the existence of a high shepherd.

In the ring, the states are legal when there is exactly one token 

circulating around the ring, and the states are illegal when there is more than 

one circulating token. The construction of the ring precludes a state in which 

no token exists.

5.2 Algorithm for Shepherd Token Ring

Consider a ring system that is composed of n processes, and each 

process i (0 <= i < n) has three Boolean variables named tkn.i, sh.i and ready. 

The variable tkn.i and sh.i can be read by the right neighbor of process i, while 

ready is the local variable used by process i only.

The algorithm for shepherd token ring is as the following:
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X  : T.i a -iS.i a (H .i v i  ^ 0)

—» tkn.i, ready := —ithn.i, false 
Y \ T.i a —iS.i a —iH.i a —iR.i

—> tkn.i, ready —\tkn.i,true
Z : T.i a -iS.i a ((H i  a i ^ 0 ) v  (- .H i  a R.i))

—» tkn.i,sh.i,ready := -itkn.i,—>sh.i, false 
W : ( —1 T.i v i = 0) a S.i a H .i

—» sh.i, ready := - i shd, false

Where:

T.i= ( / = 0  a  tkn. 0 = tkn. (n -1 )) v  (0 < z < n a  tkn. i = -dkn. ( i - 1));

{token is present }

iS!i= (z‘= 0  a  j'A.O=sk(n—1)) v  (0 <i<n a sh. i = —sh. (z—1));

{ shepherd is present }

H.i=sh.i

R i= ready, i
{shepherd state is high }  

{shepherd is ready to be passed }

All the possible four actions grant privilege to the corresponding

process.

•  Action X allows the token to be passed on to the right neighbor of 

the process when it has the token, but not the shepherd. Its variable 

ready is set false in this action;

•  Action Y allows the token to be passed on when the process has the 

token and the shepherd and ready is false and shepherd is low. Its 

variable ready is set true in this action;

•  Action Z allows the token and shepherd to be passed on when the 

process has the token and the shepherd, and the shepherd is high 

or ready is true. Its variable ready is set false in this action;
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•  Action W allows the shepherd to be passed on to the right neighbor 

of the process when it has the shepherd, but not the token, and the 

shepherd is high.

5.3 Algorithm When Combined with Application

When combined with application, two additional bits are needed, one of 

which is set by the token ring and read by the application, and the other is set 

by the application and read by the token ring. Since every possible action can 

grant privilege to the corresponding process, we get 4 additional actions when 

we combine the ring with application, as shown in the following:

A l : 1 : T .i A -1 S .i A ( H  . i v i ì à  0 )  A -i req

-» tkn.i, r e a d y , g rt := -i tkn.i5 fa ls i3, fa ls e
A l . 2 : T .i A -i S.i A (H  .i v  i ^ 0 )  A req

-» g rt  :=  tru e
A 2 .1 : T .i A -i S .i A —i H  A A —i R .i A -i req

-» tkn.i, r e a d y , g rt := - 1  tkn.i, t r u e , fa ls e
A 2 .2  : T.i A -i S .i A —i H  .i A —i R .i A req

-> g rt  := tru e
A 3..1 : T .i A —i S .i a  ( ( H  .i a  i -*■ 0 )  v  ( —i H  A a  R . / ) ) a  -i r e g

- » tkn.i, sh .i, rea d y , g r t  := -i tkn.i, - isA.z,  / t f / s

A 3..2 : T .i A -i S.i A ( ( H  A A i ^ 0 ) v  ( n i f i  A R .i)) a  r e #

g rt  tru e
A 4..1 : ( - T .i v  i -- 0 ) A S .Ì A H  .i A -i req

-> sh .i, r e a d y , g r t  := -i s A i ,  f a l s e , fa ls e

A 4..2 : (-« T .i v  i -= 0 ) A S .i A H  .i A r e #

—> g rt  := tru e

Where:
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T.i = (i = 0 a  tkn.0 = tkn.{n — 1)) v  (0 < i < n a tkn. f = —¡tkn.(i - 1));

{  token is present }

S.i = (i — 0 a  sh. 0 = - 1 ) ) v ( 0 < / < h a  sh. i = —¡sh.(i - 1));

{ shepherd is present }

H.i - sh. i

R.i = ready, i
{ shepherd state is high }

{ shepherd is ready to be passed }

In above algorithm, variable grt is set by the token ring and read by the 

application, while variable req is set by the application and read by the token 

ring.

Action A1.1, A2.1, A3.1 and A4.1 will be executed when the 

corresponding process has the privilege but variable req is false, and action 

A1.2, A2.2, A3.2 and A4.2 will be executed when the corresponding process 

has the privilege and variable req is true. [Hadd91]



CHAPTER 6 COMPANION TOKEN RING

6.1 Introduction

The companion token ring is also a self-stabilizing token ring. But it only 

uses 2 bits. And logically, there are three artifacts of interest, a high token, a 

low token, and a companion.

A high token can always execute, companion can always execute 

unless a low token is present, and a low token can only execute if a 

companion is present.

It is always true that at least one process can always execute. In the 

ring, the states are legal when there is exactly one token circulating around 

the ring, and the states are illegal when there is more than one circulating 

token. The construction of the ring precludes a state in which no token exists.

6.2 Algorithm for Companion Token Ring

Again, consider a ring system that is composed of n processes, and 

each process i (0 <= i < n) has 2 Boolean variables named tkn.i and cmp.i. 

The right neighbor of process i can read these two variables.

The algorithm for companion token ring is as the following:
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Case 1: i f O < i < n

Al .i : tkn.ì ^ tkn.(i -1 )  a  empi ^ cmp.{i — 1) a  - itkn.i
—> tkn.i := —¡tkn.i

A2.i : tkn.i ^ £&«.(/ - 1 )  a  empi & cmp.(i - 1 )  a  tkn.i
—> tkn.i,cmp.i := —¡tkn.i,—¡cmp.i

A3 d : tknd = tkn.(i - 1 )  a  empd ^ cmp.(i - 1)

—» empd := -¡empd

Case 2: i f i  = 0

v41.0 : iArc.O = tkn.(n -1 )  a  cmp.0 = cmp.(n -1 )  a  —¡tkn.O
—> tkn.O := —¡tkn.O

A2.0  : ì£h.O = tkn.(n -1 )  a  cmp.O = cmp.(n -1 )  a  tkn.O 
—> tkn.O,cmp.O := —¡tkn.O,—¡cmp.O

A3.0 : tkn.O ^ tkn.(n -1 )  a  cmp.O = cmp.(n - 1 )

—» cmp.O := -¡cmp.O

•  Action A1 allows the token to be passed on when the process has a 

low token and a companion.

•  Action A2 allows both the token and the companion to be passed 

when the process has the companion and a high token.

•  Action A3 allows the companion to be passed on when the process 

has a companion and has no token.

6.3 Algorithm When Combined with Application

When combined with application, two additional bits are needed, one of 

which is set by the token ring and read by the application, and the other is set 

by the application and read by the token ring. Since only one action can grant
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privilege to the corresponding process, we get 1 additional actions when we 

combine the ring with application, as shown in the following:

Case 1: if 0 < i < n

A\. 1. / :  tkn.i =£ tkn.(i - 1 )  a  cmp.i *  cmp.(i - 1 )  a  —¡tkn.i a  —ireq 
—» tkn.i,grt := —\tkn.i, false

A\ .2./ : tkn.i *  tkn.{i - 1 )  a  ^ cmp.(i - 1) a  —itkn.i a  req 

—> g r t :-  true
A 2A . / :  tkn.i ^ /&??.(/ - 1 )  a  cm/?./ ^ cmp.(i - 1 )  a  tkn.i a  -¡req  

—» tkn.i,cmp.i,grt := —¡tkn.i,—\cmp.i, false  
A l . l . i : tkn.i ^ /&/?.(/ - 1 )  a  cm/?./ ^ cm/?.(/ - 1 )  a  tkn.i a  reg  

—> gr/ := /rwe
A3 .i : tkn.i = /At?.(/ - 1 )  a  cmp.i ^ cmp.(i - 1)

—» cmp.i := - i cmpd

Case 2: i f i  -  0

A l.1 .0 : tkn.0 = tkn.(n - 1) a  cm/?.0 = cmp.(n - 1) a  —¡tkn.O a  - i r a /  

—> tkn.O,grt := —¡tkn.O, false
A1.2 .0 :  /&n.O = tkn.(n - 1 )  a  cm/?.0 = cmp.in — 1) a  —¡tkn.O a  reg  

-»  gr/ := /rwe

^42.1.0: /An.O = tkn.{n - 1 )  a  cmp.O = cmp.in —\ ) a  tkn.O a  —¡req 
—> tkn.O,cmp.O,grt := -¡tkn.O,-¡cmp.O,true 

A 2.2.0 : tkn.O = tkn.(n-Y) a  cmp.O = cmp.(n - 1 )  a  tkn.O a  re#

—» grt := true
A 3 .0 : tkn.O ^ tk.(n - 1) a  cmp.O — cmp.in — 1)

—> cmp.O := - icmp.O

In above algorithm, variable grt is set by the token ring algorithm and 

read by the application, while variable req is set by the application and read 

by the token ring.
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Action A1.1 and A2.1 will be executed when the corresponding process 

has the privilege but variable req is false, and action A1.2 and A2.2 will be 

executed when the corresponding process has the privilege and variable req

is true.



CHAPTER 7 TOKEN RING ALGORITHM IMPLEMENTATION

Java language is used in the coding part of the thesis. Low-level UDP 

sockets are used.

7.1 Implementation Overview

The four token ring algorithms are implemented in a similar way, and the 

implementation code for them all has the same basic structure. The structure 

is described in two views, one is from the view of the classes, and the other is 

from the view of the files.

7.1.1 Class View

For each algorithm, there are several classes used to implement the 

algorithm:

FinalVariables. class:

This class defines some constant variables used in the 

implementation. They are variables such as port numbers, package 

size and so on 

Processlnfo. class:

This class is used to store the information of every process that wants

27



28

to join the token ring, and it implements the interface Serializable so 

that its object can be transported over the network. This class has the 

following fields:

■ Address: the address of the machine on which a process 

is running

■ Lport: the port number used by a process to listen from its 

neighbor(s)

■ NotifyNeighborPort: the port number used a process to 

listen from the ring maker to know who is its neighbor.

■ ServerlD: the id of a process 

TransportTool. class:

This class is used to send and receive an object of a class through the 

network. In this thesis work, it is used to send and receive the objects 

of class Processlnfo through the network.

RingMaker.class:

This class is used to create a logical token ring so that every process 

that requests to join the ring can know which process(es) it should 

communicate with.

Ringlnitialization.class:

A process that wants to join the token ring uses this class to find out 

which process(es) is/are its neighbor(s). This class communicates 

with the ring maker directly.



29

Listen Token. class:

This class is where each algorithm is actually implemented. Unlike 

other classes that are very similar, and even the same, code for this 

class is quite different from each other for each algorithm.

The name of this class is also slightly different from each other 

according to the different name of each algorithm in order to 

distinguish them. For example, the listen token class for companion 

token ring algorithm is CompanionToken.class, while the listen token 

class for enabler token ring algorithm is EnablerToken.class, and so 

on.

7.1.2 File View

For each token ring algorithm, it contains several files as described in 

the following:

TransportTool.java:

This is a utility file written to transport a class object over the network 

FinalVariables.ja va:

This is also a utility file used to define constant variables. 

RingMaker.java and Ringlnitialization.java:

These two files are used to set up the ring. In this thesis work, only 

static token ring is considered.

ListenToken.java:
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This file implements each token ring algorithm.

7.2 Implementation Details:

7.2.1 Ring Maker

Ring maker is the name of the server used to establish a logical ring in 

this implementation.

There is algorithm on how to form a logical ring in any connected 

distributed system. The algorithm described below starts with forming a 

spanning tree first:

1. Elect a leader as the root of the tree

2. The root multicasts to each neighbor and each neighbor

becomes a child of the root.

3. Each neighbor N multicasts to its neighbors Mi

4. Each neighbor Mi replies to the first message it receives,

identified by the root. Mi is then a child of the sender of the first

message.

5. Repeat steps 3 and 4 until every node has received at least one

message.

After the spanning tree is formed, a depth-first traversal of the spanning 

tree will be performed to form the logical ring.

1. Each time an actual node is visited, add a logical node to the 

logical ring

2. The root will be virtual node 0
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3. When all the branches of the root have been traversed, the 

logical ring is completed.

In this research, multiple processors are simulated using four 

computers, and only static token rings are considered. When we simulate 8 

processors, it is natural to let each computer simulate 2 processors; while 

when we simulate 16 processors, it is natural to let each computer simulate 4 

processors, so on and so forth. The Figure 1 shows an example of simulating 

16 processors on 4 computers.

Figure 1: Simulating 16 processors on 4 computers

To make the simulation look more like a distributed system, two 

neighbors will not be allowed to run on one same machine. For the sake of 

simplicity, instead of using the procedure described above to form a logical

token ring, I used a simple algorithm to create a logical ring.
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4. The four computers used to simulate multiple processors are given an 

id of 0, 1,2, 3, respectively. Each simulated processor is also given an 

ID according to the ID of the computer that it is running on. The 

formula to calculate ID for each simulated processor is:

Computer ID + c * i (where 0 < i < number of processors 

simulated on that computer, and c is the number of actual 

computers used for simulation)

According to this formula, if we simulate16 processes on 4 

computers, the IDs of the 4 processors simulated on computer with 

ID 0 will be 0, 4, 8 and 12, the IDs of those on computer with ID 1 will 

be 1, 5, 9 and 13, the IDs of those on computer with ID 2 will be 2, 6, 

10 and 14, and finally, the IDs of those on computer with ID 3 will be 

3, 7, 11 and 15, as indicated in Figure 1.

And if we want to use different number of computers to simulate multiple 

processors, say, if we use 3 computers to simulate 15 processors, the IDs will

be assigned as shown in Figure 2:



33

Figure 2: Simulating 15 processors on 3 computers

4. Each simulated processor will send its ID to the ring maker server 

when it joins the ring.

4. The Ring maker server assigns neighbors according to the ID of each 

simulated processors. Since step 1 guarantees that no adjacent IDs 

can be assigned to simulated processors that run on the same 

machine, we can now assign simulated processors with adjacent IDs 

as neighbors without worry. Again, we use simulating 16 processors 

on 4 computers as an example to explain. For the algorithms which 

require each processor to listen from one neighbor and talk to another 

neighbor, it will let 0 talk to 1, 1 talk to 2, ... 14 talk to 15, and15 talk to 

0, which gives the result of 0 listening from 15, 1 listening from 0, ... 

14 listening from 13, and 15 listening from 14, thus, avoiding

neighbors running on same computer. The following figure shows the
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scenario. In Figure 3, C represents computer, and P represents 

simulated processors.

CO

Cl

C2

C3

Figure 3: Assigning neighbors in one direction

4. For alternator token ring algorithms, which, unlike the other three 

algorithms, require every simulated processor to talk to and listen from 

two neighbors, it is also easy to assign neighbors. We still use 16 

simulated processors on 4 computers as an example. In this case, the 

ring maker server will assign 15 and 1 as 0’s neighbors, 1 and 3 as 2’s 

neighbors, ... 13 and 15 as 14’s neighbors, and 14 and 0 as 15’s 

neighbors. This scenario is depicted in the following figure, which is 

similar to the above figure except that two directional arrows are used. 

Again, in the figure, C represents computer, and P represents

simulated processors.
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Figure 4: Assign neighbors in two directions 

7.2.2 Listen Token

For each token ring algorithm, there are two methods provided in the 

listen token class. Both of the methods implement the token ring algorithm, 

and the only difference is that one of them considers the case when 

application is combined, while the other does not consider it. The one 

combined with application is called when we want to measure the waiting time 

for a process to get privilege after its request under the high contention, 

moderate contention and low contention, and it is also used when we want to 

measure the number of critical section executed per amount of time, while the 

other is used to measure the stabilization time and token delivery time for

each token ring algorithm.



CHAPTER 8 APPLICATION DESCRIPTION AND

IMPLEMENTATION

8.1 Application Description

A simple application used as benchmark is developed in the coding part 

of the thesis.

The application is a simulation of an application that asks people to 

select 20 favorite songs from a list of 1000 available songs. The application 

consists of a server named Result that processes the response of the , and 

multiple terminals from where people can input their choice. Each terminal will 

require updating the result (which is the critical section part in this application) 

after it receives response from a person. It is possible for several terminals to 

request updating at the same time, and hence, the token ring algorithms can 

be used to provide mutual exclusion mechanism.

The simulation used 5 computers, which are connected together locally 

to form a distributed computing environment during the test. All the terminals 

are simulated on 4 computers, and the 5th computer is used to run the code 

for the critical section part as well as other code pieces that are not related to 

the terminal simulation.

If it were a real application terminal and not a simulated one, there
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should be at least 3 obvious scenarios—the terminal is idle and is waiting for 

somebody to use, or somebody is using it to input his choice (note that some people 

may finish their choice very quickly, while some other people may take a longer time 

to consider their choice), or the choice was done and the terminal needs to update 

the data (to execute the critical section). In the simulation, all that we care is about 

each terminal requesting access to the critical section part, and we do not care to 

differentiate if the terminal is idle or if somebody is using it. Therefore, we just let 

each simulated terminal sleep some random time to simulate the terminal idle state 

as well as user’s different response time. As for the responses from people, the 

simulation is done by generating 20 different numbers range from 1 to 1000 

randomly. Here, 20 numbers represent 20 songs selected by a person, and the value 

of each number represents the ID for each song, ranging from 1 to 1000.

8.2 Implementation Overview

The application implementation is also described in two views. One is from the 

view of classes, and the other is from the view of files.

8.2.1 Class View

The application part contains three classes as the following:

Polllnfo.class:

The application server uses this class to store the information 

concerned in the result. It contains only two fields— the ID of a

37



song and the support number for the song with that ID.

Application Server, class:

This class is used to implement a server that stores the result. This 

server plays the critical section part in the application, hence only the 

terminal that gets the privilege can have access to it. What it does is to 

receive the response from the privileged terminal, process the 

response and then notify the privileged terminal that the update to the 

result is finished so that the privileged terminal can release its privilege. 

Simulated Terminal.class:

This class is used to simulate terminals for the application.

8.2.2 File View

There are only two files for the application implementations. 

ApplicationServer.java:

This file declares and implements class Info and class Result. 

SimulatedTerminal.java:

This file corresponds to SimulatedTerminal.class.

8.3 Implementation Details

8.3.1 Application Server

The application server contains several methods. The main method waits to 

receive response from privileged terminals, and after it gets the response, it will call
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the updateResult method, which processes the response passed by the main

method in the format of String— namely, recovers the selected 20 numbers from the 

string, updates the support numbers for the related 20 songs, and sorts the array. 

After all these things are done, the main method will send a message to the 

privileged terminal that the update is done so that the terminal can know that it is 

safe to release the privilege.

8.3.2 Simulated Terminal

When the simulated terminal starts running, it combines with the token 

algorithm first. After that, what it does is to wait for people to input their responses 

(idle time), to accept response from a person (different person has different response 

time), to request access to the critical section, to enter the critical section after it gets 

the privilege, and to release the privilege when it finishes accessing the critical 

section, and then it goes back to wait for another response and the cycle repeats 

again and again.

Note that the idle time—the time for the terminal to wait for people to use it, 

and the different response time used by different people are simulated by let the 

terminals sleep different amount of time because for the purpose of performance 

evaluation, Our simulation does not need to differentiate idle time and response time. 

Also note that the responses from users are simulated by generate 20 different 

numbers ranging from 1 to 1000 randomly
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The waiting time—the time for a terminal to get privilege after it requests for it

is measured by each terminal and the average waiting time can be calculated.
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CHAPTER 9 CODE FOR PERFORMANCE MEASUREMENT

For the comparison part of this thesis, the focus is on the comparison of 

stabilization time and token delivery time of the four token ring algorithms. For 

the stabilization time measurement, each ring is started from an arbitrary 

illegal state. And for the token delivery time measurement, the average time 

for a process to get privilege again since the last time it released privilege is 

measured.

The time used for each algorithm to finish certain amount of critical 

section executions is also measured.

9.1 Stabilization Time Monitor

This is a server that is used to record stabilization time of a token ring. 

The algorithm for this server was designed in the following way:

1. The server will first receive a message from ring maker to know the 

time when the token ring is formed.

2. The token ring is set to start at an arbitrary illegal state. Each 

participating process in the token ring will send a message to the 

stabilization time monitor each time it receives the privilege.

3. When the stabilization time monitor receives the first message from a
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privileged process, it records the ID of that process in a variable named 

firstSender. It also records the time that the first message is received in 

a variable named startDelivery. It always assumes that the token ring 

has been stabilized, and therefore, it expects to receive the next 

message from firstSender’s next neighbor N. If the next message it 

receives is from the process that it expects, then it will expect to 

receive the next message from N’s next neighbor N+1, and again if it 

does receive the next message from N+1, then it will expect to receive 

the next message from M’s next neighbor N+2, and this repeats until 

the message is expected to be received from firstSender again and it 

does receive from firstSender.

4. If the message is received from a process that the server does not 

expect, that indicates the existence of an illegal state. The server will 

change the value of firstSender to the ID of the process that just sent a 

message, and it also records the time the message is received in 

variable startDelivery. The cycle in step 2 repeats again.

5. The server broadcasts a message to all processes to notify them of 

the stabilization of the token ring and each privileged process will not 

send message to the server after receiving the broadcast message.

6. The server calculates the stabilization time by using the following 

formula:

Stabilization time = startDelivery -  (the time when the ring is formed)
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When the token ring finally stabilized, the report of privilege will be 

something that looks like the following: 1 7 2 3 8 9 1 0 1 1  1213141501  2 3 4

5 6 7 8, where the first 8 is the last out-of-order report. When the server 

calculates the time used for stabilization, snapshot approach is used to make 

a valid measurement. In the case of 1 7 2 3 8 9 10 11 12 13 14 15 0 1 2 3 4 5

6 7 8, the first report by 8 would indicate the achievement of stabilization, 

even though we are not confident about it until later time when the second 8 is 

received.

It seems simpler if we let the server broadcasts request for state to all 

ring processes, and the processes send states back to the server, and then 

the server inspects the states to see if there is only one privilege exists. If 

more than one exists, the server will broadcast again until there is only one 

privilege. But on reflection, we see that this method is not quite feasible. Since 

we are doing real time package communications, once the server broadcasts 

a request for state report, we cannot guarantee that all the clients can receive 

the request at the same time and report the states at the same time. Suppose 

the token ring has already stabilized when process 1 got the broadcast 

request, it has the privilege, and will report that to server, meanwhile it 

releases the privilege to process 2, process 2 may get the state report request 

till then, and it will also report privilege to server. In this case, the server will 

see two privileges while actually there is only one. Therefore, this method was

not adopted in the implementation.
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9.2Token Traversal Time Monitor

This is a server that can be used to measure the time for the privilege to 

traverse a cycle under different degrees of contention, namely, the time for a 

process to get the privilege again after it releases the privilege last time. In 

theory, the token traversal time will be:

T = (n-X)*a + k*cs

Where Tis the token traversal time, n is the number of ring processes, a 

is the arbitration time for each algorithm, k is the number of critical section 

executed in the traversal cycle (0 < k < n - l^  anc| cs ¡s the time used to 

execute critical section. Note that when k is equal to 0, which occurs when no 

critical section is executed during the token traversal cycle, Tis the pure token 

delivery time with no interference from outside.

This server can measure the exact value of T, and how many times the 

critical section is executed during the time T, which is the value of k in the 

above formula.

To measure T and how many times the critical section is executed in a 

cycle, the algorithm is designed as the following:

1. Each process will send a message “get” to the server when it gets the 

privilege, send a message “cs” when it starts executing the critical 

section, and send a message “release” when it releases the token.

2. Since we need to measure the time for a process to get the privilege

again after it releases it last time, when the server receives “release", it
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will begin to record it as the time that the traversal starts, and when it 

receives “get” from the same process, it will consider it as the time that 

the traversal ends During this period, if it receives “cs”, it will update 

the count of critical section executed by adding 1.

3. The server keeps a two-dimension array of class Measurelnfo objects, 

which is measureArray[r][p], where r is the measure size for each 

process, and p is the number of ring processes. The Measurelnfo 

object stores the information about the time T and how many times the 

critical section has been executed in a token traversal cycle. For 

example, if it is the first time to measure the token traversal time for 

process P3, then the information measured will be stored in 

measureArray [0][3], and if it is the third time to measure the token 

traversal time for P11, then the information measured will be stored in 

measureArray [2][11], and so on.

4. The server can control how many times to measure the token traversal 

time for each process by changing the value of r in step 3, and 

calculates the arbitration time for each algorithm according to the 

formula described above.

5. The server is also used to calculate how much time is used for each 

algorithm to finish certain amount of critical execution executions. This 

is useful when we compare the performance of the 4 algorithms 

combined with the simulated application.



46

9.3 Contention Control

To compare the performance of each algorithm fairly, we need to give 

each algorithm an identical application. We need to ensure that every 

algorithm has the same test environment. That means, the application 

combined with different token ring algorithms must do exactly the same task 

with no variations.

9.3.1 Method to Ensure Identical Test Environments

Consider the actions of the application in the scenario we have created. 

Simply stated, the application will be in one of the following 4 states:

•  Idle (no current uses)

•  Executing non-critical section

•  Waiting for privilege to execute critical section

•  Executing critical section

We can re-characterize these actions in terms of token interest as 

follows:

•  No interest in token (idle or executing non-critical section)

•  Waiting for token (performance comparison)

•  Holding token (while executing critical section)

The time used to wait for token is what we want to compare between 

different algorithms. As for the idle time and the non-critical section time, we 

simulate them by letting the simulated terminal sleep randomly. But to give
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each token ring algorithm identical test conditions, we also need to make sure 

that the sleeping time for each algorithm is identical. To do this, the following 

method is used:

1. Generate a two-dimension integer array SleepingTime[t][n], where t is 

the maximum rows of the array, and n is the number of terminals. 

Hence, each column in the array corresponds to a terminal so that 

when there are 16 processes, there will be 16 columns.

2. The array is filled with integer numbers generated randomly—  these 

numbers in the array indicate the time the processes should sleep 

before request for critical section— this sleep is used to simulate the 

terminal idle time and the different response time used by different 

users.

The array will be something that looks like the following after it is filled 

with randomly generated integers:

21 0 122 3 51 10 421 425 12 153 15 14 19 9 531

12 122 18 564 122 18 654 33 21 15 753 531 16 531 531

14 13 155 15 20 564 8 421 424 531 538 17 541 15 0

111 134 155 4 153 11 351 12 20 19 135 21 531 10 51

Table 1: Sleeping Time

Table 1 is just an example, and the real array used will be filled with 

numbers within range determined according to the contention degree that
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we wish. Ideally, they should be specified in the consideration of the 

number of requests for critical section during one token traversal cycle. 

Say, if we consider 1 requests in one cycle as a low contention degree, 

then it takes totally (1 * critical section time + token traversal time) for the 

token to finish one cycle, and therefore, token traversal time should play a 

great part in sleeping time specification. But according to what we got 

from the experimental runs, the token traversal time for the 4 token ring 

algorithms is quite different, and it is hard to use one token traversal time 

to determine similar contention degree for all the token ring algorithms.

We know that in low contention states, average waiting time should 

be relatively constant because the number of critical section executed per 

token traversal of the ring is small. And on average contention level, the 

time a process makes a request for the token should be approximately 

halfway around the ring. Mathematically, we can describe this as: 

w < 1/2 * (t + cs)

where w is the average waiting time, t is token traversal time, and cs is 

critical section execution time. In high contention states, we can assume 

that an increase in workload will have a direct effect on system 

performance, as measured by waiting time. One way of viewing this is that 

if a process usually must wait for other processes to finish the critical

section execution to execute its critical section, the contention is high. In
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other words, when that point is reached, process idle time is excessive. 

Mathematically, we can represent this as

w> 1 /2 *t + cs,

where w is the average waiting time, t is token traversal time, and cs is 

critical section execution time. This represents a fairly fine delineation, 

and indeed, graphically, it could be represented that moderate contention 

is only an inflection point between low contention, a range of values where 

waiting time is relatively insensitive to increase in workload, and high 

contention, a range of values where waiting time is increasing directly with 

increases in workload.

Based on the proceeding, the method used to specify the sleeping 

time for each terminal is as the following: first we tried different numbers 

to specify the sleeping time ranges, then used these ranges and ran the 

application with different token ring algorithms combined. Through 

observation, we determined the ranges that give similarly low, moderate 

and high contention level.

For the low contention level, we determined an average sleeping 

time range ST that gives each terminal some waiting time (the time 

between its request for critical section and its being granted the token) 

that will remain fairly constant even when using a larger range than ST.

For the high contention level, the shortest time for a terminal to wait

before it can execute critical section is 0, and the longest time is Token
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traversal time +(n-1) * (critical section time), where n is the token ring size. 

The average case should be the average of these two values. Since the 

token traversal time for the 4 token algorithms ranges from 121 to 1781 

milliseconds, and the critical section time ranges from 900 to 1150 

milliseconds, the average case for a token ring with size 16 should be 

close to the range from 7560 milliseconds to 9415. And therefore, we 

consider the sleeping time range that gives the waiting time close to this 

range as the range for high contention level.

For the moderate level, we used the range between the low level 

and the high level.

9.3.2 Usage of the Sleeping Time in Terminals

1. Declare a variable j of type integer, and initialize it to 0.

2. At the beginning, each terminal i, where 0 <= i < n, fetches the value of 

SleepingTime [j][i]. After that, it increases the value of j by 1. If j is out 

of the index of the IdleTime array after the increase, set it to 0.

3. After the value is fetched, it will enter sleep. The sleeping time period 

is indicated by the number it just fetched. This is to simulate the 

terminal idle time and the different response time from different people. 

It avoids the problem that all the processes request access to critical

section at the same time.
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4. After the sleep, it will generate 20 valid numbers to simulate a 

response from a person, and then will request access to the critical 

section. When it gets privilege, it will execute critical section and 

releases the privilege after the critical section execution is finished.

5. Repeat step 2 to 4, until the terminal is terminated.

The good thing to generate idle time in advance this way rather than to 

generate them randomly in run time is that we can give a fair and precise 

comparison of different token ring algorithms. In this way, we can make sure 

that the test environment is identical for each token ring algorithm—the 

terminals will generate responses according to same procedure because the 

terminal idle time and the response time of the simulated terminal users are 

identical.

The simulated terminals were run on 4 computers with each computer 

simulating same number of terminals, and all the code for measuring 

performance was run on the 5th computer during the test.

9.4 Relationships between Different Servers

In chapter 7, code for algorithm implementation was introduced, in 

chapter 8, code for application implementation was introduced, and in this 

chapter, code for performance measurement was introduced. Now it is time to 

see the relationships between different code pieces.
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We will begin by giving a simple review about the servers introduced.

1. Ring maker: used to form a logical token ring

2. Simulated terminal: used as terminals of an application system, it is an 

application combined with token ring algorithm.

3. Application server: in charge of updating the data, only the terminal 

with privilege can talk to it.

4. Stabilization time monitor: used to measure stabilization time for each 

token ring algorithm.

5. Token traversal time monitor: used to measure the time for a privilege 

traversal cycle, records how many critical sections are executed during 

the cycle, and calculates arbitration time for each process.

The relationships between different servers are shown in figure 5. Note 

that we run the simulated terminals on computers with IDO, 1,2 and 3, and all 

the code for servers and monitors are run dn computer with ID 4.
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Figure 5: Relationships between servers



CHAPTER 10 PERFORMANCE COMPARISON

In Chapter 7, 8 and 9, the implementation for the 4 token ring algorithms 

combined with the test application, and the implementation of performance 

measurement were described. Now we need compare the performance of 

each token ring algorithm. We will start with an overview of performance 

comparison.

10.1 The Upper Bound Overview for Each Token Ring

As mentioned in chapter 1, the comparison of performance will be 

focused on the stabilization and token delivery, and therefore, only the upper 

bounds for these two metrics are listed here.

Token Ring Stabilizes in Delivers Token in

Enabler 0  (n) Ò F )

Alternator 0  (n) 0  (n)

Shepherd o W ) 0  (n)

Companion 0  (n) 0  (n)

Table 2: Upper bound for 4 algorithms compared

54
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The proof of these upper bounds is out of the scope of this research, 

and this table is listed here to indicate what we should expect from the 

sample run of the implementation.

In section 10.2 and 10.3, the performance comparisons of 

stabilization time and token delivery time are given respectively.

10.2 Stabilization Time Comparison

By observing the results from experimental runs, we can see that the 

upper bounds for stabilization time given in table 2 are verified in the 

implementation. Details about the results and analysis are given in 10.2.1 and 

10.2 .2 .

10.2.1 Simulating 4 Terminals per Computer

The following table is the data of stabilization time in milliseconds from 

the experimental runs, since each run gives slightly different result, average 

value is calculated by running each set of code for 10 times.

Note that the data in table 3 were collected by letting each computer 

simulate 4 terminals, namely, when the ring size is 8, we used 2 computers, 

and when the ring size is 12, we used 3 computers, and when the ring size is 

16, we used 4 computers. In this way, performance effects due to multiple 

simulated terminals executing on each actual computers are made consistent.
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Token Ring Ring size 8 Ring size 12 Ring size 16

Enabler 201 311 425

Alternator 291 461 610

Shepherd 137 267 561

Companion 123 201 270

Table 3: Stabilization time 4 processes per computer

The following charts drawn from the data in table 3 help us to see the 

trend for each algorithm more clearly.

1. The data for enabler token ring shows that it has a good 

performance in stabilization, and the chart drawn from the data is 

nearly a line, which verifies that its upper bound is O (n), where n is 

the size of the ring.

Stabilization Time: Enabler

♦ Enabler

---Linear
(Enabler)

8 12 16 
Process Number

Figure 6: S tab iliza tion  tim e: E nab le r token  ring
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2. The data for alternator token ring shows that even though it has an 

upper bound of O (n), it takes longer time to stabilize compared with 

other algorithms with same upper bounds, namely, the companion 

token ring and the enabler token ring. And for the ring sizes we 

compared, it even takes longer time compared with shepherd, which 

has an upper bound of O (n2). But the chart drawn from the data is 

nearly a line, which verifies that its upper bound is O (n), where n is 

the size of the ring.

Figure 7: Stabilization time: Alternator token ring

3. The data for shepherd token ring shows that the time used for it to

stabilize increases very quickly with the ring size increases, and the
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chart drawn from the data is a curve of square, which verifies that its 

upper bound is O (n2), where n is the size of the ring.

Stabilization Time: Shepherd

600 

500 

400
0

•§ 300
e- i

200 

100 

0
8 12 16 

Process Number

Figure 8: Stabilization time: Shepherd token ring

4. The data for companion token ring shows that it has a good 

performance in stabilization, and the chart drawn from the data is 

nearly a line, which verifies that its upper bound is O (n), where n is

the size of the ring.
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After viewing the charts of stabilization time for each individual token 

ring algorithm, now we generate a chart with the data from 4 algorithms on it.

Comparison in  S tab iliza tio n  Time

Process Number

Figure 10: S tab iliza tion  tim e com parison  fo r 4 token rings
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From figure 10, we can see that each algorithm has the trend as their 

upper bounds indicate. We can see clearly that the stabilization time for 

shepherd increases very fast, even though it has a good performance when 

the token size is small, and the stabilization time for the other three algorithms 

increases linearly when the ring size increases.

As alternator token ring has a lower level protocol—the ring alternator, 

and it needs to communicates with two neighbors, it takes more time to 

stabilize, and therefore, though it has an upper bound of O (n), it uses more 

time than the other two algorithms with O (n) upper bound.

10.2.2 Simulating 8 Terminals per Computer

We also have some experimental runs with each computer simulating 8 

terminals to see the performance difference. And table 4 listed the data for 

stabilization time with different token ring sizes.

Token Ring Ring size 16 Ring size 32

Enabler 4061 7853

Alternator 8716 16284

Shepherd 5682 24067

Companion 2864 6113

Table 4 Stabilization time 8 processes per computer

From table 4, we can see that the trends for stabilization time for each
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algorithm still hold, but with the time value increases more than doubling 

compared with each computer simulating 4 processes. This is because of the 

limitation of physical memory. And due to this limitation, we did not simulate 

more processes.

10.3 Token Delivery Time Comparison

By observing the results from experimental runs, we can see that the 

upper bounds for token delivery time given in table 2 are verified in the 

implementation. Details about the results and analysis are given in 10.3.1 and

10.3.2

10.3.1 Simulating 4 Terminals per Computer

The following table is the data of token delivery time (time for token 

traversing a cycle in the ring) in milliseconds from the experimental runs, 

since each run gives slightly different result, average value is calculated by 

running each set of code for 10 times.

Note that the data in table 5 were collected by letting each computer 

simulate 4 terminals, namely, when the ring size is 8, we used 2 computers, 

and when the ring size is 12, we used 3 computers, and when the ring size is 

16, we used 4 computers. In this way, performance effects due to multiple

simulated terminals executing on each actual computers are made consistent.
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Token Ring Ring size 8 Ring size 12 Ring size 16

Enabler 464 996 1781

Alternator 569 1011 1422

Shepherd 151 230 284

Companion 57 91 121

Table 5: Token delivery time 4 processes per computer

The following charts drawn from the data in above table help us to see 

the trend for each algorithm more clearly.

1. The data for enabler token ring shows that it has a bad performance 

in token delivery time, and the chart drawn from the data is a curve 

of square, which verifies that its upper bound is O (n2), where n is the 

size of the ring.

Token Traverse: Enabler

2000

1500 ---------------- y *
CD ♦ Enabler1000 ------------  j f -------------
E-I Poly. (Enabler)

500 -----------------

0 _________ i_________ i_________

8 12 16

Process Number

Figure 11: Token  de live ry  tim e: E nab le r token  ring
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2. The data for alternator token ring shows that the time used for token 

delivery increases linearly with the linear increase of the ring size, and 

the chart drawn from the data is also nearly a line, which verifies that 

its upper bound is O (n), where n is the size of the ring.

Token Traverse: Alternator

♦ Alternator

---Linear
(Alternator)

8 12 16

Process Number

Figure 12: Token delivery time: Alternator token ring

3. The data for shepherd token ring shows that although it has the 

worst performance in stabilization, it performs pretty well in token 

delivery, and the chart drawn from the data is linear, which verifies 

that its upper bound is O (n), where n is the size of the ring.
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Token Traverse Shepherd

♦ Shepherd

---Linear
(Shepherd)

8 12 16 

Process Number

Figure 13: Token delivery time: Shepherd token ring 

1. The data for companion token ring shows that it not only has a good 

performance in stabilization, but also performs well in token delivery. 

The chart drawn from the data is nearly a line, which verifies that its 

upper bound is O (n), where n is the size of the ring.

Token traverse: Comapnion

140 
120 

100
§ 80 
£  60 

40 
20 
0

8 12 16 

Process Number

Figure 14: Token delivery time: Companion token ring
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After viewing the chart of token delivery time for each individual token 

ring algorithm, now we generate a chart with the data from 4 algorithms on it.

Figure 15: Token delivery time comparison for 4 token rings

From the chart, we can see clearly that each algorithm has the trend 

as their upper bounds indicate. We can tell that the performance in token 

delivery time for companion and shepherd token ring is close. The enabler 

performs worst because the delivery time increases very fast when the ring 

size increases. Again, although alternator token ring has the upper bound of 

O (n) in token delivery time, it takes longer than companion and shepherd 

token because of its lower level protocol and the more messages it has to

deal with.
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10.3.2 Simulating 8 Terminals per Computer

We also have some experimental runs with each computer simulating 8 

terminals to see the performance difference. And table 5 listed the data for 

stabilization time with different token ring sizes.

Token Ring Ring size 16 Ring size 32

Enabler 10268 57398

Alternator 9923 20482

Shepherd 2678 5073

Companion 1896 4136

Table 6 Token delivery time 8 processes per computer

From table 5, we can see that the trends for token delivery time for 

each algorithm still hold, but with the time value increases more than doubling 

compared with each computer simulating 4 processes. This is because of the 

limitation of physical memory. And due to this limitation, we could not simulate 

more prbcesses.

10.4 Comparisons under Different Degrees of Contention

The tests in section 10.2 and 10.3 take no consideration of the requests 

from application, in another word, it only concerns with the pure stabilization 

time and token delivery time with no interference from outside. In this section, 

we cpnsider the requests to access critical section from the simulated 

terminals and to see the performance of each algorithm.
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In the tests, we make each algorithm combined with the simulated 

application system. The interest of measurement is the waiting time and total 

time needed to finish certain amount of critical executions. By saying waiting 

time, here we mean the time for a simulated terminal to get the privilege after 

it requests access to critical section.

We only test a token ring with size 16 simulated on 4 computers and 

combined with the application, and the number of critical section to be 

executed is set to 100. Table 5 shows the average waiting time with different 

sleeping ranges for each simulated terminal to get privilege after it requests.

10.4.1 Waiting Time Comparisons

We tried different numbers to find appropriate values to determine the 

sleeping range so that we can manipulate the contention levels. What listed in 

table 7 is the waiting time for different algorithms under different average 

sleeping times.

T
R

70000 50000 35000 30000 25000 22500 17500 12500 10000 9000 8000

Enabler 2050 2519 2915 3260 3613 3865 5188 5387 6878 8684 8769

Alternator
1804 2134 2471 2605 2996 3524 4139 4961 6297 7052 7123

Shepherd 175 230 261 490 607 1284 1644 2334 2524 5764 6278

Companion
149 ' 183 255 424 523 903 1462. 2058 2281 5721 6027

Table 7: Waiting time under different average sleeping times
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To view the data more obviously, we created charts for different 

algorithms as the following:

1. Waiting time for enabler token ring.

Waiting time: enabler

10000 
9000 

8000 

7000 !

6000 g
5000 |

4000 8>CD
3000 2<
2000 

1000 

0
80000 70000 60000 50000 40000 30000 20000 10000 0

Average sleeping time

Figure 16: Waiting time: Enabler token ring 

2. Waiting time for alternator token ring

Waiting time: alternator

8000 

7000 

6000 

5000 £  

4000 g 
3000 Ì 
2000 

1000 

0
80000 70000 60000 50000 40000 30000 20000 10000 0

Average waiting time

Figure 17: Waiting time: Alternator token ring
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3. Waiting time for shepherd token ring

Figure 18: Waiting time: Shepherd token ring

4. Waiting time for companion token ring

Figure 19: Waiting time: Companion token ring

The graphs in above 4 charts have similar shapes, and this verifies the

delineation we described in section 9.3.1. At the low level contention, there is
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no much difference in average waiting time, but with the contention increases, 

the average waiting time increases sharply.

From the data given above, it is clear to see that under low-level 

contention, the waiting time for each algorithm is relatively short. And the 

waiting time under high-level contention is impressively long.

10.4.2 Number of Finished Critical Section Comparisons

Similar to the way we used to measure the waiting time, we measured 

the number of critical sections executed for each algorithm under different 

average sleeping times, given a time period of 2000,000 milliseconds.

Table 8 listed the detailed data.

X  T
r \ 70000 50000 35000 30000 25000 225Q0 17500 12500 10000 9000 8000

Enabler 416 588 786 905 1087 1160 1338 1401 1472 1626 1643

Alternator 419 598 816 921 1122 1182 1396 1427 1506 1723 1842

Shepherd 423 607 859 980 1219 1421 1537 1722 1857 1946 ( 1966

Companion 424 610 864 110Q 1287 1425 1561 1819 1908 1951 1979

Table 8: Number of critical section executed under different average sleeping times 

To view the data more obviously, we created charts for different

algorithms as the following:

1. Number of critical sections executed by enabler token ring in 2000,000 

milliseconds under different average sleeping times:
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2. Number of critical sections executed by alternator token ring in 

2000,000 milliseconds under different average sleeping times:

Figure 21: Number of critical section executed: Alternator token ring
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3. Number of critical sections executed by shepherd token ring in

2000,000 milliseconds under different average sleeping times:

Figure 22: Number of critical section executed: Shepherd token ring

4. Number of critical sections executed by companion token ring in

2000,000 milliseconds under different average sleeping times:

Figure 23: Number of critical section executed: Companion token ring
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Again, the graphs in the charts have similar shapes. We can see clearly 

that although the waiting time under low contention is short, the number of 

critical section executed is also small, and under high contention, the number 

of critical section executed is much greater. This is because that given same 

amount of time, under low contention, less processes request for the access 

to the critical section, while under high contention, more processes request for 

execute critical section.

We can also see that under low contention, there is no big difference in 

the number of critical section executed between different algorithms, while 

under high contention, the difference is obvious.

From what discussed in section 10.4.1 and 10.4.2, we can see that the 

performance of the token delivery time affects the waiting time and the 

number of critical section executed per time period no matter the application 

system is under what contention level. Put the 4 algorithms under same 

conditions, it is clearly seen that the faster the token delivered, the less the 

waiting time, and the more critical section can be executed during a certain

amount of time.



CHAPTER 11 CONCLUSIONS

As we can see from the performance comparison in chapter 10, we can 

safely draw the conclusion that companion token ring has a good 

performance in general because it takes an upper bound of O (n) both in 

stabilization time and token delivery time. Though alternator token ring has the 

same upper bounds with companion token ring, it takes more time compared 

with the latter because it must wait for the alternator to stabilize and it must 

communicate with two neighbors. As for shepherd token ring, it has good 

performance in token delivery aspect, but its stabilization aspect is much 

worse than the other three algorithms, which means shepherd token ring can 

cause worse damage in the case of transient faults occurring compared with 

other algorithms under same conditions. And for the enabler token ring, it can 

stabilize very fast, but once stabilized, the system with enabler token ring 

would perform less critical section executions compared with other three 

algorithms under same conditions due to its slow token traversal time.

What described above is in general. If a choice needs to be made 

among these different algorithms, more factors, such as the size of the 

system, the requirement for fault tolerance degree, and so on, need to be 

considered.

74
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In this research, we focused on the performance evaluation and 

comparison among these 4 token ring algorithms, and there is some future 

work left to do. (1) It would be more general if other algorithms (e.g.[FD94]) 

were also considered. (2) Under low contention level, a central monitor for 

scheduling permission to execute critical section might be a better choice. (3) 

Further explanation of relationships between token time, critical section time 

and non-critical section should be considered.
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APPENDIX 1 ALTERNATOR TOKEN

cnport java.io .*; 
mport j ava.net.*; 
mport j ava. lang.*;
**
This class implements alternator token ring algorithm

/
lass AlternatorToken extends Thread

private InetAddress ringMakerAddress; 
private InetAddress timeMonitorAddress; 
private InetAddress measureAddress;

public int serverlD; 
public int leftNeighborPort; 
public int rightNeighborPort; 
private int action;

private InetAddress leftNeighborAddress; 
private InetAddress rightNeighborAddress;

private DatagramSocket sendSocket; 
private DatagramSocket actionSocket;
private DatagramSocket talkToRMSocket; //used to talk to Ring Maker 
private DatagramSocket talkToTimeSocket; //used to talk to timeMonitor 
private DatagramSocket listenSocket; //socket used to listen from its  precessor 
private DatagramSocket talkTokenTraverseSocket; //used to talk to timeMonitor

public boolean grant;
private PollServer pollServerInCharge; //proecess belongs to which application

private
private
private
private
private
private
private
private
private
private
private
public
public

boolean b; / /fo r  general process(1 to Max processID - 1) its e lf
boolean bO; //fo r  process bO
boolean bn; / /fo r  process bn
boolean leftb; / / f i r s t  neighbor
boolean rightb; //second neighbor
boolean tkn;
boolean pTkn;
boolean rdy; //loca l
boolean T; //used as time guard
long start; //used to calculate time out
final int TimeOut = 2;
boolean ignore = false; //used to control i f  to send msg when executing cs 
boolean reportCS = false; //used to control i f  to send msg when executing cs

/**
* constructor 
* /
public AlternatorToken( InetAddress addr, int listenPort, int talkToRMport, PollServer pstf 

, int sid )
{

ringMakerAddress = addr; 
timeMonitorAddress = addr; 
measureAddress = addr; 
pollServerInCharge = ps; 
serverlD = sid;

start = System.currentTimeMillis();

leftNeighborPort = -1; 
rightNeighborPort = -2; 
leftNeighborAddress = null; 
rightNeighborAddress = null; 
grant = false; 
action = 0;



try
{

sendSocket = new DatagramSocket(); 
actionSocket = new DatagramSocket(); 
talkToTimeSocket = new DatagramSocket(); 
talkTokenTraverseSocket = new DatagramSocket();
listenSocket = new DatagramSocket( listenPort, InetAddress.getByName("147.26.101. 

141”));
talkToRMSocket = new DatagramSocket(talkToRMport, InetAddress.getByName("147.26. 

101.141"));
} catch( SocketException e ) {;}

catch ( UnknownHostException e ) { System.out.println("UnknownHost: " + e. 11
getMessage 0 ) ; }  

try {
listenSocket.setSoTimeout(1) ,*

} catch(IOException ex) {;}

private int boolToInt( boolean a )
{

i f  ( a )
return 1;

else
return 0;

}
//return a string with at most 2 elements, 1st is the token, 2nd, is bO(or b ), third is 

bn
private String proeessTokenAndAlternatorForTokenTraversal()
{

String tmp="333";

i f  ( serverlD == 0 )
{

i f ( b0==rightb && bn!=leftb ) / / i f  G1
{

j I * * * * * * * * * * * * * *case 1 no reguest i f  G l^G S*********************************  
i f ( tkn==pTkn &&(tkn || rdy ) && pollServerlnCharge.request == false)
{

i f ( ignore == false )
{

byte[]sendData = new byte[10];
sendData = (Integer. toString { serverlD ) + " get") .getBytes () ,* 
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. \t 
MeasurePort) ,*

try {talkTokenTraverseSocket.send(outPacket); } / / t e l l  hT
TokenTraversalMonitor its  privilege 

catch(IOException e ){}
}else ignore = false; 
reportCS = false;

tkn = Itkn; //A5 
rdy = false; //A5 
bn = !bn; //A l 
bO = IbO; //A l 
T = false; //A l

byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString ( serverlD )+" release") .getBytes () ,*

DatagramPacket outPacket2 = new DatagramPacket(sendData2,
sendData2.length, measureAddress, FinalVariables. 11 

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket2); } / / t e l l  i/

TokenTraversalMonitor its  privilege 
catch(IOException e ){} 

grant = false;

tmp = boolToInt (tkn) + " "+boolToInt (bO) + " "+boolToInt (bn) + " " ,*



return tmp; 

}//end of i f ! 2

y ^ **************qq3 0  2. with, request G1AG 5*******************************  
else i f ( tkn==pTkn &&(tkn || rdy ) && pol1ServerInCharge.request == true ) 
{

i f ( ignore == false ) //should send msg
{

byte[]sendData = new byte[10];
sendData = (Integer. toString ( serverlD )+,? get") .getBytes () ;

DatagramPacket outPacket = new DatagramPacket(sendData,
sendData. length, measureAddress, FinalVariables. 

MeasurePort);
try{talkTokenTraverseSocket. send (outPacket) ,* } / / t e l l  

TokenTraversalMonitor its  privilege 
catch(IOException e ){}
ignore = true; //set i t  to true, so not to send multiple times

}
grant = true;

i f ( reportes == false )
{

byte[]sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+" cs") .getBytes();

DatagramPacket outPacket2 = new DatagramPacket(sendData2,
sendData2.length, measureAddress, FinalVariables 

MeasurePort);
try {talkTokenTraverseSocket.send(outPacket2); } / / t e l l  

TokenTraversalMonitor its  privilege 
catch(IOException e ){} 

reportes = true; //reported already
}
return tmp;

}//end of i f 1 2

//*********************c as e  2 G1^G6************************
else i f ( tkn==pTkn && !rdy && Itkn )
{

rdy = true; //A 6 
bO = IbO; //A l 
T =false; //A l 
bn = !bn,- //A l

tmp = boolToInt(tkn)+""+boolToInt(bO)+ M"+boolToInt(bn) + ""; 
return tmp;

}
j /* * * * * * ****************ea se 3 G1A!g5̂  i G6***********  * ****************  
else / / i f  ( !G5 ( tkn, pTkn, rdy ) && !G6 ( tkn, pTkn, rdy ) )
{ bO = !bO; //A l 

bn = !bn; //A l 
T = false; //A l
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn)+""; 
return tmp;

}
}//end of i f l l

else i f ( (System.currentTimeMillis( ) -start)>TimeOut && T )
{

^ *̂**★ **********"*"*'*Qase 4 i f  G2******* * * ** * ** * * ** * ** * * ** * *  
i f ( b0 ==rightb && bn == leftb )

bO = !b0; //A l 
T = false; //A l
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn)+"";

{



return tmp;

I j *****************cs.se 5 i f  G3***** ** * * ** * ** * * ** * ** * * ** * *  
else i f ( bO I=rightb && bn != leftb )
{

bn = !bn; / / A2
T = false; / / A2
tmp = boolToInt(tkn)+"n+boolToInt(bO)+"n+boolToInt(bn)+ ""; 
return tmp;

}
}
j  j  *** *******  *•*"*■*** * case 6 i f  G 4 ***************************
else i f  ( ( (bO==rightb && bn==leftb) || (bO!=rightb && bn!=leftb)) && !T )

}

T = true;
start = System.currentTimeMillis(); 
return tmp;

}
return tmp;

}//end of i f  serverlD == 0

else //other processes
{

i f ( (rightb == b) && (b 1= leftb) ) / / i f  Bi
{ i f ( tkn != pTkn && (rdy | | tkn ) && pollServerlnCharge.request == false) / / no 

request
{

i f ( ignore == false )
{

byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )+" get”) .getBytes();

DatagramPacket outPacket = new DatagramPacket(sendData,
sendData. length, measureAddress, FinalVariables. ^

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket); } / / t e l l  

TokenTraversalMonitor its  privilege 
catch(IOException e ){}

}
else ignore = false; //se t ignore to false because for case 2 
reportCS = false; //se t for case 2

tkn = !tkn; 
b = l b; 
rdy = false;

tmp = boolToInt(tkn)+""+boolTo!nt(b)+" ";

byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+" release") .getBytes();

DatagramPacket outPacket2 = new DatagramPacket(sendData2,
sendData2. length, measureAddress, FinalVariables. vt 

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket2); } / / t e l l  

TokenTraversalMonitor its  privilege released 
catch(IOException e ){} 

grant = false; 
return tmp;

}
//w ith request==true
else i f ( tkn != pTkn && (rdy || tkn ) && pollServerlnCharge.request == true)
{

i f ( ignore == false )
{ byte[]sendData = new byte[10];



DatagramPacket outPacket = new DatagramPacket(sendData,
sendData. length, measureAddress, FinalVariables. 

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket); } / / t e l l  \l

TokenTraversalMonitor its  privilege 
catch(IOException e ){}

ignore = true; //se t i t  to true, so not to send multiple times

sendData = (Integer.toString( serverlD )+" get").getBytes();

grant = true ; / /  setGrant( true);

i f  ( reportCS == false )
{

byte[]sendData2 = new byte[10 3;
sendData2 = (Integer. toString ( serverlD )+" cs") .getBytes () ,-

DatagramPacket outPacket2 = new DatagramPacket(sendData2,
sendData2. length, measureAddress, FinalVariables. \i 

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket2); } / / t e l l  i£

TokenTraversalMonitor cs 
catch(IOException e ){} 

reportCS = true;
}
return tmp;

}
else i f ( (tkn != pTkn) && !tkn && !rdy )
{

b = !b;
rdy = true;
tmp = boolToInt(tkn)+"H+boolToInt(b)+ " "; 
return tmp;

}
else
{

b = lb;
tmp = boolToInt(tkn)+"n+boolToInt(b)+” "; 
return tmp;

}
}//end of i f l l  
return tmp;

//return a string with at most 2 elements, 1st is the token, 2nd is bO(or b ), third is bn 
/ /" l"  means high, "0" means low, and 3 means no change 
private String processTokenAndAlternatorNoRequest()
{ String tmp="333M;

i f  ( serverlD == 0 )
{

i f ( b0==rightb && bn!=leftb ) / / i f  G1
{ / / * * * * * * * * * * * * * * case 1 no request i f  G1AG 5 *********************************  

i f ( tkn==pTkn &&(tkn || rdy ) ) //privileged  
{

byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD ) ) .getBytes();

DatagramPacket outPacket = new DatagramPacket(sendData,
sendData.length, timeMonitorAddress, FinalVariables 

. PrevilegePort) ,*
try{talkToTimeSocket.send(outPacket); } / / te ll  timeMonitor its  privilege



catch(IOException e ){} 
tkn = !tkn; //A5 
rdy = false; //A5 
bn = !bn; //A l 
bO = IbO; //A l 
T = false;

tmp = boolToInt(tkn)+"n+boolToInt(bO)+""+boolToInt(bn); 
return tmp;

}//end of i f l 2

j ^*********************0ase 2************************ 
else i f ( tkn==pTkn && !rdy && Itkn )
{

rdy = true; //AG 
bO = IbO; //A l 
bn = !bn; //A3 
T = false;
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn),* 
return tmp;

}
j /************* ********-*case 3 Gl-*" i gB^ 1G6**************************** 
else //if( IG5( tkn, pTkn, rdy ) && !G6 ( tkn, pTkn, rdy ) )
{

bO = !bO; //A l 
bn = !bn; //A l 
T = false; //A l
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn); 
return tmp;

}
}//end of i f  Gl

else i f ( (System.currentTimeMillis( ) -start)>TimeOut && T )
{ //*****************C0,gè 4 ì f  g2 ******* * * ** * ** * * ** * ** * * ** * *

i f ( bO==rightb && bn == leftb )
{

bO = !b0; //A l 
T = false; //A l
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn); 
return tmp;

}
/ / * * * * * * * * * * * * * * ** *case 5 i f  G 3***************************  
else i f ( bO !=rightb && bn != leftb )
{

bn = !bn; //A2 
T = false; //A2
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn); 
return tmp;

}
}
/ / * * * * * * * * * * * * * * ***case 6 i f  G 4 ***************************
else i f  ( ( (bO==rightb && bn==leftb) || (bOI=rightb && bnl=leftb)) && !T )
{

T = true;
start = System.currentTimeMillis();
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn); 

return tmp;
}
return tmp;

}//end of i f  serverID == 0

else //other processes
{

i f ( (rightb == b) && (b 1= leftb) ) / / i f  Bi 
{ i f ( tkn != pTkn && (rdy || tkn ) ) //have privilege 

{ byte[]sendData = new byte[10];



DatagramPacket outPacket = new DatagramPacket(sendData, 
sendData.length, timeMonitorAddress, FinalVariables.PrevilegePort); 
try {talkToTimeSocket.send(outPacket); } / / t e l l  timeMonitor its  previlege 

catch(IOException e ){} 
tkn = !tkn; 
b = !b; 
rdy = false;

tmp = boolToInt(tkn)+M"+boolToInt(b)+" "; 
return tmp;

}
else i f ( (tkn 1= pTkn) && !tkn && Irdy )
{

b = !b; 
rdy = true;

tmp = boolToInt(tkn)+"n+boolToInt(b)+" "; 
return tmp;

}
else
{

b = !b;
tmp = boolToInt(tkn)+""+boolToInt(b)+" "; 
return tmp;

}
}//end of i f l l

}
return tmp;

}

sendData = (Integer.toString( serverlD )).getBytes();

public void run()
{

Processlnfo [} p = new Processlnfo [2]; 
for( int q = 0; q < 2; q++) 

p[q] = new Processlnfo(};

Ringlnitialization in it  = new Ringlnitialization( ringMakerAddress, listenSocket, 
talkToRMSocket, serverlD );

init.findNeighbor( p ),*

i f ( serverlD == 0 )
{

for( int s=0; s < 2; s++)
{

i f ( p [s ].serverlD == 1 )
{

rightNeighborAddress = p[s].address; 
rightNeighborPort = p[s].lport;

}
else
{

leftNeighborAddress = p[s].address; 
leftNeighborPort = p[s].lport;

else //other process 
{ for( int s=0; s < 2; s++)

{
i f ( serverlD - p [s ].serverlD == 1 ) / / i t ' s  le ft  neighbor
{

leftNeighborAddress = p[s].address; 
leftNeighborPort = p[s].lport;

}
else



rightNeighborAddress = p[s].address; 
rightNeighborPort = p[s].lport;

}
}

}
int flag = 0; //used only when test stabilization time 
boolean firstTime = true;
for( ;; ) //this for loop testing stabilization time
{ try

{ byte[] sendData = new byte[FinalVariables.PKSIZE]; 
//stabilization time measurement
String tmpl = processTokenAndAlternatorNoRequest();

{

if( !tmpl.equals("333") || firstTime ) //if there is change, send it
{ sendData = ( tmpl + serverlD) .getBytes () ,* 

firstTime = false;
DatagramPacket leftOutPacket = new DatagramPacket( sendData, sendData. yf 

length, leftNeighborAddress, leftNeighborPort ); 
sendSocket.send( leftOutPacket );
DatagramPacket rightOutPacket = new DatagramPacket( sendData, sendData. yf 

length, rightNeighborAddress, rightNeighborPort ); 
sendSocket.send( rightOutPacket );

}
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length); 
try{

listenSocket.receive( inPacket };
}catch(SocketTimeoutException ex ){continue;}
String tmp = new String(inPacket.getData()).trim();
if( tmp.equals("stop measure stabilization") )
{ byte[]actionData = new byte[1000];

actionData = (Integer.toString( action )).getBytes();
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData. 

length, timeMonitorAddress, FinalVariables.ActionPort);

try{actionSocket.send(actionPacket); }//tell timeMonitor its privilege 
catch(IOException e ){} 
break,-

}
if ( flag == 1 ) //waiting for restart
{ if( tmp.equals("restart") ) //initialize

{ flag = 0; 
tkn = false; 
b = false; 
bO = false; 
bn = false; 
leftb = false; 
rightb = false;
pTkn = false; //precessor tkn

}
}else //must deal with the msg
{ if( tmp.equals( "stop" ) )



flag = 1;
else
{ if( serverlD == 0 ) //special

{ //from n-1, left neighbor, only use tkn and bn, at index 0 and 2 
if( Integer.parselnt( tmp.substring(3))==FinalVariables. \l

ServerNumber-1 )
{

i f ( tmp.charAt(0) == 111 ) 
pTkn = true;

else if ( tmp.charAt(0) == * 0 * } 
pTkn = false;

if( tmp.charAt(1) == * 1* ) 
leftb = true;

else if ( tmp.charAt(1) == 1 01 ) 
leftb = false; 

continue;
}else if( Integer.parselnt( tmp.substring(3)) == 1 )//from 1, \i

should use only bO, at index 1
{

i f ( tmp.charAt(1) == ' l 1 ) 
rightb = true;

else if ( tmp.charAt(1) == 'O' ) 
rightb = false; 

continue;

else if( serverlD == 1 ) //special
{ //from 0, left neighbor, only use tkn and bO, at index 0 and \i 

1
if( Integer.parselnt( tmp.substring(3))==0 )
{ if( tmp.charAt(0) == '1' ) 

pTkn = true;
else if ( tmp.charAt(0) == 'O' ) 

pTkn = false;
if( tmp.charAt(1) == * 1* ) 

leftb = true;
else if ( tmp.charAt(1) == 'O' ) 

leftb = false; 
continue;

}else if( Integer.parselnt( tmp.substring(3)) == 2 )//from 2, 
should use only b, at index 1

{ if( tmp.charAt(1) == *1’ ) 
rightb = true;

else if ( tmp.charAt(1) == '0! } 
rightb = false; 

continue;
}

}else if( serverlD == FinalVariables.ServerNumber-1 ) //special
{ //from 0, right neighbor, only use bn, at index 2 

if( Integer.parselnt( tmp.substring(3))==0 )
{ if( tmp.charAt(2) == '1' ) 

rightb = true;
else if ( tmp.charAt(2) == 'O' ) 

rightb = false; 
continue;

}else if( Integer.parselnt( tmp.substring(3)) == FinalVariables. i£
ServerNumber-2 )//from left neighbor,should use token and b, 
at indexO, 1
i f ( tmp.charAt(0) == 111 )

{



pTkn = true;
else if ( tmp.charAt(0) == 'O' ) 

pTkn = false;
i f ( tm p .charAt(1) === 111 ) 

leftb = true;
else if ( tmp.charAt(1) == ’O' ) 

leftb = false;
continue;

}
}else //other processes
{ //extract the values of preseccor’s token and b 

if( Integer.parselnt( tmp.substring(3)) == (serverlD -1) ) 
{ if( tmp.charAt(0) == * 1* ) 

pTkn = true;
else if ( tmp.charAt(0) == 'O' ) 

pTkn = false;
if( tmp.charAt(1 ) == '1* ) 

leftb = true;
else if ( tmp.charAt(1) == 'O' ) 

leftb = false;
continue;

}else //extract the value of preseccor's b
{

i f ( tmp.charAt(1) == 11' ) 
rightb = true;

else if( tmp.charAt(1) == 'O’ ) 
rightb = false;

} //end of else
} //end of else if( flag == 0 )

} catch ( IOException e ) {System.out.println("IO: " + e.getMessage()); e. \i
printStackTrace();}

}
for( ;; ) //this for loop testing token traversal time
{ try

{ byte[] sendData = new byte [FinalVariables. PKSIZE] ,*
while( grant && pollServerlnCharge.request ) 

yield();
String tmpl = processTokenAndAlternatorForTokenTraversal();
if( Itmpl.equals("333") || firstTime )
{ sendData = (tmpl+serverlD).getBytes();

DatagramPacket leftOutPacket = new DatagramPacket( sendData, sendData. i£
length, leftNeighborAddress, leftNeighborPort ); 

sendSocket.send( leftOutPacket );
DatagramPacket rightOutPacket = new DatagramPacket( sendData, sendData.

length, rightNeighborAddress, rightNeighborPort ); 
sendSocket.send( rightOutPacket );

byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length);
t r y { listenSocket.receive( inPacket ); 
}catch(SocketTimeoutException ex ){continue;}
String tmp = new String(inPacket.getData()).trim();



if( tmp.equals("stop") )
{ byte[]actionData = new byte[1000];

aetionData = (Integer.toString( action ) ) .getBytes () ,-
DatagramPacket actionPacket = new DatagramPacket(aetionData,aetionData. ^

length, measureAddress, FinalVariables.TraverseActionPort);
try{actionSocket. send (actionPacket) ,* }//tell timeMonitor its privilege 
catch(IOException e ){} 
break;

}
if( serverlD == 0 ) //special
{ //from n-1, left neighbor, only use tkn and bn, at index 0 and 2

if( Integer.parselnt( tmp.substring(3))==FinalVariables.ServerNumber-1 )
{ if( tmp.charAt(0) == '1' ) 

pTkn = true;
else if ( tmp.charAt(0) == 'O' ) 

pTkn = false; 
if( tmp.charAt(1) == '1' ) 

leftb = true;
else if ( tmp.charAt(1) == 'O' ) 

leftb = false; 
continue;

}else if( Integer.parselnt( tmp.substring(3)) == 1 )//from 1,should use 
only bO, at index 1

{ if( tmp.charAt(1) == '1' ) 
rightb = true;

else if ( tmp.charAt(1) == 'O' ) 
rightb = false; 

continue;

else if( serverlD == 1 ) //special
{ //from 0, left neighbor, only use tkn and bO, at index 0 and 1 

if( Integer.parselnt( tmp.substring(3))==0 )
{ if( tmp.charAt(0) == '1' ) 

pTkn = true;
else if ( tmp.charAt(0) == 'O' ) 

pTkn = false;
if( tmp.charAt(1) == '1' ) 

leftb = true;
else if ( tmp.charAt(1) == 'O' ) 

leftb = false;
continue;

}else if( Integer.parselnt( tmp.substring(3)) == 2 )//from 2,should use 
only b, at index 1

{ if( tmp.charAt(1) == '1' ) 
rightb = true;

else if ( tmp.charAt(1) == 'O' ) 
rightb = false;

continue ;

else if( serverlD == FinalVariables.ServerNumber-1 ) //special
{ //from 0, right neighbor, only use bn, at index 2 

if( Integer.parselnt( tmp.substring(3))==0 )
{ if( tmp.charAt(2) == '1' ) 

rightb = true; 
else if ( tmp.charAt(2) == 

rightb = false;
O' )



continue;
else if( Integer.parselnt( tmp.substring(3)) == FinalVariables.

ServerNuraber-2 )//from left neighbor,should use token and b,at indexO 
, 1

{ i f ( tmp.charAt(0} == 11* ) 
pTkn = true;

else if ( tmp.charAt(0) == ’O’ ) 
pTkn = false;

i f ( t m p .charAt(1) == 111 ) 
leftb = true;

else if ( tmp.charAt(1) == 'O' ) 
leftb = false;

continue;
}

}else //other processes
{ //extract the values of preseccor's token and b

if( Integer.parselnt( tmp.substring(3)) == (serverlD -1) )
{

i f ( tmp.charAt{0) == 11' ) 
pTkn = true;

else if ( tmp.charAt(0) == 'O' ) 
pTkn = false;

if( tmp.charAt(1) == '1' ) 
leftb = true;

else if ( tmp.charAt(1) == ’O' ) 
leftb = false;

continue;
}else //extract the value of preseccor's b
{ if( tmp.charAt(1) == '1' ) 

rightb = true;
else if( tmp.charAt(1) == 'O' ) 

rightb = false;
}

}} catch ( IOException e ) {System.out.printIn("10: " + e.getMessage()); e. 11
printStackTrace(); }

}

* 
*



APPENDIX 2 COMPANION TOKEN

import java.io.*;
import j ava.net.* ;
import j ava.lang.* ;

/**
k This class implements companion token ring algorithm 
*/

’lass CompanionToken extends Thread
{ private InetAddress ringMakerAddress ; 

private InetAddress timeMonitorAddress; 
private InetAddress measureAddress;
public int serverlD; 
public int neighborPort; 
private InetAddress neighborAddress; 
private int action;
private
private
private
private
private
private

DatagramSocket
DatagramSocket
DatagramSocket
DatagramSocket
DatagramSocket
DatagramSocket

sendSocket; 
actionSocket;
talkToRMSocket; //used to talk to Ring Maker
talkToTimeSocket; //used to talk to timeMonìtor 
listenSocket; //socket used to listen from its precessor 
talkTokenTraverseSocket; //used to talk to timeMonìtor

public
private
private
private
private
private
public
public

boolean grant;
PollServer pollServerlnCharge; //proecess belongs to which application
boolean tkn;
boolean cmp;
boolean pTkn;
boolean pCmp;
boolean ignore = false; //used to control if to send msg when executing cs 
boolean reportedCS = false; //used to control if to send msg when executing cs

/**
* constructor 
*/public CompanionToken( InetAddress addr, int listenPort, int talkToRMport, PollServer ps 

, int sid )
{ ringMakerAddress = addr; 

timeMonitorAddress = addr; 
measureAddress = addr; 
pollServerlnCharge = ps; 
serverlD = sid; 
action = 0;
neighborPort = -1; 
neighborAddress = null; 
grant = false;
try
{ sendSocket = new DatagramSocket(); 

talkToTimeSocket = new DatagramSocket{); 
actionSocket = new DatagramSocket(); 
talkTokenTraverseSocket = new DatagramSocket();
listenSocket = new DatagramSocket( listenPort, InetAddress.getByName("147.26.101. 

141"));
talkToRMSocket = new DatagramSocket(talkToRMport, InetAddress.getByName("147.26. *£ 

101.141")) ;
} catch( SocketException e ) {System.out.printIn("Socket: " + e.getMessage());}
catch ( UnknownHostException e ) { System.out.println("UnknownHost: " + e. 11
getMessage 0);}

}private int boolToInt( boolean a )



{

}

if ( a )
return 1;

else
return 0;

//return a string with at most 2 elements, 1st is the token, 2nd, is companion 
//"l" means high, "0" means low, and 3 means no change 
private String processTokenAndCompanionForTokenTraversal()
{ String tmp = "33";

if ( serverlD == 0 )
{ //case 1

if( (tkn == pTkn) && ( tkn == true && cmp ==pCmp ) && pollServerlnCharge.request 
== false )

{
if(ignore == false)
{ byte [] sendData = new byte [10],*

sendData = (Integer. toString ( serverlD )+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. 
MeasurePort),*

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }

catch(IOException e ){}
}else ignore = false; 
reportedCS = false,*
tkn = Itkn; 
cmp = ! cmp ,*
tmp = boolToInt(tkn) + " "+boolToInt (cmp) ,* 
byte[] sendData2 = new byte [10],*
sendData2 = (Integer. toString ( serverlD )+" release") .getBytes () ,*
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. ii 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{ talkTokenTraverseSocket. send (outPacket2) ,* }
catch(IOException e ){} 
grant = false;

//case 2
else if( tkn == pTkn && ( tkn == true && cmp == pCmp ) && pollServerlnCharge. 11

request == true)
{ if( ignore == false ) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer. toString ( serverlD )+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket. send (outPacket) ,* }
catch(IOException e ){}
//set it to true, so not to send multiple times 
ignore = true;



grant = true;
}

if( reportedCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. \£
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2),- }
catch(IOException e ){}
reportedCS = true; //reported already

}

}
//case 3
if( (tkn == pTkn) && ( tkn == false && cmp ==pCmp ) && poiIServerInCharge.requests 

== false )
{

if(ignore == false)
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )+" get").getBytes(); 
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try {talkTokenTraverseSocket. send (outPacket) ,* }

catch(IOException e ){}
}else ignore = false; 
reportedCS = false;
tkn = I tkn;
tmp = boolToInt(tkn) + ""+boolToInt(cmp); 
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){} 
grant = false;

//case 4
else if( tkn == pTkn && ( tkn == false && cmp == pCmp ) && pollServerlnCharge. \l 

request == true)
{ if( ignore == false ) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. X 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e ){}



//set it to true, so not to send multiple times 
ignore = true;

}

grant = true;
if( reportedCS == false )
{ byte[]sendData2 = new byte[10],-

sendData2 = (Integer.toString( serverlD )+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){} 
reportedCS = true; //reported already

}

}
else if( (tkn != pTkn) && cmp == pCmp )
{ cmp = Icmp; //pass only cmp 

if( cmp == true ) 
tmp = "31";

else
tmp = "30";

else
{ //case 1

if( tkn != pTkn && ( tkn == true && cmp != pCmp) && pollServerlnCharge.request 
== false )

{ reportedCS = false; //set for case 2
if(ignore == false)
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. i£
MeasurePort);

try{talkTokenTraverseSocket. send (outPacket) ,* }//tell y£
TokenTraversalMonitor its privilege 

catch(IOException e ){}
}else ignore = false; //set ignore to false because for case 2 
tkn = !tkn; 
cmp = !cmp;
tmp = boolToInt(tkn) + ""+boolToInt(cmp); 
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. )£ 
MeasurePort);

//tell TokenTraversalMonitor its privilege released 
try{talkTokenTraverseSocket.send(outPacket2); }

catch(IOException e ){}
grant = false;

}//case 2
else if( tkn != pTkn && ( tkn == true && cmp != pCmp) && pollServerlnCharge. yt



request == true )
if( ignore == false )
( byte[]sendData = new byte [10];

sendData = (Integer.toString( serverlD )+" get”).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }

catch(IOException e ){}
ignore = true; //set it to true, so not to send multiple times

}
grant = true ;
if ( reportedCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. k? 
MeasurePort);

try{talkTokenTraverseSocket.send(outPacket2); }//tell 11
TokenTraversalMonitor cs

catch(IOException e ){} 
reportedCS = true;

}

}

//case 3
if( tkn != pTkn && ( tkn == false && cmp != pCmp) && pollServerlnCharge.request 11 

== false )
{ reportedCS = false; //set for case 2

if(ignore == false)
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. kf 
MeasurePort);

try{talkTokenTraverseSocket.send(outPacket); }//tell \l
TokenTraversalMonitor its privilege 

catch(IOException e ){}
}else ignore = false; //set ignore to false because for case 2 
tkn = Itkn;
tmp = boolToInt(tkn) + "n+boolToInt(cmp); 
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. \l 
MeasurePort);

//tell TokenTraversalMonitor its privilege released 
try {talkTokenTraverseSocket. send (outPacket2) ,* }

catch(IOException e ){}
grant = false;

}//case 4



else if( tkn != pTkn && ( tkn == false && cmp != pCmp) && pollServerlnCharge. 
request == true )

{ if( ignore == false )
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. X 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }

catch(IOException e ){}
ignore = true; //set it to true, so not to send multiple times

}
grant = true ,-
if ( reportedCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort) ,*

try{talkTokenTraverseSocket.send(outPacket2); }//tell 
TokenTraversalMonitor cs

catch(IOException e ){} 
reportedCS = true,*

}

}
else if( tkn == pTkn && cmp != pCmp )
{ cmp = !cmp; 

if( cmp == true ) 
tmp = "31";

else
tmp = "30";

return tmp;
}

//return a string with at most 2 elements, 1st is the token, 2nd, is companion 
//"l" means high, "0" means low, and 3 means no change 
private String processTokenAndCompanionNoRequest()
{ String tmp;

int temp = action;
if ( serverlD == 0 )
{ if( (tkn == pTkn) && ( (tkn == true) && (cmp == pCmp) ) )

{ byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, timeMonitorAddress, FinalVariables 
.PrevilegePort);

//tell timeMonitor its privilege
try{talkToTimeSocket. send (outPacket) ,* }

catch(IOException e ){}



tkn = Itkn; 
cmp = !cmp;

else if( (tkn == pTkn) && ( (tkn == false) && (cmp == pCmp) ) )
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, timeMonitorAddress, FinalVariables 
.PrevilegePort);

//tell timeMonitor its privilege 
try{talkToTimeSocket.send(outPacket); }

catch(IOException e ){}
tkn = !tkn; //only pass token

}
else if( (tkn != pTkn) && cmp == pCmp )
{ cmp = ¡cmp; //pass only cmp
}

}else //other processes
{ if( (tkn != pTkn) && ( (tkn == true) && (cmp != pCmp) ) )

{ byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData, 
sendData.length, timeMonitorAddress, FinalVariables.PrevilegePort) ,- 
//tell timeMonitor its previlege 
try{talkToTimeSocket. send (outPacket) ,* }

catch(IOException e ){}
tkn = !tkn; 
cmp = !cmp;

}if( (tkn 1= pTkn) && ( (tkn == false) && (cmp != pCmp) ) )
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,
sendData.length, timeMonitorAddress, FinalVariables.PrevilegePort);
//tell timeMonitor its previlege 
try{talkToTimeSocket.send(outPacket); }

catch(IOException e ){}
tkn = !tkn;

}else if( tkn == pTkn && cmp != pCmp )
{ // System.out.print("\nprocess "+ serverlD + " pass companion msg"); 

cmp = !cmp;

}

tmp = boolToInt(tkn)+MH+boolToInt(cmp); 
if(temp!= action)
{ byte[]sendData = new byte[10]; 

sendData = ("a").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, 

timeMonitorAddress, FinalVariables.PrevilegePort); 
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege 

catch(IOException e ){}
}return tmp;

}



public void run()
{ Ringlnitialization init = new Ringlnitialization( ringMakerAddress, listenSocket, 

talkToRMSocket, serverlD );
Processlnfo p = (Processlnfo) init. f indNeighbor () ,* 
neighborAddress = p.address; 
neighborPort = p.lport;
int flag = 0; //used only when test stabilization time 
String tmp=" ", t="";
for( ;; ) //this for loop testing stabilization time
{ try

{ byte[] sendData = new byte [FinalVariables . PKSIZE] ,*
t = processTokenAndCompanionNoRequest(); 
sendData = t.getBytes();
DatagramPacket outPacket = new DatagramPacket( sendData, sendData.length, 

neighborAddress, neighborPort );
sendSocket.send( outPacket );
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length);
listenSocket.receive( inPacket );
tmp = new String (inPacket .getData ()) .trim () ,- 
if( tmp.equals("stop measure stabilization") )
{ byte[]actionData = new byte[1000];

actionData = (Integer.toString( action )).getBytes();
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData. 

length, timeMonitorAddress, FinalVariables .ActionPort) ,*
//tell timeMonitor its privilege
try{actionSocket.send(actionPacket); }
catch(IOException e ){}
break;

}if( flag == 1 ) //waiting for restart
{ if( tmp.equals("restart") ) //initialize

{ flag = 0; 
tkn = false; 
cmp = false;
pTkn = false; //precessor tkn 
pCmp = false;

else if( flag == 0 ) //must deal with the msg
{ if( tmp.equals( "stop" ) ) 

flag = 1;
else
{ //extract the value of preseccor's token 

if( tmp.charAt(0) == 'l* ) 
pTkn = true;

else if ( tmp.charAt(0) == 'O' ) 
pTkn = false;

//extract the value of preseccor's companion 
if( tmp.charAt(1) == '1' ) 

pCmp = true;
else if( tmp.charAt(1) == 'O' )



}
pCmp = false;

}

} catch ( IOException e ) {System.out.printIn("IO: " + e.getMessage()); e. 
printStackTrace(); }

byte[] flagData = new byte[FinalVariables.PKSIZE]; 
flagData = "now".getBytes();
DatagramPacket nowPacket = new DatagramPacket( flagData, flagData.length, 

neighborAddress, neighborPort );
try
{ sendSocket.send( nowPacket ); 

for(; ; )
{ byte[] rfData = new byte[FinalVariables.PKSIZE];

DatagramPacket rfPacket = new DatagramPacket( rfData, rfData.length); 
listenSocket.receive( rfPacket );
String rtmp = new String(rfPacket.getData()).trim(); 
if(rtmp.equals("now")) 

break,-
}Jcatch ( IOException e ) {System.out.println("10: " + e.getMessage()); e.
printStackTrace(); } 

tkn = false; 
cmp = false; 
pTkn = false; 
pCmp = false;
action = 0;
for( ;; ) //this for loop testing token traversal time
{ try

{ byte[] sendData = new byte[FinalVariables.PKSIZE];
while( grant && pollServerlnCharge.request ) 

yield();
//token traversal time measurement
sendData = (processTokenAndCompanionForTokenTraversal ()} .getBytes (),*
DatagramPacket outPacket = new DatagramPacket( sendData, sendData.length, 11

neighborAddress, neighborPort );
sendSocket.send( outPacket ) ;
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket ( recvData, recvData.length) ,-
listenSocket.receive( inPacket );
tmp = new String(inPacket.getData()).trim();
if( tmp.equals("stop") )
{ byte[]actionData = new byte[1000];

actionData = (Integer.toString( action )).getBytes();
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData. \l 

length, measureAddress, FinalVariables.TraverseActionPort);
try{actionSocket.send(actionPacket); }//tell timeMonitor its privilege
catch(IOException e ){}
break;

}
//extract the value of preseccor's token 
if( tmp.charAt(0) == 11* ) 

pTkn = true;



else if ( tm p .charAt(0) == 'O’ ) 
pTkn = false;

//extract the value of preseccor's companion 
if( tmp.charAt(1) == *1’ ) 

pCmp = true;
else i f ( tmp.charAt(1) == 'O' ) 

pCmp = false;

} catch ( IOException e ) {System.out.println("IO: " 
printStackTrace(); }

+ e.getMessage())



APPENDIX 3 CURRENT POLL RESULT

import java.io.*; 
import j ava. net. * ,* 
import j ava. ut i 1. *
/**
k This class is used to store the support infomation for each song 
*/̂lass Polllnfo
{ public int songID; 

public int supportNumber;
Polllnfo()
{ supportNumber = 0; 

songID = -1;

/■kit

* Application server, used for updating data 
*/public class CurrentPollResult
{ private Polllnfo [] pollResult; //support number for each song

/**
* a constructor without any parameter 
*/CurrentPollResult()
{ pollResult = new Polllnfo [FinalVariables. SongSize] ,*

for( int i = 0; i < FinalVariables.SongSize; i++ )
{ pollResult [i] = new Polllnfo(); 

pollResult[i].songID = i;

/**
* self explanatory
* ©param s a response to be dealt with 
*/public void updateResult( String s )
{ int temp = 0; 

int fromlndex = 0; 
int endlndex = 0;
s = s + H ”; //last ” " was trimmed while sent through network, so add to retreive 

number
while( (endlndex = s.indexOf( ' ', fromlndex ) ) != -1 )
{ temp = Integer.parselnt( s.substring! fromlndex, endlndex ) );

(pollResult[temp].supportNumber)++; //update the data 
fromlndex = endlndex + 1;

}//need sort the array
Slow_Sort( pollResult, FinalVariables.SongSize );

try {
File f = new File("pollResult.log"); // delete the file if it already exists
if (f.existsO) 

f .delete () ,*



PrintWriter out = new PrintWriter(new FileWriter(f)); 
out.printIn("The top twenty songs are: "); 
for( int i = 0; i < 20; i++ )
out.println( pollResult[i] .songID + "support number is "+pollResult[i] . i£

supportNumber );
out.closeO; // We're done writing

}catch (IOException e) { /* Handle exceptions */ } 
int total = 0;
//to check if the response is complete, for monitor purpose 
for( int i = 0; i < 1000; i++ )
{ total += pollResult[i].supportNumber;
}System.out.print("\nsong number and supportNumber[i]:********* + total);

}
/**
* Utility function used by the Slow_jSort and Quick_Sort functions 
*/private void Swap( Polllnfo array[ ], int p, int q )
{ int temp = array[ p ].supportNumber ;

array[ p ].supportNumber = array[ q ].supportNumber ;
array[ q ].supportNumber = temp ;

}
/**
* bubble sort, upper bound is nA2 
*/public void Slow__Sort( Polllnfo array[ ], int array size )
{ Random rand = new Random();

//random int ranging from 0 to maxResponseTime - 1 
Integer anlntl = new Integer( rand.nextlnt( 250 ) ); 
int a = anlntl.intValue(); //will range from 0 to 199

}

try{Thread.sleep( a + 900 ) ;} //set an upper bound for each process to hold i£
privilege

catch ( InterruptedException e ) { System.out.printIn("Interrupted: " + e.getMessagetf
(>>;}for ( int pass = 0; pass < array_size - 1; pass++ ) 
for ( int i = 0; i < array_size - 1 - pass; i++ )

if ( array[i].supportNumber < array[ i + 1].supportNumber)
Swap ( array, i, i + 1 ) ,*

/ **
* Accept and deal with responses from poll server 
*/public static void main( String[] args )
{ DatagramSocket socket = null;

CurrentPollResult result = new CurrentPollResult();
try
{ socket = new DatagramSocket ( FinalVariables.PollResultPort );

//write output to this file, record which process sends result 
File f = new File("resultSending.log");
// delete the file if it already exists 
if (f.exists()) 

f.delete();
PrintWriter out = new PrintWriter(new FileWriter(f));



System.out.println( "Application Server Started" );
for(;;)
{ byte[] recvData = new byte[FinalVariables.PKSIZE];

DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length);
byte[] sendData = new byte[1000]; 
sendData = "OK".getBytes();
socket.receive( inPacket ),-
String tmp = new String(inPacket.getData()).trim() ;
out.println(" received from port " + inPacket .getPort ()) ,-
DatagramPacket outPacket = new DatagramPacket( sendData, sendData.length, 

inPacket.getAddress(), inPacket.getPort() );
result .updateResult ( tmp },*
//to notify that update was done 
socket.send( outPacket );

}} catch ( SocketException e ) { System.out.println("Socket: " + e.getMessage());} 
catch ( IOException e ) { System.out .println ("10: " + e .getMessage ()),*} 
finally { if(socket != null ) socket.close(); /*out.close();*/ }



APPENDIX 4 ENABLER TOKEN

import j ava.io.*; 
import j ava.net.*; 
import j ava.lang.*;
{**
k This class implements enabler token ring algorithm 
*/
rlass EnablerToken extends Thread
{ private InetAddress ringMakerAddress; 

private InetAddress timeMonitorAddress; 
private InetAddress measureAddress,-
public int serverlD; 
public int neighborPort ; 
private InetAddress neighborAddress; 
private int action;
private DatagramSocket 
private DatagramSocket 
private DatagramSocket 
private DatagramSocket 
private DatagramSocket 
private DatagramSocket

sendSocket; 
actionSocket;
talkToRMSocket; //used to talk to Ring Maker 
talkToTimeSocket; //used to talk to timeMonitor 
listenSocket; //socket used to listen from its precessor 
talkTokenTraverseSocket; //used to talk to timeMonitor

public boolean grant;
private PollServer pollServerlnCharge; //proecess belongs to which application,used to 

read poll server's request
public boolean ignore = false; //used to control if to send msg when executing cs 
public boolean reportCS = false; //used to control if to send msg when executing cs
//own token, rd and enabler 
private boolean tkn; 
private boolean rd; 
private boolean en;
//precessor's token and shepherd 
private boolean pTkn; 
private boolean pEn;
public EnablerToken( InetAddress addr, int listenPort, int talkToRMport, PollServer ps, 

int sid )
{ ringMakerAddress = addr; 

timeMonitorAddress = addr; 
measureAddress = addr; 
pollServerlnCharge = ps; 
action=0;
neighborPort = -1; 
neighborAddress = null; 
serverlD = sid; 
grant = false;
try
{ sendSocket = new DatagramSocket(); 

actionSocket = new DatagramSocket () ,* 
talkToTimeSocket = new DatagramSocket(); 
talkTokenTraverseSocket = new DatagramSocket();
listenSocket = new DatagramSocket{ listenPort, InetAddress.getByName("147.26.101. 

141")) ;
talkToRMSocket = new DatagramSocket(talkToRMport, InetAddress.getByName("147.26. 

101.141")) ;
} catch( SocketException e ) {System.out.printIn("Socket: " + e.getMessage());}



+ e.
}

catch ( UnknownHostException e ) { System.out.printIn("UnknownHost:
getMessage());}

private int boolToInt( boolean a )
{ if ( a )

return 1;
else

return 0;
}
private String processTokenAndEnablerForTokenTraversal()
{ String tmp = "33";

if ( serverlD == 0 )
{ //X action: allow an enabler to be passed 

if( tkn 1= pTkn && en == pEn )
{ en = Ien; 

rd = false;
tmp=boolToInt(tkn)+Hn+boolToInt(en); 
return tmp;

}
//Y action: allow an enabler to be passed
else if( en == pEn && tkn == pTkn && !rd && !tkn )
{ en = !en; //only pass token 

rd = true;
tmp=boolToInt(tkn)+ ""+boolToInt(en); 
return tmp;

}
//Z action case 1: allow both token and enabler to be passed
else if( tkn == pTkn && en == pEn && ( rd | | tkn ) && pollServerInCharge.request i£ 

-- false )
{ if( ignore == false )

{ byte[]sendData = new byte [10],*
sendData = (Integer.toString( serverlD )+" get").getBytes();
System.out.println("after get process 0");
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData. length, measureAddress, FinalVariables . 
MeasurePort) ,*

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket. send (outPacket) ,- }

catch(IOException e ){}
}else ignore = false; //set ignore to false because for case 2 
reportCS = false; //set for case 2
tkn = itkn; 
en = i en; 
rd = false;

byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+" release").getBytes();
//System.out.println("after release process 0");
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. i£
MeasurePort) ,*

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }

catch(IOException e ){}
grant = false;



tmp=boolToInt(tkn)+ ""+boolToInt(en),* 
return tmp;

}//Z action case 2: when request is true
else if( tkn == pTkn && en == pEn && ( rd || tkn ) && pollServerlnCharge.request * 

==true )
{ if( ignore == false ) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )+" get").getBytes(),*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. \l 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }

catch(IOException e ){}
ignore = true;

}grant = true;
if( reportCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){}
System, out .println ( "after cs "+serverID ),- 
reportCS = true; //reported already

}tmp=boolToInt(tkn)+""+boolToInt(en); 
return tmp;

}

}else
{ //X action: allow an enabler to be passed 

if( tkn == pTkn && en 1= pEn )
{ en = !en; 

rd = false;
tmp=boolToInt(tkn)+""+boolToInt(en); 
return tmp;

}
//Y action: allow an enabler to be passed 
else if( tkn != pTkn && en != pEn && !rd && !tkn ) 
{ en = ien; //only pass enabler 

rd = true;
tmp=boolToInt(tkn)+""+boolToInt(en); 
return tmp;

}
//Z action case 1: allow both token and enabler to be passed
else if( tkn != pTkn && en != pEn && ( rd || tkn ) && pollServerlnCharge.request ^ 

== false )
{ if( ignore == false )

{



byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

. sendData.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e ){}

}else ignore = false; //set ignore to false 
reportCS = false; //set for case 2
tkn = I tkn; 
en = ien; 
rd = false;
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){} 
grant = false;
tmp=boolToInt(tkn)+""+boolToInt(en); 
return tmp;

}//Z action case 2: when request is true
else if( tkn != pTkn && en 1= pEn && ( rd | | tkn ) && pol1ServerInCharge.request 11 

-- true )
{ if( ignore == false ) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer. toString ( serverlD )+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. \l 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e ){} 
ignore = true;

}
grant = true;
if( reportCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){}
System.out.println("after cs "+serverID ); 
reportCS = true; //reported already

}tmp=boolToInt(tkn)+""+boolToInt(en); 
return tmp;

return tmp;
}



//return a string with at most 2 elements, 1st is the token, 2nd is shepherd, 
//"l" means high, "0" means low, and 3 means not passing 
private String processTokenAndEnablerNoRequest()
{ String tmp = "33"; 

int temp = action;
if ( serverlD == 0 )
{ //X action: allow an enabler to be passed 

if( tkn 1= pTkn && en == pEn )
{ en = !en; 

rd = false;
tmp=boolToInt (tkn) +n ,,+boolToInt (en) ; 
return tmp;

}
//Y action: allow an enabler to be passed
else if( en == pEn && tkn == pTkn && !rd && !tkn )
{ en = ien; //only pass token 

rd = true;
tmp=boolToInt(tkn)+""+boolToInt(en); 
return tmp;

}
//Z action: allow both token and enabler to be passed 
else if( tkn == pTkn && en == pEn && ( rd || tkn ) )

byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, 

timeMonitorAddress, FinalVariables.PrevilegePort); 
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege 
catch(IOException e ){}

tkn = itkn,* 
en = !en; 
rd = false;
tmp=boolToInt(tkn)+w"+boolToInt(en),* 
return tmp;

}
}else
{ //X action: allow an enabler to be passed 

if( tkn == pTkn && en != pEn )
{ en = ien; 

rd = false;
tmp=boolToInt(tkn)+""+boolToInt(en); 
return tmp;

}
//Y action: allow an enabler to be passed 
else if( tkn != pTkn && en 1= pEn && ird && itkn ) 
{ en = Ien; //only pass enabler 

rd = true;
tmp=boolToInt (tkn) + ” H+boolToInt (en) ,* 
return tmp;

}



//Z action: allow both token and enabler to be passed 
else if( tkn != pTkn && en 1= pEn && ( rd || tkn ) )
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )) .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, 

timeMonitorAddress, FinalVariables.PrevilegePort); 
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege 
catch(IOException e ){}
tkn = !tkn; 
en = !en; 
rd = false;
tmp=boolToInt(tkn)+ "M+boolToInt(en); 
return tmp;

}
} //end of else in line 266 
if(temp!=action)
{ byte[]sendData = new byte[10]; 

sendData = ("a").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, 

timeMonitorAddress, FinalVariables.PrevilegePort) ,* 
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege 

catch(IOException e ){}
}
return tmp;

}

public void run()
{ Ringlnitialization init = new Ringlnitialization( ringMakerAddress, listenSocket, 

talkToRMSocket, serverlD );
Processlnfo p = (Processlnfo) init.findNeighbor(); 
neighborAddress = p.address; 
neighborPort = p.lport;
int flag = 0; //used only when test stabilization time
for( ;; )
{ try

{ byte[] sendData = new byte [FinalVariables. PKSIZE] ,*
sendData = ( processTokenAndEnablerNoRequest () ) .getBytes () ,-
DatagramPacket outPacket = new DatagramPacket( sendData, sendData.length, 

neighborAddress, neighborPort );
sendSocket.send( outPacket );
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length); 
listenSocket.receive( inPacket );
String tmp = new String(inPacket.getData()).trim(); 
if( tmp.equals("stop measure stabilization") )
{

byte[]actionData = new byte[1000];
actionData = (Integer. toString ( action )) .getBytes () ,*
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData.



length, timeMonitorAddress, FinalVariables.ActionPort);
try{actionSocket.send(actionPacket); }
catch(IOException e ){}
break;

}if( flag == 1 ) //waiting for restart
{ if( tmp.equals("restart”) ) //initialize

{ flag = 0; 
tkn = false; 
en = false;
pTkn = false; //precessor tkn 
pEn = false; 
rd = false;

else if( flag == 0 ) //must deal with the msg
{ if( tmp.equals( "stop" ) ) 

flag = 1;
else
{ //extract the value of preseccor's token 

if( tmp.charAt(0) == '1' ) 
pTkn = true;

else if ( tmp.charAt(0) == 'O' ) 
pTkn = false;

//extract the value of preseccor's companion 
if( tmp.charAt(1) == )

pEn = true;
else i f ( tmp.charAt(1) == 'O' ) 

pEn = false;

} catch ( IOException e ) {System.out .printIn("10*. " + e.getMessage ()) ; e. 11
printStackTrace() ; }

}
byte[] flagData = new byte [FinalVariables.PKSIZE] ; 
flagData = "now".getBytes();
DatagramPacket nowPacket = new DatagramPacket( flagData, flagData.length, \i

neighborAddress, neighborPort );
try
{ sendSocket.send( nowPacket ); 

f o r (; ; )
{ byte[] rfData = new byte [FinalVariables. PKSIZE] ,*

DatagramPacket rfPacket = new DatagramPacket( rfData, rfData.length); 
try{
listenSocket .receive ( rf Packet ),*

catch(SocketTimeoutException c){continue;}
String rtmp = new String(rfPacket.getData()).trim(); 
if(rtmp.equals("now")) 

break;
}catch ( IOException e ) {System.out .println("10: " + e.getMessage ()) ,* e. 11

printStackTrace(); } 
tkn = false; 
rd = false; 
en = false; 
pTkn = false; 
pEn = false;
action = 0;
for( ,*,* ) //this for loop testing token traversal time



{ try
{ byte[] sendData = new byte[FinalVariablesIPKSIZE];

while( grant && pollServerlnCharge.request ) 
yield();

//token traversal time measurement
String tt= processTokenAndEnablerForTokenTraversal () ,* 
sendData = (tt).getBytes();
DatagramPacket outPacket = new DatagramPacket( sendData, sendData.length, 

neighborAddress, neighborPort );
sendSocket.send( outPacket );
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length); 
listenSocket.receive( inPacket );
String tmp = new String(inPacket.getData()).trim(); 
if( tmp.equals("stop") )
{ byte[]actionData = new byte[1000];

actionData = (Integer.toString( action )).getBytes();
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData. 

length, measureAddress, FinalVariables .TraverseActionPort) ,-
try{actionSocket.send(actionPacket); }//tell timeMonitor its privilege
catch(IOException e ){}
break;

}//extract the value of preseccor's token 
if( tmp.charAt(0) == '1' ) 

pTkn = true;
else if ( tmp.charAt(0) == 'O' ) 

pTkn = false;
//extract the value of preseccor's companion 
if( tmp.charAt(1) == '1' ) 

pEn = true;
else if( tmp.charAt(1) == 'O' ) 

pEn = false;
} catch ( IOException e ) {System.out.println("10: " + e.getMessage()); e. 

printStackTrace(); }
}

}



APPENDIX 5 FINAL VARIABLES
nport j ava.io.* ;
nport java.net.*;

This class is used to define some constant variables used by other files 
©version vO.0.0 
©author Rong Wang
f

lblic class FinalVariables {
//following three are for RingMaker.java and Ringlnitialization 
public static final int RingMakerPort = 9185; 
public static final int PKSIZE = 1000; 
public static final int ServerNumber = 16;
//follwoing are for TaskDistribution.java
public static final int MaxTaskNumber = 1000;
public static final int MaxProcessNumber = ServerNumber;
//following are from TimeMonitor.java 
public static final int TimePort = 9188; 
public static final int PrevilegePort = 9189; 
public static final int InfoPort = 9190; 
public static final int InfoPort2 = 9193; 
public static final int ActionPort = 9191; 
public static final int TraverseActionPort = 9192; 
public static final int MaxRunForStabilization = 1;
//follwoing is for PollServer.java 
public static final int ThreadNumber = 4;
//following are for CurrentPollResuit.java 
public static final int PollResultPort = 9186; 
public static final int SongSize = 1000;
public static final int MeasurePort = 9901;



APPENDIX 6 POLL SERVER

iport j ava.io.*; 
iport java.net.*; 
iport java.util.*;
*
This class is used to simulate the terminal of the application 
(Aversion vO . 0.0 
©author Rong Wang
Lblic class PollServer extends Thread {
static final int MachinelD = 0; //need modify according to computer ID 
public static int[][] taskDistribution; //indicates sleeping time 
public static long totalTime=0; 
public static int countWait=0; 
public boolean request;
private InetAddress ringMakerAddress,- 
private InetAddress pollResuitAddress; 
private int listenPort; 
private int talkToRMPort; 
private int pollServerlD;
private DatagramSocket aSocket; //will be used by the application, not for token
public PollServer( int Iport, int rmport, int sid) { 
try
{ ringMakerAddress = InetAddress .getByName ("147.26.101.144 ") ,* 

pollResuitAddress = InetAddress.getByName("147.26.101.144"); 
listenPort = Iport; 
talkToRMPort = rmport; 
pollServerlD = sid; 
request = false; 
aSocket = new DatagramSocket();

} catch (SocketException e) { Systern.out.printIn("Socket: " + e.getMessage(}); }
catch (UnknownHostException e) { System.out.printIn("UnknownHost: " + e.getMessage());}

//simulate response from people by generating 20 numbers range from 1 to 1000 
public String generateResponse()
{ Random rand = new Random(); 
int n = 999;
String aLine = "";
for (int l = 0; i < 20; i++) {

Integer anlnt = new Integer(rand.nextInt(n + 1)); 
aLine = aLine + anlnt + " ";

}return aLine;
}

public void run()
{ int count = 0;
int[][] taskDistribution = new int[FinalVariables.MaxTaskNumber][FinalVariables.

MaxProcessNumber]; 
long start=0, end = 0;
//first read file taskDistribution.txt and store the content in an interger array 

try 
{ String line;
BufferedReader in = new BufferedReader(new FileReader(

"taskDistribution.txt"));
for (int i = 0; i < FinalVariables.MaxTaskNumber; i++)



{ line = in.readLine(); //read a line from the file
int temp = 0;
int fromlndex = 0;
int endlndex = 0;
for (int j =0; j < Finalvariables.MaxProcessNumber; j++)
{ if( (endlndex = 1ine.indexOf( ' ' , fromlndex )) != -1 );

{ temp = Integer.parselnt( line.substring( fromlndex, endlndex ) ); 
taskDistribution[i][j] = temp; 
fromlndex = endlndex + 1;

}}//end of outer for (j=0) loop 
}//end of outer for (i=0) loop 

}//end of try
catch (FileNotFoundException e){ System.out.printIn("FileNotFoundEXCEPTION: " + e. 

getMessage());}
catch (IOException e) {System.out.printIn("IOEXCEPTION: " + e.getMessage());}

//following three lines should be commented/uncommented according to which algorithm to ii 
test

//ShepherdToken token = new ShepherdToken(ringMakerAddress, listenPort,talkToRMPort, thistf 
, pollServerlD ),-

//CompanionToken token = new CompanionToken(ringMakerAddress, listenPort,talkToRMPort, 
this, pollServerlD );

//EnablerToken token = new EnablerToken(ringMakerAddress, listenPort,talkToRMPort, this, 
pollServerlD );

AlternatorToken token = new AlternatorToken(ringMakerAddress, listenPort,talkToRMPort, 
this, pollServerlD );

token, start () ,* //begin to listen token
/* //following two lines should be uncommented if test S, C or E 
while (token.neighborPort == -1 )

yield(); //waiting until the process has been assigned neighbors
*/
//following two lines should be commented if test S, C or E 
while (token.leftNeighborPort == -1 || token.rightNeighborPort == -2) 
yield(); //waiting until the process has been assigned neighbors

for (; ; )
{

//then it should do some non-CS chore 
if( count == FinalVariables.MaxTaskNumber) 

count=0;
while (count < FinalVariables.MaxTaskNumber)
{

String response = "";
//non-CS, simulate different user's different response time and idle time 
try 
{ Thread, sleep ( taskDistribution [count] [token. serverlD] ),*
}catch ( InterruptedException e ) { System.out.println("Interrupted: " + e. \i

getMessage());}
response = generateResponse();
byte[] sendData = new byte[1000]; 
sendData = response.getBytes();
byte[] recvData = new byte[1000];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);



DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length, 
pollResuitAddress, FinalVariables.PollResultPort);

request = true;
start=System.currentTimeMillis();
// then request to update the output file 
while ( token.grant 1= true) 

yield();
totalTime += System. currentTimeMillis ()-start ,* 
countWait++;
System.out .println ("Average waiting time "+( (double) totalTime/countWait) ),*
try
{ aSocket.send(outPacket); 

aSocket.receive(inPacket);
String tmp = new String(inPacket.getData()).trim();
if (tmp.equals("OK")) //reset request to false

request = false; 
while ( token.grant == true) 

yield () ;
} catch (IOException e) {} 
count++; //update count 

} //end of while 
}//end of for 

}//end of run()
public static void main(String[] args)
{ //create poll servers

for (int i = 0; i < FinalVariables.ThreadNumber; i++)
{ System.out.printIn("poll server started");
new PollServer(2200 + MachineID+4*i, 2300 + MachineID+4*i, MachineID+4*i).start()

}} //end of main 
//end of class



APPENDIX 7 RING INITIALIZATION FOR ALTERNATOR TOKEN RING

mport java.net.*;
mport j ava.io.* ;

This class is used to help create ring, used by alternator token ring only
/
lass Ringlnitialization

private Processlnfo serverlnfo; 
private InetAddress ringMakerAddress; 
public DatagramSocket talkRMSocket; 
public DatagramSocket listensocket;
public Ringlnitialization( InetAddress aHost, DatagramSocket listensocket ,

DatagramSocket talkRMsocket, int sid)
{ serverlnfo = new ProcessInfo( listensocket.getLocalAddress(), listensocket.

getLocalPort(), talkRMsocket.getLocalPort(), sid ); 
ringMakerAddress = aHost; 
talkRMsocket = talkRMsocket; 
listensocket = listensocket;

}
public void findNeighbor( Processlnfo [] p )
{ DatagramSocket socket = null; 

try 
{ socket = new DatagramSocket();
} catch( SocketException e ) {System.out.printIn("Socket: " + e.getMessage(});}
//send own info, to the RingMakerServer
TransportTool.sendTo( serverlnfo, ringMakerAddress, FinalVariables.RingMakerPort, i£

socket );
//should get neighbor’s address and port and its own id 
for( int i = 0; i < 2; i++ )

p[i] = (Processlnfo) TransportTool.receiveFrom( talkRMSocket );
}



nport j ava.net.* ;
nport j ava.io.* ;

APPENDIX 8 RING INITIALIZATION FOR E, S AND C

This class is used to help create ring, used by S, C, and E token ring

Lass Ringlnitialization
private Processlnfo serverlnfo; 
private InetAddress ringMakerAddress; 
public DatagramSocket talkRMSocket; 
public DatagramSocket listenSocket;
public Ringlnitialization( InetAddress aHost, DatagramSocket listensocket ,

DatagramSocket talkRMsocket, int sid)
{ serverlnfo = new ProcessInfo( listensocket.getLocalAddress() , listensocket. i£

getLocalPort() , talkRMsocket.getLocalPort(), sid ); 
ringMakerAddress = aHost; 
talkRMSocket = talkRMsocket; 
listensocket = listensocket;

}
public Processlnfo findNeighbor()
{ DatagramSocket socket = null; 

try 
{ socket = new DatagramSocket();
} catch( SocketException e ) {System.out.printIn("Socket: " + e.getMessage());}
//send own info, to the RingMakerServer
TransportTool.sendTo( serverlnfo, ringMakerAddress, FinalVariables.RingMakerPort, i£

socket );
//should get neighbor's address and port and its own id
Processlnfo p = (Processlnfo) TransportTool.receiveFrom( talkRMsocket ); 
return p;

}



APPENDIX 9 RING MAKER FOR ALTERNATOR

nport j ava.io.* ; 
nport j ava.net.* ; 
nport java.util.*;

k *

This class is used to store the information of every process who wants to join the token 
ring,

it implements the interface Serializable so that its object can be transport over the 
network.

(Aversion vO . 0.0 
@author Rong Wang

/
Lass Processlnfo implements Serializable

public InetAddress address; 
public int lport; 
public int notifyNeighborPort; 
public int serverlD;
/**
* a constructor without any parameter 
*/Processlnfo()
{ address = null; 

lport = -1 ;
notifyNeighborPort = -2; 
serverlD = -1;

}
/**
* a constructor used for initialization
* ©param addr the address where the process is running
* ©param aPort the port number of the process 
*/Processlnfo( InetAddress addr, int aPort , int forRmport, int sid )
{ address = addr; 

lport = aPort;
notifyNeighborPort = forRmport; 
serverlD = sid;

}

* impelment the method of interface Serializable 
*/private void writeObject(java.io.ObjectOutputStream out) 

throws IOException 
{ out .defaultWriteObject () ,* }

/**
* impelment the method of interface Serializable 
*/private void readObject(java.io.ObjectInputStream in) 

throws IOException, ClassNotFoundException 
{ in.defaultReadObject(); }

k *

This class is used to create a ring so that every process who joins the ring can know to 
whom,

it should communicate with, it is created for alternator token ring where two neighbors 
need to be assigned.
©version vO.O.O 
©author Rong Wang



/
ublic class RingMaker

private Processlnfo [] processes;
/**
* a constructor without any parameter 
*/RingMaker()
{ processes = new Processlnfo[FinalVariables.ServerNumber],* 

for( int i = 0; i < FinalVariables.ServerNumber; i++ ) 
processes[i] = new Processlnfo();

}
/**
* self explanatory
* ©pararn p a process to be added 
*/public synchronized void addProcess( Processlnfo p )
{ processes[p.serverlD] = p; //add to array according to its ID number
}
/**
* Assign neighbors to each process 
*/public void assignNeighbor()
{ Processlnfo process, talkToNeighbor,- 

DatagramSocket aSocket, socket2, socket3;
ObjectOutputStream os;
try{

aSocket = new DatagramSocket(); 
socket2 = new DatagramSocket(); 
socket3 = new DatagramSocket();
for( int i = 0; i < FinalVariables.ServerNumber; i++ )
{ //tell timeMonitor and token traverse monitor the address info, of each i£

process
TransportTool.sendTo( processes[i], InetAddress.getByName("localhost"), i£

FinalVariables.InfoPort, socket2 ),*
TransportTool.sendTo( processes[i], InetAddress.getByName("localhost"), X

FinalVariables.InfoPort2, socket3 ),-
//tell the process who are its talk-to-neighbor, processes[i+1 ]
TransportTool.sendTo( processes[(i+1)%FinalVariables.ServerNumber], processes 

[i].address, processes[i].notifyNeighborPort, aSocket );
TransportTool.sendTo( processes[(i-l+FinalVariables.ServerNumber)%

FinalVariables.ServerNumber], processes[i].address, processes[i]. 
notifyNeighborPort, aSocket );

} catch ( SocketException e ) { System.out.println("Socket : " + e.getMessage());} 
catch ( IOException e ) { System.out.println("10: " + e.getMessage());}

}

public static void main( Stringi] args )
{ RingMaker ringMaker = new RingMaker(); 

DatagramSocket socket = null; 
int count = 0, countSyn = 0; 
byte[] sendData = new byte[100];

* 
*



socket = new DatagramSocket ( FinalVariables.RingMakerPort ); 
while( count < FinalVariables-ServerNumber)
{ Processlnfo p = (Processlnfo) TransportTool.receiveFrom( socket ); 

ringMaker.addProcess(p),* 
count++;

}
ringMaker.assignNeighbor();
//send msg to TimeMonitor to notify the time when the ring was established
long setupTime = (new Date()).getTime();
sendData = (Long.toString( setupTime )) .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, InetAddress.getByName("localhost"), FinalVariables 
.TimePort);

socket.send(outPacket);
} catch ( SocketException e ) { System.out.println("Socket: " + e.getMessage());} 
catch ( IOException e ) { System.out .println("10: " + e.getMessage ()),*} 
finally { if(socket != null ) socket.close(); }



mport java.io.*; 
mport j ava.net.* ; 
mport java.util.*;

APPENDIX 10 RING MAKER FOR E, S AND C

This class is used to store the information of every process who wants to join the token 
ring,

it implements the interface Serializable so that its object can be transport over the 
network.

(Aversion vO . 0.0 
@author Rong Wang

/lass Processlnfo implements Serializable
public InetAddress address; 
public int lport; 
public int notifyNeighborPort; 
public int serverID;
/**
* a constructor without any parameter 
*/Processlnfo()
{ address = null; 

lport = -1 ;
notifyNeighborPort = -2; 
serverlD = -1;

}
/**
* a constructor used for initialization
* ©param addr the address where the process is running
* ©param aPort the port number of the process 
*/Processlnfo( InetAddress addr, int aPort , int forRmport, int sid )
{ address = addr; 

lport = aPort;
notifyNeighborPort = forRmport; 
serverlD = sid;

}
/**
* impelment the method of interface Serializable 
*/private void writeObject(java.io.ObjectOutputStream out) 

throws IOException 
{ out.defaultWriteObject(); }

/**
* impelment the method of interface Serializable 
*/private void readObject(java.io.ObjectInputStream in) 

throws IOException, ClassNotFoundException 
{ in.defaultReadObject(); }

**
This class is used to create a ring so that every process who joins the ring can know to 
whom,

it should communicate with. It is used by the shepherd, companion and enabler token ring 
©version vO.0 . 0  
©author Rong Wang

/



ublic class RingMaker

private Processlnfo [] processes;
/**
* a constructor without any parameter 
*/RingMaker()
{ processes = new Processlnfo[FinalVariables.ServerNumber]; 

for( int i = 0; i < FinalVariables.ServerNumber; i++ ) 
processes[i] = new Processlnfo();

}
/**
* self explanatory
* @param p a process to be added 
*/public synchronized void addProcess( Processlnfo p )
{ processes[p.serverlD] = p; //add to array according to its ID number 

/ System.out.printIn("received ports: "+p.lport+p.notifyNeighborPort);
}
/**
* Assign neighbor to each process 
*/public void assignNeighbor(Processlnfo processes [])
{ Processlnfo process, talkToNeighbor;

DatagramSocket aSocket, socket2, socket3;
ObjectOutputStream os;
try{

aSocket = new DatagramSocket (); 
socket2 = new DatagramSocket () ,* 
socket3 = new DatagramSocket();
//tell timeMonitor the address info, of process ServerNumber - 1, "localhonst" )£

here is the machine timeMonitor is running on 
TransportTool.sendTo( processes[FinalVariables.ServerNumber - 1], InetAddress. i£

getByName("localhost"), FinalVariables.InfoPort, socket2 };
TransportTool.sendTo( processes[FinalVariables.ServerNumber - 1], InetAddress. 11

getByName("localhost"), FinalVariables.InfoPort2, socket3 );
TransportTool.sendTo( processes[0], processes[FinalVariables.ServerNumber - 1]. 

address, processes[FinalVariables.ServerNumber - 1].notifyNeighborPort, 
aSocket );

for( int i = FinalVariables.ServerNumber - 2; i >= 0; i-- )
{ //tell timeMonitor the address info, of each process

TransportTool.sendTo( processes[i], InetAddress.getByName("localhost"), 11
FinalVariables.InfoPort, socket2 );

TransportTool.sendTo( processes [i], InetAddress.getByName("localhost"), \£
FinalVariables.InfoPort2, socket3 );

//tell the process who is its talk-to-neighbor, processes[i+1 ]
TransportTool.sendTo( processes[i+1], processes[i].address, processes [i]. \i 

notifyNeighborPort, aSocket );
} catch ( SocketException e ) { System.out.println("Socket: " + e.getMessage());} 
catch ( IOException e ) { System.out.println("10: " + e.getMessage());}

}

public static void main( String[] args )
{

* 
*



RingMaker ringMaker = new RingMakerO ,*
DatagramSocket socket = null; 
int count = 0 ;
byte[] sendData = new byte[100]; 
try{

socket = new DatagramSocket ( FinalVariables.RingMakerPort );
while( count != FinalVariables.ServerNumber )
{ ringMaker.addProcess( (Processlnfo) TransportTool.receiveFrom( socket ) ); 

count++;
}System.out.println("received ports: "+ count);
ringMaker.assignNeighbor(ringMaker.processes);
//send msg to TimeMonitor to notify the time when the ring was established
long setupTime = (new Date()).getTime();
sendData = (Long.toString( setupTime )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, InetAddress.getByName("localhost"), FinalVariables 
.TimePort) ,-

socket.send(outPacket);
} catch ( SocketException e ) { System.out.println("Socket: " + e.getMessage());}
catch ( IOException e ) { System.out.println("10: " + e.getMessage());} 
finally { if(socket != null ) socket.close(); }

} //end of main 
//end of class



APPENDIX 11 SHEPHERD TOKEN

mport java.io.*; 
mport j ava.net.* ; 
mport j ava.lang.* ;
**
This class implements shepherd token ring algorithm

/lass ShepherdToken extends Thread
private InetAddress ringMakerAddress; 
private InetAddress timeMonitorAddress; 
private InetAddress measureAddress; 
public static int countMsg=0; 
public long startCycle; 
public long cycleTime=0;
public int serverID;
public int neighborPort;
private InetAddress neighborAddress;
private int action;
private int firstGet;
private DatagramSocket 
private DatagramSocket 
private DatagramSocket 
private DatagramSocket 
private DatagramSocket 
private DatagramSocket

sendSocket; 
actionSocket;
talkToRMSocket; //used to talk to Ring Maker 
talkToTimeSocket; //used to talk to timeMonitor 
listenSocket; //socket used to listen from its precessor 
talkTokenTraverseSocket; //used to talk to timeMonitor

public boolean grant; 
private boolean inCS;
private PollServer pollServerlnCharge; //used to read poll server's request
//own token, rd and shepherd 
private boolean tkn;
private boolean rd; //local guard
private boolean sh;
//precessor's token and shepherd 
private boolean pTkn; 
private boolean pSh;
public boolean ignore = false; //used to control if to send msg when executing cs 
public boolean reportCS = false; //used to control if to send msg when executing cs
public ShepherdToken( InetAddress addr, int listenPort, int talkToRMport, PollServer ps, 1/ 

int sid )
{ ringMakerAddress = addr; 

timeMonitorAddress = addr; 
measureAddress = addr; 
pollServerlnCharge = ps; 
action =0 ; 
inCS = false; 
startCycle=0 ; 
firstGet =0;
neighborPort = -1; 
neighborAddress = null; 
serverlD = sid; 
grant = false;
//worst case for stabilization 
rd = true;
if( (serverID+1)%4 == 1 )
{ tkn = true; 

sh = true;
}



if( (serverlD +1)% 4== 2 )
{ pTkn = true; 

pSh = true;
}try
{ sendSocket = new DatagramSocket(); 

actionSocket = new DatagramSocket(); 
talkToTimeSocket = new DatagramSocket(); 
talkTokenTraverseSocket = new DatagramSocket(),*
listenSocket = new DatagramSocket( listenPort, InetAddress.getByName("147.26.101. 

141»));
talkToRMSocket = new DatagramSocket(talkToRMport, InetAddress.getByName("147.26. 

101.141"));
} catch( SocketException e ) {System.out.println("Socket: " + e.getMessage());} 
catch ( UnknownHostException e ) { System.out.println("UnknownHost: " + e. 
getMessage());}

}

//token is present at instant node
boolean Tvalue( int i, boolean tkn, boolean pTkn )
{ return ( ((i == 0)&&(tkn == pTkn)) || ((i 1= 0)&&(tkn==!pTkn)) );
}
//shepherd is present at instant node
boolean Svalue( int i, boolean sh, boolean pSh )
{ return ( ((i==0)&&(sh==pSh)) || ((i!=0)&&(sh==IpSh)) );
}
private int boolToInt( boolean a )
{ if ( a )

return 1 ;
else

return 0 ;
}

//return a string with at most 2 elements, 1 st is the token, 2nd is shepherd, 
//"l" means high, "0" means low, and 3 means no change 
private String processTokenAndShepherdForTokenTraversal()
{ String tmp = "33";

//first situation case 1 :
if( Tvalue( serverlD, tkn, pTkn ) && !Svalue( serverlD, sh, pSh ) && ( sh || serverlD* 

1=0) ScSc pollServerlnCharge.request == false )
{ if( ignore == false )

{ byte[]sendData = new byte[10];
sendData = (Integer. toString ( serverlD )+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. \i 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e ){}

}ignore = false; //set ignore to false 
reportCS = false; //set for case 2

tkn = !tkn; //only pass token 
rd = false;
if( tkn ) tmp = »13»;



else tmp = "03";
byte[] sendData2 = new byte [10];
sendData2 = (Integer.toString( serverlD )+" release”).getBytes();
DatagramPaeket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. \i 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){} 
grant = false;

}
//first situation case 2:
if( Tvalue( serverlD, tkn, pTkn ) && iSvalue( serverlD, sh, pSh ) && ( sh || serverIDkf 

i=0) ScSc pollServerlnCharge. request == true )
{

if( ignore == false ) //should send msg
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. yf 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e ){}

}ignore = true; //set it to true, so not to send multiple times
grant = true;
if( reportCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){}

}reportCS = true; //reported already
}
//second situation case 1:
else if( Tvalue( serverlD, tkn, pTkn ) && Svalue( serverlD, sh, pSh ) && !sh && !rd \i 

&& pollServerlnCharge.request == false)
{ if( ignore == false )

{ byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. yf 
MeasurePort);

try{talkTokenTraverseSocket.send(outPacket); }//tell TokenTraversalMonitor 
its privilege 

catch(IOException e ){}
}

ignore = false; //set ignore to false because for case 2 
reportCS = false; //set for case 2
tkn = ltkn; //only pass token 
rd = true;
if( tkn ) tmp = ”13”;



else tmp = 03»;
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+» release»).getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort);

try{talkTokenTraverseSocket.send(outPacket2); }//tell TokenTraversalMonitor its 
privilege
catch(IOExeeption e ){} 

grant = false;
}
//second situation case 2:
else if( Tvalue( serverlD, tkn, pTkn ) && Svalue( serverlD, sh, pSh ) && !sh && !rd i£ 

ScSc pollServerlnCharge.request == true)
{ if( ignore == false ) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )+" get”).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. )£ 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOExeeption e ){}

}ignore = true; //set it to true, so not to send multiple times 
grant = true;
if( reportCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+» cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. vt 
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOExeeption e ){}

}reportCS = true; //reported already
}
//third situation case 1:
else if( Tvalue( serverlD, tkn, pTkn ) && Svalue( serverlD, sh, pSh ) && ( (sh&& \l

serverlD!=0)||(!sh&&rd) ) && pollServerlnCharge.request == false)
{ if( ignore == false )

{ byte[]sendData = new byte[10];
sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. 
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e ){}

}
ignore = false; //set ignore to false because for case 2 
reportCS = false; //set for case 2
tkn = !tkn; //pass token 
sh = !sh; 
rd = false; 
if ( tkn )
{



if( sh ) tmp = "11"; 
else tmp = "10";

else
{ if( sh ) tmp = "01"; 

else tmp = "00";
}
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString( serverlD )+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort),*

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){} 
grant = false;

}
//third situation case 2:
else if( Tvalue( serverlD, tkn, pTkn ) && Svalue( serverlD, sh, pSh ) && ( (sh&& »1

serverlD!=0)||(!sh&&rd) ) && pol1ServerInCharge.request == true)
{ if( ignore == false ) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer. toString ( serverlD )+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. i£
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e ){}

}ignore = true; //set it to true, so not to send multiple times

}

grant = true;
if( reportCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. t£ 
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){}

}reportCS = true; //reported already
}
//fourth situation case 1:
else if( (!Tvalue( serverlD, tkn, pTkn ) || serverID== 0) && Svalue(serverlD, sh,

pSh) && sh && pollServerInCharge.request == false)
{ if( ignore == false )

{ byte [] sendData = new byte [10],*
sendData = (Integer.toString( serverlD )+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. i£
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{ talkTokenTraverseSocket. send (outPacket) ,* }
catch(IOException e ){}



ignore = false; //set ignore to false because for case 2 
reportCS = false; //set for case 2
sh = ish; //sh should be low now 
rd = false; 
tmp = "30";
byte[] sendData2 = new byte[10],*
sendData2 = (Integer.toString( serverlD )+" release") .getBytes () ,*
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. n? 
MeasurePort),*

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){} 
grant = false;

}
//fourth situation case 2:
else if( (!Tvalue( serverlD, tkn, pTkn ) || serverID== 0) && Svalue(serverlD, sh,

pSh) ScSc sh && pollServerInCharge. request == true)
{ if( ignore == false ) //should send msg

{ byte [] sendData = new byte [10],*
sendData = (Integer.toString( serverlD )+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. 11
MeasurePort);

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e ){}

}ignore = true; //set it to true, so not to send multiple times

}

grant = true;
if( reportCS == false )
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString( serverlD )+" cs") .getBytes () ,*
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. 
MeasurePort),*

//tell TokenTraversalMonitor its privilege 
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e ){}

}reportCS = true; //reported already
}return tmp;

}

//return a string with at most 2 elements, 1st is the token, 2nd is shepherd,
//"l" means high, "0" means low, and 3 means no change 
private String processTokenAndShepherdNoRequest()
{ String tmp = "33"; 

int temp = action,*
//first situation:
if( Tvalue( serverlD, tkn, pTkn ) && !Svalue( serverlD, sh, pSh ) && ( sh || serverlD*

I =0)  )

byte [] sendData = new byte [10],*
sendData = (Integer.toString( serverlD )).getBytes();

{



DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, v!
timeMonitorAddress, FinalVariables.PrevilegePort);

try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege 
catch(IOException e ){}
tkn = !tkn; //only pass token 
rd = false;
tmp = boolToInt(tkn)+""+boolToInt(sh);

}

//second situation:
else if( Tvalue( serverlD, tkn, pTkn ) && Svalue( serverlD, sh, pSh ) && Ish && !rd )
{ byte[]sendData = new byte[103;

sendData = (Integer.toString( serverlD )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, *

timeMonitorAddress, FinalVariables.PrevilegePort) ,-
try{talkToTimeSocket. send (outPacket) ,* }//tell timeMonitor its privilege 
catch(IOException e ){}
tkn = !tkn; //only pass token 
rd = true;
tmp = boolToInt(tkn)+"n+boolToInt(sh);

}

//third situation:
else if( Tvalue( serverlD, tkn, pTkn ) && Svalue( serverlD, sh, pSh ) && ( (sh&& *

serverlD1=0)||(!sh&&rd) ) )
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, 

timeMonitorAddress, FinalVariables.PrevilegePort);
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege 
catch(IOException e ){}
tkn = Itkn; //pass token 
sh = Ish; 
rd = false;
tmp = boolToInt(tkn)+"H+boolToInt(sh);

}

//fourth situation:
else if( (!Tvalue( serverlD, tkn, pTkn ) || serverID== 0) && Svalue(serverlD, sh,

pSh) ScSc sh )
{ byte[]sendData = new byte[10];

sendData = (Integer.toString( serverlD )).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, 

timeMonitorAddress, FinalVariables.PrevilegePort);
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege 
catch(IOException e ){}
sh = Ish; //sh should be low now 
rd = false;
tmp = boolToInt(tkn)+""+boolToInt(sh);

}
if(temp!=action)
{ byte[]sendData = new byte[10]; 

sendData = ("a").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, 

timeMonitorAddress, FinalVariables.PrevilegePort);



try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege 
catch(IOException e ){}

return tmp;
}

}

public void run()
{ Ringlnitialization init = new Ringlnitialization( ringMakerAddress, listenSocket, 

talkToRMSocket, serverlD );
Processlnfo p = (Processlnfo) init.findNeighbor{); 
neighborAddress = p.address; 
neighborPort = p.lport;
int flag = 0; //used only when test stabilization time 
for( ;; ) ////this for loop testing stabilization time 
{ try

{ byte[] sendData = new byte[FinalVariables.PKSIZE]; 
sendData = ( processTokenAndShepherdNoRequest() ).getBytes(); 
countMsg++;

DatagramPacket outPacket = new DatagramPacket( sendData, sendData.length, \l 
neighborAddress, neighborPort );

sendSocket.send( outPacket );
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length); 
listenSocket.receive( inPacket );
String tmp = new String(inPacket.getDataO).trim(); 
if( tmp.equals("stop measure stabilization") )
{ System.out .printIn ( "number of messages sent "+ countMsg ),* 

byte[]actionData = new byte[1000];
actionData = (Integer. toString ( action )) .getBytes () ,-
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData. 11 

length, timeMonitorAddress, FinalVariables.ActionPort);
try{actionSocket. send (actionPacket) ,* }//tell timeMonitor its privilege
catch(IOException e ){}
break;

}
if( flag == 1 ) //waiting for restart
{ if( tmp.equals("restart") ) //initialize

{ flag = 0; 
tkn = false; 
sh = false;
pTkn = false; //precessor tkn 
pSh = false;

else if( flag == 0 ) //must deal with the msg
{ if( tmp.equals( "stop" ) ) 

flag = 1;
else

//extract the value of preseccor’s token 
if( tmp.charAt(0) == 11 * )

{



’O' )
pTkn = true;

else if ( tmp.charAt(0) == 
pTkn = false;

//extract the value of preseccor's companion
if( tmp.charAt(1) == )

pSh = true;
else if( tmp.charAt(1) == 'O' ) 

pSh = false;

} catch ( IOException e } {System.out.printIn("IO: " + e.getMessage()); e.
printStackTrace(); } 

yield();
} //end of for loop

byte[] flagData = new byte[FinalVariables.PKSIZE]; 
flagData = "now".getBytes();
DatagramPacket nowPacket = new DatagramPacket( flagData, flagData.length, 

neighborAddress, neighborPort );
try
{ sendSocket.send( nowPacket ); 

for(; ; )
{ byte[] rfData = new byte [FinalVariables. PKSIZE] ,-

DatagramPacket rfPacket = new DatagramPacket ( rfData, rfData. length) ,* 
listenSocket.receive( rfPacket );
String rtmp = new String(rfPacket.getData()).trim(); 
if(rtmp.equals("now")) 

break;
}}catch ( IOException e ) {System.out.println("10: " + e.getMessage()); e.
printStackTrace(); } 

tkn = false; 
rd = false; 
sh = false; 
pTkn = false; 
pSh = false;
action=0; 
countMsg = 0;
for( ,*; ) //this for loop testing token traversal time
{ try

{ byte[] sendData = new byte[FinalVariables.PKSIZE];
while( grant && pollServerlnCharge.request ) 

yield () ,*
//token traversal time measurement
sendData = (processTokenAndShepherdForTokenTraversal()).getBytes();
DatagramPacket outPacket = new DatagramPacket( sendData, sendData.length, \i 

neighborAddress, neighborPort );
sendSocket.send( outPacket ); 
countMsg++;
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket ( recvData, recvData. length) ,* 
listenSocket.receive( inPacket );
String tmp = new String(inPacket.getData()).trim(); 
if( tmp.equals("stop") )



{ byte[]actionData = new byte[1000];
aetionData = (Integer.toString( action )).getBytes();
DatagramPacket actionPacket = new DatagramPacket(aetionData,aetionData. \i 

length, measureAddress, FinalVariables.TraverseActionPort);
try{actionSocket.send(actionPacket); }//tell timeMonitor its privilege
catch(IOException e ){}
break;

}
else
{ //extract the value of preseccor’s token 

if( tmp.charAt(0) == 111 ) 
pTkn = true;

else if ( tmp.charAt(0) == 'O' ) 
pTkn = false;

//extract the value of preseccor’s companion 
if( tmp.charAt(1) == ’ l1 ) 

pSh = true;
else if( tmp.charAt(1) == 'O' ) 

pSh = false;
}} catch ( IOException e ) {System.out.println("10: " + e.getMessage()); e.
printStackTrace(); } 

yield () ;
}} //end of method 

//end of class



APPENDIX 12 TASK DISTRIBUTION

mport j ava.io.*;
mport java.util.*;

This class is used to generate a two dimensional integer array 
©version vO.0.0 
@author Rong Wang

/
ublic class TaskDistribution

public static void main( String[] args )
{ try

{ Random rand = new Random();
int n = FinalVariables.MaxTaskNumber * FinalVariables.MaxProcessNumber; 
int [] taskDistribution = new int[n];
int size = (int ) (FinalVariables.ActivePercentage * n); //the number of elements* 

to be assigned 1
int maxResponseTime =120000;
for( int a = 0; a < n; a++ ) //initialize to 0
{ //random int ranging from 0 to maxResponseTime - 1

Integer anlntl = new Integer( rand.nextlnt( maxResponseTime ));
taskDistribution[a] = anlntl.intValue();

}
//write to file
PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter *

("taskDistribution.txt"}));
for( int i = 0; i < FinalVariables.MaxTaskNumber; i++ )
{ String aLine = "";

for( int j =0; j < FinalVariables.MaxProcessNumber; j++ )
{ aLine = aLine + String.valueOf(taskDistribution[i*FinalVariables. *

MaxProcessNumber+j3) + "
}out.println( aLine };
}out.close();

} catch( IOException e ) { System.out.println("IOEXCEPTION: " + e.getMessage());}
} //end of main 

//end of class



APPENDIX 13 TIME MONITOR

mport j ava.net.* ; 
mport j ava.io.* ; 
mport j ava.lang.* ; 
mport java.util.*;

**
This class is used to measure stabilization time 
(»version vO . 0.0 
©author Rong Wang

/
lass TimeMonitor

private static Processlnfo [] processes;
j  -k -k

* a constructor 
*/TimeMonitor() {

processes = new Processlnfo[FinalVariables.ServerNumber]; 
for( int i = 0; i < FinalVariables.ServerNumber; i++ ) 

processes[i] = new Processlnfo();
}/**
* self explanatory
* @param p a process to be added 
*/public void addProcess( Processlnfo p )
{ processes[p.serverlD] = p; //add to array according to its ID number
}
public static void main( String[] args }
{ TimeMonitor tm = new TimeMonitor(); 

int firstSender = -1, nextExpected = -1;
long deliveryStartTime = 0, deliveryEndTime = 0, sTime = 0, total=0;
DatagramSocket timeSocket = null, previlegeSocket = null, infoSocket = null, 

actionSocket=null;
try{

timeSocket = new DatagramSocket( FinalVariables.TimePort ); 
previlegeSocket = new DatagramSocket( FinalVariables.PrevilegePort ),* 
infoSocket = new DatagramSocket( FinalVariables.InfoPort ); 
actionSocket = new DatagramSocket( FinalVariables.ActionPort );

} catch (SocketException s }{}

//first try to receive process address info, from RingMaker 
int count = 0;
while( count != FinalVariables.ServerNumber )
{ tm.addProcess( (Processlnfo) TransportTool.receiveFrom( infoSocket ) ); 

count++;
System.out.println("counts " + count );

}
//then try to receive info, from RingMaker to know the start time of ring 
byte[] recvData = new byte [FinalVariables .PKSIZE] ,*
DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length); 
try{timeSocket.receive( inPacket );}catch(IOException e ){}
//retreive the time information from the received msg
Long ringSetUpTime = new Long( new String(inPacket.getData() ).trim() ); 
long ringSetupTime = ringSetUpTime.longValue(); 
int counter =0, sAct=0, totalAct=0;
for( int a = 0; a < FinalVariables.MaxRunForStabilization; a++ )



{
f o r ( ;; )
{ recvData = new byte[FinalVariables.PKSIZE];

inPacket = new DatagramPacket( recvData, recvData.length);
//get the sender’s info
try{previlegeSocket.receive( inPacket );}catch(IOException e ){} 
String tmp = new String(inPacket.getData()).trim(); 
if( tmp.equals("a") ) 

totalAct++;
else
{ System.out.println("Privileged process " + tmp ); 

int intNum = Integer.parselnt(tmp); 
if( firstSender == -1 )
{ firstSender = intNum;

if( firstSender == FinalVariables.ServerNumber -1 ) 
nextExpected = 0;

else nextExpected = firstSender + 1; 
deliveryStartTime = System. currentTimeMillis () ,- 
sAct = totalAct;

}else if( firstSender == intNum && nextExpected == firstSender ) //a cycle* 
finished

{ deliveryEndTime = System.currentTimeMillis(); 
break;

}else
{ if( nextExpected == intNum ) //legal order

{ if( nextExpected == FinalVariables.ServerNumber - 1) 
nextExpected = 0; 

else nextExpected++;
}else //illegal order, record the sender as firstSender
{ firstSender = intNum;

if( firstSender == FinalVariables.ServerNumber - 1 ) 
nextExpected = 0;

else nextExpected = firstSender + 1;
//this should be the stabilization time 
deliveryStartTime = System.currentTimeMillis(); 
sAct = totalAct;

}
}

}} //end of inner for loop
//for next circle to use 
firstSender = -1; 
nextExpected = -1;
sTime = deliveryStartTime - ringSetupTime; 
total += sTime;
try
{ //to write the output to file

File f = new File("performance.log"); // delete the file if it already exists 
if (f.existsO) 

f.delete();
PrintWriter out = new PrintWriter(new FileWriter(f));
out.println("Stabilization time: "+ sTime + " milliseconds" );
out.closeO; // We're done writing 

} catch (IOException e) { /* Handle exceptions */ }
System.out.println( "Stabilization time: "+ sTime );



try{Thread.sleep( 1 );} //set an upper bound for each process to hold privilege 
catch ( InterruptedException e ) { System.out.println("Interrupted: " + e. wf

getMessage());}
//after stabilization, send msg to token listener to restart 
for ( int i = FinalVariables.ServerNumber-1; i >= 0; i-- )
{ try{

byte[] sendData = new byte[100]; 
sendData = ("stop").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, tm.processes[i].address, tm.processes [i] . lport) ,* 
timeSocket.send(outPacket);

Jcatch ( IOException e ) { System.out.println(H10: " + e.getMessage());}
} //end of for loop
for ( int j = FinalVariables.ServerNumber-1; j >= 0; j-- )
{ try{

byte[] sendData = new byte [100],* 
sendData = ("restart").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, tm.processes[j].address, tm.processes[j].lport); 
timeSocket. send (outPacket) ,*

Jcatch ( IOException e ) { System.out .println ("10: " + e .getMessage ()),*}
} //end of for loop
ringSetupTime = System.currentTimeMillis(); //begin to calculate the next run 

}//end of for loop of MaxRunForStabilization
//after testing stabilization, send msg to token listener to stop test the 

stabilization time
for ( int i = FinalVariables.ServerNumber-1; i >= 0; i-- )
{ try

{ byte[] sendData = new byte[1000];
sendData = ("stop measure stabilization").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, tm.processes[i].address, tm.processes[i].lport); 
timeSocket. send (outPacket) ,*

Jcatch ( IOException e ) { System.out.println("10: " + e.getMessage());}
}int totalAction=0 ,*
for( int i=0; i < FinalVariables. ServerNumber,* i++)
{

byte[] actionData = new byte [FinalVariables. PKSIZE] ,*
DatagramPacket actionPacket = new DatagramPacket( actionData, actionData.length); 
try{actionSocket. receive ( actionPacket ),* Jcatch (IOException e ){}
String t = new String (actionPacket .getData ()). trim () ,* 
int actNum = Integer.parselnt(t); 
totalAction += actNum;

}System.out.println("total action number is "+totalAction );
} //end of main 

•//end of class



APPENDIX 14 TOKEN TRAVERSAL MONITOR

mport j ava.net.*; 
mport j ava.io.*; 
mport j ava.lang.*; 
mport java.util.*;
* *
This class is used to store the information used to measure token traversal time for every 
process in token ring,
©version vO.0.0 
©author Rong Wang

/:lass Measurelnfo
public boolean request; 
public int csExecuted; 
public long timeForACircle;
/**
* a constructor without any parameter 
*/Measurelnfo()
{ request = false; 

csExecuted = 0; 
timeForACircle = 0;

}

• This class is used to measure token traversal time 
r @version vO.0.0 
r @author Rong Wang
7)ublic class TokenTraverseMonitor
L private static final int MeasureSize = 4; 

private Measurelnfo [][3 measureArray; 
private int[] requestlndex; 
private Processlnfo [] processes;
/**
* a constructor 
*/TokenTraverseMonitor()
{ requestlndex = new int[FinalVariables.MaxProcessNumber]; 

for ( int a = 0; a < FinalVariables.MaxProcessNumber; a++ ) 
requestlndex[a] = -1;

measureArray = new Measurelnfo[MeasureSize][FinalVariables.ServerNumber]; 
for( int i = 0; i < MeasureSize; i++ )

for ( int j =0; j < FinalVariables.ServerNumber; j++ ) 
measureArray[i][j] = new Measurelnfo();

processes = new Processlnfo[FinalVariables.ServerNumber]; 
for( int i = 0; i < FinalVariables.ServerNumber; i++ ) 

processes[i] = new Processlnfo(};
}
/**
* self explanatory
* ©param p a process to be added 
*/public void addProcess( Processlnfo p )
{ processes[p.serverlD] = p; //add to array according to its ID number
}



/**
* self explanatory
* @param args argument to be passed 
*/public static void main( String[] args )
{ TokenTraverseMonitor tm = new TokenTraverseMonitor(),*

int count = MeasureSize * FinalVariables.MaxProcessNumber;
boolean firstCS=true;
long csStart=0;
int countCS = 0;
DatagramSocket measureSocket = null, actionSocket=null, proInfoSocket=null, 

sendSocket=null;
try{

actionSocket = new DatagramSocket( FinalVariables.TraverseActionPort ); 
prolnfoSocket = new DatagramSocket( FinalVariables.InfoPort2 ); 
measureSocket = new DatagramSocket( FinalVariables.MeasurePort ); 
sendSocket = new DatagramSocket();

} catch (SocketException s ){}

//first try to receive process address info, from RingMaker 
int countProcess = 0;
while( countProcess != FinalVariables.ServerNumber )
{ tm.addProcess( (Processlnfo) TransportTool.receiveFrom( proInfoSocket ) ); 

countProcess++;
}
//try to receive info, from privileged processes 
f o r ( ;; )
{

/*used when meausure average token traversal time with no request from 
application

if ( count == 0 ) //quit after counting
{ break;

byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket( recvData, recvData.length); 
try{measureSocket.receive( inPacket );}catch(IOException e ){} //get the sender's^ 

info
String tmp = new String (inPacket .getData ()) .trim() ,* 
int index = tmp.indexOf(1 >) ;
int pid = Integer.parselnt(tmp.substring( 0, index ));
String msg = tmp. substring ( index + 1 ),* 
if ( msg.equals( "cs" ) ) //critical section 
{ System.out.print(pid +” ");

if( firstCS)
{ csStart=System.currentTimeMillis(); 

firstCS=false;
}
countCS++;
if( countCS == 100 )
{ System.out.println("Total time used for 100 tasks is: "+(System. i£

currentTimeMillis()-csStart)); 
break;

}
//record for each process who wishes to know how many cs r executed between 

the time it releases privilege to the time it gets privilege again 
if( count!=0)



{ for( int i = 0; i < FinalVariables.ServerNumber; i++ )
{ if( tm.requestlndex[i] >= 0 && tm.requestIndex[i] < MeasureSize ) 

if( tm.measureArray[tm.requestlndex[i]] [i].request == true ) 
if( pid 1= i } //from release to get, so not add to itself 

tm.measureArray[tm.requestlndex[i]] [i].csExecuted++;

else if( count i= 0 )
{ //notify the end of record for a process, so other processes can ignore it 

if ( msg.equals( "get" ) )
{ if(tm.requestlndex[pid] >= MeasureSize) 

continue;
else if( tm.requestlndex[pid] != -1 && tm.measureArray[tm.requestlndex ut

[pid]][pid].request == true )
{ tm.measureArray[tm.requestlndex[pid]] [pid].timeForACircle = System. \t 

currentTimeMillis() - tm.measureArray[tm.requestlndex[pid] ] [pid] . 
timeForACircle;

tm.measureArray[tm.requestlndex[pid]] [pid].request = false; 
count--;

else //if ( msg.equals( "release" ) )
{ tm. requestlndex [pid]++,* //how many times have been recorded 

if( tm.requestlndex[pid] >= MeasureSize ) 
continue;

else
{ if( tm.measureArray[tm.requestlndex[pid]] [pid].request == false )

{ tm.measureArray [tm. requestlndex [pid] ] [pid] . timeForACircle = \t 
System.currentTimeMillis();

tm.measureArray[tm.requestlndex[pid]][pid].request = true;

} //end of else
}}//end of for

/* used when count action number 
//send each process to ask action number
for ( int i = FinalVariables.ServerNumber-1; i >= 0; i-- )
{ try{

byte[] sendData = new byte[100]; 
sendData = ("stop").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, tm.processes[i].address, tm.processes[i].lport); 
sendSocket.send(outPacket);

}catch ( IOException e ) { System.out.println("10: " + e.getMessage());}
} //end of for loop
//receive action number used for token delivery from each process 
int totalAction=0;
for( int i=0; i < FinalVariables.ServerNumber; i++)
{ byte[] actionData = new byte[FinalVariables.PKSIZE];

DatagramPacket actionPacket = new DatagramPacket( actionData, actionData.length); 
try{actionSocket. receive ( actionPacket ),* }catch (IOException e ){}
String t = new String (actionPacket .getData ()) .trim() ,* 
int actNum = Integer.parselnt(t); 
totalAction += actNum;

}



System.out.println("total action number is "+totalAction ),* 
*/
double a =0.0, total = 0.0, total2 = 0.0;
for( int i = 0; i < FinalVariables.ServerNumber,- i++ )
{ for( int j =0 ,* j <MeasureSize; j++)

{ a = (double) (tm.measureArray[j] [i].timeForACircle -tm.measureArray[j] [i].
csExecuted*0) / (FinalVariables.ServerNumber-1); 

total += a;
total2 += tm.measureArray[j] [i].timeForACircle;

}
}System.out.printIn("\nAverage token traverse time is "+total2/(MeasureSize* 

FinalVariables.MaxProcessNumber) );
} //end of main 

//end of class



APPENDIX 15 TRANSPORT TOOL

ublic class TransportTool {
j  * *
* to receive an object of Processlnfo through the network
* @param socket through which socket the object will be received 
*/public static Object receiveFrom(DatagramSocket aSocket) {
Object o = null;
try {

byte[] recvData = new byte[5000];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length) ,* 
aSocket.receive(inPacket);
ByteArraylnputStream bytelnStream = new ByteArrayInputStream(recvData); 
ObjectInputStream ois = new ObjectInputStream(new BufferedlnputStream( 

bytelnStream)),*
o = ois.readObject();
ois.close();

mport j ava.io.*;
mport j ava.net.*;

}catch (ClassNotFoundException e) {
System.out.println("ClassNotFound: " + e.getMessage());

}catch (IOException e) {
System.out.println("10: " + e.getMessageO); 
e.printStackTrace();

}
return o;

}

* to send an object of Processlnfo through the network
* ©param p an object to be sent
* ©param addr to which address the object will be sent
* ©param aPort to which port the object will be sent
* ©param socket through which socket the object will be sent 
*/public static void sendTo(Object p, InetAddress addr, int aPort,

DatagramSocket socket) {
try {
ByteArrayOutputStream byteOutStream = new ByteArrayOutputStream(5000); 
ObjectOutputStream oos = new ObjectOutputStream(new BufferedOutputStream( 

byteOutStream));
oos .flush() ,*
oos.writeObject(p);
oos . flush () ,*
byte[] sendData = byteOutStream.toByteArray() ;
DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length, 

addr, aPort);
socket.send(outPacket); 
oos.close();

}catch (IOException e) {
System, out .println( "10: " + e.getMessageO); 
e.printStackTrace();
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