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MONOTONE AND OSCILLATION SOLUTIONS TO
SECOND-ORDER DIFFERENTIAL EQUATIONS WITH
ASYMPTOTIC CONDITIONS MODELING OCEAN FLOWS
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ABSTRACT. In this article, we study the existence of monotone bounded solu-
tions and of oscillatory solutions to a second-order differential equation with
asymptotic conditions. Such asymptotic conditions arise in the study of the
ocean flow in arctic gyres. Our approach relies on functional-analytic tech-
niques.

1. INTRODUCTION

In this article, we study the existence of monotone bounded solutions and of
oscillatory solutions for the second-order differential equation

2 +a(t)f(z) = h(t), t>to, (1.1)

where the real-valued function f: R — R is continuous, a: [tg, +00) — [0, 00) and
h: [to,+00) — R are continuous. From the view of physics, it is interesting to
consider the asymptotic conditions

Jim z(t) =1o and Jim {2/ (t)exp(t)} =0, (1.2)
where 1y € R is a constant.
As a special form of equation (1.1]), the equation
s F(x) 2w sinh(t)

Ct> 1, 1.3
cosh?(t)  cosh®(t) 0 (1.3)
with the asymptotic conditions

Jim x(t) =1p and Jim {2'(t)cosh(t)} =0, (1.4)

is a recently derived model for arctic gyres with a vanishing azimuthal velocity (see
the discussions in [10] and the discussions in [1]). Recently, Chu has studied (L.3)-
in a systematic way in the recent papers [I, 2 3] 4]. Note that the second
condition in (1.4]) is equivalent to the second one in . We point out that the
specific form and of the associated differential equation is due to physically
relevant considerations (see the discussion [5]).
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To prove the existence of monotone solutions and oscillatory solutions of ([L.1])-
, we will apply Schauder fixed point theorem. To do this, we transform the

problem (1.1)-(1.2 j into an integral equation. In fact, if x(¢) is a solution of the
problem (1.1)-(1.2)), integrating the equation (|1.1)) on [t, 00), we have

—/too h(s)ds+/t°° a(s)f(@(s))ds, > to, (1.5)

then integrating (|1.5)) on [¢, 00), we obtain

x(t) = o + /tOO(S —t)h(s)ds — /tOO(S —t)a(s)f(z(s))ds, t>to. (1.6)

To make the integral equation (1.6) equivalent to problem (1.1)-(1.2), we assume
that

Jim {exp(t)a(r)} =0, lim {exp(t)h(r)} = 0. (L.7)

Indeed, suppose that z: [tg,00) — R is a continuous function satisfying (1.6]), and
lim; o (t) = to. It is easy to show that x satisfies (1.5)) and the second condition

in ([1.2]), since
tim {exp(t) [ h(s)ds} = fim {exp(t)n)} =0,
i {exp(t) [ a(s)f(a(s))ds} = Jim {exp(t)a(o) (a(t)} = .

Therefore, in this paper, we shall study the equivalent integral equation (1.6) of the
problem (1.1))-(1.2) under condition (1.7)).
2. MONOTONE SOLUTIONS

In this section, we study the existence of monotone bounded solutions for the
integral equation (1.6 under suitable conditions.

Theorem 2.1. Assume that a,h: [tg, +00) — [0,00) are continuous with

/OO h(s)ds > 0. (2.1)

to

Suppose further that the limit

(t)
J = lim 2.2
exists and J # 0, and there exists a constant v > 0 such that
1
max z) < —=. 2.3
z€[o—v,10+7] i@ J (2:3)

Then there exists some T., > to such that (L.6)) has at least one decreasing bounded
continuous solution x: [T, 00) — R satisfying lim,_ x(t) = vo. More precisely,
we have that

z(t) > o, 2'(t) <0, forallt>T,. (2.4)
Proof. Set

M., = max x)|.
K EGWO*’NPOJHY]U( )
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Obviously, 0 < M, < oo since f is continuous. From (1.7]), we have

/OC sa(s)ds < oo and /C>O sh(s)ds < co. (2.5)

to to

By (2.5)), we can choose Ty > max{tp,0} large enough such that

M, sa(s)ds < T and / sh(s)ds < 7
To 2 To 2

Define the closed and convex subset
Xo = {z € O([Tp, ), R) : lim a(t) = Yo

of the Banach space X of all bounded functions z € C([Tp, 0), R), endowed with
the supremum norm ||z = sup,>7, {|=()[}. Set

Q={reXo:o—y<alt) <o+, t>Tp}.
Let 7: Q — X be the operator defined as

TN = v+ [ (= Oh(eds = [ (s - Oalofalo)ds, 12T (20

Note that

’/oo(s—t)h(s)ds‘ §/oosh(s)ds, t>1To,

‘/too(s —t)a(s) f(x(s)) ds| < M, /too sa(s)ds, t>Ty,

which confirms that 7: Q — X,. Also, for any = € Q, we have lim;_,[7 (2)](t) =

g since
lim sh(s)ds =0, lim sa(s)ds = 0.

t—o00 t t—o0 t

We shall apply the Schauder fixed point theorem [20] to prove that there exists a
fixed point for the operator 7 in the nonempty closed bounded convex set 2, and
then we prove that ( . ) holds. It is divided into four steps.

Step 1. We prove that 7(Q) C Q. For any 2 € Q and ¢t > Ty, we have
() ¢m-\/ (s = 0n(s)ds = [ (s = a(e)(alo))as
< [ oneass [ - Do)

g/ sh(s)ds+/ M, sa(s)ds
¢ ¢

< / sh(s)ds + M, sa(s)ds <7,
To T[)

which shows that 7 : Q — Q is well-defined.
Step 2. We prove that 7:  — € is continuous. For a given € > 0, there exists a

T, > Ty such that
M, / s)ds < =
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By the fact that f: [tbg —v,%0+7] — R is continuous, there exists a constant § > 0
such that for all z,y € [¢g — v,v0 + ] with | — y| < 4, we have

[f(z) = fly)l <

2e
3T2a,’

where a, = max;c(r, 1,)a(t). Therefore, for all 1,25 € Q with |1 — 22| < 6, we
obtain

[T (20)](t) = [T (22)](t)] = | too(s —t)a(s)[f (x2(s)) — f(z1(s))]]

for all ¢ € [to, T\,

S/t (s = t)a(s)|f(22(s)) — f(x1(s))[ds
< / (s — To)a(s) f(x2(s)) — f(aa(s))]ds

To

+ /OO(S —T.)a(s)]f(22(s)) = f(x1(s))lds
T

— I+ D
Since
2 T 2¢ (T, —Tp)? ¢
I < . CTy)ds = o SE L0 f
1S 37, ¢ /T (s=To)ds = 35— <3
B< [ sal{If )]+ Fea(e)] s
T,
> 2e
< QMW/ sa(s)ds < —,
T 3
we have

7 (z1)] = [T ()]l < e
Therefore, 7 : ) —  is a continuous.

Step 3. We prove that 7 (2) is relatively compact in X. Since 7 () C 2, we know
that 7 () is uniform bounded. Differentiating two sides of ([2.6]) with respect to ¢,
we obtain

[T (2)]'(t) = — /too h(s)ds + /too a(s)f(z(s))ds, t>Tp.

For all t > Tj, we have

(T@roi<| [ " h(s) ds| + | / " als) flals) ds|
g/ooh(s)ds—l—Mv/ooa(s)ds

< / h(s)ds+ M, a(s)ds,
To

To
which means that for all x € 2, we have

[T@w| <K =T,

where
(o) o0

K = h(s)ds+ M, a(s)ds.

To To
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Let {z,} be an arbitrary sequence in 2. Then we have
[T (z))] () <K, t>To, n>1.
Applying the mean value theorem, we obtain
[T (2n)](t1) = [T (zn)](t2)| < Kty —ta|,  t1,02 2 To, n=1,

which implies that {[7 (z,)]} is equicontinuous in X.
Furthermore, since

tllm [% +/ (s —t)h(s)ds — / (s — t)a(S)f(a?(s))ds} = 1o,
so for every € > 0, there exists t. > Ty such that
[T (za))(t) — ol <& t>te, n>1.

Therefore, {[7 (z,,)]} is equiconvergent in X.

By using the Arzela-Ascoli theorem [20], we obtain that {[7 (z,)]} is relatively
compact in X.

We have proved that all assumptions of the Schauder fixed point theorem are
satisfied. Therefore, the operator 7 has a fixed point = in €2, and this fixed point
corresponds to a bounded solution of on [Ty, 00).

Step 4. We show that the fixed point is decreasing. Let x be the fixed point of 7.

Define [ (s — yas) F(a()d
(s —t)a z(s))ds
H(t) = 50— t)h(s)ds ot
Then 7 Ja(s)d
, (s— t)a(s)ds
H(t) = ze[wnrzlg,)fbﬁrﬂ f(m) ' m
Since
Jo(s=tals)ds _ . [Tals)ds . at) _
Jim, m e - B i =

using the condition , we know that there eX1sts T1 > Ty such that H(t) < 1
for ¢ > T1, which yields

/tOO(S —t)a(s)f(z(s))ds < /too(s —t)h(s)ds, t>T11,

and hence for all ¢ > T7, we have

)= v+ [ (s — Hh(s)ds - / " (s — a(s)f(x(s))ds > o,
Define

t>1Tp.

Then

L) < flay - de s
max X)) —Qam— -
T 2€ o790+ ftoo h(s)ds

Since (2.3)) holds, there exists Ty > Tj such that L(t) < 1 for ¢ > T5, which implies

- / h(s)ds + / a(s)f(w(s))ds < 0, ¢> Ty,
t t
Let T, = max{Th,T>}, then (2.4) holds. O
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Example 2.2. Consider the equation

1 T
BT e >, 2.7
cosh?(t) 8o = @7

It is easy to see that
1
cosh?(t)

J = lim

t—o00 e

We suppose that 19 > 0, choose any v € [0, 1), then it is easy to check that

= 4. (2.8)

T 1
max — < =
z€[vo—v,%0+7] 8¢o
We know that the solution of (2.7) is
o _ o x(s) 1
z(t) = +/ s—tesds—/ s —t)—>——-—ds, t>t. 2.9
) =40 ¢ ( ) t ( ) 8¢o cosh?(s) 0 (29)
Obviously, z(t) > 1o for t > to. Indeed, lim; o {z(t)} = 9o and

o0 o0 1
=) t cw ¢+ 8o cosh?(s) i

Therefore, x(t) decreases towards g as ¢t decreases towards infinity.
In fact, we can prove another result in a similar way.

Theorem 2.3. Assume that a,h: [tg,+00) — [0,00) are continuous and (2.1]),
(2.2) hold. Suppose further that there exists a constant n > 0 such that
1
min T) > —. 2.10
w€[¢0777,¢0+77]f( ) J ( )
Then there exists some T, > to such that there exists a increasing bounded continu-
ous solution x: [T,,,00) — R to the equation (L.6]), and lim;_,.{z(t)} = 1. More
precisely, we have

z(t) <o, 2'(t) >0, forallt>T,. (2.11)
Proof. Proceeding as in Steps 1-3 in the proof of Theorem we know that
the equation (1.6) has at least one bounded continuous solution z: [T},,c0) — R
satisfying lim; oo {z(t)} = vo.
We only need to prove the solution above is increasing. Define

[ (s = t)a(s)f(x(s))ds

H(t) ft (s — t)h(s)ds , t> To.
e [ B)a(s)
. (s — t)a(s)ds
H(t) 2 we[worfl;r,lwwn] f(@) fzoo(s —t)h(s)ds
Since f ) f
(s —t)a(s)ds B L @ B
tlim)o ft 5 —t ds t1—>oo ft h tliglo h(t) =,

by (2.10]), we know that there exists Th > T such that H(t) > 1 for t > Ty, which
yields that

/tOO(S —t)a(s)f(z(s))ds > /too(s —t)h(s)ds, t> 1Ty,
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and hence for all t > T3, we have

)=+ [ 5= Dbls)as = [ (s D) 6))ds < o
Define

Then
> d
L)>  min fa)le e
@€ o —n,1o+1] J; h(s)ds

Since ([2.10)) holds, there exists To > Ty such that L(t) > 1 for ¢ > T5, which implies

2'(t) = — /too h(s)ds + /too a(s)f(xz(s))ds >0, t>Ts.

Let T,, = max{Ty,T>}, then (2.11) holds.
Example 2.4. Consider the equation

1 T
" e 672t’ t> to.
sinh?(t) 410 =

Then we know that )

T sinh? (t)
J = tli>nolo e—2t
Assume that 1y > 0, take any v > 0, then we have
z S 1
max — > -,
z€lo—7,vo+y] 400~ 4
We know that the solution of (2.12)) is
e _ e z(s) 1
x(t) = g + sftezsdsf/ s —t)—=——-5—ds, t>1g.
0 =0+ [ (51 0 '
Obviously, z(t) < 9o for t > to. Indeed, lim;_{z(t)} = o, and
oo oo
1
x’t:—/ 6_25d5+/ 2(s) ds > 0.
®) t . A sinhz(s)

Therefore, x(t) increases towards 1)y as ¢ increases towards infinity.

=4.

3. OSCILLATORY SOLUTIONS

(2.12)

(2.13)

(2.14)

In this section, we study the existence of oscillatory solutions for the integral
equation ([1.6) under suitable conditions. Define a function H: [ty,00) — R as

Ht) = / (5 — t)h(s)ds.
t
For a fixed A > ty, we denote the upper bound of H by

[H|l = sup [H(t)].
t>A>to

Fix a positive real number R > ||H|| and define

Mgr= sup |f(z)], ¢g(t)= MR/ a(s)ds, t>to,
z€[—R,R] t
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Now we state and prove the main result of this section.

Theorem 3.1. Assume that G(tg) < +o00 and

HE CHE
I}Tigop <0 > 1, hlglﬁgof G < -1. (3.1)

Then for every € with 0 < ¢ < R — ||H||, there exist a real number T(e) > 0,

a positive integer N(g), and two increasing divergent sequences of positive num-
bers {tn}n>1, {Sn}n>1, such that (1.6) has a solution x(t) defined on [T(g),+o0)
satisfying limy_, o x(t) = 1o and

x(tn) > 1o and x(sp) <o, for allm > N(e).
Proof. To prove the above result, by (|1.6), we just need to prove that the equation

a:(t):/too(s—t)h(s)ds—/too(s—t)a(s)f(x(s))ds, E>t, (3.2)

has a solution z(t) such that lim; ., 2(t) = 0 and
z(tp) >0 and xz(s,) <0.

Given a real number A > tg, choose an ¢ with 0 < e < R — ||H||. Since G(tp) <
+00, there exists a number T'(¢) > A such that G(t) < ¢ for all t > T'(¢). Define
the closed and convex subset

X, ={z e C([T(e),+o0),R) : lim z(t) = 0}

: t—oo
of the Banach space X of all functions € C([T(¢),4+o0),R), endowed with the
supremum || - ||. Set

O={reX.:||z—H| <e}.

Define an operator F: ) — Q as

F@)(#) = H(t) — /t - / T AN f(a(r)drds, > T(e). (3.3)

Note that
[F@))() — H#)| < / Mysse / a(r)drds < G(t) <e, t=T(). (3.4)
t s
Therefore, the operator F: Q — 2 is well-defined.
We shall apply the Schauder fixed point theorem to prove that there exists a
fixed point for the operator F in the nonempty closed bounded convex set ).
First, we prove that the operator F is uniformly continuous. For a given constant
€ > 0, there exists a T'(§) > T'(¢) such that

G(t) <2, t>T().

3 )
Furthermore, there exists a 6(£) > 0 such that

3
la(t) f(z1) — a(t) f(z2)| < 3(T(O)2
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holds for all t € [T'(e),T()] and x1,z2 € [—||H|| —¢, | H||+&] with ||z1 —z2|| < §(£).
Now for all z1, x5 € 2 satisfying ||z1 — x2|| < §(€), we have

F)](®) — [Fle)]0)] < L : | 101 wa() =~ a( s () dras
= [ 5= TNl r2(s) — ol (s))lds
T(e)

()
<|T(E) —T(e )I/ la(s) f(x2(s)) — a(s) f(z1(s))|ds

/T(g)/ 7))|drds
/T(s)/ 7))|drds

=1+ 1+ I3.
Note that
L<[TE) -TE) 5775 <

Then we conclude that

"~
Wl

2
R I2+13<§§.

[ F(z)](t) = Fz2)l()] <&

Therefore F is uniformly continuous.

Next, we apply the Arzela-Ascoli theorem to prove that the set F(Q) is relatively
compact. Since F(Q2) C Q, we know that F(Q) is uniformly bounded. For any two
real numbers ¢1,ts with to > ¢ > T'(¢), we have

P - FIe) < ) - a@ [ [ s

ts
/ / |d7'ds+/ g(s)ds, z€Q,
t1

which shows that F(Q) is equicontinuous.
From the definition of F, we have

\F(2)](t)] < [H®)| + G(t), t>T(e), forallze. (3.5)

By and lim;_, H(t) = 0, we know that the set F(Q) is equiconvergent.
Therefore F(£2) is relatively compact.

Up to now, all conditions of the Schauder fixed point theorem are established.
Therefore, the operator F has a fixed point in €, that is, the equation has a
solution x(t), which satisfies lim;_, . (t) = 0.

Finally, we prove that the solution z(t) is oscillatory. From , we have

lz(t) — H(t)| = [[F(2)](t) - H(t)] < G(t), t=T(e),
which yields
H(t)-G(t) <z(t) < H()+G(t), forallt>T(e). (3.6)

By (3.1), we know that there exist a positive integer N(e) and two sequences of
positive numbers {t, }n>1, {Sn}n>1, tn, Sn — 00 as n — oo, such that

H(t,) —G(t,) >0 and H(sp)+ G(sp) <0, foralln> N(e),
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it follows from (3.6]) that
z(tp) >0 and xz(s,) <0, foralln>N(e).

The proof is complete. U
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