
INCREMENTAL EVOLUTION OF TRAINABLE NEURAL NETWORKS THAT
ARE BACKWARDS COMPATIBLE

Chris Christenson, MS

Department of Computer Science
Southwest Texas Junior College

Uvalde, Texas 78802
cpchristenson@yahoo.com

Khosrow Kaikhah, Ph.D.
Department of Computer Science

Texas State University
San Marcos, Texas 78666

kk02@TxState.edu

ABSTRACT: Supervised learning has long been used to
modify the artificial neural network in order to perform
classification tasks. However, the standard fully-
connected layered design is often inadequate when
performing such tasks. We demonstrate that evolution
can be used to design an artificial neural network that
learns faster and more accurately. By evolving artificial
neural networks within a dynamic environment, the
artificial neural network is forced to use learning. This
strategy combined with incremental evolution produces
an artificial neural network that outperforms the standard
fully-connected layered design. The resulting artificial
neural network can learn to perform an entire domain of
tasks, including those of reduced complexity. Evolution
alone can be used to create a network that performs a
single task. However, real world environments are
dynamic and thus require the ability to adapt to changes.

KEY WORDS: incremental evolution, neural networks,
training, backwards compatible

1 Introduction

Genetic Algorithms have been applied to the design of
Artificial Neural Networks (ANNs) in several ways.
Evolution of ANNs was initially used to optimize the set
of weights. With a pre-established architecture, mutation
and crossover were performed on the connection weights
of the ANN. Evolution has also been applied to the
search for optimal architecture in which mutation includes
either neuron addition from a small initial network or
neuron deletion from a large initial network. Finally,
evolution has been utilized to search for optimal learning
parameters. Mutation and crossover were performed on
the learning parameters of each connection in the ANN
within the pre-established architecture. [1]

Most of the research on the evolution of ANNs has
focused on the search for optimal weights. Researchers
have avoided evolving structure due to the difficulty of
performing crossover operations on complex ANNs. In
order to perform evolution, the crossover operator must
be able to combine two highly performing networks in a
meaningful way. Extensive analysis of the neurons and

their connection weights has to be performed in order to
determine which weights contribute to the desired
outputs. Thus, until recently, evolution of ANNs was
limited to weights and learning parameters.

Caruana et.al. demonstrated that the architecture
affected the speed and accuracy of learning.[2]
Furthermore, evolving the structure removes the trial and
error approach widely used to determine the number of
hidden nodes for any given problem. Finally, evolution
of structure and weights was shown to create networks
with high performance and minimal structure.

We used evolution to create ANNs that can adapt to
perform any task within the environment it was evolved
in. This functionality is imperative for the future of
artificial life since organisms do not live in isolation. The
world is continuously changing and the ability to adapt to
change will provide for more robust artificial life. We
will demonstrate that evolution can be applied to design
an artificial neural network that has the ability to adapt to
drastic changes in its environment in an incremental
manner.

2 Combining Evolution and Learning

Learning’s fundamental purpose is to facilitate
adaptation to a changing environment. The Baldwin
Effect describes learning as smoothing the fitness curve
so that evolution can climb it with less difficulty.[3] This
difficulty arises when the environment changes. Thus,
without a dynamic environment, learning has little
purpose. This is shown in the second aspect of the
Baldwin Effect in which the genome acquires the traits as
instinct that previously had to be learned.[4, 5] So, in
order to find the optimum design for an ANN to learn,
evolution must take place in a dynamic environment.

Forcing an ANN to perform many tasks drives
evolution to optimize the ANN for learning. A network’s
fitness in a changing environment is based upon the
network’s ability to learn. After many generations, the
fittest network will be able to adapt to any problem in its
environment. The final result of this process is an
evolved network that has the potential to perform tasks it
has never seen before. Furthermore, we hypothesize that

mailto:cpchristenson@yahoo.com
mailto:kk02@TxState.edu

evolution can produce an optimized network that can be
trained to perform a new task faster and more accurately
than a traditional, fully-connected layered network.

2.1 Process of Evolving Trainable Networks

We chose the problem of graphing high-degree
polynomials to determine whether a network could be
evolved to learn many problems. By simply changing the
degree of the polynomial it was possible to create varying
degrees of complexity. Thus, we have named our
evolving ANNs Polygraphers.

In order to create an environment that forces evolution
toward learning rather than specialization, we set each
Polygrapher to graph five significantly different, complex
3rd degree polynomials. Each Polygrapher was given a
certain number of iterations to learn to graph each
polynomial. After the Polygrapher had a chance to graph
a polynomial for the preset number of iterations, the
Polygrapher’s network was reset to the initial weights
stored in its genome. This is important to the evolution of
a trainable network because it has been shown that Back-
propagation is sensitive to the initial weights.[6] With the
weights reset after each polynomial, the Polygrapher was
evaluated on its ability to graph each polynomial from the
same starting point. Furthermore, the initial weights were
stored in the Polygrapher’s genome and therefore passed
down to the following generation. When fitness was
evaluated based on the network’s ability to graph from a
defined starting point, evolution was able to optimize a
network to learn to graph any polynomial. Without a
defined starting point, training would be hampered by the
modified weights since the weights from the previous
polynomial were specialized to that polynomial. The
Baldwin Effect further emphasizes the need to reset the
weights to an initial starting point. The Baldwin Effect
states that evolution does not pass on learned behavior,
rather it passes on the ability to learn.[7] After the
population of Polygraphers had a chance to be trained to
graph each polynomial, the Polygrapher’s fitness was
calculated.

3 Results & Analysis

By implementing the Evolving Trainable Neural
Networks for graphing polynomials, we demonstrated that
evolution can be used to design more efficient ANNs to
graph polynomials than the standard fully-connected
ANNs. We determined that stepwise evolution can be
used to design ANNs to graph very complex polynomials.
Finally, we analyzed the ANN’s ability to learn to graph
less complex polynomials than those it was exposed to
during evolution.

3.1 Evolution of a 3rd Degree Polygrapher

We evolved a Polygrapher for graphing 3rd degree
polynomials. The fitness of Polygraphers reached a
saturation level of 80% after 775 generations, Figure 1.
The resulting network has 6 hidden nodes and 13
connections, Figure 2. Each connection has an evolved
initial weight and learning rate.

776, 79.1498

0
10
20
30
40
50
60
70
80
90

100

1 84 167 250 333 416 499 582 665 748 831 914 997

Generation

Fi
tn

es
s

Figure 1: Fitness graph of the evolution of a Polygrapher neural network
on 3rd degree polynomials.

Figure 2: ANN Evolved
for 3rd degree polynomials

Figure 3: Fully-Connected ANN

The 3rd degree Polygrapher was able to graph each of

the five polynomials in its lifetime within a total error of 3
units. However, success was not only dependant upon the
ability to graph the third degree polynomials. In order to
meet all the success criteria, the Polygrapher was required
to accurately graph the five polynomials quickly. Since
speed was relative to the complexity of the problem, we
compared the speed of the Polygrapher to graph the
3rd degree polynomial with the traditionally designed
fully-connected ANN, Figure 3. The evolved network was
able to achieve an acceptable error (less than 3 units) 400
iterations faster than the fully connected network,
Figure 4.

-15

-10

-5

0

5

10

15

-2
.7

5

-2
.2

5

-1
.7

5

-1
.2

5

-0
.7

5

-0
.2

5

0.
25

0.
75

1.
25

1.
75

x

f(x)

15, 5.13828
430, 5.13929

0
5

10
15
20
25
30
35
40
45
50

1 51 101 151 201 251 301 351 401 451 501

Iteration

E
rr

or

Evolved Fully Connected

i
l
a
t
t

Figure 4: Back-Propagation error reduction graph on the 3rd degree
polynomial, f(x) = 3x3 + 4x2 - 4x + 3. The evolved network was
evolved to learn to graph 3rd degree polynomials. The evolved
network was introduced to this polynomial during evolution.
Evolution was able to determine a near optimal design
ncluding hidden nodes, connections, initial weights, and
earning rates. Clearly, the evolved design was more
ccurate and faster at graphing polynomials than the
raditional design. However, was it more versatile than
he traditional design? The previous results were based

on a polynomial that was included in evolution.
Therefore, it was expected that the evolved network
would be good at graphing a polynomial that it was
evolved to graph. Thus, an additional test of the evolved
network included a polynomial that it did not encounter
during evolution.

When the evolved network was compared to the
traditional network on a previously unseen 3rd degree
polynomial, the evolved network outperformed the
traditional network, Figure 5. For the previously unseen
polynomial, the evolved network was able to achieve an
acceptable error (less than 3 units) after 14 iterations, 60
iterations faster than the fully-connected network.
Furthermore, it achieved a more accurate classification
with only half the total error of the fully-connected
network even after 800 iterations. Thus, we concluded
that evolution can be used to design a faster, more
accurate and more versatile network than traditional
design techniques.

-20

-15

-10

-5

0

5

10

15

20

-1.5 0 1.5 3

x

f(x)

14, 9.85594 82, 9.86872

0

20

40

60

80

100

120

140

160

180

200

1 51 101 151 201 251

Iteration

Er
ro

r

Evolved Fully Connected

3.2 Incremental Evolution
We attempted to evolve a Polygrapher to graph a more

complex polynomial, 4th degree, starting with the minimal
structure. The evolution process required many more
generations to achieve marginal fitness, Figure 6. After
1200 generations, the fitness remained at 60%.

0

10

20

30

40

50

60

70

80

90

100

1 90 179 268 357 446 535 624 713 802 891 980 1069 1158 1247

Generation

Fi
tn

es
s

Evolution works well under conditions in which it
can improve its fitness incrementally rather than abruptly.
We hypothesized that it would take fewer generations to
evolve networks to solve more complex problems if we
started with a set of networks which had evolved to solve

less complex problems rather than a set of minimal
structures. Therefore, rather than evolving the 4th degree
Polygrapher from a minimal structure, we began
evolution from a population of previously evolved 3rd
degree Polygraphers, Figure 7.

Figure 7: Structure of a 4th degree Polygrapher incrementally
evolved from 3rd degree Polygraphers

The fitness level of 80% for 3rd degree Polygraphers
dropped to 50% when the network started to graph 4th
degree polynomials, Figure 8. This was expected because
the Polygraphers had evolved the structure necessary to
graph less complex, 3rd degree polynomials. However,
after only 60 generations, the fitness level of the
Polygraphers rose to above 80%. This was a dramatic
reduction in the number of generations compared to
Polygraphers starting from a minimal structure.
Incremental evolution achieved a fitness level of over
80% in 1000 generations, while evolution from minimal
structure only achieved a fitness level of 66% in 1200
generations.

Figure 8: Incremental evolution of a 4th degree Polygrapher starting
from a population of 3rd degree Polygraphers

Figure 5: Back-Propagation error reduction graph on the 3rd degree
polynomial f(x) = 2x3 - 6x2 + 3x – 2. The evolved network was
evolved to learn to graph 3rd degree polynomials. The evolved
network never encountered this polynomial during evolution.

We continued our study of the effects of incremental
evolution by evolving 4th degree Polygraphers from a
population of 2nd degree Polygraphers. Once again, the
fitness dropped from 85% to 25% when presented with
4th degree polynomials, Figure 9. This drop was more
dramatic than the drop resulting from a 3rd degree
Polygrapher being introduced with 4th degree
polynomials. This was a direct result of the 2nd degree
Polygraphers’ structure. Since 2nd degree polynomials are
less complex than 3rd degree, the 2nd degree Polygraphers
were evolved to contain less structure. However, the
number of generations required to achieve high
performing 4th degree Polygraphers was comparable for
2nd and 3rd degree incremental evolution. Whether
evolution began from 2nd or 3rd degree, the number of
generations required to evolve 4th degree Polygraphers

Figure 6: Evolution of a 4th degree Polygrapher starting from
minimal structure

was approximately 1000 generations. This was due to the
fact that a 2nd degree Polygrapher takes less generations
(approximately 500) than the 3rd degree Polygrapher
(approximately 900), and therefore had more generations
to evolve to the 4th degree.

Incremental evolution is clearly a major improvement
in terms of the number of generations required to achieve
high fitness. It allowed for the evolution of more
complex classification tasks by first evolving for less
difficult tasks. The evolved 4th degree Polygraphers were
able to graph 4th degree polynomials 1000 iterations faster
than the fully connected network and did so with less
error, Figure 12. We concluded that incremental
evolution can be used to design a faster, more accurate
and more versatile network for very complex tasks.

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

f(
x)

102, 2.52508 1030, 3.02974

0

5

10

15

20

25

30

35

40

45

50

1 90 179 268 357 446 535 624 713 802 891 980

Iteration

Er
ro

r

Evolved Fully Connected

 Figure 9: Incremental evolution of 4th degree Polygraphers starting

from a population of 2nd degree Polygraphers

To complete our analysis of incremental evolution, we
evolved 4th degree Polygraphers incrementally starting
with 2nd to 3rd degree, Figure 10. As expected, there was
a drop of fitness from the 2nd degree to the 3rd degree and
again from the 3rd degree to the 4th degree, Figure 11. The
result of incremental evolution through 2nd and 3rd degree
was high performing 4th degree Polygraphers in
approximately 200 less generations than the incremental
evolution starting from either 2nd or 3rd degree
respectively. Incremental evolution achieved high
performance in fewer generations because it was able to
evolve Polygraphers for a less complex polynomial first
and then build upon that structure.

Figure 10: Structure of a 4th degree Polygrapher incrementally evolved
from 2nd and 3rd degree Polygraphers

Figure 11: Incremental Evolution of a 4th degree Polygrapher starting from
2nd to 3rd degree Polygraphers

F
p
e
n

Figure 12: Back-Propagation error reduction graph of on the 4th

degree polynomial, f(x) = -2x4 + x3 + 3x2 + x – 1. The evolved neural
network was evolved to learn to graph 4th degree polynomials. The
evolved network never encountered this polynomial during evolution.

3.3 Backwards Compatibility

We were interested in determining how well networks
which were evolved to graph more complex polynomial
were performing when exposed to less complex
polynomials. We call this feature backwards
compatibility. As expected, the 3rd degree Polygrapher
was able to graph 2nd degree polynomials with very little
error. Furthermore, it was able to graph the 2nd degree
polynomial faster and more accurately than a fully
connected network, Figure 13. However, the 3rd degree
Polygrapher was not able to graph a 4th degree polynomial
as accurately as the fully-connected network without
incremental evolution, Figure 14.

We expected an even better backwards compatibility
when analyzing the incrementally evolved 4th degree
Polygrapher since it had experienced 3rd degree
polynomials previously. The incrementally evolved 4th
degree Polygrapher was indeed able to graph the 2nd and
3rd degree polynomials faster and more accurately than
the fully-connected network, Figures 15 and 16.

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

22, 8.58659 90, 8.80009

0

10

20

30

40

50

60

70

80

90

100

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Iteration

Fi
tn

es
s

Evolved Fully Connected

igure 13: Back-Propagation error reduction graph on the 2nd degree
olynomial, f(x) = 1.5x2 - 5x + 2. The evolved neural network was
volved to learn to graph 3rd degree polynomials. The evolved network
ever encountered this polynomial during evolution.

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

118, 6.67567 958, 3.21643

0

5

10

15

20

25

30

35

40

45

1 92 183 274 365 456 547 638 729 820 911

Iteration
Fi

tn
es

s

Evolved Fully Connected

0

10

20

30

40

50

1 201 401 601 801 1001 1201 1401 1601

Iteration

Er
ro

r

Evolved Fully Connected

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

f(
x)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

50

100

150

200

250

300

350

400

1 14 27 40 53 66 79 92 105 118 131 144 157

Iteration

Er
ro

r

Evolved Fully Connected

0

20

40

60

80

100

120

140

1 165 329 493 657 821 985 1149 1313 1477 1641 1805

Iteration

Er
ro

r

Evolved Fully Connected

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

f(
x)

However, the 4th degree Polygrapher was not able to

accurately graph a 5th degree polynomial, Figure 17.
Again, this is due to evolution’s selection of only the
minimal necessary structure.

Further examination of backwards compatibility
revealed an interesting result. While incremental
evolution enables networks to quickly learn problems of

lesser complexities, as they get more complex they lose
some of their ability to learn simpler problems. As
depicted in Figure 18, when the neural network evolved to
graph 4th degree polynomials learns to graph a 2nd degree
polynomial, its error does not reduce as quickly as the
neural network evolved to graph 3rd degree polynomials.
This suggests that backwards compatibility may be a
function of the difference in complexity of the task.

Figure 14: Back-Propagation error reduction graph on the 4th degree
polynomial, f(x) = 1.7x4 + .3x3 - 4x2 - .4x. The evolved neural
network was evolved to learn to graph 3rd degree polynomials.

0

5

10

15

-5
.0

0

-4
.0

0

-3
.0

0

-2
.0

0

-1
.0

0

0.
00

1.
00

2.
00

3.
00

4.
00

5.
00

x

f(x)

0
10
20
30
40
50
60
70
80
90

100

1 11 21 31 41 51 61 71

Iteration

E
rr

o
r

3rd Degree Evolution 4th Degree Evolution

 Figure 15: Back-Propagation error reduction graph on the 3rd degree
polynomial, f(x) = 2x3 - 6x2 + 3x - 2. The evolved neural network
was evolved to learn to graph 4th degree polynomials. The evolved
network never encountered this polynomial during evolution.

4

art
De
lay
co
wa
be
wo
no
Fu
tha
do

ev
dy
ba
pro
for
op
lea

Ev
few
ou
acc
tas
tas
sol
tas
sta
the
co
co
co

Figure 18: Back-Propagation error reduction graph on the 2nd degree
polynomial, f(x) = .5x2. The graph compares the performance of a
network evolved to learn to graph 3rd degree polynomials and a
network evolved to learn to graph 4th degree polynomials.
Conclusion
There are many difficulties associated with designing
ificial neural networks to use Back-propagation.
termining the number of hidden nodes and even hidden
ers has lead to many ad-hoc algorithms that deal with

mplexity analysis or simply trial and error. Our goal
s to find a method for designing a network that could
 used on many different learning tasks. This method
uld have to be able to determine the number of hidden
des, initial weights, and the learning rates.
rthermore, the desired method would create a network
t could be applied to any problem within the desired
main.
The Evolving Trainable Networks approach applies
olution to ANNs that use Back-propagation in a
namic environment. By setting the fitness function
sed on the networks ability to solve an array of
blems from the desired domain, the networks were
ced to use learning. The ability to learn was then
timized by setting the fitness function to increase as the
rning time decreased.

When this method was applied with Incremental
olution, networks evolved with better fitness and in
er generations. In addition, the evolved networks

tperformed the traditional networks in speed and
uracy. Furthermore, a network evolved for a complex
k outperformed the standard design for less complex
ks. This shows that the evolved networks learn to

Figure 17: Back-Propagation error reduction graph on the 5th degree
polynomial, f(x) = -1.1x5 + 1.7x4 + 4.1x3 – 4.2x2 - 1.4x + .6. The
evolved neural network was evolved to learn to graph 4th degree
polynomials.

Figure 16: Back-Propagation error reduction graph on the 2nd degree
polynomial, f(x) = 1.5x2 - 5x + 2. The evolved neural network was
evolved to learn to graph 4th degree polynomials. The evolved network
never encountered this polynomial during evolution.
ve complex tasks rather than specializing on a specific
k. Thus, the best method for evolving networks is to
rt with a less complex task and incrementally evolve
 network for more complex tasks. The ability to learn

mplex tasks while retaining the ability to learn less
mplex tasks should improve artificial neural network’s
ntribution to the field of artificial life.

References
[1] K. O. Stanley and R. Miikkulainen, “Efficient

Reinforcement Learning through Evolving Neural
Network Topologies”, Evolutionary Computation,
Vol. 10, pp. 99-127, 2002

[2] R. Caruana, S. Lawrence and C.L. Giles. "Overfitting
in neural networks: backpropagation, conjugate
gradient, and early Stopping". Advance in Neural
Information Processing Systems, Vol. 13, pp. 402-
408, 2001

[3] Mark J Baldwin, “A new Factor in Evolution”,
American Naturalist, Vol. 30, pp. 441-451, 1996

[4] Peter Turney, “Myths and Legends of the Baldwin
Effect”, Proceedings Workshop on Evolutionary
Computation and Machine Learning at the 13th
International Conference on Machine Learning,
pp. 135-142, 1996

[5] Kim Sterelny, “The Baldwin Effect and Its
Significance: A Review of Bruce Weber and David
Depew (eds) Evolution and Learning: The Baldwin
Effect Reconsidered” Evolution and Development,
pp. 341-351, 2004

[6] Anil K. Enumulapally, Ligguo Bu, and Khosrow
Kaikhah “Backpropagation: In Search of
Performance Parameters”, WSEAS Transactions on
Systems, Issue 2, Vol. 3, pp. 950-956, 2004

 [7] E. J. W. Boers and I.G. Sprinkhuized-Kuyper,
“Evolving Artificial Neural Networks using the
Baldwin Effect”, Artificial Neural Nets and Genetic
Algorithms, pp. 333-336, 1995

	Khosrow Kaikhah, Ph.D.
	1 Introduction
	2 Combining Evolution and Learning
	2.1 Process of Evolving Trainable Networks

	3 Results & Analysis
	3.1 Evolution of a 3rd Degree Polygrapher
	3.2 Incremental Evolution
	3.3 Backwards Compatibility

	4 Conclusion
	References

