
PERFORMANCE COMPARISON OF FOUR TOKEN RINGS IN SIMULATED

DISTRIBUTED COMPUTING ENVIRONMENT

THESIS

Presented to the Graduate Council of
Texas State University - San Marcos

in Partial Fulfillment of
the Requirements

For the Degree of

Master of SCIENCE

By

RONG WANG, B.A.

San Marcos, Texas

December 2003

COPYRIGHT

By

RONG WANG

2003

ACKNOWLEDGMENTS

First of all, I am deeply indebted to my thesis supervisor Dr. Furman

Haddix, who has devoted so much time and effort in teaching me and guiding

me to finish this research work. Without his great encouragement and

support, this thesis would have never been finished.

I would also like to thank Dr. Jawad Drissi and Dr. Wuxu Peng. I am

very grateful to them for their great kindness and support on my thesis work.

Finally, I want to express my deepest thanks to my family for their great

love and support to me.

IV

TABLE OF CONTENTS

ACKNOWLEDGEMENT... iv

LIST OF TABLES... ix

LIST OF FIGURES... x

ABSTRACT... xii

CHAPTER 1 INTRODUCTION..1

1.1 Background... 1

1.2 Goals.. 3

1.3 Contribution...3

1.4 Thesis Organization... 4

CHAPTER 2 FAULT TOLERANCE IN DISTRIBUTED SYSTEMS........5

2.1 The Definition of Distributed Systems 5

2.2 The Advantages of Distributed Systems..................................... 5

2.3 Transient Faults in Distributed Systems...................................... 6

2.4 Self-Stabilization as the Proposal for Transient Faults...............6

CHAPTER 3 THE ENABLER TOKEN RING.. 9

3.1 Introduction...9

3.2 Algorithm for Enabler Token Ring.. 10

3.3 Algorithm When Combined with Application.............................. 11

v

CHAPTER 4 THE RING ALTERNATOR TOKEN RING........................ 13

4.1 Introduction......................j ... 13

4.1.1 The Lower Level Protocol... 13

4.1.2 The Higher Level Protocol..14

4.2 Algorithm for Ring Alternator Token Ring..................................15

4.3 Algorithm When Combined with Application..............................17

CHAPTER 5 THE SHEPHERD TOKEN RING...19

5.1 Introduction...19

5.2 Algorithm for Shepherd Token Ring.. 19

5.3 Algorithm When Combined with Application............................. 21

CHAPTER 6 COMPANION TOKEN RING.. 23

6.1 Introduction..23

6.2 Algorithm for Companion Token Ring....................................... 23

6.3 Algorithm When Combined with Application............................. 24

Chapter 7 TOKEN RING ALGORITHM IMPLEMENTATION......................27

7.1 Implementation Overview.. 27

7.1.1 Class View...27

7.1.2 File View..29

7.2 Implementation Details.. 30

7.2.1 Ring Maker.. 30

vi

7.2.2 Listen Token 35

Vil

CHAPTER 8 APPLICATION DESCRIPTION AND IMPLEMENTATION.....36

8.1 Application Description... 36

8.2 Implementation Overview.. 37

8.2.1 Class View...37

8.2.2 File View..38

8.3 Implementation Details.. 38

8.3.1 Application Server.. 38

8.3.2 Simulated Terminal.. 39

CHAPTER 9 CODE FOR PERFORMANCE M EASUREM ENT......... 41

9.1 Stabilization Time Monitor.. 41

9.2 Token Traversal Time Monitor...44

9.3 Contention Control... 46

9.3.1 Method to Ensure Identical Test Environment...............46

9.3.2 Usage of the Sleeping tim e in Terminals........................50

9.4 Relationships between Different Servers...................................51

CHAPTER 10 PERFORMANCE COMPARISON.....................................54

10.1 The Upper Bound Overview for Each Token Ring................... 54

10.2 Stabilization Time Comparison... 55

10.2.1 Simulating 4 Terminals per Computer........................... 55

10.2.2 Simulating 8 Terminals per Computer........................... 60

10.3 Token Delivery Time Comparison.. 61

10.3.1 Simulating 4 Terminals per Computer 61

Vlll

10.3.2 Simulating 8 Terminals per Computer.........................66

10.4 Comparisons under Different Degrees of Contention.............. 66

10.4.1 Waiting Time Comparisons.. 67

10.4.2 Number of Finished Critical Section Comparisons....... 70

CHAPTER 11 CONCLUSION... 74

REFERENCES.. 76

APPENDICES ,78

List pf Tables

Table 1 Sleeping Time...47

Table 2 Upper bound for 4 algorithms compared............................. 54

Table 3 Stabilization time 4 processes per computer......................56

Table 4 Stabilization time 8 processes per computer......................60

Table 5: Token delivery time 4 processes per computer..................62

Table 6: Token delivery time 8 processes per computer..................66

Table 7: Waiting time under different average sleeping times67

Table 8: Number of critical section executed under different average

sleeping times.. 70

IX

List of Figures

Figure. 1 Simulating 16 processors on 4 computers........................... 31

Figure.2 Simulating 15 processors on 3 computers............................33

Figure.3 Assign neighbors in one direction.. 34

Figure.4 Assign neighbors in two directions...35

Figure.5 Relationships between servers...53

Figure.6 Stabilization time: Enabler token ring.................................... 56

Figure.7 Stabilization time: Alternator token ring.................................57

Figure.8 Stabilization time: Shepherd token ring.................................58

Figure.9 Stabilization time: Companion token ring..............................59

Figure.10 Stabilization time comparison for 4 token rings.................... 59

Figure.11 Token delivery time: Enabler token ring................................62

Figure. 12 Token delivery time: Alternator token ring............................ 63

Figure.13 Token delivery time: Shepherd token ring............................ 64

Figure. 14 Token delivery time: Companion token ring......................... 64

Figure.15 Token delivery time comparison for 4 token rings................65

Figure 16 Waiting time: Enabler token ring... 68

Figure 17 Waiting time: Alternator token ring68

Figure 18 Waiting time: Shepherd token ring.. 69

X

XI

Figure 19 Waiting time- Companion token ring...69

Figure 20 Number of critical section executed: Enabler token ring...........71

Figure 21 Number of critical section executed: Alternator token ring........71

Figure 22 Number of critical section executed: Shepherd token ring........72

Figure 23 Number of critical section executed: Companion token ring... .72

ABSTRACT

The concept of self-stabilization was first proposed by Dijkstra. A self­

stabilization token ring can make guarantee for a system to recover to a legal

state in finite time, regardless of what illegal state the system is in. This

property makes it a very preferable way to tolerate arbitrary transient faults.

The thesis implements 4 self-stabilizing token ring algorithms, and

compares their performance in terms of stabilization time and token delivery

time in a distributed computing environment using a simulated application as

the test bed.

Xll

CHAPTER 1 INTRODUCTION

1.1 Background

A distributed system is composed of a collection of processes as well as

a collection of communications between two processes. There exists the

mutual exclusion problem in such a system, and there are several ways to

solve it.

One way of solving this problem is to collect the states of all the other

processes. But there is the problem of heavy network traffic in this solution

because each process must ask for the state of each other process and send

its own state to all other processes. The huge amount of messages to be

handled will make this method a non-practical solution.

Another way of solving this problem is to ask a central monitor for

permission to access the critical section. But this solution also has

shortcomings because using an external monitor can delay the recovery

beginning time when an error occurs, and the monitor itself can also crash.

A preferable method to solve the problem is to let each process in the

system determine its next activity by observing the current states of its

neighbors before entering its critical section. Using this approach, traffic is

minimal and exponential increases inflating with system expansion is avoided.

1

2

Since various faults inherent to modern distributed system may occur,

the quality of a distributed system also depends on its tolerance to the

potential faults. Tolerance to arbitrary transient faults is one of the most

important requirements in such systems.

Various tolerance methods to such transient faults have been proposed

and implemented. The concept of self-stabilization proposed by Dijkstra in

1974[Dijk74] is the most general technique.

Self-stabilization means that starting from an arbitrary initial state, it is

guaranteed that the system will reach a desirable state in finite time, and if it is

in a desirable state, it will remain in desirable states thereafter. That means if

a transient fault leads a stabilizing system to an undesirable state, further

execution of the system will be guaranteed to return to a desirable state, and

will stay there in the absence of additional transient faults.

Token rings are a straightforward way of providing mutual exclusion in a

physical or logical ring configuration of processes. Since Dijkstra proposed the

first self-stabilizing token ring [Dijk74], Many variations have been proposed.

In [Dijk74], no application of self-stabilization to fault tolerance was

mentioned, but considerable effort has been done to use self-stabilization as a

technique for fault tolérance in the area of distributed computing, this effort

can be seen in [BYC88], [BYZ89], [YBL91], and [BY93],

3

1.2 Goals

As mentioned above, there exist quite a number of proposals regarding

token rings to be used in distributed systems. In this thesis work, four token

ring algorithms, namely, enabler token rings, alternator token rings, shepherd

token rings and companion token rings, are considered. The four token ring

algorithms are all self-stabilizing algorithms, but their performance is not well

known.

The goal of this thesis is to compare the performance of these four token

rings in a simulated distributed computing environment. The comparison of

the stabilization time and token delivery time of the four algorithms will be

especially focused on.

1.3 Contribution

• Simulated multiple processors in a distributed environment

• Designed an algorithm to create a static logical ring configuration of

processes

• Developed an application system to use as bench mark

• Designed a method to give each token ring algorithm exactly same test

environment

• Implemented the four token ring algorithms for mutual exclusion

between writing processes

• Evaluated the performance of the four token ring algorithms on the

stabilization time and privilege delivery time.

• Evaluated the performance of the four token ring algorithms under

different levels of contention for the privilege of executing a critical

section.

1.4 Thesis Organization

Chapter 1 of the thesis is an overview and introduction to this thesis

work as a whole. Chapter 2 gives basic introduction to distributed systems

and it also introduces the importance of transient fault tolerance in distributed

systems. This chapter should be of interest to readers who are new to the

field of distributed systems. Chapters 3 through 6 briefly introduce the four

token ring algorithms. Chapter 7 describes the implementation for each token

ring algorithm introduced in the previous 4 chapters. Chapter 8 describes the

application that is used as the application to test the token ring algorithms,

and the implementation for it is also covered in this chapter. Chapter 9

explains how the performance of each token ring algorithm is measured. It

also explains the methods used to make sure that the four algorithms are

given identical test environments. In chapter 10, the performance results of

each token ring algorithm are observed, compared and analyzed. Chapter 11

discusses the conclusions and potential future work.

CHAPTER 2 FAULT TOLERANCE IN DISTRIBUTED

SYSTEMS

2.1 The Definition of Distributed Systems

There are many definitions of distributed system, and they do not

completely agree with each other, but in general, it is safe to say that a

distributed system is composed of independent processors that have no

shared memory, that these independent processors cooperate with each

other and are linked by a high speed network, and that these facts are

transparent to the user of the system. The user should be able to use such a

system as if using a single system.

2.2 The Advantages of Distributed Systems

There are many advantages in using a distributed system, here listed

are some of them.

• It is more powerful in computing than a single processor system

• It can share data easily

• It allows more processors to be added to meet increasing demands.

• It should be more reliable than a single system

Nowadays, computers are used almost everywhere, and almost every

5

6

large computer-based system is a distributed one. Distributed systems are

becoming more and more important in both research and commercial fields.

2.3 Transient Faults in Distributed Systems

As described in section 2.2, distributed systems are powerful and

important nowadays and there are advantages in using them, but that does

not mean there are no problems to be solved. Transient faults are one of the

important issues concerning such systems.

From the definition of distributed system, we know that a distributed

system is composed of a collection of processors, and the processors of the

participating nodes have no shared memory. Hence the only way for them to

exchange information is to pass messages between each other through a

network. This limitation introduces system faults caused by the occurring of

errors during message passing, e.g. message loss, and this kind of faults are

called transient faults: A practical distributed system must be able to recover

from such transient faults quickly, and the quality of a distributed system

depends on how fast it can recover from such faults.

2.4 Self-Stabilization as the Proposal for Transient Faults

An external monitor of system states can be used to help a distributed

system recover from a transient failure, but it is preferable if a distributed

7

system begins its recovering process as soon as an error occurs, and such a

method does not provide this capability.

The concept of self-stabilization is the most general tolerance method

for handling arbitrary transient faults. There is no universally agreed upon

formal definition for self-stabilization, however, it is generally acknowledged

initial definition was from [Dijk74], which was already described in chapter 1.

For more definitions about self-stabilization, [Dijk82a], [Dijk82b], [LL90], and

[BGM93] can be referred. The ring topology is commonly used in distributed

computing and network protocols [Herman98], and the subject of token rings

is a straightforward way of providing mutual exclusion in a physical or logical

ring configuration of processes.

A self-stabilizing token ring is useful for a distributed system where

transient failures may occur and the system may enter an arbitrary illegal

state after such transient failures [PV2000]. It is able to start recovering

automatically as soon as it detects a fault in the system and is able to provide

a high degree of fault tolerance.

For a distributed system, at any particular time, it will be either at a legal

state or at an illegal state. For a self-stabilizing token ring algorithm, given an

initial state (no matter if it is legal or illegal), the system can reach a legal state

after a finite number of state transitions—if the initial state is an illegal state,

the system is guaranteed to reach a legal state in finite time; if the initial state

is a legal state, the system will remain in legal states thereafter. If an error

8

occurs, again, the system will return to a legal state after a finite number of

state transitions.

Since Dijkstra proposed the first self-stabilization ring [Dijk74], many

variations have been suggested. In this thesis, four of them are considered in

the following chapter. These four token ring algorithms are detailed in chapter

3, chapter 4, chapter 5 and chapter 6, respectively.

CHAPTER 3 THE ENABLER TOKEN RING

3.1 Introduction

This is the first stabilizing, unidirectional, deterministic token ring where

each process has a constant number of states.

Since Dijkstra proposed the first self-stabilizing, unidirectional token ring

in 1974 [Dijk74], many variations were suggested. But all those introduced

before the enabler token ring are not deterministic or have a much larger state

space.

In the enabler token ring, the states are legal when there is exactly one

token circulating around the ring, and the states are illegal when there is more

than one circulating token. The construction of token ring precludes a state in

which no token exists. Each process in this token ring has three Boolean

variables and three actions. Each action in a process is of the form:

<guard> <multiple assignment statement

Where the guard is a Boolean expression over the variables of a

process and its left neighbor. The conjunction of the guards of any two actions

9

10

in the same process is false, in other words, at most one enabled action from

each process can be executed at a time. Hence the processes in this token

ring are deterministic.

3.2 Algorithm for Enabler Token Ring

Suppose a ring system is composed of n processes, and each process

P[i] (0 <= i < n) has three Boolean variables named e.i, tkn.i and ready. The

variable e.i and tkn.i can be read by the right neighbor of process i, while

ready is a local variable used by process i only.

The algorithm for enabler token ring is as the following:

Case 1: i f O < i < n

X . i : e.i e.(i - 1) a tkni = tkn.(i — 1)

—> e.i,ready := -nei, false
Y. i : e.i ^ e.(i - 1) a tkn.i ^ tkn.(i - 1) a —.tkni a —iready

—> e.i, ready := -¡e.i, trae
Z i : e d * e.(i - l) a tk n i ^ tk n .ii — 1) a (tk n i v ready)

-» e.i, tkni, ready := - i ei, —itkn.i, false

Case 2; i f i = 0

X . O : e.O = e.(n -1) Atkn.O & tkn.in -1)

-» e.O,ready —ie.0, false
Y. O : e.O = e.(n -1) a tkn.O = tkn.in -1) a —¡tkn.O a —¡ready

—> e.O, ready := —ie.0,true
e.O = e.(n - 1) a tkn.O = tkn.(n - 1) a (tkn.O v ready)

-» e.O, tkn.O,ready := —¡e.O,->tkn.O, false
Z.O :

11

In the algorithm, each process has an X action, a Y action and a Z

action. The following is the explanation for these actions:

• An X action allows an enabler to be passed from process p[i] to the

next process p[i+1 mod n] when p[i] has no token;

• A Y action allows an enabler to be passed from process p[i] to the next

process p[i+1 mod n] when p[i] has an F token and its variable ready is

false. Its variable ready becomes true in this action;

• A Z action allows both an enabler and a token to be passed from

process p[i] to the next process p[i+1 mod n] when p[i] has an F token

and its variable ready is true, or when it has a true token. Its variable

ready becomes false in this action.

A state of the ring is legal iff in that state exactly one process has a

token and at least one process has an enabler.

3.3 Algorithm When Combined with Application

When combined with application, two additional bits are needed, one of

which is set by the token ring and read by the application, and the other is set

by the application and read by the token ring:

12

Case 1: i f O < i < n

X i : e i & e.(i — 1) a tim i — tkn.(i — 1)

—> e i, ready := - i e.i , fa lse

Y i : e.i ^ e.(i - 1) a tim i ^ tkn .ii - 1) a —itk n i a —ready

—» e i, ready := -ie i, ¿rue

Z I i : e i ^ e.(z - 1) a tk n i ^ ¿&u.(z - 1) a (¿&u.z v ready) a —re q i

e i, tk n i, ready, g r t i := —iei, —itim i, fa lse , fa lse

Z 2.i : e i ^ e .(i - 1) a ¿&ui ^ ¿A«.(z - 1) a (¿&ni v ready) a regi

—> g r t i := ¿rue

Case 2: if i = 0

X . O: e.O = e .(« -l)A ^ .O ? i:^ . (n - l)
—» e.O, ready := -ie.O, false

Y. 0 : e.O = e.(u - 1) a ¿&n.O = tkn.in —1) a —\tkn.0 a - iready

—» e.O, ready := —¡e.O, true

Z 1.0 : e.O = e.(n - 1) a ¿An.O = ¿&n.(n - 1) a (¿&n.O v ready) a —¡req.O

—> e.O, tkn.0, ready, g rt.0 := -ie.O, —itkn.O, false , false

Z 2.0 : e.O = e.(n - 1) a ¿&n.O = tkn.(n - 1) a (¿&n.O v ready) a reg.O

—» gr/.O := ¿rue

In above algorithm, variable grt is set by the token ring and read by the

application, while variable req is set by the application and read by the token

ring.

Action Z1 is executed when the corresponding process has the privilege

but variable req is false, and action Z2 is executed when the corresponding

process has the privilege and variable req is true. [GH1996]

CHAPTER 4 THE RING ALTERNATOR TOKEN RING

4.1 Introduction

An alternator is an array of interacting processes that can be used in

transforming a stabilizing system executed serially into a stabilizing system

executed concurrently.

4.1.1 The Lower Level Protocol

A ring alternator is an array of n+1 processes p [i: 0...n], where n >= 2.

Process p[0] and p[n] are actually one same process—the first process in the

ring. When this first process communicates with its right neighbor p[1], it is

p[0], while when it communicates with its left neighbor p[n-1], it is p[n]. Each

other process has a left neighbor p[i-1] and a right neighbor[i+1].

The lower level algorithm:

X . O: 6.0 = 6.1 a b.n & b.(n-l)
—» 6.0, b.n, T := -.6.0, -ib.n, false

Y. 0: 6.0 = b. 1 a b.n - b.{n -1) a SysClock - Start > TimeOut a T
->6.0,r : - —¡b.0, false

Z. 0: 6.0 ^ 6.1 a b.n * b.(n -1) a SysClock - Start > Timeout a T
-» b.n, T := ->b.n, false

W.0 : ((6.0 = 6.1 a b.n = b.(n - 1)) v (6.0 ^ 6.1 a b.n ^ b.(n - 1)) a -¡T
—> Start, T := SysClock,true

U i: b.(i + 1) = bi a 6 i ^ b.(i - 1)
—» b.i := —b i

13

14

Where i refers to the regular processes, whose IDs are ranging between

0 and n, not included.

For the first process p[0] in the ring alternator, there are 3 Boolean

variables and a timeout mechanism. The 3 Boolean variables are b.O, b.n and

T, where T is the local variable indicating if timeout in progress, while bO and

b.n can be read by process p[1] and process p[n-1], respectively.

For other processes, each of them has one Boolean variable b.i, which

can be read by both of its neighbors.

X.O, Y.O, Z.O and W.O are the 4 possible actions that can be taken by

process p[0], and U.i is the possible action that can be taken by all the other

processes.

4.1.2 The Higher Level Protocol

In the token level, each process has 2 Boolean variables, which are tkn.i

and ready. The variable ready is a local variable for each process, and the

variable tkn.i can be read by the right neighbor of each process. Each action

in a process is of the form:

<guard> <multiple assignment statement

Where the guard is a Boolean expression over the variables of a

process and its neighbors. The conjunction of the guards of any two actions in

15

the same process is false, in other words, at most one enabled action from

each process can be executed at a time. Hence the processes in this token

ring are also deterministic.

In the ring, the states are legal when there is exactly one token

circulating around the ring, and the states are illegal when there is more than

one circulating token. The construction of the ring precludes a state in which

no token exists.

4.2 Algorithm for Ring Alternator Token Ring

Suppose a ring system is composed of n processes, where n is greater

or equal to 2, the algorithm for ring alternator token ring is as the following:

Case 1: if 0 < i <n, we have the following three possible actions:

X .i: b.(i + 1) = b.i a b.i ^ b.(i - 1) a tkni ^ tkn.(i -1) a (ready v tkn.i)
—> b.i, tkni, ready := - ibi, —¡tkni, false

Y i: b.(i + l) = bi a bi * b.(i -1) a tkni ^ tkn.ii -1) a —ready a - i tkni
-> bi, r e a d y —¡bi, true

Z i : b.(i +1) = b.i a bi & b.(i - 1)

—> bi := - i bi

• An X.i action allows alternator to be passed from process p[i] to its both

neighbors, and allows token to be passed to the next process p[i+1

mod n] when p[i] has the alternator, an F token and its variable ready is

true, or when it has a true token. Its variable ready becomes false in

this action:

16

• A Y.i action allows alternator to be passed from process p[i] to its both

neighbors when p[i] has the alternator, an F token and its variable

ready is false. Its variable ready becomes true in this action.

• A Z.i action allows alternator to be passed from process p[i] to its two

neighbors;

Case 2: if i = 0

Process p[0] is a special case in the token ring, and it is much more

complicated compared with other processes. The following figure listed all

the possible actions for process p [0].

X.O : 6.0 = 6.1a b.n ^ b.(n -1) a tkn.O = tkn.(n- 1)a (ready v tkn.0)
—» 6.0 ,b.n,T, tkn.O,ready := -¡b.O,—¡b.n, false,—¡tkn.O, false

7.0 : 6.0 = 6.1 a b.n * b.(n -1) a tkn.0 = tkn.(n -1) a - iready a -¡tkn.O
—> 6 .0 ,b.n,T, ready := —¡b.O,—¡b.n, false,true

Z.0: 6.0 = 6.1 a b.n ^ b.(n -1)

-» b.O,b.n,T := —,b.0,—ib.n, false
U. 0 : 6.0 = 6.1 a b.n = b.(n -1) a SysClock - Start > TimeOut a T

—» 6.0, T := - 16.O, false
V. O : 6.0 5* 6.1 a b.n & b.(n - 1) a SysClock - satrt > Timeout a T

-> b.n,T := -¡b.n, false
W. O : ((6.0 = 6.1 a b.n = b.(n -1)) v (6.0 ^ 6.1 a b.n * b.(n -1)) a —¡T

-> Start,T := SysClock,true

m Action X.O allows alternator b.O and token to be passed to process

p[1], and allows alternator b.n to be passed to p[n-1]. Its local variables

T and ready become false in this action;

• Action Y.O allows alternator b.O to be passed to process p[1], and

alternator b.n to be passed to p[n-1]. Its local variable T becomes false

17

in this action, while its local variable ready becomes true in this action;

• Action Z.O allows alternator b.O to be passed to process p[1], and

alternator b.n to be passed to p[n-1]. Its local variable T becomes false

in this action;

• Action U.O allows alternator b.O to be passed to process p[1], and its

local variables T becomes false in this action;

• Action V.O allows alternator b.n to be passed to process p[n-1], and its

local variable T becomes false in this action;

• Action W.O sets local variable T to 1, and it also sets the start of

timeout.

4.3 Algorithm When Combined with Application

When combined with application, two additional bits are needed, one of

which is grt and it is set by the token ring and read by the application, and the

other variable is req and it is set by the application and read by the token ring.

Case 1: ifO < i < n , we have the following 4 possible actions:

X\ . i : b.(i +1) = b.i a b.i ^ b.(i - 1) a tkn.i ^ tkn.{i — 1) a (ready v tkn.i) a - ireq
—» b.i, tkn.i, grt, ready := - i b.i, —> tkn.i, false, false

X 2 . i : b.(i +1) = b.i a b.i ^ b.(i -1) a tkn.i ■£ tkn.(i -1) a {ready v tkn.i) a req
—» grt := true

Y. i : b.(i +1) = b.i a b.i ^ b.(i - 1) a tkn.i ± tkn.{i — 1) a —iready a —i tknd
—> b.i, ready := - i b.i, true

Z. i : b.(i + 1) = b.i a b.i * b.(i - 1)
—» b.i := - i b.i

18

Case 2: i f i = 0

When combined with req, we can have 7 possible actions as shown

below:

X I .0 : 6.0 = b.l a b.n & b. (n - 1) a tkn.O = tkn.(n - 1) a (ready v tkn.0) a —i req
-» b . 0 , b . n , T , tkn.O,grt , ready := —i b . 0 , - ! b .n , false ,- itkn.O, f a l s e , f a ls e

X 2.0 : 6.0 = 6.1 a b.n & b. (n - 1) a tkn.O = tkn.(n - 1) a (r eady v tkn.O) a req
g r t := true

7.0 : 6.0 = 6.1 a b.n ^ b.(n - 1) a tkn.O = tkn.{n — 1) a - i ready a - i tkn.O
-> 6.0, b.n, T , rea d y := -i 6.0 , - i6 .n , f a l s e , true

Z .0 : b.O = b. l a b.n ^ b. (n - \)
—> b . 0 , b . n , T := -i 6 .0 ,—i b.n, f a l s e

U .0 : 6.0 = 6.1 a b.n = b.(n - 1) a Sys C lo ck - Start > Tim eO ut a T
—» 6 .0 , T := -i 6.0, f a l s e

V .0 : 6.0 ^ 6.1 a b.n ^ b.(n - 1) a Sys C lo ck - satrt > T im eo ut a T
—» b .n ,T := -ib .n, f a l s e

W .0 : ((6.0 = 6.1 a b.n = b. (n - l)) v (b.O & b.l a b.n ^ 6.(n - 1)) a -i 7
—> Start , T := S y s C l o c k , true

In above algorithm, variable grt is set by the token ring and read by the

application, while variable req is set by the application and read by the token

ring.

Action X1.0 and X1 .i are executed when the corresponding process has

the privilege but variable req is false, and action X2.0 and X2.i are executed

when the corresponding process has the privilege and variable req is true.

[GH1997]

CHAPTER 5 SHEPHERD TOKEN RINGS

5.1 Introduction

This is of interest because of some unique characteristics it possesses.

Each process in the ring system has three variables—token, shepherd and

ready. The right neighbor of each process can read the variables token and

shepherd, but variable ready is the local variable used by each process itself

only. Not only the presence of a token can grant a process to enter critical

section, but also can the existence of a high shepherd.

In the ring, the states are legal when there is exactly one token

circulating around the ring, and the states are illegal when there is more than

one circulating token. The construction of the ring precludes a state in which

no token exists.

5.2 Algorithm for Shepherd Token Ring

Consider a ring system that is composed of n processes, and each

process i (0 <= i < n) has three Boolean variables named tkn.i, sh.i and ready.

The variable tkn.i and sh.i can be read by the right neighbor of process i, while

ready is the local variable used by process i only.

The algorithm for shepherd token ring is as the following:

19

20

X : T.i a -iS.i a (H .i v i ^ 0)

—» tkn.i, ready := —ithn.i, false
Y \ T.i a —iS.i a —iH.i a —iR.i

—> tkn.i, ready —\tkn.i,true
Z : T.i a -iS.i a ((H i a i ^ 0) v (- .H i a R.i))

—» tkn.i,sh.i,ready := -itkn.i,—>sh.i, false
W : (—1 T.i v i = 0) a S.i a H .i

—» sh.i, ready := - i shd, false

Where:

T.i= (/ = 0 a tkn. 0 = tkn. (n -1)) v (0 < z < n a tkn. i = -dkn. (i - 1));

{token is present }

iS!i= (z‘= 0 a j'A.O=sk(n—1)) v (0 <i<n a sh. i = —sh. (z—1));

{ shepherd is present }

H.i=sh.i

R i= ready, i
{shepherd state is high }

{shepherd is ready to be passed }

All the possible four actions grant privilege to the corresponding

process.

• Action X allows the token to be passed on to the right neighbor of

the process when it has the token, but not the shepherd. Its variable

ready is set false in this action;

• Action Y allows the token to be passed on when the process has the

token and the shepherd and ready is false and shepherd is low. Its

variable ready is set true in this action;

• Action Z allows the token and shepherd to be passed on when the

process has the token and the shepherd, and the shepherd is high

or ready is true. Its variable ready is set false in this action;

21

• Action W allows the shepherd to be passed on to the right neighbor

of the process when it has the shepherd, but not the token, and the

shepherd is high.

5.3 Algorithm When Combined with Application

When combined with application, two additional bits are needed, one of

which is set by the token ring and read by the application, and the other is set

by the application and read by the token ring. Since every possible action can

grant privilege to the corresponding process, we get 4 additional actions when

we combine the ring with application, as shown in the following:

A l : 1 : T .i A -1 S .i A (H . i v i ì à 0) A -i req

-» tkn.i, r e a d y , g rt := -i tkn.i5 fa ls i3, fa ls e
A l . 2 : T .i A -i S.i A (H .i v i ^ 0) A req

-» g rt := tru e
A 2 .1 : T .i A -i S .i A —i H A A —i R .i A -i req

-» tkn.i, r e a d y , g rt := - 1 tkn.i, t r u e , fa ls e
A 2 .2 : T.i A -i S .i A —i H .i A —i R .i A req

-> g rt := tru e
A 3..1 : T .i A —i S .i a ((H .i a i -*■ 0) v (—i H A a R . /)) a -i r e g

- » tkn.i, sh .i, rea d y , g r t := -i tkn.i, - isA.z, / t f / s

A 3..2 : T .i A -i S.i A ((H A A i ^ 0) v (n i f i A R .i)) a r e #

g rt tru e
A 4..1 : (- T .i v i -- 0) A S .Ì A H .i A -i req

-> sh .i, r e a d y , g r t := -i s A i , f a l s e , fa ls e

A 4..2 : (-« T .i v i -= 0) A S .i A H .i A r e #

—> g rt := tru e

Where:

22

T.i = (i = 0 a tkn.0 = tkn.{n — 1)) v (0 < i < n a tkn. f = —¡tkn.(i - 1));

{ token is present }

S.i = (i — 0 a sh. 0 = - 1)) v (0 < / < h a sh. i = —¡sh.(i - 1));

{ shepherd is present }

H.i - sh. i

R.i = ready, i
{ shepherd state is high }

{ shepherd is ready to be passed }

In above algorithm, variable grt is set by the token ring and read by the

application, while variable req is set by the application and read by the token

ring.

Action A1.1, A2.1, A3.1 and A4.1 will be executed when the

corresponding process has the privilege but variable req is false, and action

A1.2, A2.2, A3.2 and A4.2 will be executed when the corresponding process

has the privilege and variable req is true. [Hadd91]

CHAPTER 6 COMPANION TOKEN RING

6.1 Introduction

The companion token ring is also a self-stabilizing token ring. But it only

uses 2 bits. And logically, there are three artifacts of interest, a high token, a

low token, and a companion.

A high token can always execute, companion can always execute

unless a low token is present, and a low token can only execute if a

companion is present.

It is always true that at least one process can always execute. In the

ring, the states are legal when there is exactly one token circulating around

the ring, and the states are illegal when there is more than one circulating

token. The construction of the ring precludes a state in which no token exists.

6.2 Algorithm for Companion Token Ring

Again, consider a ring system that is composed of n processes, and

each process i (0 <= i < n) has 2 Boolean variables named tkn.i and cmp.i.

The right neighbor of process i can read these two variables.

The algorithm for companion token ring is as the following:

23

24

Case 1: i f O < i < n

Al .i : tkn.ì ^ tkn.(i -1) a empi ^ cmp.{i — 1) a - itkn.i
—> tkn.i := —¡tkn.i

A2.i : tkn.i ^ £&«.(/ - 1) a empi & cmp.(i - 1) a tkn.i
—> tkn.i,cmp.i := —¡tkn.i,—¡cmp.i

A3 d : tknd = tkn.(i - 1) a empd ^ cmp.(i - 1)

—» empd := -¡empd

Case 2: i f i = 0

v41.0 : iArc.O = tkn.(n -1) a cmp.0 = cmp.(n -1) a —¡tkn.O
—> tkn.O := —¡tkn.O

A2.0 : ì£h.O = tkn.(n -1) a cmp.O = cmp.(n -1) a tkn.O
—> tkn.O,cmp.O := —¡tkn.O,—¡cmp.O

A3.0 : tkn.O ^ tkn.(n -1) a cmp.O = cmp.(n - 1)

—» cmp.O := -¡cmp.O

• Action A1 allows the token to be passed on when the process has a

low token and a companion.

• Action A2 allows both the token and the companion to be passed

when the process has the companion and a high token.

• Action A3 allows the companion to be passed on when the process

has a companion and has no token.

6.3 Algorithm When Combined with Application

When combined with application, two additional bits are needed, one of

which is set by the token ring and read by the application, and the other is set

by the application and read by the token ring. Since only one action can grant

25

privilege to the corresponding process, we get 1 additional actions when we

combine the ring with application, as shown in the following:

Case 1: if 0 < i < n

A\. 1. / : tkn.i =£ tkn.(i - 1) a cmp.i * cmp.(i - 1) a —¡tkn.i a —ireq
—» tkn.i,grt := —\tkn.i, false

A\ .2./ : tkn.i * tkn.{i - 1) a ^ cmp.(i - 1) a —itkn.i a req

—> g r t :- true
A 2A . / : tkn.i ^ /&??.(/ - 1) a cm/?./ ^ cmp.(i - 1) a tkn.i a -¡req

—» tkn.i,cmp.i,grt := —¡tkn.i,—\cmp.i, false
A l . l . i : tkn.i ^ /&/?.(/ - 1) a cm/?./ ^ cm/?.(/ - 1) a tkn.i a reg

—> gr/ := /rwe
A3 .i : tkn.i = /At?.(/ - 1) a cmp.i ^ cmp.(i - 1)

—» cmp.i := - i cmpd

Case 2: i f i - 0

A l.1 .0 : tkn.0 = tkn.(n - 1) a cm/?.0 = cmp.(n - 1) a —¡tkn.O a - i r a /

—> tkn.O,grt := —¡tkn.O, false
A1.2 .0 : /&n.O = tkn.(n - 1) a cm/?.0 = cmp.in — 1) a —¡tkn.O a reg

-» gr/ := /rwe

^42.1.0: /An.O = tkn.{n - 1) a cmp.O = cmp.in —\) a tkn.O a —¡req
—> tkn.O,cmp.O,grt := -¡tkn.O,-¡cmp.O,true

A 2.2.0 : tkn.O = tkn.(n-Y) a cmp.O = cmp.(n - 1) a tkn.O a re#

—» grt := true
A 3 .0 : tkn.O ^ tk.(n - 1) a cmp.O — cmp.in — 1)

—> cmp.O := - icmp.O

In above algorithm, variable grt is set by the token ring algorithm and

read by the application, while variable req is set by the application and read

by the token ring.

26

Action A1.1 and A2.1 will be executed when the corresponding process

has the privilege but variable req is false, and action A1.2 and A2.2 will be

executed when the corresponding process has the privilege and variable req

is true.

CHAPTER 7 TOKEN RING ALGORITHM IMPLEMENTATION

Java language is used in the coding part of the thesis. Low-level UDP

sockets are used.

7.1 Implementation Overview

The four token ring algorithms are implemented in a similar way, and the

implementation code for them all has the same basic structure. The structure

is described in two views, one is from the view of the classes, and the other is

from the view of the files.

7.1.1 Class View

For each algorithm, there are several classes used to implement the

algorithm:

FinalVariables. class:

This class defines some constant variables used in the

implementation. They are variables such as port numbers, package

size and so on

Processlnfo. class:

This class is used to store the information of every process that wants

27

28

to join the token ring, and it implements the interface Serializable so

that its object can be transported over the network. This class has the

following fields:

■ Address: the address of the machine on which a process

is running

■ Lport: the port number used by a process to listen from its

neighbor(s)

■ NotifyNeighborPort: the port number used a process to

listen from the ring maker to know who is its neighbor.

■ ServerlD: the id of a process

TransportTool. class:

This class is used to send and receive an object of a class through the

network. In this thesis work, it is used to send and receive the objects

of class Processlnfo through the network.

RingMaker.class:

This class is used to create a logical token ring so that every process

that requests to join the ring can know which process(es) it should

communicate with.

Ringlnitialization.class:

A process that wants to join the token ring uses this class to find out

which process(es) is/are its neighbor(s). This class communicates

with the ring maker directly.

29

Listen Token. class:

This class is where each algorithm is actually implemented. Unlike

other classes that are very similar, and even the same, code for this

class is quite different from each other for each algorithm.

The name of this class is also slightly different from each other

according to the different name of each algorithm in order to

distinguish them. For example, the listen token class for companion

token ring algorithm is CompanionToken.class, while the listen token

class for enabler token ring algorithm is EnablerToken.class, and so

on.

7.1.2 File View

For each token ring algorithm, it contains several files as described in

the following:

TransportTool.java:

This is a utility file written to transport a class object over the network

FinalVariables.ja va:

This is also a utility file used to define constant variables.

RingMaker.java and Ringlnitialization.java:

These two files are used to set up the ring. In this thesis work, only

static token ring is considered.

ListenToken.java:

30

This file implements each token ring algorithm.

7.2 Implementation Details:

7.2.1 Ring Maker

Ring maker is the name of the server used to establish a logical ring in

this implementation.

There is algorithm on how to form a logical ring in any connected

distributed system. The algorithm described below starts with forming a

spanning tree first:

1. Elect a leader as the root of the tree

2. The root multicasts to each neighbor and each neighbor

becomes a child of the root.

3. Each neighbor N multicasts to its neighbors Mi

4. Each neighbor Mi replies to the first message it receives,

identified by the root. Mi is then a child of the sender of the first

message.

5. Repeat steps 3 and 4 until every node has received at least one

message.

After the spanning tree is formed, a depth-first traversal of the spanning

tree will be performed to form the logical ring.

1. Each time an actual node is visited, add a logical node to the

logical ring

2. The root will be virtual node 0

31

3. When all the branches of the root have been traversed, the

logical ring is completed.

In this research, multiple processors are simulated using four

computers, and only static token rings are considered. When we simulate 8

processors, it is natural to let each computer simulate 2 processors; while

when we simulate 16 processors, it is natural to let each computer simulate 4

processors, so on and so forth. The Figure 1 shows an example of simulating

16 processors on 4 computers.

Figure 1: Simulating 16 processors on 4 computers

To make the simulation look more like a distributed system, two

neighbors will not be allowed to run on one same machine. For the sake of

simplicity, instead of using the procedure described above to form a logical

token ring, I used a simple algorithm to create a logical ring.

32

4. The four computers used to simulate multiple processors are given an

id of 0, 1,2, 3, respectively. Each simulated processor is also given an

ID according to the ID of the computer that it is running on. The

formula to calculate ID for each simulated processor is:

Computer ID + c * i (where 0 < i < number of processors

simulated on that computer, and c is the number of actual

computers used for simulation)

According to this formula, if we simulate16 processes on 4

computers, the IDs of the 4 processors simulated on computer with

ID 0 will be 0, 4, 8 and 12, the IDs of those on computer with ID 1 will

be 1, 5, 9 and 13, the IDs of those on computer with ID 2 will be 2, 6,

10 and 14, and finally, the IDs of those on computer with ID 3 will be

3, 7, 11 and 15, as indicated in Figure 1.

And if we want to use different number of computers to simulate multiple

processors, say, if we use 3 computers to simulate 15 processors, the IDs will

be assigned as shown in Figure 2:

33

Figure 2: Simulating 15 processors on 3 computers

4. Each simulated processor will send its ID to the ring maker server

when it joins the ring.

4. The Ring maker server assigns neighbors according to the ID of each

simulated processors. Since step 1 guarantees that no adjacent IDs

can be assigned to simulated processors that run on the same

machine, we can now assign simulated processors with adjacent IDs

as neighbors without worry. Again, we use simulating 16 processors

on 4 computers as an example to explain. For the algorithms which

require each processor to listen from one neighbor and talk to another

neighbor, it will let 0 talk to 1, 1 talk to 2, ... 14 talk to 15, and15 talk to

0, which gives the result of 0 listening from 15, 1 listening from 0, ...

14 listening from 13, and 15 listening from 14, thus, avoiding

neighbors running on same computer. The following figure shows the

34

scenario. In Figure 3, C represents computer, and P represents

simulated processors.

CO

Cl

C2

C3

Figure 3: Assigning neighbors in one direction

4. For alternator token ring algorithms, which, unlike the other three

algorithms, require every simulated processor to talk to and listen from

two neighbors, it is also easy to assign neighbors. We still use 16

simulated processors on 4 computers as an example. In this case, the

ring maker server will assign 15 and 1 as 0’s neighbors, 1 and 3 as 2’s

neighbors, ... 13 and 15 as 14’s neighbors, and 14 and 0 as 15’s

neighbors. This scenario is depicted in the following figure, which is

similar to the above figure except that two directional arrows are used.

Again, in the figure, C represents computer, and P represents

simulated processors.

co

Cl

C2

C3

Figure 4: Assign neighbors in two directions

7.2.2 Listen Token

For each token ring algorithm, there are two methods provided in the

listen token class. Both of the methods implement the token ring algorithm,

and the only difference is that one of them considers the case when

application is combined, while the other does not consider it. The one

combined with application is called when we want to measure the waiting time

for a process to get privilege after its request under the high contention,

moderate contention and low contention, and it is also used when we want to

measure the number of critical section executed per amount of time, while the

other is used to measure the stabilization time and token delivery time for

each token ring algorithm.

CHAPTER 8 APPLICATION DESCRIPTION AND

IMPLEMENTATION

8.1 Application Description

A simple application used as benchmark is developed in the coding part

of the thesis.

The application is a simulation of an application that asks people to

select 20 favorite songs from a list of 1000 available songs. The application

consists of a server named Result that processes the response of the , and

multiple terminals from where people can input their choice. Each terminal will

require updating the result (which is the critical section part in this application)

after it receives response from a person. It is possible for several terminals to

request updating at the same time, and hence, the token ring algorithms can

be used to provide mutual exclusion mechanism.

The simulation used 5 computers, which are connected together locally

to form a distributed computing environment during the test. All the terminals

are simulated on 4 computers, and the 5th computer is used to run the code

for the critical section part as well as other code pieces that are not related to

the terminal simulation.

If it were a real application terminal and not a simulated one, there

36

should be at least 3 obvious scenarios—the terminal is idle and is waiting for

somebody to use, or somebody is using it to input his choice (note that some people

may finish their choice very quickly, while some other people may take a longer time

to consider their choice), or the choice was done and the terminal needs to update

the data (to execute the critical section). In the simulation, all that we care is about

each terminal requesting access to the critical section part, and we do not care to

differentiate if the terminal is idle or if somebody is using it. Therefore, we just let

each simulated terminal sleep some random time to simulate the terminal idle state

as well as user’s different response time. As for the responses from people, the

simulation is done by generating 20 different numbers range from 1 to 1000

randomly. Here, 20 numbers represent 20 songs selected by a person, and the value

of each number represents the ID for each song, ranging from 1 to 1000.

8.2 Implementation Overview

The application implementation is also described in two views. One is from the

view of classes, and the other is from the view of files.

8.2.1 Class View

The application part contains three classes as the following:

Polllnfo.class:

The application server uses this class to store the information

concerned in the result. It contains only two fields— the ID of a

37

song and the support number for the song with that ID.

Application Server, class:

This class is used to implement a server that stores the result. This

server plays the critical section part in the application, hence only the

terminal that gets the privilege can have access to it. What it does is to

receive the response from the privileged terminal, process the

response and then notify the privileged terminal that the update to the

result is finished so that the privileged terminal can release its privilege.

Simulated Terminal.class:

This class is used to simulate terminals for the application.

8.2.2 File View

There are only two files for the application implementations.

ApplicationServer.java:

This file declares and implements class Info and class Result.

SimulatedTerminal.java:

This file corresponds to SimulatedTerminal.class.

8.3 Implementation Details

8.3.1 Application Server

The application server contains several methods. The main method waits to

receive response from privileged terminals, and after it gets the response, it will call

38

the updateResult method, which processes the response passed by the main

method in the format of String— namely, recovers the selected 20 numbers from the

string, updates the support numbers for the related 20 songs, and sorts the array.

After all these things are done, the main method will send a message to the

privileged terminal that the update is done so that the terminal can know that it is

safe to release the privilege.

8.3.2 Simulated Terminal

When the simulated terminal starts running, it combines with the token

algorithm first. After that, what it does is to wait for people to input their responses

(idle time), to accept response from a person (different person has different response

time), to request access to the critical section, to enter the critical section after it gets

the privilege, and to release the privilege when it finishes accessing the critical

section, and then it goes back to wait for another response and the cycle repeats

again and again.

Note that the idle time—the time for the terminal to wait for people to use it,

and the different response time used by different people are simulated by let the

terminals sleep different amount of time because for the purpose of performance

evaluation, Our simulation does not need to differentiate idle time and response time.

Also note that the responses from users are simulated by generate 20 different

numbers ranging from 1 to 1000 randomly

39

The waiting time—the time for a terminal to get privilege after it requests for it

is measured by each terminal and the average waiting time can be calculated.

40

CHAPTER 9 CODE FOR PERFORMANCE MEASUREMENT

For the comparison part of this thesis, the focus is on the comparison of

stabilization time and token delivery time of the four token ring algorithms. For

the stabilization time measurement, each ring is started from an arbitrary

illegal state. And for the token delivery time measurement, the average time

for a process to get privilege again since the last time it released privilege is

measured.

The time used for each algorithm to finish certain amount of critical

section executions is also measured.

9.1 Stabilization Time Monitor

This is a server that is used to record stabilization time of a token ring.

The algorithm for this server was designed in the following way:

1. The server will first receive a message from ring maker to know the

time when the token ring is formed.

2. The token ring is set to start at an arbitrary illegal state. Each

participating process in the token ring will send a message to the

stabilization time monitor each time it receives the privilege.

3. When the stabilization time monitor receives the first message from a

41

42

privileged process, it records the ID of that process in a variable named

firstSender. It also records the time that the first message is received in

a variable named startDelivery. It always assumes that the token ring

has been stabilized, and therefore, it expects to receive the next

message from firstSender’s next neighbor N. If the next message it

receives is from the process that it expects, then it will expect to

receive the next message from N’s next neighbor N+1, and again if it

does receive the next message from N+1, then it will expect to receive

the next message from M’s next neighbor N+2, and this repeats until

the message is expected to be received from firstSender again and it

does receive from firstSender.

4. If the message is received from a process that the server does not

expect, that indicates the existence of an illegal state. The server will

change the value of firstSender to the ID of the process that just sent a

message, and it also records the time the message is received in

variable startDelivery. The cycle in step 2 repeats again.

5. The server broadcasts a message to all processes to notify them of

the stabilization of the token ring and each privileged process will not

send message to the server after receiving the broadcast message.

6. The server calculates the stabilization time by using the following

formula:

Stabilization time = startDelivery - (the time when the ring is formed)

43

When the token ring finally stabilized, the report of privilege will be

something that looks like the following: 1 7 2 3 8 9 1 0 1 1 1213141501 2 3 4

5 6 7 8, where the first 8 is the last out-of-order report. When the server

calculates the time used for stabilization, snapshot approach is used to make

a valid measurement. In the case of 1 7 2 3 8 9 10 11 12 13 14 15 0 1 2 3 4 5

6 7 8, the first report by 8 would indicate the achievement of stabilization,

even though we are not confident about it until later time when the second 8 is

received.

It seems simpler if we let the server broadcasts request for state to all

ring processes, and the processes send states back to the server, and then

the server inspects the states to see if there is only one privilege exists. If

more than one exists, the server will broadcast again until there is only one

privilege. But on reflection, we see that this method is not quite feasible. Since

we are doing real time package communications, once the server broadcasts

a request for state report, we cannot guarantee that all the clients can receive

the request at the same time and report the states at the same time. Suppose

the token ring has already stabilized when process 1 got the broadcast

request, it has the privilege, and will report that to server, meanwhile it

releases the privilege to process 2, process 2 may get the state report request

till then, and it will also report privilege to server. In this case, the server will

see two privileges while actually there is only one. Therefore, this method was

not adopted in the implementation.

44

9.2Token Traversal Time Monitor

This is a server that can be used to measure the time for the privilege to

traverse a cycle under different degrees of contention, namely, the time for a

process to get the privilege again after it releases the privilege last time. In

theory, the token traversal time will be:

T = (n-X)*a + k*cs

Where Tis the token traversal time, n is the number of ring processes, a

is the arbitration time for each algorithm, k is the number of critical section

executed in the traversal cycle (0 < k < n - l^ anc| cs ¡s the time used to

execute critical section. Note that when k is equal to 0, which occurs when no

critical section is executed during the token traversal cycle, Tis the pure token

delivery time with no interference from outside.

This server can measure the exact value of T, and how many times the

critical section is executed during the time T, which is the value of k in the

above formula.

To measure T and how many times the critical section is executed in a

cycle, the algorithm is designed as the following:

1. Each process will send a message “get” to the server when it gets the

privilege, send a message “cs” when it starts executing the critical

section, and send a message “release” when it releases the token.

2. Since we need to measure the time for a process to get the privilege

again after it releases it last time, when the server receives “release", it

45

will begin to record it as the time that the traversal starts, and when it

receives “get” from the same process, it will consider it as the time that

the traversal ends During this period, if it receives “cs”, it will update

the count of critical section executed by adding 1.

3. The server keeps a two-dimension array of class Measurelnfo objects,

which is measureArray[r][p], where r is the measure size for each

process, and p is the number of ring processes. The Measurelnfo

object stores the information about the time T and how many times the

critical section has been executed in a token traversal cycle. For

example, if it is the first time to measure the token traversal time for

process P3, then the information measured will be stored in

measureArray [0][3], and if it is the third time to measure the token

traversal time for P11, then the information measured will be stored in

measureArray [2][11], and so on.

4. The server can control how many times to measure the token traversal

time for each process by changing the value of r in step 3, and

calculates the arbitration time for each algorithm according to the

formula described above.

5. The server is also used to calculate how much time is used for each

algorithm to finish certain amount of critical execution executions. This

is useful when we compare the performance of the 4 algorithms

combined with the simulated application.

46

9.3 Contention Control

To compare the performance of each algorithm fairly, we need to give

each algorithm an identical application. We need to ensure that every

algorithm has the same test environment. That means, the application

combined with different token ring algorithms must do exactly the same task

with no variations.

9.3.1 Method to Ensure Identical Test Environments

Consider the actions of the application in the scenario we have created.

Simply stated, the application will be in one of the following 4 states:

• Idle (no current uses)

• Executing non-critical section

• Waiting for privilege to execute critical section

• Executing critical section

We can re-characterize these actions in terms of token interest as

follows:

• No interest in token (idle or executing non-critical section)

• Waiting for token (performance comparison)

• Holding token (while executing critical section)

The time used to wait for token is what we want to compare between

different algorithms. As for the idle time and the non-critical section time, we

simulate them by letting the simulated terminal sleep randomly. But to give

47

each token ring algorithm identical test conditions, we also need to make sure

that the sleeping time for each algorithm is identical. To do this, the following

method is used:

1. Generate a two-dimension integer array SleepingTime[t][n], where t is

the maximum rows of the array, and n is the number of terminals.

Hence, each column in the array corresponds to a terminal so that

when there are 16 processes, there will be 16 columns.

2. The array is filled with integer numbers generated randomly— these

numbers in the array indicate the time the processes should sleep

before request for critical section— this sleep is used to simulate the

terminal idle time and the different response time used by different

users.

The array will be something that looks like the following after it is filled

with randomly generated integers:

21 0 122 3 51 10 421 425 12 153 15 14 19 9 531

12 122 18 564 122 18 654 33 21 15 753 531 16 531 531

14 13 155 15 20 564 8 421 424 531 538 17 541 15 0

111 134 155 4 153 11 351 12 20 19 135 21 531 10 51

Table 1: Sleeping Time

Table 1 is just an example, and the real array used will be filled with

numbers within range determined according to the contention degree that

48

we wish. Ideally, they should be specified in the consideration of the

number of requests for critical section during one token traversal cycle.

Say, if we consider 1 requests in one cycle as a low contention degree,

then it takes totally (1 * critical section time + token traversal time) for the

token to finish one cycle, and therefore, token traversal time should play a

great part in sleeping time specification. But according to what we got

from the experimental runs, the token traversal time for the 4 token ring

algorithms is quite different, and it is hard to use one token traversal time

to determine similar contention degree for all the token ring algorithms.

We know that in low contention states, average waiting time should

be relatively constant because the number of critical section executed per

token traversal of the ring is small. And on average contention level, the

time a process makes a request for the token should be approximately

halfway around the ring. Mathematically, we can describe this as:

w < 1/2 * (t + cs)

where w is the average waiting time, t is token traversal time, and cs is

critical section execution time. In high contention states, we can assume

that an increase in workload will have a direct effect on system

performance, as measured by waiting time. One way of viewing this is that

if a process usually must wait for other processes to finish the critical

section execution to execute its critical section, the contention is high. In

49

other words, when that point is reached, process idle time is excessive.

Mathematically, we can represent this as

w> 1 /2 *t + cs,

where w is the average waiting time, t is token traversal time, and cs is

critical section execution time. This represents a fairly fine delineation,

and indeed, graphically, it could be represented that moderate contention

is only an inflection point between low contention, a range of values where

waiting time is relatively insensitive to increase in workload, and high

contention, a range of values where waiting time is increasing directly with

increases in workload.

Based on the proceeding, the method used to specify the sleeping

time for each terminal is as the following: first we tried different numbers

to specify the sleeping time ranges, then used these ranges and ran the

application with different token ring algorithms combined. Through

observation, we determined the ranges that give similarly low, moderate

and high contention level.

For the low contention level, we determined an average sleeping

time range ST that gives each terminal some waiting time (the time

between its request for critical section and its being granted the token)

that will remain fairly constant even when using a larger range than ST.

For the high contention level, the shortest time for a terminal to wait

before it can execute critical section is 0, and the longest time is Token

50

traversal time +(n-1) * (critical section time), where n is the token ring size.

The average case should be the average of these two values. Since the

token traversal time for the 4 token algorithms ranges from 121 to 1781

milliseconds, and the critical section time ranges from 900 to 1150

milliseconds, the average case for a token ring with size 16 should be

close to the range from 7560 milliseconds to 9415. And therefore, we

consider the sleeping time range that gives the waiting time close to this

range as the range for high contention level.

For the moderate level, we used the range between the low level

and the high level.

9.3.2 Usage of the Sleeping Time in Terminals

1. Declare a variable j of type integer, and initialize it to 0.

2. At the beginning, each terminal i, where 0 <= i < n, fetches the value of

SleepingTime [j][i]. After that, it increases the value of j by 1. If j is out

of the index of the IdleTime array after the increase, set it to 0.

3. After the value is fetched, it will enter sleep. The sleeping time period

is indicated by the number it just fetched. This is to simulate the

terminal idle time and the different response time from different people.

It avoids the problem that all the processes request access to critical

section at the same time.

51

4. After the sleep, it will generate 20 valid numbers to simulate a

response from a person, and then will request access to the critical

section. When it gets privilege, it will execute critical section and

releases the privilege after the critical section execution is finished.

5. Repeat step 2 to 4, until the terminal is terminated.

The good thing to generate idle time in advance this way rather than to

generate them randomly in run time is that we can give a fair and precise

comparison of different token ring algorithms. In this way, we can make sure

that the test environment is identical for each token ring algorithm—the

terminals will generate responses according to same procedure because the

terminal idle time and the response time of the simulated terminal users are

identical.

The simulated terminals were run on 4 computers with each computer

simulating same number of terminals, and all the code for measuring

performance was run on the 5th computer during the test.

9.4 Relationships between Different Servers

In chapter 7, code for algorithm implementation was introduced, in

chapter 8, code for application implementation was introduced, and in this

chapter, code for performance measurement was introduced. Now it is time to

see the relationships between different code pieces.

52

We will begin by giving a simple review about the servers introduced.

1. Ring maker: used to form a logical token ring

2. Simulated terminal: used as terminals of an application system, it is an

application combined with token ring algorithm.

3. Application server: in charge of updating the data, only the terminal

with privilege can talk to it.

4. Stabilization time monitor: used to measure stabilization time for each

token ring algorithm.

5. Token traversal time monitor: used to measure the time for a privilege

traversal cycle, records how many critical sections are executed during

the cycle, and calculates arbitration time for each process.

The relationships between different servers are shown in figure 5. Note

that we run the simulated terminals on computers with IDO, 1,2 and 3, and all

the code for servers and monitors are run dn computer with ID 4.

53

Figure 5: Relationships between servers

CHAPTER 10 PERFORMANCE COMPARISON

In Chapter 7, 8 and 9, the implementation for the 4 token ring algorithms

combined with the test application, and the implementation of performance

measurement were described. Now we need compare the performance of

each token ring algorithm. We will start with an overview of performance

comparison.

10.1 The Upper Bound Overview for Each Token Ring

As mentioned in chapter 1, the comparison of performance will be

focused on the stabilization and token delivery, and therefore, only the upper

bounds for these two metrics are listed here.

Token Ring Stabilizes in Delivers Token in

Enabler 0 (n) Ò F)

Alternator 0 (n) 0 (n)

Shepherd o W) 0 (n)

Companion 0 (n) 0 (n)

Table 2: Upper bound for 4 algorithms compared

54

55

The proof of these upper bounds is out of the scope of this research,

and this table is listed here to indicate what we should expect from the

sample run of the implementation.

In section 10.2 and 10.3, the performance comparisons of

stabilization time and token delivery time are given respectively.

10.2 Stabilization Time Comparison

By observing the results from experimental runs, we can see that the

upper bounds for stabilization time given in table 2 are verified in the

implementation. Details about the results and analysis are given in 10.2.1 and

10.2 .2 .

10.2.1 Simulating 4 Terminals per Computer

The following table is the data of stabilization time in milliseconds from

the experimental runs, since each run gives slightly different result, average

value is calculated by running each set of code for 10 times.

Note that the data in table 3 were collected by letting each computer

simulate 4 terminals, namely, when the ring size is 8, we used 2 computers,

and when the ring size is 12, we used 3 computers, and when the ring size is

16, we used 4 computers. In this way, performance effects due to multiple

simulated terminals executing on each actual computers are made consistent.

56

Token Ring Ring size 8 Ring size 12 Ring size 16

Enabler 201 311 425

Alternator 291 461 610

Shepherd 137 267 561

Companion 123 201 270

Table 3: Stabilization time 4 processes per computer

The following charts drawn from the data in table 3 help us to see the

trend for each algorithm more clearly.

1. The data for enabler token ring shows that it has a good

performance in stabilization, and the chart drawn from the data is

nearly a line, which verifies that its upper bound is O (n), where n is

the size of the ring.

Stabilization Time: Enabler

♦ Enabler

---Linear
(Enabler)

8 12 16
Process Number

Figure 6: S tab iliza tion tim e: E nab le r token ring

57

2. The data for alternator token ring shows that even though it has an

upper bound of O (n), it takes longer time to stabilize compared with

other algorithms with same upper bounds, namely, the companion

token ring and the enabler token ring. And for the ring sizes we

compared, it even takes longer time compared with shepherd, which

has an upper bound of O (n2). But the chart drawn from the data is

nearly a line, which verifies that its upper bound is O (n), where n is

the size of the ring.

Figure 7: Stabilization time: Alternator token ring

3. The data for shepherd token ring shows that the time used for it to

stabilize increases very quickly with the ring size increases, and the

58

chart drawn from the data is a curve of square, which verifies that its

upper bound is O (n2), where n is the size of the ring.

Stabilization Time: Shepherd

600

500

400
0

•§ 300
e- i

200

100

0
8 12 16

Process Number

Figure 8: Stabilization time: Shepherd token ring

4. The data for companion token ring shows that it has a good

performance in stabilization, and the chart drawn from the data is

nearly a line, which verifies that its upper bound is O (n), where n is

the size of the ring.

59

After viewing the charts of stabilization time for each individual token

ring algorithm, now we generate a chart with the data from 4 algorithms on it.

Comparison in S tab iliza tio n Time

Process Number

Figure 10: S tab iliza tion tim e com parison fo r 4 token rings

60

From figure 10, we can see that each algorithm has the trend as their

upper bounds indicate. We can see clearly that the stabilization time for

shepherd increases very fast, even though it has a good performance when

the token size is small, and the stabilization time for the other three algorithms

increases linearly when the ring size increases.

As alternator token ring has a lower level protocol—the ring alternator,

and it needs to communicates with two neighbors, it takes more time to

stabilize, and therefore, though it has an upper bound of O (n), it uses more

time than the other two algorithms with O (n) upper bound.

10.2.2 Simulating 8 Terminals per Computer

We also have some experimental runs with each computer simulating 8

terminals to see the performance difference. And table 4 listed the data for

stabilization time with different token ring sizes.

Token Ring Ring size 16 Ring size 32

Enabler 4061 7853

Alternator 8716 16284

Shepherd 5682 24067

Companion 2864 6113

Table 4 Stabilization time 8 processes per computer

From table 4, we can see that the trends for stabilization time for each

61

algorithm still hold, but with the time value increases more than doubling

compared with each computer simulating 4 processes. This is because of the

limitation of physical memory. And due to this limitation, we did not simulate

more processes.

10.3 Token Delivery Time Comparison

By observing the results from experimental runs, we can see that the

upper bounds for token delivery time given in table 2 are verified in the

implementation. Details about the results and analysis are given in 10.3.1 and

10.3.2

10.3.1 Simulating 4 Terminals per Computer

The following table is the data of token delivery time (time for token

traversing a cycle in the ring) in milliseconds from the experimental runs,

since each run gives slightly different result, average value is calculated by

running each set of code for 10 times.

Note that the data in table 5 were collected by letting each computer

simulate 4 terminals, namely, when the ring size is 8, we used 2 computers,

and when the ring size is 12, we used 3 computers, and when the ring size is

16, we used 4 computers. In this way, performance effects due to multiple

simulated terminals executing on each actual computers are made consistent.

62

Token Ring Ring size 8 Ring size 12 Ring size 16

Enabler 464 996 1781

Alternator 569 1011 1422

Shepherd 151 230 284

Companion 57 91 121

Table 5: Token delivery time 4 processes per computer

The following charts drawn from the data in above table help us to see

the trend for each algorithm more clearly.

1. The data for enabler token ring shows that it has a bad performance

in token delivery time, and the chart drawn from the data is a curve

of square, which verifies that its upper bound is O (n2), where n is the

size of the ring.

Token Traverse: Enabler

2000

1500 ---------------- y *
CD ♦ Enabler1000 ------------ j f -------------
E-I Poly. (Enabler)

500 -----------------

0 _________ i_________ i_________

8 12 16

Process Number

Figure 11: Token de live ry tim e: E nab le r token ring

63

2. The data for alternator token ring shows that the time used for token

delivery increases linearly with the linear increase of the ring size, and

the chart drawn from the data is also nearly a line, which verifies that

its upper bound is O (n), where n is the size of the ring.

Token Traverse: Alternator

♦ Alternator

---Linear
(Alternator)

8 12 16

Process Number

Figure 12: Token delivery time: Alternator token ring

3. The data for shepherd token ring shows that although it has the

worst performance in stabilization, it performs pretty well in token

delivery, and the chart drawn from the data is linear, which verifies

that its upper bound is O (n), where n is the size of the ring.

64

Token Traverse Shepherd

♦ Shepherd

---Linear
(Shepherd)

8 12 16

Process Number

Figure 13: Token delivery time: Shepherd token ring

1. The data for companion token ring shows that it not only has a good

performance in stabilization, but also performs well in token delivery.

The chart drawn from the data is nearly a line, which verifies that its

upper bound is O (n), where n is the size of the ring.

Token traverse: Comapnion

140
120

100
§ 80
£ 60

40
20
0

8 12 16

Process Number

Figure 14: Token delivery time: Companion token ring

65

After viewing the chart of token delivery time for each individual token

ring algorithm, now we generate a chart with the data from 4 algorithms on it.

Figure 15: Token delivery time comparison for 4 token rings

From the chart, we can see clearly that each algorithm has the trend

as their upper bounds indicate. We can tell that the performance in token

delivery time for companion and shepherd token ring is close. The enabler

performs worst because the delivery time increases very fast when the ring

size increases. Again, although alternator token ring has the upper bound of

O (n) in token delivery time, it takes longer than companion and shepherd

token because of its lower level protocol and the more messages it has to

deal with.

66

10.3.2 Simulating 8 Terminals per Computer

We also have some experimental runs with each computer simulating 8

terminals to see the performance difference. And table 5 listed the data for

stabilization time with different token ring sizes.

Token Ring Ring size 16 Ring size 32

Enabler 10268 57398

Alternator 9923 20482

Shepherd 2678 5073

Companion 1896 4136

Table 6 Token delivery time 8 processes per computer

From table 5, we can see that the trends for token delivery time for

each algorithm still hold, but with the time value increases more than doubling

compared with each computer simulating 4 processes. This is because of the

limitation of physical memory. And due to this limitation, we could not simulate

more prbcesses.

10.4 Comparisons under Different Degrees of Contention

The tests in section 10.2 and 10.3 take no consideration of the requests

from application, in another word, it only concerns with the pure stabilization

time and token delivery time with no interference from outside. In this section,

we cpnsider the requests to access critical section from the simulated

terminals and to see the performance of each algorithm.

67

In the tests, we make each algorithm combined with the simulated

application system. The interest of measurement is the waiting time and total

time needed to finish certain amount of critical executions. By saying waiting

time, here we mean the time for a simulated terminal to get the privilege after

it requests access to critical section.

We only test a token ring with size 16 simulated on 4 computers and

combined with the application, and the number of critical section to be

executed is set to 100. Table 5 shows the average waiting time with different

sleeping ranges for each simulated terminal to get privilege after it requests.

10.4.1 Waiting Time Comparisons

We tried different numbers to find appropriate values to determine the

sleeping range so that we can manipulate the contention levels. What listed in

table 7 is the waiting time for different algorithms under different average

sleeping times.

T
R

70000 50000 35000 30000 25000 22500 17500 12500 10000 9000 8000

Enabler 2050 2519 2915 3260 3613 3865 5188 5387 6878 8684 8769

Alternator
1804 2134 2471 2605 2996 3524 4139 4961 6297 7052 7123

Shepherd 175 230 261 490 607 1284 1644 2334 2524 5764 6278

Companion
149 ' 183 255 424 523 903 1462. 2058 2281 5721 6027

Table 7: Waiting time under different average sleeping times

6 8

To view the data more obviously, we created charts for different

algorithms as the following:

1. Waiting time for enabler token ring.

Waiting time: enabler

10000
9000

8000

7000 !

6000 g
5000 |

4000 8>CD
3000 2<
2000

1000

0
80000 70000 60000 50000 40000 30000 20000 10000 0

Average sleeping time

Figure 16: Waiting time: Enabler token ring

2. Waiting time for alternator token ring

Waiting time: alternator

8000

7000

6000

5000 £

4000 g
3000 Ì
2000

1000

0
80000 70000 60000 50000 40000 30000 20000 10000 0

Average waiting time

Figure 17: Waiting time: Alternator token ring

69

3. Waiting time for shepherd token ring

Figure 18: Waiting time: Shepherd token ring

4. Waiting time for companion token ring

Figure 19: Waiting time: Companion token ring

The graphs in above 4 charts have similar shapes, and this verifies the

delineation we described in section 9.3.1. At the low level contention, there is

70

no much difference in average waiting time, but with the contention increases,

the average waiting time increases sharply.

From the data given above, it is clear to see that under low-level

contention, the waiting time for each algorithm is relatively short. And the

waiting time under high-level contention is impressively long.

10.4.2 Number of Finished Critical Section Comparisons

Similar to the way we used to measure the waiting time, we measured

the number of critical sections executed for each algorithm under different

average sleeping times, given a time period of 2000,000 milliseconds.

Table 8 listed the detailed data.

X T
r \ 70000 50000 35000 30000 25000 225Q0 17500 12500 10000 9000 8000

Enabler 416 588 786 905 1087 1160 1338 1401 1472 1626 1643

Alternator 419 598 816 921 1122 1182 1396 1427 1506 1723 1842

Shepherd 423 607 859 980 1219 1421 1537 1722 1857 1946 (1966

Companion 424 610 864 110Q 1287 1425 1561 1819 1908 1951 1979

Table 8: Number of critical section executed under different average sleeping times

To view the data more obviously, we created charts for different

algorithms as the following:

1. Number of critical sections executed by enabler token ring in 2000,000

milliseconds under different average sleeping times:

71

2. Number of critical sections executed by alternator token ring in

2000,000 milliseconds under different average sleeping times:

Figure 21: Number of critical section executed: Alternator token ring

72

3. Number of critical sections executed by shepherd token ring in

2000,000 milliseconds under different average sleeping times:

Figure 22: Number of critical section executed: Shepherd token ring

4. Number of critical sections executed by companion token ring in

2000,000 milliseconds under different average sleeping times:

Figure 23: Number of critical section executed: Companion token ring

73

Again, the graphs in the charts have similar shapes. We can see clearly

that although the waiting time under low contention is short, the number of

critical section executed is also small, and under high contention, the number

of critical section executed is much greater. This is because that given same

amount of time, under low contention, less processes request for the access

to the critical section, while under high contention, more processes request for

execute critical section.

We can also see that under low contention, there is no big difference in

the number of critical section executed between different algorithms, while

under high contention, the difference is obvious.

From what discussed in section 10.4.1 and 10.4.2, we can see that the

performance of the token delivery time affects the waiting time and the

number of critical section executed per time period no matter the application

system is under what contention level. Put the 4 algorithms under same

conditions, it is clearly seen that the faster the token delivered, the less the

waiting time, and the more critical section can be executed during a certain

amount of time.

CHAPTER 11 CONCLUSIONS

As we can see from the performance comparison in chapter 10, we can

safely draw the conclusion that companion token ring has a good

performance in general because it takes an upper bound of O (n) both in

stabilization time and token delivery time. Though alternator token ring has the

same upper bounds with companion token ring, it takes more time compared

with the latter because it must wait for the alternator to stabilize and it must

communicate with two neighbors. As for shepherd token ring, it has good

performance in token delivery aspect, but its stabilization aspect is much

worse than the other three algorithms, which means shepherd token ring can

cause worse damage in the case of transient faults occurring compared with

other algorithms under same conditions. And for the enabler token ring, it can

stabilize very fast, but once stabilized, the system with enabler token ring

would perform less critical section executions compared with other three

algorithms under same conditions due to its slow token traversal time.

What described above is in general. If a choice needs to be made

among these different algorithms, more factors, such as the size of the

system, the requirement for fault tolerance degree, and so on, need to be

considered.

74

75

In this research, we focused on the performance evaluation and

comparison among these 4 token ring algorithms, and there is some future

work left to do. (1) It would be more general if other algorithms (e.g.[FD94])

were also considered. (2) Under low contention level, a central monitor for

scheduling permission to execute critical section might be a better choice. (3)

Further explanation of relationships between token time, critical section time

and non-critical section should be considered.

REFERENCES

1) [GH96] Mohamed G. Gouda, F. Furman Haddix: The Stabilizing Token
Ring in Three Bits, Journal of Parallel and Distributed Computing 35(1),
43-48, 1996

2) [GH97] Mohamed G. Gouda, F. Furman Haddix: The Linear Alternator,
International Informatics Series 7: Self-Stabilizing Systems, 31-47,1997

3) [Dijk74] Dijkstra, Edsger W: Self-stabilizing systems in spite of distributed
control. Commun. ACM (Nov. 1974)

4) [Hadd91] F. Furman Haddix: Stabilization of Bounded Token Rings.
Master’s thesis, University of Texas at Austin, Dec 1991. (Also Tech. Rep.
ARL-TR-91-31, Applied Research Laboratories, University of Texas at
Austin, Dec. 1991).

5) [PV2000] Frank Petit, Vincent Villain: Self-stabilizing depth-first token
circulation in asynchronous message-passing systems

6) [Herman98] Ted Herman, Self-stabilization Bibliography: Access guide

7) [Dijk82a] Dijkstra, Edsger W: The solution to a cyclic relaxation problem,
Selected writings on computing: a personal perspective, 34-35, 1982

8) [Dijk82b] Dijkstra, Edsger W: Self-stabilization in spite of distributed
control, Selected writings on computing: a personal perspective, 41-46,
1982

9) [LL90] L Lamport, L Lynch: Distributed computing: models and methods,
Handbook of theoretical computer science, Chapter 18, 1157-1199

10) [BGM93] JE Burns, Mohamed G. Gouda, RE Miller: Stabilization and
pseudo-stabilization, distributed computing, 7, 35-42,1993

11)[BYC88] F Bastani, I Yen, I Chen: A class of inherently fault tolerant
distributed programs, IEEE Transactions on software engineering, 14,
1432-1442, 1988

76

77

12) [BYZ89] F Bastarli, I Yen, Y Zhao: On self-stabilization, non-determinism
and inherent fault tolerance, Proceedings of the MCC workshop on self-
stabilizing systems, MCC technical report No. STP-379-89, 1989

13) [BY93] F Bastani, IL Yen: Inherent fault tolerance in decentralized process
control systems, International symposium on autonomous decentralized
systems, Kawasaki Japan, 267-274, 1993

14) [YBL91] IL Yen, F Bastani, EL Leiss: An inherently fault toleranr sorting
algorithm, Proceedings of the fifth international parallel processing
symposium, 34-42, 1991

15) [FD94] M Flatebo, AK Datta: Two-state self-stabilizing algorithms for
token rings, IEEE Transactions on Software Engineering, 20:500-504,
1994

APPENDICES

78

APPENDIX 1 ALTERNATOR TOKEN

cnport java.io .*;
mport j ava.net.*;
mport j ava. lang.*;
**
This class implements alternator token ring algorithm

/
lass AlternatorToken extends Thread

private InetAddress ringMakerAddress;
private InetAddress timeMonitorAddress;
private InetAddress measureAddress;

public int serverlD;
public int leftNeighborPort;
public int rightNeighborPort;
private int action;

private InetAddress leftNeighborAddress;
private InetAddress rightNeighborAddress;

private DatagramSocket sendSocket;
private DatagramSocket actionSocket;
private DatagramSocket talkToRMSocket; //used to talk to Ring Maker
private DatagramSocket talkToTimeSocket; //used to talk to timeMonitor
private DatagramSocket listenSocket; //socket used to listen from its precessor
private DatagramSocket talkTokenTraverseSocket; //used to talk to timeMonitor

public boolean grant;
private PollServer pollServerInCharge; //proecess belongs to which application

private
private
private
private
private
private
private
private
private
private
private
public
public

boolean b; / /fo r general process(1 to Max processID - 1) its e lf
boolean bO; //fo r process bO
boolean bn; / /fo r process bn
boolean leftb; / / f i r s t neighbor
boolean rightb; //second neighbor
boolean tkn;
boolean pTkn;
boolean rdy; //loca l
boolean T; //used as time guard
long start; //used to calculate time out
final int TimeOut = 2;
boolean ignore = false; //used to control i f to send msg when executing cs
boolean reportCS = false; //used to control i f to send msg when executing cs

/**
* constructor
* /
public AlternatorToken(InetAddress addr, int listenPort, int talkToRMport, PollServer pstf

, int sid)
{

ringMakerAddress = addr;
timeMonitorAddress = addr;
measureAddress = addr;
pollServerInCharge = ps;
serverlD = sid;

start = System.currentTimeMillis();

leftNeighborPort = -1;
rightNeighborPort = -2;
leftNeighborAddress = null;
rightNeighborAddress = null;
grant = false;
action = 0;

try
{

sendSocket = new DatagramSocket();
actionSocket = new DatagramSocket();
talkToTimeSocket = new DatagramSocket();
talkTokenTraverseSocket = new DatagramSocket();
listenSocket = new DatagramSocket(listenPort, InetAddress.getByName("147.26.101.

141”));
talkToRMSocket = new DatagramSocket(talkToRMport, InetAddress.getByName("147.26.

101.141"));
} catch(SocketException e) {;}

catch (UnknownHostException e) { System.out.println("UnknownHost: " + e. 11
getMessage 0) ; }

try {
listenSocket.setSoTimeout(1) ,*

} catch(IOException ex) {;}

private int boolToInt(boolean a)
{

i f (a)
return 1;

else
return 0;

}
//return a string with at most 2 elements, 1st is the token, 2nd, is bO(or b), third is

bn
private String proeessTokenAndAlternatorForTokenTraversal()
{

String tmp="333";

i f (serverlD == 0)
{

i f (b0==rightb && bn!=leftb) / / i f G1
{

j I * * * * * * * * * * * * * *case 1 no reguest i f G l^G S*********************************
i f (tkn==pTkn &&(tkn || rdy) && pollServerlnCharge.request == false)
{

i f (ignore == false)
{

byte[]sendData = new byte[10];
sendData = (Integer. toString { serverlD) + " get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. \t
MeasurePort) ,*

try {talkTokenTraverseSocket.send(outPacket); } / / t e l l hT
TokenTraversalMonitor its privilege

catch(IOException e){}
}else ignore = false;
reportCS = false;

tkn = Itkn; //A5
rdy = false; //A5
bn = !bn; //A l
bO = IbO; //A l
T = false; //A l

byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString (serverlD)+" release") .getBytes () ,*

DatagramPacket outPacket2 = new DatagramPacket(sendData2,
sendData2.length, measureAddress, FinalVariables. 11

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket2); } / / t e l l i/

TokenTraversalMonitor its privilege
catch(IOException e){}

grant = false;

tmp = boolToInt (tkn) + " "+boolToInt (bO) + " "+boolToInt (bn) + " " ,*

return tmp;

}//end of i f ! 2

y ^ **************qq3 0 2. with, request G1AG 5*******************************
else i f (tkn==pTkn &&(tkn || rdy) && pol1ServerInCharge.request == true)
{

i f (ignore == false) //should send msg
{

byte[]sendData = new byte[10];
sendData = (Integer. toString (serverlD)+,? get") .getBytes () ;

DatagramPacket outPacket = new DatagramPacket(sendData,
sendData. length, measureAddress, FinalVariables.

MeasurePort);
try{talkTokenTraverseSocket. send (outPacket) ,* } / / t e l l

TokenTraversalMonitor its privilege
catch(IOException e){}
ignore = true; //set i t to true, so not to send multiple times

}
grant = true;

i f (reportes == false)
{

byte[]sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+" cs") .getBytes();

DatagramPacket outPacket2 = new DatagramPacket(sendData2,
sendData2.length, measureAddress, FinalVariables

MeasurePort);
try {talkTokenTraverseSocket.send(outPacket2); } / / t e l l

TokenTraversalMonitor its privilege
catch(IOException e){}

reportes = true; //reported already
}
return tmp;

}//end of i f 1 2

//*********************c as e 2 G1^G6************************
else i f (tkn==pTkn && !rdy && Itkn)
{

rdy = true; //A 6
bO = IbO; //A l
T =false; //A l
bn = !bn,- //A l

tmp = boolToInt(tkn)+""+boolToInt(bO)+ M"+boolToInt(bn) + "";
return tmp;

}
j /* * * * * * ****************ea se 3 G1A!g5̂ i G6*********** * ****************
else / / i f (!G5 (tkn, pTkn, rdy) && !G6 (tkn, pTkn, rdy))
{ bO = !bO; //A l

bn = !bn; //A l
T = false; //A l
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn)+"";
return tmp;

}
}//end of i f l l

else i f ((System.currentTimeMillis() -start)>TimeOut && T)
{

^ *̂**★ **********"*"*'*Qase 4 i f G2******* * * ** * ** * * ** * ** * * ** * *
i f (b0 ==rightb && bn == leftb)

bO = !b0; //A l
T = false; //A l
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn)+"";

{

return tmp;

I j *****************cs.se 5 i f G3***** ** * * ** * ** * * ** * ** * * ** * *
else i f (bO I=rightb && bn != leftb)
{

bn = !bn; / / A2
T = false; / / A2
tmp = boolToInt(tkn)+"n+boolToInt(bO)+"n+boolToInt(bn)+ "";
return tmp;

}
}
j j *** ******* *•*"*■*** * case 6 i f G 4 ***************************
else i f (((bO==rightb && bn==leftb) || (bO!=rightb && bn!=leftb)) && !T)

}

T = true;
start = System.currentTimeMillis();
return tmp;

}
return tmp;

}//end of i f serverlD == 0

else //other processes
{

i f ((rightb == b) && (b 1= leftb)) / / i f Bi
{ i f (tkn != pTkn && (rdy | | tkn) && pollServerlnCharge.request == false) / / no

request
{

i f (ignore == false)
{

byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)+" get”) .getBytes();

DatagramPacket outPacket = new DatagramPacket(sendData,
sendData. length, measureAddress, FinalVariables. ^

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket); } / / t e l l

TokenTraversalMonitor its privilege
catch(IOException e){}

}
else ignore = false; //se t ignore to false because for case 2
reportCS = false; //se t for case 2

tkn = !tkn;
b = l b;
rdy = false;

tmp = boolToInt(tkn)+""+boolTo!nt(b)+" ";

byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+" release") .getBytes();

DatagramPacket outPacket2 = new DatagramPacket(sendData2,
sendData2. length, measureAddress, FinalVariables. vt

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket2); } / / t e l l

TokenTraversalMonitor its privilege released
catch(IOException e){}

grant = false;
return tmp;

}
//w ith request==true
else i f (tkn != pTkn && (rdy || tkn) && pollServerlnCharge.request == true)
{

i f (ignore == false)
{ byte[]sendData = new byte[10];

DatagramPacket outPacket = new DatagramPacket(sendData,
sendData. length, measureAddress, FinalVariables.

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket); } / / t e l l \l

TokenTraversalMonitor its privilege
catch(IOException e){}

ignore = true; //se t i t to true, so not to send multiple times

sendData = (Integer.toString(serverlD)+" get").getBytes();

grant = true ; / / setGrant(true);

i f (reportCS == false)
{

byte[]sendData2 = new byte[10 3;
sendData2 = (Integer. toString (serverlD)+" cs") .getBytes () ,-

DatagramPacket outPacket2 = new DatagramPacket(sendData2,
sendData2. length, measureAddress, FinalVariables. \i

MeasurePort);
try{talkTokenTraverseSocket.send(outPacket2); } / / t e l l i£

TokenTraversalMonitor cs
catch(IOException e){}

reportCS = true;
}
return tmp;

}
else i f ((tkn != pTkn) && !tkn && !rdy)
{

b = !b;
rdy = true;
tmp = boolToInt(tkn)+"H+boolToInt(b)+ " ";
return tmp;

}
else
{

b = lb;
tmp = boolToInt(tkn)+"n+boolToInt(b)+” ";
return tmp;

}
}//end of i f l l
return tmp;

//return a string with at most 2 elements, 1st is the token, 2nd is bO(or b), third is bn
/ /" l" means high, "0" means low, and 3 means no change
private String processTokenAndAlternatorNoRequest()
{ String tmp="333M;

i f (serverlD == 0)
{

i f (b0==rightb && bn!=leftb) / / i f G1
{ / / * * * * * * * * * * * * * * case 1 no request i f G1AG 5 *********************************

i f (tkn==pTkn &&(tkn || rdy)) //privileged
{

byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)) .getBytes();

DatagramPacket outPacket = new DatagramPacket(sendData,
sendData.length, timeMonitorAddress, FinalVariables

. PrevilegePort) ,*
try{talkToTimeSocket.send(outPacket); } / / te ll timeMonitor its privilege

catch(IOException e){}
tkn = !tkn; //A5
rdy = false; //A5
bn = !bn; //A l
bO = IbO; //A l
T = false;

tmp = boolToInt(tkn)+"n+boolToInt(bO)+""+boolToInt(bn);
return tmp;

}//end of i f l 2

j ^*********************0ase 2************************
else i f (tkn==pTkn && !rdy && Itkn)
{

rdy = true; //AG
bO = IbO; //A l
bn = !bn; //A3
T = false;
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn),*
return tmp;

}
j /************* ********-*case 3 Gl-*" i gB^ 1G6****************************
else //if(IG5(tkn, pTkn, rdy) && !G6 (tkn, pTkn, rdy))
{

bO = !bO; //A l
bn = !bn; //A l
T = false; //A l
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn);
return tmp;

}
}//end of i f Gl

else i f ((System.currentTimeMillis() -start)>TimeOut && T)
{ //*****************C0,gè 4 ì f g2 ******* * * ** * ** * * ** * ** * * ** * *

i f (bO==rightb && bn == leftb)
{

bO = !b0; //A l
T = false; //A l
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn);
return tmp;

}
/ / * * * * * * * * * * * * * * ** *case 5 i f G 3***************************
else i f (bO !=rightb && bn != leftb)
{

bn = !bn; //A2
T = false; //A2
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn);
return tmp;

}
}
/ / * * * * * * * * * * * * * * ***case 6 i f G 4 ***************************
else i f (((bO==rightb && bn==leftb) || (bOI=rightb && bnl=leftb)) && !T)
{

T = true;
start = System.currentTimeMillis();
tmp = boolToInt(tkn)+""+boolToInt(bO)+""+boolToInt(bn);

return tmp;
}
return tmp;

}//end of i f serverID == 0

else //other processes
{

i f ((rightb == b) && (b 1= leftb)) / / i f Bi
{ i f (tkn != pTkn && (rdy || tkn)) //have privilege

{ byte[]sendData = new byte[10];

DatagramPacket outPacket = new DatagramPacket(sendData,
sendData.length, timeMonitorAddress, FinalVariables.PrevilegePort);
try {talkToTimeSocket.send(outPacket); } / / t e l l timeMonitor its previlege

catch(IOException e){}
tkn = !tkn;
b = !b;
rdy = false;

tmp = boolToInt(tkn)+M"+boolToInt(b)+" ";
return tmp;

}
else i f ((tkn 1= pTkn) && !tkn && Irdy)
{

b = !b;
rdy = true;

tmp = boolToInt(tkn)+"n+boolToInt(b)+" ";
return tmp;

}
else
{

b = !b;
tmp = boolToInt(tkn)+""+boolToInt(b)+" ";
return tmp;

}
}//end of i f l l

}
return tmp;

}

sendData = (Integer.toString(serverlD)).getBytes();

public void run()
{

Processlnfo [} p = new Processlnfo [2];
for(int q = 0; q < 2; q++)

p[q] = new Processlnfo(};

Ringlnitialization in it = new Ringlnitialization(ringMakerAddress, listenSocket,
talkToRMSocket, serverlD);

init.findNeighbor(p),*

i f (serverlD == 0)
{

for(int s=0; s < 2; s++)
{

i f (p [s].serverlD == 1)
{

rightNeighborAddress = p[s].address;
rightNeighborPort = p[s].lport;

}
else
{

leftNeighborAddress = p[s].address;
leftNeighborPort = p[s].lport;

else //other process
{ for(int s=0; s < 2; s++)

{
i f (serverlD - p [s].serverlD == 1) / / i t ' s le ft neighbor
{

leftNeighborAddress = p[s].address;
leftNeighborPort = p[s].lport;

}
else

rightNeighborAddress = p[s].address;
rightNeighborPort = p[s].lport;

}
}

}
int flag = 0; //used only when test stabilization time
boolean firstTime = true;
for(;;) //this for loop testing stabilization time
{ try

{ byte[] sendData = new byte[FinalVariables.PKSIZE];
//stabilization time measurement
String tmpl = processTokenAndAlternatorNoRequest();

{

if(!tmpl.equals("333") || firstTime) //if there is change, send it
{ sendData = (tmpl + serverlD) .getBytes () ,*

firstTime = false;
DatagramPacket leftOutPacket = new DatagramPacket(sendData, sendData. yf

length, leftNeighborAddress, leftNeighborPort);
sendSocket.send(leftOutPacket);
DatagramPacket rightOutPacket = new DatagramPacket(sendData, sendData. yf

length, rightNeighborAddress, rightNeighborPort);
sendSocket.send(rightOutPacket);

}
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
try{

listenSocket.receive(inPacket };
}catch(SocketTimeoutException ex){continue;}
String tmp = new String(inPacket.getData()).trim();
if(tmp.equals("stop measure stabilization"))
{ byte[]actionData = new byte[1000];

actionData = (Integer.toString(action)).getBytes();
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData.

length, timeMonitorAddress, FinalVariables.ActionPort);

try{actionSocket.send(actionPacket); }//tell timeMonitor its privilege
catch(IOException e){}
break,-

}
if (flag == 1) //waiting for restart
{ if(tmp.equals("restart")) //initialize

{ flag = 0;
tkn = false;
b = false;
bO = false;
bn = false;
leftb = false;
rightb = false;
pTkn = false; //precessor tkn

}
}else //must deal with the msg
{ if(tmp.equals("stop"))

flag = 1;
else
{ if(serverlD == 0) //special

{ //from n-1, left neighbor, only use tkn and bn, at index 0 and 2
if(Integer.parselnt(tmp.substring(3))==FinalVariables. \l

ServerNumber-1)
{

i f (tmp.charAt(0) == 111)
pTkn = true;

else if (tmp.charAt(0) == * 0 * }
pTkn = false;

if(tmp.charAt(1) == * 1*)
leftb = true;

else if (tmp.charAt(1) == 1 01)
leftb = false;

continue;
}else if(Integer.parselnt(tmp.substring(3)) == 1)//from 1, \i

should use only bO, at index 1
{

i f (tmp.charAt(1) == ' l 1)
rightb = true;

else if (tmp.charAt(1) == 'O')
rightb = false;

continue;

else if(serverlD == 1) //special
{ //from 0, left neighbor, only use tkn and bO, at index 0 and \i

1
if(Integer.parselnt(tmp.substring(3))==0)
{ if(tmp.charAt(0) == '1')

pTkn = true;
else if (tmp.charAt(0) == 'O')

pTkn = false;
if(tmp.charAt(1) == * 1*)

leftb = true;
else if (tmp.charAt(1) == 'O')

leftb = false;
continue;

}else if(Integer.parselnt(tmp.substring(3)) == 2)//from 2,
should use only b, at index 1

{ if(tmp.charAt(1) == *1’)
rightb = true;

else if (tmp.charAt(1) == '0! }
rightb = false;

continue;
}

}else if(serverlD == FinalVariables.ServerNumber-1) //special
{ //from 0, right neighbor, only use bn, at index 2

if(Integer.parselnt(tmp.substring(3))==0)
{ if(tmp.charAt(2) == '1')

rightb = true;
else if (tmp.charAt(2) == 'O')

rightb = false;
continue;

}else if(Integer.parselnt(tmp.substring(3)) == FinalVariables. i£
ServerNumber-2)//from left neighbor,should use token and b,
at indexO, 1
i f (tmp.charAt(0) == 111)

{

pTkn = true;
else if (tmp.charAt(0) == 'O')

pTkn = false;
i f (tm p .charAt(1) === 111)

leftb = true;
else if (tmp.charAt(1) == ’O')

leftb = false;
continue;

}
}else //other processes
{ //extract the values of preseccor’s token and b

if(Integer.parselnt(tmp.substring(3)) == (serverlD -1))
{ if(tmp.charAt(0) == * 1*)

pTkn = true;
else if (tmp.charAt(0) == 'O')

pTkn = false;
if(tmp.charAt(1) == '1*)

leftb = true;
else if (tmp.charAt(1) == 'O')

leftb = false;
continue;

}else //extract the value of preseccor's b
{

i f (tmp.charAt(1) == 11')
rightb = true;

else if(tmp.charAt(1) == 'O’)
rightb = false;

} //end of else
} //end of else if(flag == 0)

} catch (IOException e) {System.out.println("IO: " + e.getMessage()); e. \i
printStackTrace();}

}
for(;;) //this for loop testing token traversal time
{ try

{ byte[] sendData = new byte [FinalVariables. PKSIZE] ,*
while(grant && pollServerlnCharge.request)

yield();
String tmpl = processTokenAndAlternatorForTokenTraversal();
if(Itmpl.equals("333") || firstTime)
{ sendData = (tmpl+serverlD).getBytes();

DatagramPacket leftOutPacket = new DatagramPacket(sendData, sendData. i£
length, leftNeighborAddress, leftNeighborPort);

sendSocket.send(leftOutPacket);
DatagramPacket rightOutPacket = new DatagramPacket(sendData, sendData.

length, rightNeighborAddress, rightNeighborPort);
sendSocket.send(rightOutPacket);

byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
t r y { listenSocket.receive(inPacket);
}catch(SocketTimeoutException ex){continue;}
String tmp = new String(inPacket.getData()).trim();

if(tmp.equals("stop"))
{ byte[]actionData = new byte[1000];

aetionData = (Integer.toString(action)) .getBytes () ,-
DatagramPacket actionPacket = new DatagramPacket(aetionData,aetionData. ^

length, measureAddress, FinalVariables.TraverseActionPort);
try{actionSocket. send (actionPacket) ,* }//tell timeMonitor its privilege
catch(IOException e){}
break;

}
if(serverlD == 0) //special
{ //from n-1, left neighbor, only use tkn and bn, at index 0 and 2

if(Integer.parselnt(tmp.substring(3))==FinalVariables.ServerNumber-1)
{ if(tmp.charAt(0) == '1')

pTkn = true;
else if (tmp.charAt(0) == 'O')

pTkn = false;
if(tmp.charAt(1) == '1')

leftb = true;
else if (tmp.charAt(1) == 'O')

leftb = false;
continue;

}else if(Integer.parselnt(tmp.substring(3)) == 1)//from 1,should use
only bO, at index 1

{ if(tmp.charAt(1) == '1')
rightb = true;

else if (tmp.charAt(1) == 'O')
rightb = false;

continue;

else if(serverlD == 1) //special
{ //from 0, left neighbor, only use tkn and bO, at index 0 and 1

if(Integer.parselnt(tmp.substring(3))==0)
{ if(tmp.charAt(0) == '1')

pTkn = true;
else if (tmp.charAt(0) == 'O')

pTkn = false;
if(tmp.charAt(1) == '1')

leftb = true;
else if (tmp.charAt(1) == 'O')

leftb = false;
continue;

}else if(Integer.parselnt(tmp.substring(3)) == 2)//from 2,should use
only b, at index 1

{ if(tmp.charAt(1) == '1')
rightb = true;

else if (tmp.charAt(1) == 'O')
rightb = false;

continue ;

else if(serverlD == FinalVariables.ServerNumber-1) //special
{ //from 0, right neighbor, only use bn, at index 2

if(Integer.parselnt(tmp.substring(3))==0)
{ if(tmp.charAt(2) == '1')

rightb = true;
else if (tmp.charAt(2) ==

rightb = false;
O')

continue;
else if(Integer.parselnt(tmp.substring(3)) == FinalVariables.

ServerNuraber-2)//from left neighbor,should use token and b,at indexO
, 1

{ i f (tmp.charAt(0} == 11*)
pTkn = true;

else if (tmp.charAt(0) == ’O’)
pTkn = false;

i f (t m p .charAt(1) == 111)
leftb = true;

else if (tmp.charAt(1) == 'O')
leftb = false;

continue;
}

}else //other processes
{ //extract the values of preseccor's token and b

if(Integer.parselnt(tmp.substring(3)) == (serverlD -1))
{

i f (tmp.charAt{0) == 11')
pTkn = true;

else if (tmp.charAt(0) == 'O')
pTkn = false;

if(tmp.charAt(1) == '1')
leftb = true;

else if (tmp.charAt(1) == ’O')
leftb = false;

continue;
}else //extract the value of preseccor's b
{ if(tmp.charAt(1) == '1')

rightb = true;
else if(tmp.charAt(1) == 'O')

rightb = false;
}

}} catch (IOException e) {System.out.printIn("10: " + e.getMessage()); e. 11
printStackTrace(); }

}

*
*

APPENDIX 2 COMPANION TOKEN

import java.io.*;
import j ava.net.* ;
import j ava.lang.* ;

/**
k This class implements companion token ring algorithm
*/

’lass CompanionToken extends Thread
{ private InetAddress ringMakerAddress ;

private InetAddress timeMonitorAddress;
private InetAddress measureAddress;
public int serverlD;
public int neighborPort;
private InetAddress neighborAddress;
private int action;
private
private
private
private
private
private

DatagramSocket
DatagramSocket
DatagramSocket
DatagramSocket
DatagramSocket
DatagramSocket

sendSocket;
actionSocket;
talkToRMSocket; //used to talk to Ring Maker
talkToTimeSocket; //used to talk to timeMonìtor
listenSocket; //socket used to listen from its precessor
talkTokenTraverseSocket; //used to talk to timeMonìtor

public
private
private
private
private
private
public
public

boolean grant;
PollServer pollServerlnCharge; //proecess belongs to which application
boolean tkn;
boolean cmp;
boolean pTkn;
boolean pCmp;
boolean ignore = false; //used to control if to send msg when executing cs
boolean reportedCS = false; //used to control if to send msg when executing cs

/**
* constructor
*/public CompanionToken(InetAddress addr, int listenPort, int talkToRMport, PollServer ps

, int sid)
{ ringMakerAddress = addr;

timeMonitorAddress = addr;
measureAddress = addr;
pollServerlnCharge = ps;
serverlD = sid;
action = 0;
neighborPort = -1;
neighborAddress = null;
grant = false;
try
{ sendSocket = new DatagramSocket();

talkToTimeSocket = new DatagramSocket{);
actionSocket = new DatagramSocket();
talkTokenTraverseSocket = new DatagramSocket();
listenSocket = new DatagramSocket(listenPort, InetAddress.getByName("147.26.101.

141"));
talkToRMSocket = new DatagramSocket(talkToRMport, InetAddress.getByName("147.26. *£

101.141")) ;
} catch(SocketException e) {System.out.printIn("Socket: " + e.getMessage());}
catch (UnknownHostException e) { System.out.println("UnknownHost: " + e. 11
getMessage 0);}

}private int boolToInt(boolean a)

{

}

if (a)
return 1;

else
return 0;

//return a string with at most 2 elements, 1st is the token, 2nd, is companion
//"l" means high, "0" means low, and 3 means no change
private String processTokenAndCompanionForTokenTraversal()
{ String tmp = "33";

if (serverlD == 0)
{ //case 1

if((tkn == pTkn) && (tkn == true && cmp ==pCmp) && pollServerlnCharge.request
== false)

{
if(ignore == false)
{ byte [] sendData = new byte [10],*

sendData = (Integer. toString (serverlD)+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables.
MeasurePort),*

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }

catch(IOException e){}
}else ignore = false;
reportedCS = false,*
tkn = Itkn;
cmp = ! cmp ,*
tmp = boolToInt(tkn) + " "+boolToInt (cmp) ,*
byte[] sendData2 = new byte [10],*
sendData2 = (Integer. toString (serverlD)+" release") .getBytes () ,*
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. ii
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{ talkTokenTraverseSocket. send (outPacket2) ,* }
catch(IOException e){}
grant = false;

//case 2
else if(tkn == pTkn && (tkn == true && cmp == pCmp) && pollServerlnCharge. 11

request == true)
{ if(ignore == false) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer. toString (serverlD)+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket. send (outPacket) ,* }
catch(IOException e){}
//set it to true, so not to send multiple times
ignore = true;

grant = true;
}

if(reportedCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. \£
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2),- }
catch(IOException e){}
reportedCS = true; //reported already

}

}
//case 3
if((tkn == pTkn) && (tkn == false && cmp ==pCmp) && poiIServerInCharge.requests

== false)
{

if(ignore == false)
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try {talkTokenTraverseSocket. send (outPacket) ,* }

catch(IOException e){}
}else ignore = false;
reportedCS = false;
tkn = I tkn;
tmp = boolToInt(tkn) + ""+boolToInt(cmp);
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}
grant = false;

//case 4
else if(tkn == pTkn && (tkn == false && cmp == pCmp) && pollServerlnCharge. \l

request == true)
{ if(ignore == false) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. X
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e){}

//set it to true, so not to send multiple times
ignore = true;

}

grant = true;
if(reportedCS == false)
{ byte[]sendData2 = new byte[10],-

sendData2 = (Integer.toString(serverlD)+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}
reportedCS = true; //reported already

}

}
else if((tkn != pTkn) && cmp == pCmp)
{ cmp = Icmp; //pass only cmp

if(cmp == true)
tmp = "31";

else
tmp = "30";

else
{ //case 1

if(tkn != pTkn && (tkn == true && cmp != pCmp) && pollServerlnCharge.request
== false)

{ reportedCS = false; //set for case 2
if(ignore == false)
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. i£
MeasurePort);

try{talkTokenTraverseSocket. send (outPacket) ,* }//tell y£
TokenTraversalMonitor its privilege

catch(IOException e){}
}else ignore = false; //set ignore to false because for case 2
tkn = !tkn;
cmp = !cmp;
tmp = boolToInt(tkn) + ""+boolToInt(cmp);
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.)£
MeasurePort);

//tell TokenTraversalMonitor its privilege released
try{talkTokenTraverseSocket.send(outPacket2); }

catch(IOException e){}
grant = false;

}//case 2
else if(tkn != pTkn && (tkn == true && cmp != pCmp) && pollServerlnCharge. yt

request == true)
if(ignore == false)
(byte[]sendData = new byte [10];

sendData = (Integer.toString(serverlD)+" get”).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }

catch(IOException e){}
ignore = true; //set it to true, so not to send multiple times

}
grant = true ;
if (reportedCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. k?
MeasurePort);

try{talkTokenTraverseSocket.send(outPacket2); }//tell 11
TokenTraversalMonitor cs

catch(IOException e){}
reportedCS = true;

}

}

//case 3
if(tkn != pTkn && (tkn == false && cmp != pCmp) && pollServerlnCharge.request 11

== false)
{ reportedCS = false; //set for case 2

if(ignore == false)
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. kf
MeasurePort);

try{talkTokenTraverseSocket.send(outPacket); }//tell \l
TokenTraversalMonitor its privilege

catch(IOException e){}
}else ignore = false; //set ignore to false because for case 2
tkn = Itkn;
tmp = boolToInt(tkn) + "n+boolToInt(cmp);
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. \l
MeasurePort);

//tell TokenTraversalMonitor its privilege released
try {talkTokenTraverseSocket. send (outPacket2) ,* }

catch(IOException e){}
grant = false;

}//case 4

else if(tkn != pTkn && (tkn == false && cmp != pCmp) && pollServerlnCharge.
request == true)

{ if(ignore == false)
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. X
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }

catch(IOException e){}
ignore = true; //set it to true, so not to send multiple times

}
grant = true ,-
if (reportedCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort) ,*

try{talkTokenTraverseSocket.send(outPacket2); }//tell
TokenTraversalMonitor cs

catch(IOException e){}
reportedCS = true,*

}

}
else if(tkn == pTkn && cmp != pCmp)
{ cmp = !cmp;

if(cmp == true)
tmp = "31";

else
tmp = "30";

return tmp;
}

//return a string with at most 2 elements, 1st is the token, 2nd, is companion
//"l" means high, "0" means low, and 3 means no change
private String processTokenAndCompanionNoRequest()
{ String tmp;

int temp = action;
if (serverlD == 0)
{ if((tkn == pTkn) && ((tkn == true) && (cmp == pCmp)))

{ byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, timeMonitorAddress, FinalVariables
.PrevilegePort);

//tell timeMonitor its privilege
try{talkToTimeSocket. send (outPacket) ,* }

catch(IOException e){}

tkn = Itkn;
cmp = !cmp;

else if((tkn == pTkn) && ((tkn == false) && (cmp == pCmp)))
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, timeMonitorAddress, FinalVariables
.PrevilegePort);

//tell timeMonitor its privilege
try{talkToTimeSocket.send(outPacket); }

catch(IOException e){}
tkn = !tkn; //only pass token

}
else if((tkn != pTkn) && cmp == pCmp)
{ cmp = ¡cmp; //pass only cmp
}

}else //other processes
{ if((tkn != pTkn) && ((tkn == true) && (cmp != pCmp)))

{ byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,
sendData.length, timeMonitorAddress, FinalVariables.PrevilegePort) ,-
//tell timeMonitor its previlege
try{talkToTimeSocket. send (outPacket) ,* }

catch(IOException e){}
tkn = !tkn;
cmp = !cmp;

}if((tkn 1= pTkn) && ((tkn == false) && (cmp != pCmp)))
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,
sendData.length, timeMonitorAddress, FinalVariables.PrevilegePort);
//tell timeMonitor its previlege
try{talkToTimeSocket.send(outPacket); }

catch(IOException e){}
tkn = !tkn;

}else if(tkn == pTkn && cmp != pCmp)
{ // System.out.print("\nprocess "+ serverlD + " pass companion msg");

cmp = !cmp;

}

tmp = boolToInt(tkn)+MH+boolToInt(cmp);
if(temp!= action)
{ byte[]sendData = new byte[10];

sendData = ("a").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length,

timeMonitorAddress, FinalVariables.PrevilegePort);
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege

catch(IOException e){}
}return tmp;

}

public void run()
{ Ringlnitialization init = new Ringlnitialization(ringMakerAddress, listenSocket,

talkToRMSocket, serverlD);
Processlnfo p = (Processlnfo) init. f indNeighbor () ,*
neighborAddress = p.address;
neighborPort = p.lport;
int flag = 0; //used only when test stabilization time
String tmp=" ", t="";
for(;;) //this for loop testing stabilization time
{ try

{ byte[] sendData = new byte [FinalVariables . PKSIZE] ,*
t = processTokenAndCompanionNoRequest();
sendData = t.getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length,

neighborAddress, neighborPort);
sendSocket.send(outPacket);
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
listenSocket.receive(inPacket);
tmp = new String (inPacket .getData ()) .trim () ,-
if(tmp.equals("stop measure stabilization"))
{ byte[]actionData = new byte[1000];

actionData = (Integer.toString(action)).getBytes();
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData.

length, timeMonitorAddress, FinalVariables .ActionPort) ,*
//tell timeMonitor its privilege
try{actionSocket.send(actionPacket); }
catch(IOException e){}
break;

}if(flag == 1) //waiting for restart
{ if(tmp.equals("restart")) //initialize

{ flag = 0;
tkn = false;
cmp = false;
pTkn = false; //precessor tkn
pCmp = false;

else if(flag == 0) //must deal with the msg
{ if(tmp.equals("stop"))

flag = 1;
else
{ //extract the value of preseccor's token

if(tmp.charAt(0) == 'l*)
pTkn = true;

else if (tmp.charAt(0) == 'O')
pTkn = false;

//extract the value of preseccor's companion
if(tmp.charAt(1) == '1')

pCmp = true;
else if(tmp.charAt(1) == 'O')

}
pCmp = false;

}

} catch (IOException e) {System.out.printIn("IO: " + e.getMessage()); e.
printStackTrace(); }

byte[] flagData = new byte[FinalVariables.PKSIZE];
flagData = "now".getBytes();
DatagramPacket nowPacket = new DatagramPacket(flagData, flagData.length,

neighborAddress, neighborPort);
try
{ sendSocket.send(nowPacket);

for(; ;)
{ byte[] rfData = new byte[FinalVariables.PKSIZE];

DatagramPacket rfPacket = new DatagramPacket(rfData, rfData.length);
listenSocket.receive(rfPacket);
String rtmp = new String(rfPacket.getData()).trim();
if(rtmp.equals("now"))

break,-
}Jcatch (IOException e) {System.out.println("10: " + e.getMessage()); e.
printStackTrace(); }

tkn = false;
cmp = false;
pTkn = false;
pCmp = false;
action = 0;
for(;;) //this for loop testing token traversal time
{ try

{ byte[] sendData = new byte[FinalVariables.PKSIZE];
while(grant && pollServerlnCharge.request)

yield();
//token traversal time measurement
sendData = (processTokenAndCompanionForTokenTraversal ()} .getBytes (),*
DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length, 11

neighborAddress, neighborPort);
sendSocket.send(outPacket) ;
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket (recvData, recvData.length) ,-
listenSocket.receive(inPacket);
tmp = new String(inPacket.getData()).trim();
if(tmp.equals("stop"))
{ byte[]actionData = new byte[1000];

actionData = (Integer.toString(action)).getBytes();
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData. \l

length, measureAddress, FinalVariables.TraverseActionPort);
try{actionSocket.send(actionPacket); }//tell timeMonitor its privilege
catch(IOException e){}
break;

}
//extract the value of preseccor's token
if(tmp.charAt(0) == 11*)

pTkn = true;

else if (tm p .charAt(0) == 'O’)
pTkn = false;

//extract the value of preseccor's companion
if(tmp.charAt(1) == *1’)

pCmp = true;
else i f (tmp.charAt(1) == 'O')

pCmp = false;

} catch (IOException e) {System.out.println("IO: "
printStackTrace(); }

+ e.getMessage())

APPENDIX 3 CURRENT POLL RESULT

import java.io.*;
import j ava. net. * ,*
import j ava. ut i 1. *
/**
k This class is used to store the support infomation for each song
*/̂lass Polllnfo
{ public int songID;

public int supportNumber;
Polllnfo()
{ supportNumber = 0;

songID = -1;

/■kit

* Application server, used for updating data
*/public class CurrentPollResult
{ private Polllnfo [] pollResult; //support number for each song

/**
* a constructor without any parameter
*/CurrentPollResult()
{ pollResult = new Polllnfo [FinalVariables. SongSize] ,*

for(int i = 0; i < FinalVariables.SongSize; i++)
{ pollResult [i] = new Polllnfo();

pollResult[i].songID = i;

/**
* self explanatory
* ©param s a response to be dealt with
*/public void updateResult(String s)
{ int temp = 0;

int fromlndex = 0;
int endlndex = 0;
s = s + H ”; //last ” " was trimmed while sent through network, so add to retreive

number
while((endlndex = s.indexOf(' ', fromlndex)) != -1)
{ temp = Integer.parselnt(s.substring! fromlndex, endlndex));

(pollResult[temp].supportNumber)++; //update the data
fromlndex = endlndex + 1;

}//need sort the array
Slow_Sort(pollResult, FinalVariables.SongSize);

try {
File f = new File("pollResult.log"); // delete the file if it already exists
if (f.existsO)

f .delete () ,*

PrintWriter out = new PrintWriter(new FileWriter(f));
out.printIn("The top twenty songs are: ");
for(int i = 0; i < 20; i++)
out.println(pollResult[i] .songID + "support number is "+pollResult[i] . i£

supportNumber);
out.closeO; // We're done writing

}catch (IOException e) { /* Handle exceptions */ }
int total = 0;
//to check if the response is complete, for monitor purpose
for(int i = 0; i < 1000; i++)
{ total += pollResult[i].supportNumber;
}System.out.print("\nsong number and supportNumber[i]:********* + total);

}
/**
* Utility function used by the Slow_jSort and Quick_Sort functions
*/private void Swap(Polllnfo array[], int p, int q)
{ int temp = array[p].supportNumber ;

array[p].supportNumber = array[q].supportNumber ;
array[q].supportNumber = temp ;

}
/**
* bubble sort, upper bound is nA2
*/public void Slow__Sort(Polllnfo array[], int array size)
{ Random rand = new Random();

//random int ranging from 0 to maxResponseTime - 1
Integer anlntl = new Integer(rand.nextlnt(250));
int a = anlntl.intValue(); //will range from 0 to 199

}

try{Thread.sleep(a + 900) ;} //set an upper bound for each process to hold i£
privilege

catch (InterruptedException e) { System.out.printIn("Interrupted: " + e.getMessagetf
(>>;}for (int pass = 0; pass < array_size - 1; pass++)
for (int i = 0; i < array_size - 1 - pass; i++)

if (array[i].supportNumber < array[i + 1].supportNumber)
Swap (array, i, i + 1) ,*

/ **
* Accept and deal with responses from poll server
*/public static void main(String[] args)
{ DatagramSocket socket = null;

CurrentPollResult result = new CurrentPollResult();
try
{ socket = new DatagramSocket (FinalVariables.PollResultPort);

//write output to this file, record which process sends result
File f = new File("resultSending.log");
// delete the file if it already exists
if (f.exists())

f.delete();
PrintWriter out = new PrintWriter(new FileWriter(f));

System.out.println("Application Server Started");
for(;;)
{ byte[] recvData = new byte[FinalVariables.PKSIZE];

DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
byte[] sendData = new byte[1000];
sendData = "OK".getBytes();
socket.receive(inPacket),-
String tmp = new String(inPacket.getData()).trim() ;
out.println(" received from port " + inPacket .getPort ()) ,-
DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length,

inPacket.getAddress(), inPacket.getPort());
result .updateResult (tmp },*
//to notify that update was done
socket.send(outPacket);

}} catch (SocketException e) { System.out.println("Socket: " + e.getMessage());}
catch (IOException e) { System.out .println ("10: " + e .getMessage ()),*}
finally { if(socket != null) socket.close(); /*out.close();*/ }

APPENDIX 4 ENABLER TOKEN

import j ava.io.*;
import j ava.net.*;
import j ava.lang.*;
{**
k This class implements enabler token ring algorithm
*/
rlass EnablerToken extends Thread
{ private InetAddress ringMakerAddress;

private InetAddress timeMonitorAddress;
private InetAddress measureAddress,-
public int serverlD;
public int neighborPort ;
private InetAddress neighborAddress;
private int action;
private DatagramSocket
private DatagramSocket
private DatagramSocket
private DatagramSocket
private DatagramSocket
private DatagramSocket

sendSocket;
actionSocket;
talkToRMSocket; //used to talk to Ring Maker
talkToTimeSocket; //used to talk to timeMonitor
listenSocket; //socket used to listen from its precessor
talkTokenTraverseSocket; //used to talk to timeMonitor

public boolean grant;
private PollServer pollServerlnCharge; //proecess belongs to which application,used to

read poll server's request
public boolean ignore = false; //used to control if to send msg when executing cs
public boolean reportCS = false; //used to control if to send msg when executing cs
//own token, rd and enabler
private boolean tkn;
private boolean rd;
private boolean en;
//precessor's token and shepherd
private boolean pTkn;
private boolean pEn;
public EnablerToken(InetAddress addr, int listenPort, int talkToRMport, PollServer ps,

int sid)
{ ringMakerAddress = addr;

timeMonitorAddress = addr;
measureAddress = addr;
pollServerlnCharge = ps;
action=0;
neighborPort = -1;
neighborAddress = null;
serverlD = sid;
grant = false;
try
{ sendSocket = new DatagramSocket();

actionSocket = new DatagramSocket () ,*
talkToTimeSocket = new DatagramSocket();
talkTokenTraverseSocket = new DatagramSocket();
listenSocket = new DatagramSocket{ listenPort, InetAddress.getByName("147.26.101.

141")) ;
talkToRMSocket = new DatagramSocket(talkToRMport, InetAddress.getByName("147.26.

101.141")) ;
} catch(SocketException e) {System.out.printIn("Socket: " + e.getMessage());}

+ e.
}

catch (UnknownHostException e) { System.out.printIn("UnknownHost:
getMessage());}

private int boolToInt(boolean a)
{ if (a)

return 1;
else

return 0;
}
private String processTokenAndEnablerForTokenTraversal()
{ String tmp = "33";

if (serverlD == 0)
{ //X action: allow an enabler to be passed

if(tkn 1= pTkn && en == pEn)
{ en = Ien;

rd = false;
tmp=boolToInt(tkn)+Hn+boolToInt(en);
return tmp;

}
//Y action: allow an enabler to be passed
else if(en == pEn && tkn == pTkn && !rd && !tkn)
{ en = !en; //only pass token

rd = true;
tmp=boolToInt(tkn)+ ""+boolToInt(en);
return tmp;

}
//Z action case 1: allow both token and enabler to be passed
else if(tkn == pTkn && en == pEn && (rd | | tkn) && pollServerInCharge.request i£

-- false)
{ if(ignore == false)

{ byte[]sendData = new byte [10],*
sendData = (Integer.toString(serverlD)+" get").getBytes();
System.out.println("after get process 0");
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData. length, measureAddress, FinalVariables .
MeasurePort) ,*

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket. send (outPacket) ,- }

catch(IOException e){}
}else ignore = false; //set ignore to false because for case 2
reportCS = false; //set for case 2
tkn = itkn;
en = i en;
rd = false;

byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+" release").getBytes();
//System.out.println("after release process 0");
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. i£
MeasurePort) ,*

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }

catch(IOException e){}
grant = false;

tmp=boolToInt(tkn)+ ""+boolToInt(en),*
return tmp;

}//Z action case 2: when request is true
else if(tkn == pTkn && en == pEn && (rd || tkn) && pollServerlnCharge.request *

==true)
{ if(ignore == false) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)+" get").getBytes(),*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. \l
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }

catch(IOException e){}
ignore = true;

}grant = true;
if(reportCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}
System, out .println ("after cs "+serverID),-
reportCS = true; //reported already

}tmp=boolToInt(tkn)+""+boolToInt(en);
return tmp;

}

}else
{ //X action: allow an enabler to be passed

if(tkn == pTkn && en 1= pEn)
{ en = !en;

rd = false;
tmp=boolToInt(tkn)+""+boolToInt(en);
return tmp;

}
//Y action: allow an enabler to be passed
else if(tkn != pTkn && en != pEn && !rd && !tkn)
{ en = ien; //only pass enabler

rd = true;
tmp=boolToInt(tkn)+""+boolToInt(en);
return tmp;

}
//Z action case 1: allow both token and enabler to be passed
else if(tkn != pTkn && en != pEn && (rd || tkn) && pollServerlnCharge.request ^

== false)
{ if(ignore == false)

{

byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

. sendData.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e){}

}else ignore = false; //set ignore to false
reportCS = false; //set for case 2
tkn = I tkn;
en = ien;
rd = false;
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}
grant = false;
tmp=boolToInt(tkn)+""+boolToInt(en);
return tmp;

}//Z action case 2: when request is true
else if(tkn != pTkn && en 1= pEn && (rd | | tkn) && pol1ServerInCharge.request 11

-- true)
{ if(ignore == false) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer. toString (serverlD)+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. \l
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e){}
ignore = true;

}
grant = true;
if(reportCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}
System.out.println("after cs "+serverID);
reportCS = true; //reported already

}tmp=boolToInt(tkn)+""+boolToInt(en);
return tmp;

return tmp;
}

//return a string with at most 2 elements, 1st is the token, 2nd is shepherd,
//"l" means high, "0" means low, and 3 means not passing
private String processTokenAndEnablerNoRequest()
{ String tmp = "33";

int temp = action;
if (serverlD == 0)
{ //X action: allow an enabler to be passed

if(tkn 1= pTkn && en == pEn)
{ en = !en;

rd = false;
tmp=boolToInt (tkn) +n ,,+boolToInt (en) ;
return tmp;

}
//Y action: allow an enabler to be passed
else if(en == pEn && tkn == pTkn && !rd && !tkn)
{ en = ien; //only pass token

rd = true;
tmp=boolToInt(tkn)+""+boolToInt(en);
return tmp;

}
//Z action: allow both token and enabler to be passed
else if(tkn == pTkn && en == pEn && (rd || tkn))

byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length,

timeMonitorAddress, FinalVariables.PrevilegePort);
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege
catch(IOException e){}

tkn = itkn,*
en = !en;
rd = false;
tmp=boolToInt(tkn)+w"+boolToInt(en),*
return tmp;

}
}else
{ //X action: allow an enabler to be passed

if(tkn == pTkn && en != pEn)
{ en = ien;

rd = false;
tmp=boolToInt(tkn)+""+boolToInt(en);
return tmp;

}
//Y action: allow an enabler to be passed
else if(tkn != pTkn && en 1= pEn && ird && itkn)
{ en = Ien; //only pass enabler

rd = true;
tmp=boolToInt (tkn) + ” H+boolToInt (en) ,*
return tmp;

}

//Z action: allow both token and enabler to be passed
else if(tkn != pTkn && en 1= pEn && (rd || tkn))
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)) .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length,

timeMonitorAddress, FinalVariables.PrevilegePort);
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege
catch(IOException e){}
tkn = !tkn;
en = !en;
rd = false;
tmp=boolToInt(tkn)+ "M+boolToInt(en);
return tmp;

}
} //end of else in line 266
if(temp!=action)
{ byte[]sendData = new byte[10];

sendData = ("a").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length,

timeMonitorAddress, FinalVariables.PrevilegePort) ,*
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege

catch(IOException e){}
}
return tmp;

}

public void run()
{ Ringlnitialization init = new Ringlnitialization(ringMakerAddress, listenSocket,

talkToRMSocket, serverlD);
Processlnfo p = (Processlnfo) init.findNeighbor();
neighborAddress = p.address;
neighborPort = p.lport;
int flag = 0; //used only when test stabilization time
for(;;)
{ try

{ byte[] sendData = new byte [FinalVariables. PKSIZE] ,*
sendData = (processTokenAndEnablerNoRequest ()) .getBytes () ,-
DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length,

neighborAddress, neighborPort);
sendSocket.send(outPacket);
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
listenSocket.receive(inPacket);
String tmp = new String(inPacket.getData()).trim();
if(tmp.equals("stop measure stabilization"))
{

byte[]actionData = new byte[1000];
actionData = (Integer. toString (action)) .getBytes () ,*
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData.

length, timeMonitorAddress, FinalVariables.ActionPort);
try{actionSocket.send(actionPacket); }
catch(IOException e){}
break;

}if(flag == 1) //waiting for restart
{ if(tmp.equals("restart”)) //initialize

{ flag = 0;
tkn = false;
en = false;
pTkn = false; //precessor tkn
pEn = false;
rd = false;

else if(flag == 0) //must deal with the msg
{ if(tmp.equals("stop"))

flag = 1;
else
{ //extract the value of preseccor's token

if(tmp.charAt(0) == '1')
pTkn = true;

else if (tmp.charAt(0) == 'O')
pTkn = false;

//extract the value of preseccor's companion
if(tmp.charAt(1) ==)

pEn = true;
else i f (tmp.charAt(1) == 'O')

pEn = false;

} catch (IOException e) {System.out .printIn("10*. " + e.getMessage ()) ; e. 11
printStackTrace() ; }

}
byte[] flagData = new byte [FinalVariables.PKSIZE] ;
flagData = "now".getBytes();
DatagramPacket nowPacket = new DatagramPacket(flagData, flagData.length, \i

neighborAddress, neighborPort);
try
{ sendSocket.send(nowPacket);

f o r (; ;)
{ byte[] rfData = new byte [FinalVariables. PKSIZE] ,*

DatagramPacket rfPacket = new DatagramPacket(rfData, rfData.length);
try{
listenSocket .receive (rf Packet),*

catch(SocketTimeoutException c){continue;}
String rtmp = new String(rfPacket.getData()).trim();
if(rtmp.equals("now"))

break;
}catch (IOException e) {System.out .println("10: " + e.getMessage ()) ,* e. 11

printStackTrace(); }
tkn = false;
rd = false;
en = false;
pTkn = false;
pEn = false;
action = 0;
for(,*,*) //this for loop testing token traversal time

{ try
{ byte[] sendData = new byte[FinalVariablesIPKSIZE];

while(grant && pollServerlnCharge.request)
yield();

//token traversal time measurement
String tt= processTokenAndEnablerForTokenTraversal () ,*
sendData = (tt).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length,

neighborAddress, neighborPort);
sendSocket.send(outPacket);
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
listenSocket.receive(inPacket);
String tmp = new String(inPacket.getData()).trim();
if(tmp.equals("stop"))
{ byte[]actionData = new byte[1000];

actionData = (Integer.toString(action)).getBytes();
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData.

length, measureAddress, FinalVariables .TraverseActionPort) ,-
try{actionSocket.send(actionPacket); }//tell timeMonitor its privilege
catch(IOException e){}
break;

}//extract the value of preseccor's token
if(tmp.charAt(0) == '1')

pTkn = true;
else if (tmp.charAt(0) == 'O')

pTkn = false;
//extract the value of preseccor's companion
if(tmp.charAt(1) == '1')

pEn = true;
else if(tmp.charAt(1) == 'O')

pEn = false;
} catch (IOException e) {System.out.println("10: " + e.getMessage()); e.

printStackTrace(); }
}

}

APPENDIX 5 FINAL VARIABLES
nport j ava.io.* ;
nport java.net.*;

This class is used to define some constant variables used by other files
©version vO.0.0
©author Rong Wang
f

lblic class FinalVariables {
//following three are for RingMaker.java and Ringlnitialization
public static final int RingMakerPort = 9185;
public static final int PKSIZE = 1000;
public static final int ServerNumber = 16;
//follwoing are for TaskDistribution.java
public static final int MaxTaskNumber = 1000;
public static final int MaxProcessNumber = ServerNumber;
//following are from TimeMonitor.java
public static final int TimePort = 9188;
public static final int PrevilegePort = 9189;
public static final int InfoPort = 9190;
public static final int InfoPort2 = 9193;
public static final int ActionPort = 9191;
public static final int TraverseActionPort = 9192;
public static final int MaxRunForStabilization = 1;
//follwoing is for PollServer.java
public static final int ThreadNumber = 4;
//following are for CurrentPollResuit.java
public static final int PollResultPort = 9186;
public static final int SongSize = 1000;
public static final int MeasurePort = 9901;

APPENDIX 6 POLL SERVER

iport j ava.io.*;
iport java.net.*;
iport java.util.*;
*
This class is used to simulate the terminal of the application
(Aversion vO . 0.0
©author Rong Wang
Lblic class PollServer extends Thread {
static final int MachinelD = 0; //need modify according to computer ID
public static int[][] taskDistribution; //indicates sleeping time
public static long totalTime=0;
public static int countWait=0;
public boolean request;
private InetAddress ringMakerAddress,-
private InetAddress pollResuitAddress;
private int listenPort;
private int talkToRMPort;
private int pollServerlD;
private DatagramSocket aSocket; //will be used by the application, not for token
public PollServer(int Iport, int rmport, int sid) {
try
{ ringMakerAddress = InetAddress .getByName ("147.26.101.144 ") ,*

pollResuitAddress = InetAddress.getByName("147.26.101.144");
listenPort = Iport;
talkToRMPort = rmport;
pollServerlD = sid;
request = false;
aSocket = new DatagramSocket();

} catch (SocketException e) { Systern.out.printIn("Socket: " + e.getMessage(}); }
catch (UnknownHostException e) { System.out.printIn("UnknownHost: " + e.getMessage());}

//simulate response from people by generating 20 numbers range from 1 to 1000
public String generateResponse()
{ Random rand = new Random();
int n = 999;
String aLine = "";
for (int l = 0; i < 20; i++) {

Integer anlnt = new Integer(rand.nextInt(n + 1));
aLine = aLine + anlnt + " ";

}return aLine;
}

public void run()
{ int count = 0;
int[][] taskDistribution = new int[FinalVariables.MaxTaskNumber][FinalVariables.

MaxProcessNumber];
long start=0, end = 0;
//first read file taskDistribution.txt and store the content in an interger array

try
{ String line;
BufferedReader in = new BufferedReader(new FileReader(

"taskDistribution.txt"));
for (int i = 0; i < FinalVariables.MaxTaskNumber; i++)

{ line = in.readLine(); //read a line from the file
int temp = 0;
int fromlndex = 0;
int endlndex = 0;
for (int j =0; j < Finalvariables.MaxProcessNumber; j++)
{ if((endlndex = 1ine.indexOf(' ' , fromlndex)) != -1);

{ temp = Integer.parselnt(line.substring(fromlndex, endlndex));
taskDistribution[i][j] = temp;
fromlndex = endlndex + 1;

}}//end of outer for (j=0) loop
}//end of outer for (i=0) loop

}//end of try
catch (FileNotFoundException e){ System.out.printIn("FileNotFoundEXCEPTION: " + e.

getMessage());}
catch (IOException e) {System.out.printIn("IOEXCEPTION: " + e.getMessage());}

//following three lines should be commented/uncommented according to which algorithm to ii
test

//ShepherdToken token = new ShepherdToken(ringMakerAddress, listenPort,talkToRMPort, thistf
, pollServerlD),-

//CompanionToken token = new CompanionToken(ringMakerAddress, listenPort,talkToRMPort,
this, pollServerlD);

//EnablerToken token = new EnablerToken(ringMakerAddress, listenPort,talkToRMPort, this,
pollServerlD);

AlternatorToken token = new AlternatorToken(ringMakerAddress, listenPort,talkToRMPort,
this, pollServerlD);

token, start () ,* //begin to listen token
/* //following two lines should be uncommented if test S, C or E
while (token.neighborPort == -1)

yield(); //waiting until the process has been assigned neighbors
*/
//following two lines should be commented if test S, C or E
while (token.leftNeighborPort == -1 || token.rightNeighborPort == -2)
yield(); //waiting until the process has been assigned neighbors

for (; ;)
{

//then it should do some non-CS chore
if(count == FinalVariables.MaxTaskNumber)

count=0;
while (count < FinalVariables.MaxTaskNumber)
{

String response = "";
//non-CS, simulate different user's different response time and idle time
try
{ Thread, sleep (taskDistribution [count] [token. serverlD]),*
}catch (InterruptedException e) { System.out.println("Interrupted: " + e. \i

getMessage());}
response = generateResponse();
byte[] sendData = new byte[1000];
sendData = response.getBytes();
byte[] recvData = new byte[1000];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);

DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length,
pollResuitAddress, FinalVariables.PollResultPort);

request = true;
start=System.currentTimeMillis();
// then request to update the output file
while (token.grant 1= true)

yield();
totalTime += System. currentTimeMillis ()-start ,*
countWait++;
System.out .println ("Average waiting time "+((double) totalTime/countWait)),*
try
{ aSocket.send(outPacket);

aSocket.receive(inPacket);
String tmp = new String(inPacket.getData()).trim();
if (tmp.equals("OK")) //reset request to false

request = false;
while (token.grant == true)

yield () ;
} catch (IOException e) {}
count++; //update count

} //end of while
}//end of for

}//end of run()
public static void main(String[] args)
{ //create poll servers

for (int i = 0; i < FinalVariables.ThreadNumber; i++)
{ System.out.printIn("poll server started");
new PollServer(2200 + MachineID+4*i, 2300 + MachineID+4*i, MachineID+4*i).start()

}} //end of main
//end of class

APPENDIX 7 RING INITIALIZATION FOR ALTERNATOR TOKEN RING

mport java.net.*;
mport j ava.io.* ;

This class is used to help create ring, used by alternator token ring only
/
lass Ringlnitialization

private Processlnfo serverlnfo;
private InetAddress ringMakerAddress;
public DatagramSocket talkRMSocket;
public DatagramSocket listensocket;
public Ringlnitialization(InetAddress aHost, DatagramSocket listensocket ,

DatagramSocket talkRMsocket, int sid)
{ serverlnfo = new ProcessInfo(listensocket.getLocalAddress(), listensocket.

getLocalPort(), talkRMsocket.getLocalPort(), sid);
ringMakerAddress = aHost;
talkRMsocket = talkRMsocket;
listensocket = listensocket;

}
public void findNeighbor(Processlnfo [] p)
{ DatagramSocket socket = null;

try
{ socket = new DatagramSocket();
} catch(SocketException e) {System.out.printIn("Socket: " + e.getMessage(});}
//send own info, to the RingMakerServer
TransportTool.sendTo(serverlnfo, ringMakerAddress, FinalVariables.RingMakerPort, i£

socket);
//should get neighbor’s address and port and its own id
for(int i = 0; i < 2; i++)

p[i] = (Processlnfo) TransportTool.receiveFrom(talkRMSocket);
}

nport j ava.net.* ;
nport j ava.io.* ;

APPENDIX 8 RING INITIALIZATION FOR E, S AND C

This class is used to help create ring, used by S, C, and E token ring

Lass Ringlnitialization
private Processlnfo serverlnfo;
private InetAddress ringMakerAddress;
public DatagramSocket talkRMSocket;
public DatagramSocket listenSocket;
public Ringlnitialization(InetAddress aHost, DatagramSocket listensocket ,

DatagramSocket talkRMsocket, int sid)
{ serverlnfo = new ProcessInfo(listensocket.getLocalAddress() , listensocket. i£

getLocalPort() , talkRMsocket.getLocalPort(), sid);
ringMakerAddress = aHost;
talkRMSocket = talkRMsocket;
listensocket = listensocket;

}
public Processlnfo findNeighbor()
{ DatagramSocket socket = null;

try
{ socket = new DatagramSocket();
} catch(SocketException e) {System.out.printIn("Socket: " + e.getMessage());}
//send own info, to the RingMakerServer
TransportTool.sendTo(serverlnfo, ringMakerAddress, FinalVariables.RingMakerPort, i£

socket);
//should get neighbor's address and port and its own id
Processlnfo p = (Processlnfo) TransportTool.receiveFrom(talkRMsocket);
return p;

}

APPENDIX 9 RING MAKER FOR ALTERNATOR

nport j ava.io.* ;
nport j ava.net.* ;
nport java.util.*;

k *

This class is used to store the information of every process who wants to join the token
ring,

it implements the interface Serializable so that its object can be transport over the
network.

(Aversion vO . 0.0
@author Rong Wang

/
Lass Processlnfo implements Serializable

public InetAddress address;
public int lport;
public int notifyNeighborPort;
public int serverlD;
/**
* a constructor without any parameter
*/Processlnfo()
{ address = null;

lport = -1 ;
notifyNeighborPort = -2;
serverlD = -1;

}
/**
* a constructor used for initialization
* ©param addr the address where the process is running
* ©param aPort the port number of the process
*/Processlnfo(InetAddress addr, int aPort , int forRmport, int sid)
{ address = addr;

lport = aPort;
notifyNeighborPort = forRmport;
serverlD = sid;

}

* impelment the method of interface Serializable
*/private void writeObject(java.io.ObjectOutputStream out)

throws IOException
{ out .defaultWriteObject () ,* }

/**
* impelment the method of interface Serializable
*/private void readObject(java.io.ObjectInputStream in)

throws IOException, ClassNotFoundException
{ in.defaultReadObject(); }

k *

This class is used to create a ring so that every process who joins the ring can know to
whom,

it should communicate with, it is created for alternator token ring where two neighbors
need to be assigned.
©version vO.O.O
©author Rong Wang

/
ublic class RingMaker

private Processlnfo [] processes;
/**
* a constructor without any parameter
*/RingMaker()
{ processes = new Processlnfo[FinalVariables.ServerNumber],*

for(int i = 0; i < FinalVariables.ServerNumber; i++)
processes[i] = new Processlnfo();

}
/**
* self explanatory
* ©pararn p a process to be added
*/public synchronized void addProcess(Processlnfo p)
{ processes[p.serverlD] = p; //add to array according to its ID number
}
/**
* Assign neighbors to each process
*/public void assignNeighbor()
{ Processlnfo process, talkToNeighbor,-

DatagramSocket aSocket, socket2, socket3;
ObjectOutputStream os;
try{

aSocket = new DatagramSocket();
socket2 = new DatagramSocket();
socket3 = new DatagramSocket();
for(int i = 0; i < FinalVariables.ServerNumber; i++)
{ //tell timeMonitor and token traverse monitor the address info, of each i£

process
TransportTool.sendTo(processes[i], InetAddress.getByName("localhost"), i£

FinalVariables.InfoPort, socket2),*
TransportTool.sendTo(processes[i], InetAddress.getByName("localhost"), X

FinalVariables.InfoPort2, socket3),-
//tell the process who are its talk-to-neighbor, processes[i+1]
TransportTool.sendTo(processes[(i+1)%FinalVariables.ServerNumber], processes

[i].address, processes[i].notifyNeighborPort, aSocket);
TransportTool.sendTo(processes[(i-l+FinalVariables.ServerNumber)%

FinalVariables.ServerNumber], processes[i].address, processes[i].
notifyNeighborPort, aSocket);

} catch (SocketException e) { System.out.println("Socket : " + e.getMessage());}
catch (IOException e) { System.out.println("10: " + e.getMessage());}

}

public static void main(Stringi] args)
{ RingMaker ringMaker = new RingMaker();

DatagramSocket socket = null;
int count = 0, countSyn = 0;
byte[] sendData = new byte[100];

*
*

socket = new DatagramSocket (FinalVariables.RingMakerPort);
while(count < FinalVariables-ServerNumber)
{ Processlnfo p = (Processlnfo) TransportTool.receiveFrom(socket);

ringMaker.addProcess(p),*
count++;

}
ringMaker.assignNeighbor();
//send msg to TimeMonitor to notify the time when the ring was established
long setupTime = (new Date()).getTime();
sendData = (Long.toString(setupTime)) .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, InetAddress.getByName("localhost"), FinalVariables
.TimePort);

socket.send(outPacket);
} catch (SocketException e) { System.out.println("Socket: " + e.getMessage());}
catch (IOException e) { System.out .println("10: " + e.getMessage ()),*}
finally { if(socket != null) socket.close(); }

mport java.io.*;
mport j ava.net.* ;
mport java.util.*;

APPENDIX 10 RING MAKER FOR E, S AND C

This class is used to store the information of every process who wants to join the token
ring,

it implements the interface Serializable so that its object can be transport over the
network.

(Aversion vO . 0.0
@author Rong Wang

/lass Processlnfo implements Serializable
public InetAddress address;
public int lport;
public int notifyNeighborPort;
public int serverID;
/**
* a constructor without any parameter
*/Processlnfo()
{ address = null;

lport = -1 ;
notifyNeighborPort = -2;
serverlD = -1;

}
/**
* a constructor used for initialization
* ©param addr the address where the process is running
* ©param aPort the port number of the process
*/Processlnfo(InetAddress addr, int aPort , int forRmport, int sid)
{ address = addr;

lport = aPort;
notifyNeighborPort = forRmport;
serverlD = sid;

}
/**
* impelment the method of interface Serializable
*/private void writeObject(java.io.ObjectOutputStream out)

throws IOException
{ out.defaultWriteObject(); }

/**
* impelment the method of interface Serializable
*/private void readObject(java.io.ObjectInputStream in)

throws IOException, ClassNotFoundException
{ in.defaultReadObject(); }

**
This class is used to create a ring so that every process who joins the ring can know to
whom,

it should communicate with. It is used by the shepherd, companion and enabler token ring
©version vO.0 . 0
©author Rong Wang

/

ublic class RingMaker

private Processlnfo [] processes;
/**
* a constructor without any parameter
*/RingMaker()
{ processes = new Processlnfo[FinalVariables.ServerNumber];

for(int i = 0; i < FinalVariables.ServerNumber; i++)
processes[i] = new Processlnfo();

}
/**
* self explanatory
* @param p a process to be added
*/public synchronized void addProcess(Processlnfo p)
{ processes[p.serverlD] = p; //add to array according to its ID number

/ System.out.printIn("received ports: "+p.lport+p.notifyNeighborPort);
}
/**
* Assign neighbor to each process
*/public void assignNeighbor(Processlnfo processes [])
{ Processlnfo process, talkToNeighbor;

DatagramSocket aSocket, socket2, socket3;
ObjectOutputStream os;
try{

aSocket = new DatagramSocket ();
socket2 = new DatagramSocket () ,*
socket3 = new DatagramSocket();
//tell timeMonitor the address info, of process ServerNumber - 1, "localhonst")£

here is the machine timeMonitor is running on
TransportTool.sendTo(processes[FinalVariables.ServerNumber - 1], InetAddress. i£

getByName("localhost"), FinalVariables.InfoPort, socket2 };
TransportTool.sendTo(processes[FinalVariables.ServerNumber - 1], InetAddress. 11

getByName("localhost"), FinalVariables.InfoPort2, socket3);
TransportTool.sendTo(processes[0], processes[FinalVariables.ServerNumber - 1].

address, processes[FinalVariables.ServerNumber - 1].notifyNeighborPort,
aSocket);

for(int i = FinalVariables.ServerNumber - 2; i >= 0; i--)
{ //tell timeMonitor the address info, of each process

TransportTool.sendTo(processes[i], InetAddress.getByName("localhost"), 11
FinalVariables.InfoPort, socket2);

TransportTool.sendTo(processes [i], InetAddress.getByName("localhost"), \£
FinalVariables.InfoPort2, socket3);

//tell the process who is its talk-to-neighbor, processes[i+1]
TransportTool.sendTo(processes[i+1], processes[i].address, processes [i]. \i

notifyNeighborPort, aSocket);
} catch (SocketException e) { System.out.println("Socket: " + e.getMessage());}
catch (IOException e) { System.out.println("10: " + e.getMessage());}

}

public static void main(String[] args)
{

*
*

RingMaker ringMaker = new RingMakerO ,*
DatagramSocket socket = null;
int count = 0 ;
byte[] sendData = new byte[100];
try{

socket = new DatagramSocket (FinalVariables.RingMakerPort);
while(count != FinalVariables.ServerNumber)
{ ringMaker.addProcess((Processlnfo) TransportTool.receiveFrom(socket));

count++;
}System.out.println("received ports: "+ count);
ringMaker.assignNeighbor(ringMaker.processes);
//send msg to TimeMonitor to notify the time when the ring was established
long setupTime = (new Date()).getTime();
sendData = (Long.toString(setupTime)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, InetAddress.getByName("localhost"), FinalVariables
.TimePort) ,-

socket.send(outPacket);
} catch (SocketException e) { System.out.println("Socket: " + e.getMessage());}
catch (IOException e) { System.out.println("10: " + e.getMessage());}
finally { if(socket != null) socket.close(); }

} //end of main
//end of class

APPENDIX 11 SHEPHERD TOKEN

mport java.io.*;
mport j ava.net.* ;
mport j ava.lang.* ;
**
This class implements shepherd token ring algorithm

/lass ShepherdToken extends Thread
private InetAddress ringMakerAddress;
private InetAddress timeMonitorAddress;
private InetAddress measureAddress;
public static int countMsg=0;
public long startCycle;
public long cycleTime=0;
public int serverID;
public int neighborPort;
private InetAddress neighborAddress;
private int action;
private int firstGet;
private DatagramSocket
private DatagramSocket
private DatagramSocket
private DatagramSocket
private DatagramSocket
private DatagramSocket

sendSocket;
actionSocket;
talkToRMSocket; //used to talk to Ring Maker
talkToTimeSocket; //used to talk to timeMonitor
listenSocket; //socket used to listen from its precessor
talkTokenTraverseSocket; //used to talk to timeMonitor

public boolean grant;
private boolean inCS;
private PollServer pollServerlnCharge; //used to read poll server's request
//own token, rd and shepherd
private boolean tkn;
private boolean rd; //local guard
private boolean sh;
//precessor's token and shepherd
private boolean pTkn;
private boolean pSh;
public boolean ignore = false; //used to control if to send msg when executing cs
public boolean reportCS = false; //used to control if to send msg when executing cs
public ShepherdToken(InetAddress addr, int listenPort, int talkToRMport, PollServer ps, 1/

int sid)
{ ringMakerAddress = addr;

timeMonitorAddress = addr;
measureAddress = addr;
pollServerlnCharge = ps;
action =0 ;
inCS = false;
startCycle=0 ;
firstGet =0;
neighborPort = -1;
neighborAddress = null;
serverlD = sid;
grant = false;
//worst case for stabilization
rd = true;
if((serverID+1)%4 == 1)
{ tkn = true;

sh = true;
}

if((serverlD +1)% 4== 2)
{ pTkn = true;

pSh = true;
}try
{ sendSocket = new DatagramSocket();

actionSocket = new DatagramSocket();
talkToTimeSocket = new DatagramSocket();
talkTokenTraverseSocket = new DatagramSocket(),*
listenSocket = new DatagramSocket(listenPort, InetAddress.getByName("147.26.101.

141»));
talkToRMSocket = new DatagramSocket(talkToRMport, InetAddress.getByName("147.26.

101.141"));
} catch(SocketException e) {System.out.println("Socket: " + e.getMessage());}
catch (UnknownHostException e) { System.out.println("UnknownHost: " + e.
getMessage());}

}

//token is present at instant node
boolean Tvalue(int i, boolean tkn, boolean pTkn)
{ return (((i == 0)&&(tkn == pTkn)) || ((i 1= 0)&&(tkn==!pTkn)));
}
//shepherd is present at instant node
boolean Svalue(int i, boolean sh, boolean pSh)
{ return (((i==0)&&(sh==pSh)) || ((i!=0)&&(sh==IpSh)));
}
private int boolToInt(boolean a)
{ if (a)

return 1 ;
else

return 0 ;
}

//return a string with at most 2 elements, 1 st is the token, 2nd is shepherd,
//"l" means high, "0" means low, and 3 means no change
private String processTokenAndShepherdForTokenTraversal()
{ String tmp = "33";

//first situation case 1 :
if(Tvalue(serverlD, tkn, pTkn) && !Svalue(serverlD, sh, pSh) && (sh || serverlD*

1=0) ScSc pollServerlnCharge.request == false)
{ if(ignore == false)

{ byte[]sendData = new byte[10];
sendData = (Integer. toString (serverlD)+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. \i
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e){}

}ignore = false; //set ignore to false
reportCS = false; //set for case 2

tkn = !tkn; //only pass token
rd = false;
if(tkn) tmp = »13»;

else tmp = "03";
byte[] sendData2 = new byte [10];
sendData2 = (Integer.toString(serverlD)+" release”).getBytes();
DatagramPaeket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. \i
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}
grant = false;

}
//first situation case 2:
if(Tvalue(serverlD, tkn, pTkn) && iSvalue(serverlD, sh, pSh) && (sh || serverIDkf

i=0) ScSc pollServerlnCharge. request == true)
{

if(ignore == false) //should send msg
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. yf
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e){}

}ignore = true; //set it to true, so not to send multiple times
grant = true;
if(reportCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}

}reportCS = true; //reported already
}
//second situation case 1:
else if(Tvalue(serverlD, tkn, pTkn) && Svalue(serverlD, sh, pSh) && !sh && !rd \i

&& pollServerlnCharge.request == false)
{ if(ignore == false)

{ byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. yf
MeasurePort);

try{talkTokenTraverseSocket.send(outPacket); }//tell TokenTraversalMonitor
its privilege

catch(IOException e){}
}

ignore = false; //set ignore to false because for case 2
reportCS = false; //set for case 2
tkn = ltkn; //only pass token
rd = true;
if(tkn) tmp = ”13”;

else tmp = 03»;
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+» release»).getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort);

try{talkTokenTraverseSocket.send(outPacket2); }//tell TokenTraversalMonitor its
privilege
catch(IOExeeption e){}

grant = false;
}
//second situation case 2:
else if(Tvalue(serverlD, tkn, pTkn) && Svalue(serverlD, sh, pSh) && !sh && !rd i£

ScSc pollServerlnCharge.request == true)
{ if(ignore == false) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)+" get”).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables.)£
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOExeeption e){}

}ignore = true; //set it to true, so not to send multiple times
grant = true;
if(reportCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+» cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. vt
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOExeeption e){}

}reportCS = true; //reported already
}
//third situation case 1:
else if(Tvalue(serverlD, tkn, pTkn) && Svalue(serverlD, sh, pSh) && ((sh&& \l

serverlD!=0)||(!sh&&rd)) && pollServerlnCharge.request == false)
{ if(ignore == false)

{ byte[]sendData = new byte[10];
sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables.
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e){}

}
ignore = false; //set ignore to false because for case 2
reportCS = false; //set for case 2
tkn = !tkn; //pass token
sh = !sh;
rd = false;
if (tkn)
{

if(sh) tmp = "11";
else tmp = "10";

else
{ if(sh) tmp = "01";

else tmp = "00";
}
byte[] sendData2 = new byte[10];
sendData2 = (Integer.toString(serverlD)+" release").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort),*

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}
grant = false;

}
//third situation case 2:
else if(Tvalue(serverlD, tkn, pTkn) && Svalue(serverlD, sh, pSh) && ((sh&& »1

serverlD!=0)||(!sh&&rd)) && pol1ServerInCharge.request == true)
{ if(ignore == false) //should send msg

{ byte[]sendData = new byte[10];
sendData = (Integer. toString (serverlD)+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. i£
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e){}

}ignore = true; //set it to true, so not to send multiple times

}

grant = true;
if(reportCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+" cs").getBytes();
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. t£
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}

}reportCS = true; //reported already
}
//fourth situation case 1:
else if((!Tvalue(serverlD, tkn, pTkn) || serverID== 0) && Svalue(serverlD, sh,

pSh) && sh && pollServerInCharge.request == false)
{ if(ignore == false)

{ byte [] sendData = new byte [10],*
sendData = (Integer.toString(serverlD)+" get").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. i£
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{ talkTokenTraverseSocket. send (outPacket) ,* }
catch(IOException e){}

ignore = false; //set ignore to false because for case 2
reportCS = false; //set for case 2
sh = ish; //sh should be low now
rd = false;
tmp = "30";
byte[] sendData2 = new byte[10],*
sendData2 = (Integer.toString(serverlD)+" release") .getBytes () ,*
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables. n?
MeasurePort),*

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}
grant = false;

}
//fourth situation case 2:
else if((!Tvalue(serverlD, tkn, pTkn) || serverID== 0) && Svalue(serverlD, sh,

pSh) ScSc sh && pollServerInCharge. request == true)
{ if(ignore == false) //should send msg

{ byte [] sendData = new byte [10],*
sendData = (Integer.toString(serverlD)+" get") .getBytes () ,*
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, measureAddress, FinalVariables. 11
MeasurePort);

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket); }
catch(IOException e){}

}ignore = true; //set it to true, so not to send multiple times

}

grant = true;
if(reportCS == false)
{ byte[]sendData2 = new byte[10];

sendData2 = (Integer.toString(serverlD)+" cs") .getBytes () ,*
DatagramPacket outPacket2 = new DatagramPacket(sendData2,

sendData2.length, measureAddress, FinalVariables.
MeasurePort),*

//tell TokenTraversalMonitor its privilege
try{talkTokenTraverseSocket.send(outPacket2); }
catch(IOException e){}

}reportCS = true; //reported already
}return tmp;

}

//return a string with at most 2 elements, 1st is the token, 2nd is shepherd,
//"l" means high, "0" means low, and 3 means no change
private String processTokenAndShepherdNoRequest()
{ String tmp = "33";

int temp = action,*
//first situation:
if(Tvalue(serverlD, tkn, pTkn) && !Svalue(serverlD, sh, pSh) && (sh || serverlD*

I =0))

byte [] sendData = new byte [10],*
sendData = (Integer.toString(serverlD)).getBytes();

{

DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, v!
timeMonitorAddress, FinalVariables.PrevilegePort);

try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege
catch(IOException e){}
tkn = !tkn; //only pass token
rd = false;
tmp = boolToInt(tkn)+""+boolToInt(sh);

}

//second situation:
else if(Tvalue(serverlD, tkn, pTkn) && Svalue(serverlD, sh, pSh) && Ish && !rd)
{ byte[]sendData = new byte[103;

sendData = (Integer.toString(serverlD)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length, *

timeMonitorAddress, FinalVariables.PrevilegePort) ,-
try{talkToTimeSocket. send (outPacket) ,* }//tell timeMonitor its privilege
catch(IOException e){}
tkn = !tkn; //only pass token
rd = true;
tmp = boolToInt(tkn)+"n+boolToInt(sh);

}

//third situation:
else if(Tvalue(serverlD, tkn, pTkn) && Svalue(serverlD, sh, pSh) && ((sh&& *

serverlD1=0)||(!sh&&rd)))
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length,

timeMonitorAddress, FinalVariables.PrevilegePort);
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege
catch(IOException e){}
tkn = Itkn; //pass token
sh = Ish;
rd = false;
tmp = boolToInt(tkn)+"H+boolToInt(sh);

}

//fourth situation:
else if((!Tvalue(serverlD, tkn, pTkn) || serverID== 0) && Svalue(serverlD, sh,

pSh) ScSc sh)
{ byte[]sendData = new byte[10];

sendData = (Integer.toString(serverlD)).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length,

timeMonitorAddress, FinalVariables.PrevilegePort);
try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege
catch(IOException e){}
sh = Ish; //sh should be low now
rd = false;
tmp = boolToInt(tkn)+""+boolToInt(sh);

}
if(temp!=action)
{ byte[]sendData = new byte[10];

sendData = ("a").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,sendData.length,

timeMonitorAddress, FinalVariables.PrevilegePort);

try{talkToTimeSocket.send(outPacket); }//tell timeMonitor its privilege
catch(IOException e){}

return tmp;
}

}

public void run()
{ Ringlnitialization init = new Ringlnitialization(ringMakerAddress, listenSocket,

talkToRMSocket, serverlD);
Processlnfo p = (Processlnfo) init.findNeighbor{);
neighborAddress = p.address;
neighborPort = p.lport;
int flag = 0; //used only when test stabilization time
for(;;) ////this for loop testing stabilization time
{ try

{ byte[] sendData = new byte[FinalVariables.PKSIZE];
sendData = (processTokenAndShepherdNoRequest()).getBytes();
countMsg++;

DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length, \l
neighborAddress, neighborPort);

sendSocket.send(outPacket);
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
listenSocket.receive(inPacket);
String tmp = new String(inPacket.getDataO).trim();
if(tmp.equals("stop measure stabilization"))
{ System.out .printIn ("number of messages sent "+ countMsg),*

byte[]actionData = new byte[1000];
actionData = (Integer. toString (action)) .getBytes () ,-
DatagramPacket actionPacket = new DatagramPacket(actionData,actionData. 11

length, timeMonitorAddress, FinalVariables.ActionPort);
try{actionSocket. send (actionPacket) ,* }//tell timeMonitor its privilege
catch(IOException e){}
break;

}
if(flag == 1) //waiting for restart
{ if(tmp.equals("restart")) //initialize

{ flag = 0;
tkn = false;
sh = false;
pTkn = false; //precessor tkn
pSh = false;

else if(flag == 0) //must deal with the msg
{ if(tmp.equals("stop"))

flag = 1;
else

//extract the value of preseccor’s token
if(tmp.charAt(0) == 11 *)

{

’O')
pTkn = true;

else if (tmp.charAt(0) ==
pTkn = false;

//extract the value of preseccor's companion
if(tmp.charAt(1) ==)

pSh = true;
else if(tmp.charAt(1) == 'O')

pSh = false;

} catch (IOException e } {System.out.printIn("IO: " + e.getMessage()); e.
printStackTrace(); }

yield();
} //end of for loop

byte[] flagData = new byte[FinalVariables.PKSIZE];
flagData = "now".getBytes();
DatagramPacket nowPacket = new DatagramPacket(flagData, flagData.length,

neighborAddress, neighborPort);
try
{ sendSocket.send(nowPacket);

for(; ;)
{ byte[] rfData = new byte [FinalVariables. PKSIZE] ,-

DatagramPacket rfPacket = new DatagramPacket (rfData, rfData. length) ,*
listenSocket.receive(rfPacket);
String rtmp = new String(rfPacket.getData()).trim();
if(rtmp.equals("now"))

break;
}}catch (IOException e) {System.out.println("10: " + e.getMessage()); e.
printStackTrace(); }

tkn = false;
rd = false;
sh = false;
pTkn = false;
pSh = false;
action=0;
countMsg = 0;
for(,*;) //this for loop testing token traversal time
{ try

{ byte[] sendData = new byte[FinalVariables.PKSIZE];
while(grant && pollServerlnCharge.request)

yield () ,*
//token traversal time measurement
sendData = (processTokenAndShepherdForTokenTraversal()).getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length, \i

neighborAddress, neighborPort);
sendSocket.send(outPacket);
countMsg++;
byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket (recvData, recvData. length) ,*
listenSocket.receive(inPacket);
String tmp = new String(inPacket.getData()).trim();
if(tmp.equals("stop"))

{ byte[]actionData = new byte[1000];
aetionData = (Integer.toString(action)).getBytes();
DatagramPacket actionPacket = new DatagramPacket(aetionData,aetionData. \i

length, measureAddress, FinalVariables.TraverseActionPort);
try{actionSocket.send(actionPacket); }//tell timeMonitor its privilege
catch(IOException e){}
break;

}
else
{ //extract the value of preseccor’s token

if(tmp.charAt(0) == 111)
pTkn = true;

else if (tmp.charAt(0) == 'O')
pTkn = false;

//extract the value of preseccor’s companion
if(tmp.charAt(1) == ’ l1)

pSh = true;
else if(tmp.charAt(1) == 'O')

pSh = false;
}} catch (IOException e) {System.out.println("10: " + e.getMessage()); e.
printStackTrace(); }

yield () ;
}} //end of method

//end of class

APPENDIX 12 TASK DISTRIBUTION

mport j ava.io.*;
mport java.util.*;

This class is used to generate a two dimensional integer array
©version vO.0.0
@author Rong Wang

/
ublic class TaskDistribution

public static void main(String[] args)
{ try

{ Random rand = new Random();
int n = FinalVariables.MaxTaskNumber * FinalVariables.MaxProcessNumber;
int [] taskDistribution = new int[n];
int size = (int) (FinalVariables.ActivePercentage * n); //the number of elements*

to be assigned 1
int maxResponseTime =120000;
for(int a = 0; a < n; a++) //initialize to 0
{ //random int ranging from 0 to maxResponseTime - 1

Integer anlntl = new Integer(rand.nextlnt(maxResponseTime));
taskDistribution[a] = anlntl.intValue();

}
//write to file
PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter *

("taskDistribution.txt"}));
for(int i = 0; i < FinalVariables.MaxTaskNumber; i++)
{ String aLine = "";

for(int j =0; j < FinalVariables.MaxProcessNumber; j++)
{ aLine = aLine + String.valueOf(taskDistribution[i*FinalVariables. *

MaxProcessNumber+j3) + "
}out.println(aLine };
}out.close();

} catch(IOException e) { System.out.println("IOEXCEPTION: " + e.getMessage());}
} //end of main

//end of class

APPENDIX 13 TIME MONITOR

mport j ava.net.* ;
mport j ava.io.* ;
mport j ava.lang.* ;
mport java.util.*;

**
This class is used to measure stabilization time
(»version vO . 0.0
©author Rong Wang

/
lass TimeMonitor

private static Processlnfo [] processes;
j -k -k

* a constructor
*/TimeMonitor() {

processes = new Processlnfo[FinalVariables.ServerNumber];
for(int i = 0; i < FinalVariables.ServerNumber; i++)

processes[i] = new Processlnfo();
}/**
* self explanatory
* @param p a process to be added
*/public void addProcess(Processlnfo p)
{ processes[p.serverlD] = p; //add to array according to its ID number
}
public static void main(String[] args }
{ TimeMonitor tm = new TimeMonitor();

int firstSender = -1, nextExpected = -1;
long deliveryStartTime = 0, deliveryEndTime = 0, sTime = 0, total=0;
DatagramSocket timeSocket = null, previlegeSocket = null, infoSocket = null,

actionSocket=null;
try{

timeSocket = new DatagramSocket(FinalVariables.TimePort);
previlegeSocket = new DatagramSocket(FinalVariables.PrevilegePort),*
infoSocket = new DatagramSocket(FinalVariables.InfoPort);
actionSocket = new DatagramSocket(FinalVariables.ActionPort);

} catch (SocketException s }{}

//first try to receive process address info, from RingMaker
int count = 0;
while(count != FinalVariables.ServerNumber)
{ tm.addProcess((Processlnfo) TransportTool.receiveFrom(infoSocket));

count++;
System.out.println("counts " + count);

}
//then try to receive info, from RingMaker to know the start time of ring
byte[] recvData = new byte [FinalVariables .PKSIZE] ,*
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
try{timeSocket.receive(inPacket);}catch(IOException e){}
//retreive the time information from the received msg
Long ringSetUpTime = new Long(new String(inPacket.getData()).trim());
long ringSetupTime = ringSetUpTime.longValue();
int counter =0, sAct=0, totalAct=0;
for(int a = 0; a < FinalVariables.MaxRunForStabilization; a++)

{
f o r (;;)
{ recvData = new byte[FinalVariables.PKSIZE];

inPacket = new DatagramPacket(recvData, recvData.length);
//get the sender’s info
try{previlegeSocket.receive(inPacket);}catch(IOException e){}
String tmp = new String(inPacket.getData()).trim();
if(tmp.equals("a"))

totalAct++;
else
{ System.out.println("Privileged process " + tmp);

int intNum = Integer.parselnt(tmp);
if(firstSender == -1)
{ firstSender = intNum;

if(firstSender == FinalVariables.ServerNumber -1)
nextExpected = 0;

else nextExpected = firstSender + 1;
deliveryStartTime = System. currentTimeMillis () ,-
sAct = totalAct;

}else if(firstSender == intNum && nextExpected == firstSender) //a cycle*
finished

{ deliveryEndTime = System.currentTimeMillis();
break;

}else
{ if(nextExpected == intNum) //legal order

{ if(nextExpected == FinalVariables.ServerNumber - 1)
nextExpected = 0;

else nextExpected++;
}else //illegal order, record the sender as firstSender
{ firstSender = intNum;

if(firstSender == FinalVariables.ServerNumber - 1)
nextExpected = 0;

else nextExpected = firstSender + 1;
//this should be the stabilization time
deliveryStartTime = System.currentTimeMillis();
sAct = totalAct;

}
}

}} //end of inner for loop
//for next circle to use
firstSender = -1;
nextExpected = -1;
sTime = deliveryStartTime - ringSetupTime;
total += sTime;
try
{ //to write the output to file

File f = new File("performance.log"); // delete the file if it already exists
if (f.existsO)

f.delete();
PrintWriter out = new PrintWriter(new FileWriter(f));
out.println("Stabilization time: "+ sTime + " milliseconds");
out.closeO; // We're done writing

} catch (IOException e) { /* Handle exceptions */ }
System.out.println("Stabilization time: "+ sTime);

try{Thread.sleep(1);} //set an upper bound for each process to hold privilege
catch (InterruptedException e) { System.out.println("Interrupted: " + e. wf

getMessage());}
//after stabilization, send msg to token listener to restart
for (int i = FinalVariables.ServerNumber-1; i >= 0; i--)
{ try{

byte[] sendData = new byte[100];
sendData = ("stop").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, tm.processes[i].address, tm.processes [i] . lport) ,*
timeSocket.send(outPacket);

Jcatch (IOException e) { System.out.println(H10: " + e.getMessage());}
} //end of for loop
for (int j = FinalVariables.ServerNumber-1; j >= 0; j--)
{ try{

byte[] sendData = new byte [100],*
sendData = ("restart").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, tm.processes[j].address, tm.processes[j].lport);
timeSocket. send (outPacket) ,*

Jcatch (IOException e) { System.out .println ("10: " + e .getMessage ()),*}
} //end of for loop
ringSetupTime = System.currentTimeMillis(); //begin to calculate the next run

}//end of for loop of MaxRunForStabilization
//after testing stabilization, send msg to token listener to stop test the

stabilization time
for (int i = FinalVariables.ServerNumber-1; i >= 0; i--)
{ try

{ byte[] sendData = new byte[1000];
sendData = ("stop measure stabilization").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, tm.processes[i].address, tm.processes[i].lport);
timeSocket. send (outPacket) ,*

Jcatch (IOException e) { System.out.println("10: " + e.getMessage());}
}int totalAction=0 ,*
for(int i=0; i < FinalVariables. ServerNumber,* i++)
{

byte[] actionData = new byte [FinalVariables. PKSIZE] ,*
DatagramPacket actionPacket = new DatagramPacket(actionData, actionData.length);
try{actionSocket. receive (actionPacket),* Jcatch (IOException e){}
String t = new String (actionPacket .getData ()). trim () ,*
int actNum = Integer.parselnt(t);
totalAction += actNum;

}System.out.println("total action number is "+totalAction);
} //end of main

•//end of class

APPENDIX 14 TOKEN TRAVERSAL MONITOR

mport j ava.net.*;
mport j ava.io.*;
mport j ava.lang.*;
mport java.util.*;
* *
This class is used to store the information used to measure token traversal time for every
process in token ring,
©version vO.0.0
©author Rong Wang

/:lass Measurelnfo
public boolean request;
public int csExecuted;
public long timeForACircle;
/**
* a constructor without any parameter
*/Measurelnfo()
{ request = false;

csExecuted = 0;
timeForACircle = 0;

}

• This class is used to measure token traversal time
r @version vO.0.0
r @author Rong Wang
7)ublic class TokenTraverseMonitor
L private static final int MeasureSize = 4;

private Measurelnfo [][3 measureArray;
private int[] requestlndex;
private Processlnfo [] processes;
/**
* a constructor
*/TokenTraverseMonitor()
{ requestlndex = new int[FinalVariables.MaxProcessNumber];

for (int a = 0; a < FinalVariables.MaxProcessNumber; a++)
requestlndex[a] = -1;

measureArray = new Measurelnfo[MeasureSize][FinalVariables.ServerNumber];
for(int i = 0; i < MeasureSize; i++)

for (int j =0; j < FinalVariables.ServerNumber; j++)
measureArray[i][j] = new Measurelnfo();

processes = new Processlnfo[FinalVariables.ServerNumber];
for(int i = 0; i < FinalVariables.ServerNumber; i++)

processes[i] = new Processlnfo(};
}
/**
* self explanatory
* ©param p a process to be added
*/public void addProcess(Processlnfo p)
{ processes[p.serverlD] = p; //add to array according to its ID number
}

/**
* self explanatory
* @param args argument to be passed
*/public static void main(String[] args)
{ TokenTraverseMonitor tm = new TokenTraverseMonitor(),*

int count = MeasureSize * FinalVariables.MaxProcessNumber;
boolean firstCS=true;
long csStart=0;
int countCS = 0;
DatagramSocket measureSocket = null, actionSocket=null, proInfoSocket=null,

sendSocket=null;
try{

actionSocket = new DatagramSocket(FinalVariables.TraverseActionPort);
prolnfoSocket = new DatagramSocket(FinalVariables.InfoPort2);
measureSocket = new DatagramSocket(FinalVariables.MeasurePort);
sendSocket = new DatagramSocket();

} catch (SocketException s){}

//first try to receive process address info, from RingMaker
int countProcess = 0;
while(countProcess != FinalVariables.ServerNumber)
{ tm.addProcess((Processlnfo) TransportTool.receiveFrom(proInfoSocket));

countProcess++;
}
//try to receive info, from privileged processes
f o r (;;)
{

/*used when meausure average token traversal time with no request from
application

if (count == 0) //quit after counting
{ break;

byte[] recvData = new byte[FinalVariables.PKSIZE];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length);
try{measureSocket.receive(inPacket);}catch(IOException e){} //get the sender's^

info
String tmp = new String (inPacket .getData ()) .trim() ,*
int index = tmp.indexOf(1 >) ;
int pid = Integer.parselnt(tmp.substring(0, index));
String msg = tmp. substring (index + 1),*
if (msg.equals("cs")) //critical section
{ System.out.print(pid +” ");

if(firstCS)
{ csStart=System.currentTimeMillis();

firstCS=false;
}
countCS++;
if(countCS == 100)
{ System.out.println("Total time used for 100 tasks is: "+(System. i£

currentTimeMillis()-csStart));
break;

}
//record for each process who wishes to know how many cs r executed between

the time it releases privilege to the time it gets privilege again
if(count!=0)

{ for(int i = 0; i < FinalVariables.ServerNumber; i++)
{ if(tm.requestlndex[i] >= 0 && tm.requestIndex[i] < MeasureSize)

if(tm.measureArray[tm.requestlndex[i]] [i].request == true)
if(pid 1= i } //from release to get, so not add to itself

tm.measureArray[tm.requestlndex[i]] [i].csExecuted++;

else if(count i= 0)
{ //notify the end of record for a process, so other processes can ignore it

if (msg.equals("get"))
{ if(tm.requestlndex[pid] >= MeasureSize)

continue;
else if(tm.requestlndex[pid] != -1 && tm.measureArray[tm.requestlndex ut

[pid]][pid].request == true)
{ tm.measureArray[tm.requestlndex[pid]] [pid].timeForACircle = System. \t

currentTimeMillis() - tm.measureArray[tm.requestlndex[pid]] [pid] .
timeForACircle;

tm.measureArray[tm.requestlndex[pid]] [pid].request = false;
count--;

else //if (msg.equals("release"))
{ tm. requestlndex [pid]++,* //how many times have been recorded

if(tm.requestlndex[pid] >= MeasureSize)
continue;

else
{ if(tm.measureArray[tm.requestlndex[pid]] [pid].request == false)

{ tm.measureArray [tm. requestlndex [pid]] [pid] . timeForACircle = \t
System.currentTimeMillis();

tm.measureArray[tm.requestlndex[pid]][pid].request = true;

} //end of else
}}//end of for

/* used when count action number
//send each process to ask action number
for (int i = FinalVariables.ServerNumber-1; i >= 0; i--)
{ try{

byte[] sendData = new byte[100];
sendData = ("stop").getBytes();
DatagramPacket outPacket = new DatagramPacket(sendData,

sendData.length, tm.processes[i].address, tm.processes[i].lport);
sendSocket.send(outPacket);

}catch (IOException e) { System.out.println("10: " + e.getMessage());}
} //end of for loop
//receive action number used for token delivery from each process
int totalAction=0;
for(int i=0; i < FinalVariables.ServerNumber; i++)
{ byte[] actionData = new byte[FinalVariables.PKSIZE];

DatagramPacket actionPacket = new DatagramPacket(actionData, actionData.length);
try{actionSocket. receive (actionPacket),* }catch (IOException e){}
String t = new String (actionPacket .getData ()) .trim() ,*
int actNum = Integer.parselnt(t);
totalAction += actNum;

}

System.out.println("total action number is "+totalAction),*
*/
double a =0.0, total = 0.0, total2 = 0.0;
for(int i = 0; i < FinalVariables.ServerNumber,- i++)
{ for(int j =0 ,* j <MeasureSize; j++)

{ a = (double) (tm.measureArray[j] [i].timeForACircle -tm.measureArray[j] [i].
csExecuted*0) / (FinalVariables.ServerNumber-1);

total += a;
total2 += tm.measureArray[j] [i].timeForACircle;

}
}System.out.printIn("\nAverage token traverse time is "+total2/(MeasureSize*

FinalVariables.MaxProcessNumber));
} //end of main

//end of class

APPENDIX 15 TRANSPORT TOOL

ublic class TransportTool {
j * *
* to receive an object of Processlnfo through the network
* @param socket through which socket the object will be received
*/public static Object receiveFrom(DatagramSocket aSocket) {
Object o = null;
try {

byte[] recvData = new byte[5000];
DatagramPacket inPacket = new DatagramPacket(recvData, recvData.length) ,*
aSocket.receive(inPacket);
ByteArraylnputStream bytelnStream = new ByteArrayInputStream(recvData);
ObjectInputStream ois = new ObjectInputStream(new BufferedlnputStream(

bytelnStream)),*
o = ois.readObject();
ois.close();

mport j ava.io.*;
mport j ava.net.*;

}catch (ClassNotFoundException e) {
System.out.println("ClassNotFound: " + e.getMessage());

}catch (IOException e) {
System.out.println("10: " + e.getMessageO);
e.printStackTrace();

}
return o;

}

* to send an object of Processlnfo through the network
* ©param p an object to be sent
* ©param addr to which address the object will be sent
* ©param aPort to which port the object will be sent
* ©param socket through which socket the object will be sent
*/public static void sendTo(Object p, InetAddress addr, int aPort,

DatagramSocket socket) {
try {
ByteArrayOutputStream byteOutStream = new ByteArrayOutputStream(5000);
ObjectOutputStream oos = new ObjectOutputStream(new BufferedOutputStream(

byteOutStream));
oos .flush() ,*
oos.writeObject(p);
oos . flush () ,*
byte[] sendData = byteOutStream.toByteArray() ;
DatagramPacket outPacket = new DatagramPacket(sendData, sendData.length,

addr, aPort);
socket.send(outPacket);
oos.close();

}catch (IOException e) {
System, out .println("10: " + e.getMessageO);
e.printStackTrace();

VITA

Rong Wang was born in Song Jiang He, Ji Lin, P. R. China, on January 26,
1971, the daughter of Xicui Wang and Zhixue, Wang. After completing her work
at Song Lin High School, Song Jiang He, Ji Lin, P. R. China, in 1989, she
entered Peking University in Beijing, P. R. China. She received the Bachelor of
Art from Peking University in July 1994. During the following years she was
employed as a Japanese lecturer with Beijing Machinery Institute in Beijing, P. R.
China. In January 2001, she entered the Graduate School of Texas State
University, San Marcos, Texas.

Permanent Address: 4-2 Song Jiang Street
Song Jiang He, Ji Lin 134504
P. R. China

This thesis was typed by Rong Wang

