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ABSTRACT: Supervised learning has long been used to 
modify the artificial neural network in order to perform 
classification tasks.  However, the standard fully-
connected layered design is often inadequate when 
performing such tasks.  We demonstrate that evolution 
can be used to design an artificial neural network that 
learns faster and more accurately.  By evolving artificial 
neural networks within a dynamic environment, the 
artificial neural network is forced to use learning.  This 
strategy combined with incremental evolution produces 
an artificial neural network that outperforms the standard 
fully-connected layered design.  The resulting artificial 
neural network can learn to perform an entire domain of 
tasks, including those of reduced complexity.  Evolution 
alone can be used to create a network that performs a 
single task.  However, real world environments are 
dynamic and thus require the ability to adapt to changes. 
 
KEY WORDS: incremental evolution, neural networks, 
training, backwards compatible 
 
1 Introduction 

Genetic Algorithms have been applied to the design of 
Artificial Neural Networks (ANNs) in several ways.  
Evolution of ANNs was initially used to optimize the set 
of weights.  With a pre-established architecture, mutation 
and crossover were performed on the connection weights 
of the ANN.  Evolution has also been applied to the 
search for optimal architecture in which mutation includes 
either neuron addition from a small initial network or 
neuron deletion from a large initial network.  Finally, 
evolution has been utilized to search for optimal learning 
parameters. Mutation and crossover were performed on 
the learning parameters of each connection in the ANN 
within the pre-established architecture. [1] 

Most of the research on the evolution of ANNs has 
focused on the search for optimal weights. Researchers 
have avoided evolving structure due to the difficulty of 
performing crossover operations on complex ANNs.  In 
order to perform evolution, the crossover operator must 
be able to combine two highly performing networks in a 
meaningful way. Extensive analysis of the neurons and 

their connection weights has to be performed in order to 
determine which weights contribute to the desired 
outputs.  Thus, until recently, evolution of ANNs was 
limited to weights and learning parameters. 

Caruana et.al. demonstrated that the architecture 
affected the speed and accuracy of learning.[2] 
Furthermore, evolving the structure removes the trial and 
error approach widely used to determine the number of 
hidden nodes for any given problem.  Finally, evolution 
of structure and weights was shown to create networks 
with high performance and minimal structure.  

We used evolution to create ANNs that can adapt to 
perform any task within the environment it was evolved 
in.  This functionality is imperative for the future of 
artificial life since organisms do not live in isolation.  The 
world is continuously changing and the ability to adapt to 
change will provide for more robust artificial life.  We 
will demonstrate that evolution can be applied to design 
an artificial neural network that has the ability to adapt to 
drastic changes in its environment in an incremental 
manner. 

 
2 Combining Evolution and Learning 

Learning’s fundamental purpose is to facilitate 
adaptation to a changing environment.  The Baldwin 
Effect describes learning as smoothing the fitness curve 
so that evolution can climb it with less difficulty.[3] This 
difficulty arises when the environment changes.  Thus, 
without a dynamic environment, learning has little 
purpose. This is shown in the second aspect of the 
Baldwin Effect in which the genome acquires the traits as 
instinct that previously had to be learned.[4, 5]  So, in 
order to find the optimum design for an ANN to learn, 
evolution must take place in a dynamic environment. 

Forcing an ANN to perform many tasks drives 
evolution to optimize the ANN for learning.  A network’s 
fitness in a changing environment is based upon the 
network’s ability to learn.  After many generations, the 
fittest network will be able to adapt to any problem in its 
environment.  The final result of this process is an 
evolved network that has the potential to perform tasks it 
has never seen before.  Furthermore, we hypothesize that 
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evolution can produce an optimized network that can be 
trained to perform a new task faster and more accurately 
than a traditional, fully-connected layered network. 

 
2.1 Process of Evolving Trainable Networks  

We chose the problem of graphing high-degree 
polynomials to determine whether a network could be 
evolved to learn many problems.  By simply changing the 
degree of the polynomial it was possible to create varying 
degrees of complexity.  Thus, we have named our 
evolving ANNs Polygraphers. 

In order to create an environment that forces evolution 
toward learning rather than specialization, we set each 
Polygrapher to graph five significantly different, complex 
3rd degree polynomials.  Each Polygrapher was given a 
certain number of iterations to learn to graph each 
polynomial. After the Polygrapher had a chance to graph 
a polynomial for the preset number of iterations, the 
Polygrapher’s network was reset to the initial weights 
stored in its genome.  This is important to the evolution of 
a trainable network because it has been shown that Back-
propagation is sensitive to the initial weights.[6]  With the 
weights reset after each polynomial, the Polygrapher was 
evaluated on its ability to graph each polynomial from the 
same starting point.  Furthermore, the initial weights were 
stored in the Polygrapher’s genome and therefore passed 
down to the following generation.  When fitness was 
evaluated based on the network’s ability to graph from a 
defined starting point, evolution was able to optimize a 
network to learn to graph any polynomial.  Without a 
defined starting point, training would be hampered by the 
modified weights since the weights from the previous 
polynomial were specialized to that polynomial.  The 
Baldwin Effect further emphasizes the need to reset the 
weights to an initial starting point.  The Baldwin Effect 
states that evolution does not pass on learned behavior, 
rather it passes on the ability to learn.[7] After the 
population of Polygraphers had a chance to be trained to 
graph each polynomial, the Polygrapher’s fitness was 
calculated.   
 
3 Results & Analysis 

By implementing the Evolving Trainable Neural 
Networks for graphing polynomials, we demonstrated that 
evolution can be used to design more efficient ANNs to 
graph polynomials than the standard fully-connected 
ANNs. We determined that stepwise evolution can be 
used to design ANNs to graph very complex polynomials.  
Finally, we analyzed the ANN’s ability to learn to graph 
less complex polynomials than those it was exposed to 
during evolution. 
 
3.1 Evolution of a 3rd Degree Polygrapher 

We evolved a Polygrapher for graphing 3rd degree 
polynomials. The fitness of Polygraphers reached a 
saturation level of 80% after 775 generations, Figure 1. 
The resulting network has 6 hidden nodes and 13 
connections, Figure 2. Each connection has an evolved 
initial weight and learning rate. 
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Figure 1: Fitness graph of the evolution of a Polygrapher neural network
on 3rd degree polynomials. 

   
 
 
 

Figure 2: ANN Evolved
for 3rd degree polynomials 

Figure 3: Fully-Connected ANN 

 
The 3rd degree Polygrapher was able to graph each of 

the five polynomials in its lifetime within a total error of 3 
units.  However, success was not only dependant upon the 
ability to graph the third degree polynomials.  In order to 
meet all the success criteria, the Polygrapher was required 
to accurately graph the five polynomials quickly.  Since 
speed was relative to the complexity of the problem, we 
compared the speed of the Polygrapher to graph the 
3rd degree polynomial with the traditionally designed 
fully-connected ANN, Figure 3. The evolved network was 
able to achieve an acceptable error (less than 3 units) 400 
iterations faster than the fully connected network, 
Figure 4. 
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Figure 4: Back-Propagation error reduction graph on the 3rd degree
polynomial, f(x) = 3x3 + 4x2 - 4x + 3.  The evolved network was
evolved to learn to graph 3rd degree polynomials.  The evolved
network was introduced to this polynomial during evolution.
Evolution was able to determine a near optimal design 
ncluding hidden nodes, connections, initial weights, and 
earning rates.  Clearly, the evolved design was more 
ccurate and faster at graphing polynomials than the 
raditional design.  However, was it more versatile than 
he traditional design?  The previous results were based 



on a polynomial that was included in evolution.  
Therefore, it was expected that the evolved network 
would be good at graphing a polynomial that it was 
evolved to graph.  Thus, an additional test of the evolved 
network included a polynomial that it did not encounter 
during evolution.   

When the evolved network was compared to the 
traditional network on a previously unseen 3rd degree 
polynomial, the evolved network outperformed the 
traditional network, Figure 5.  For the previously unseen 
polynomial, the evolved network was able to achieve an 
acceptable error (less than 3 units) after 14 iterations, 60 
iterations faster than the fully-connected network.  
Furthermore, it achieved a more accurate classification 
with only half the total error of the fully-connected 
network even after 800 iterations.  Thus, we concluded 
that evolution can be used to design a faster, more 
accurate and more versatile network than traditional 
design techniques. 
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3.2 Incremental Evolution 
We attempted to evolve a Polygrapher to graph a more 

complex polynomial, 4th degree, starting with the minimal 
structure. The evolution process required many more 
generations to achieve marginal fitness, Figure 6. After 
1200 generations, the fitness remained at 60%. 
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Evolution works well under conditions in which it 
can improve its fitness incrementally rather than abruptly. 
We hypothesized that it would take fewer generations to 
evolve networks to solve more complex problems if we 
started with a set of networks which had evolved to solve 

less complex problems rather than a set of minimal 
structures.  Therefore, rather than evolving the 4th degree 
Polygrapher from a minimal structure, we began 
evolution from a population of previously evolved 3rd 
degree Polygraphers, Figure 7. 
  

  
 
 
 
 

Figure 7: Structure of a 4th degree Polygrapher incrementally
evolved from 3rd degree Polygraphers 

 
 
 
 

The fitness level of 80% for 3rd degree Polygraphers 
dropped to 50% when the network started to graph 4th 
degree polynomials, Figure 8.  This was expected because 
the Polygraphers had evolved the structure necessary to 
graph less complex, 3rd degree polynomials.  However, 
after only 60 generations, the fitness level of the 
Polygraphers rose to above 80%.  This was a dramatic 
reduction in the number of generations compared to 
Polygraphers starting from a minimal structure.  
Incremental evolution achieved a fitness level of over 
80% in 1000 generations, while evolution from minimal 
structure only achieved a fitness level of 66% in 1200 
generations. 

Figure 8: Incremental evolution of a 4th degree Polygrapher starting
from a population of 3rd degree Polygraphers 

Figure 5: Back-Propagation error reduction graph on the 3rd degree
polynomial f(x) = 2x3 - 6x2 + 3x – 2.  The evolved network was
evolved to learn to graph 3rd degree polynomials.  The evolved
network never encountered this polynomial during evolution. 

We continued our study of the effects of incremental 
evolution by evolving 4th degree Polygraphers from a 
population of 2nd degree Polygraphers.  Once again, the 
fitness dropped from 85% to 25% when presented with 
4th degree polynomials, Figure 9.  This drop was more 
dramatic than the drop resulting from a 3rd degree 
Polygrapher being introduced with 4th degree 
polynomials.  This was a direct result of the 2nd degree 
Polygraphers’ structure.  Since 2nd degree polynomials are 
less complex than 3rd degree, the 2nd degree Polygraphers 
were evolved to contain less structure.  However, the 
number of generations required to achieve high 
performing 4th degree Polygraphers was comparable for 
2nd and 3rd degree incremental evolution.  Whether 
evolution began from 2nd or 3rd degree, the number of 
generations required to evolve 4th degree Polygraphers 

Figure 6: Evolution of a 4th degree Polygrapher starting from
minimal structure 

 



was approximately 1000 generations.  This was due to the 
fact that a 2nd degree Polygrapher takes less generations 
(approximately 500) than the 3rd degree Polygrapher 
(approximately 900), and therefore had more generations 
to evolve to the 4th degree. 

Incremental evolution is clearly a major improvement 
in terms of the number of generations required to achieve 
high fitness.  It allowed for the evolution of more 
complex classification tasks by first evolving for less 
difficult tasks.  The evolved 4th degree Polygraphers were 
able to graph 4th degree polynomials 1000 iterations faster 
than the fully connected network and did so with less 
error, Figure 12.  We concluded that incremental 
evolution can be used to design a faster, more accurate 
and more versatile network for very complex tasks.   
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 Figure 9: Incremental evolution of 4th degree Polygraphers starting

from a population of 2nd degree Polygraphers 
 
 

To complete our analysis of incremental evolution, we 
evolved 4th degree Polygraphers incrementally starting 
with 2nd to 3rd degree, Figure 10.  As expected, there was 
a drop of fitness from the 2nd degree to the 3rd degree and 
again from the 3rd degree to the 4th degree, Figure 11.  The 
result of incremental evolution through 2nd and 3rd degree 
was high performing 4th degree Polygraphers in 
approximately 200 less generations than the incremental 
evolution starting from either 2nd or 3rd degree 
respectively. Incremental evolution achieved high 
performance in fewer generations because it was able to 
evolve Polygraphers for a less complex polynomial first 
and then build upon that structure.  

 
 

 

 

Figure 10: Structure of a 4th degree Polygrapher incrementally evolved 
from 2nd and 3rd degree Polygraphers 

 

 

 

Figure 11: Incremental Evolution of a 4th degree Polygrapher starting from 
2nd to 3rd degree Polygraphers  
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Figure 12: Back-Propagation error reduction graph of on the 4th

degree polynomial, f(x) = -2x4 + x3 + 3x2 + x – 1.  The evolved neural
network was evolved to learn to graph 4th degree polynomials.  The
evolved network never encountered this polynomial during evolution.
  
 
3.3 Backwards Compatibility 

We were interested in determining how well networks 
which were evolved to graph more complex polynomial 
were performing when exposed to less complex 
polynomials. We call this feature backwards 
compatibility.  As expected, the 3rd degree Polygrapher 
was able to graph 2nd degree polynomials with very little 
error.  Furthermore, it was able to graph the 2nd degree 
polynomial faster and more accurately than a fully 
connected network, Figure 13.  However, the 3rd degree 
Polygrapher was not able to graph a 4th degree polynomial 
as accurately as the fully-connected network without 
incremental evolution, Figure 14.  

We expected an even better backwards compatibility 
when analyzing the incrementally evolved 4th degree 
Polygrapher since it had experienced 3rd degree 
polynomials previously.  The incrementally evolved 4th 
degree Polygrapher was indeed able to graph the 2nd and 
3rd degree polynomials faster and more accurately than 
the fully-connected network, Figures 15 and 16.   
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igure 13: Back-Propagation error reduction graph on the 2nd degree
olynomial, f(x) = 1.5x2 - 5x + 2.   The evolved neural network was
volved to learn to graph 3rd degree polynomials.  The evolved network
ever encountered this polynomial during evolution. 
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However, the 4th degree Polygrapher was not able to 

accurately graph a 5th degree polynomial, Figure 17.  
Again, this is due to evolution’s selection of only the 
minimal necessary structure. 

Further examination of backwards compatibility 
revealed an interesting result.  While incremental 
evolution enables networks to quickly learn problems of 

lesser complexities, as they get more complex they lose 
some of their ability to learn simpler problems.  As 
depicted in Figure 18, when the neural network evolved to 
graph 4th degree polynomials learns to graph a 2nd degree 
polynomial, its error does not reduce as quickly as the 
neural network evolved to graph 3rd degree polynomials.  
This suggests that backwards compatibility may be a 
function of the difference in complexity of the task.    

 
Figure 14: Back-Propagation error reduction graph on the 4th degree
polynomial, f(x) = 1.7x4 + .3x3 - 4x2 - .4x.  The evolved neural
network was evolved to learn to graph 3rd degree polynomials. 
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 Figure 15: Back-Propagation error reduction graph on the 3rd degree
polynomial, f(x) = 2x3 - 6x2 + 3x - 2.  The evolved neural network
was evolved to learn to graph 4th degree polynomials.  The evolved
network never encountered this polynomial during evolution. 
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Figure 18: Back-Propagation error reduction graph on the 2nd degree
polynomial, f(x) = .5x2.  The graph compares the performance of a
network evolved to learn to graph 3rd degree polynomials and a
network evolved to learn to graph 4th degree polynomials.
Conclusion 
There are many difficulties associated with designing 
ificial neural networks to use Back-propagation.  
termining the number of hidden nodes and even hidden 
ers has lead to many ad-hoc algorithms that deal with 

mplexity analysis or simply trial and error.  Our goal 
s to find a method for designing a network that could 
 used on many different learning tasks.  This method 
uld have to be able to determine the number of hidden 
des, initial weights, and the learning rates.  
rthermore, the desired method would create a network 
t could be applied to any problem within the desired 
main. 
The Evolving Trainable Networks approach applies 
olution to ANNs that use Back-propagation in a 
namic environment.  By setting the fitness function 
sed on the networks ability to solve an array of 
blems from the desired domain, the networks were 
ced to use learning.  The ability to learn was then 
timized by setting the fitness function to increase as the 
rning time decreased. 

When this method was applied with Incremental 
olution, networks evolved with better fitness and in 
er generations. In addition, the evolved networks 

tperformed the traditional networks in speed and 
uracy. Furthermore, a network evolved for a complex 
k outperformed the standard design for less complex 
ks.  This shows that the evolved networks learn to 
 
Figure 17: Back-Propagation error reduction graph on the 5th degree
polynomial, f(x) = -1.1x5 + 1.7x4 + 4.1x3 – 4.2x2 - 1.4x + .6.  The
evolved neural network was evolved to learn to graph 4th degree
polynomials. 
 

 

Figure 16: Back-Propagation error reduction graph on the 2nd degree
polynomial, f(x) = 1.5x2 - 5x + 2.   The evolved neural network was
evolved to learn to graph 4th degree polynomials.  The evolved network
never encountered this polynomial during evolution. 
ve complex tasks rather than specializing on a specific 
k. Thus, the best method for evolving networks is to 
rt with a less complex task and incrementally evolve 
 network for more complex tasks. The ability to learn 

mplex tasks while retaining the ability to learn less 
mplex tasks should improve artificial neural network’s 
ntribution to the field of artificial life. 
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