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ABSTRACT

Under the well-studied global earliest-deadline-first (G-EDF) scheduling, the

deadline of each job serves for two functionalities simultaneously. First, it specifies the

response-time requirement of the job; second, it determines the priority of the job. The

concept of the family of G-EDF-like (GEL) schedulers extends G-EDF by separating

these two functionalities: the deadline of a job only serves as the first one, and another

parameter, called the priority point of a job, serves as the second one.

This thesis studies the problem of GEL scheduling arbitrary-deadline sporadic tasks

on multiprocessor platforms where every processor is identical. In particular, the focus is

on the priority point setting and schedulability analysis under both preemptive and

non-preemptive global earliest-priority-point-first (G-EPPF) scheduling. This work

shows that the response times under G-EPPF scheduling can be upper bounded by the

relative priority points as well as specification parameters of the tasks and the platform.

Thus, the problem of setting proper priority points can be formalized as a linear program

(LP), which can be solved efficiently by readily available LP solvers. The schedulability

experiments demonstrate the effectiveness of the proposed method and its merits over the

state-of-art for the schedulability analysis of arbitrary-deadline tasks.
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1. INTRODUCTION

To keep pace with fast development in multi-core chips of CPU architectures,

real-time computer systems with new models, algorithms, and analysis techniques are

increasingly becoming to be designed and implemented upon multiprocessors and

multi-core platforms. In a real-time system, a scheduler is used to schedule tasks among

processors which is concerned with the efficient allocation of computational resources and

may be available in limited amounts, amongst competing demands in order to optimize

specified objectives. Real-time scheduling theory deals with resource allocation in

real-time computer systems, which are computer systems with certain computations that

have a timing correctness requirement in addition to a functional one – it requires not only

to "do the right thing," but also to "do it at the right time."

The global earliest-deadline-first (G-EDF) algorithm has been demonstrated to be a

good candidate for scheduling real-time tasks on multiprocessor platforms. In fact, the

well-studied G-EDF scheduler can be extended to be a more general class of schedulers,

called G-EDF-like (GEL) schedulers, which also include another well-known scheduler,

global first-in-first-out (FIFO). Significant research results have been obtained concerning

the G-EDF scheduling of sporadic task systems. However, most of these results are focus

on constrained-deadline sporadic task systems, which require the relative deadline of each

task to be at most the task’s period, whereas the same is not true for arbitrary-deadline

sporadic task systems, where the relative deadline can be greater than the period. Our

focus in this thesis is the GEL scheduling of arbitrary-deadline sporadic tasks on a

homogeneous multiprocessor where every processor is identical.

For a GEL scheduler, the deadline works for two functionalities simultaneously:

specify the response time of each job and determine the priority of each job. We separate

these two roles individually and set the priority of each job by a particular value denote as

priority point (PP). Each task is associated with a relative PP, which defines the relative

distance between the (absolute) PP and the release for any job of this task. Then a GEL
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scheduler can also be called a global earliest-priority-point-first (G-EPPF) scheduler,

which prioritizes jobs according to their absolute PPs—the earlier the PP, the higher the

priority. In particular, the G-EDF scheduler can be viewed as a special case of G-EPPF

scheduler where the relative PP is assigned equal to the relative deadline for each task.

Similarly, the FIFO scheduler can be viewed as another special case of G-EPPF

scheduler where the relative PP is assigned equal to zero for all tasks.

To illustrate, we will explain how PP drives the scheduler with sampled tasks in

Figure 1. For each task τi = (Ci, Ti, Di, Yi), where Ci is the worst-case execution time

(WCET) of task τi; Ti is the period, which denotes the minimum inter-arrival separation

between any two successive jobs in task τi; Di is the relative deadline of task (τi); Yi is the

relative PP of task τi.

In Figure 1(a), PP is set equal to the relative deadline of each task, so in G-EPPF

scene, the sampled tasks are scheduled in the same way as G-EDF. Similarly, in Figure

1(b), the relative PP is set to be zero which will equal the absolute release time of each

job when scheduling, so G-EPPF schedules the sampled tasks the same as FIFO. While

in Figure 1(c), PP is different from period and deadline, and G-EPPF schedules the

sampled tasks with the earliest PP. If any two jobs at the same priority point are ready to

be scheduled, the system will select the job with a smaller task index.

In particular, this thesis would focus on G-EPPF scheduling of sporadic tasks with

arbitrary deadlines on identical multiprocessors. We will first prove basic and improved

response-time bounds for each task as functions of PP with other system parameters.

Then, formulate the schedulability problem as a linear program (LP), and solve it by

Gurobi Optimizer. We will explore the G-EPPF for fully preemptive and non-preemptive

cases in order to improve the schedulability for the systems.
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(a) G-EDF schedule, where τ1 = τ2 = (2, 6, 5, 5), τ3 = (5, 8, 7, 7)
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(b) FIFO schedule, where τ1 = τ2 = (2, 6, 5, 0), τ3 = (5, 8, 7, 0)
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(c) G-EPPF schedule, where τ1 = (2, 6, 5, 4), τ2 = (2, 6, 5, 3), τ3 = (5, 8, 7, 6)

Figure 1: Comparison of G-EDF, FIFO, G-EPPF scheduling with sampled tasks by priority points.

1.1 Contributions

The main contribution of this thesis is exploring how the conception of priority point

(PP) in G-EPPF scheduling may benefit the schedulability for arbitrary-deadline tasks in

hard real-time (HRT) systems. We consider both fully preemptive and non-preemptive
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variants and derive PP-based response-time bounds for each task. Based on these

response-time bounds, we form up a linear program (LP) that optimizes the PP setting to

improve the schedulability. In the experiments, the Gurobi LP solver is applied to obtain

the PPs and the schedulability results. Comparing to the techniques in [1], the

experiments demonstrate the merits of the proposed method in this thesis, especially in the

case where tasks’ relative deadlines are greater than their periods, which is only allowed

for arbitrary-deadline tasks. Observations from the experiment results also suggest that the

response-time bound improvement techniques in this thesis are more effective for fully

preemptive G-EPPF than non-preemptive G-EPPF.

1.2 Organization

In this chapter, we briefly introduce the main method of this thesis, and the rest is

organized as following:

• Chapter 2 reviews related work and their contributions to our topic.

• Chapter 3 interprets our model with essential requirements and considered

platforms.

• Chapter 4 presents proof-specific preliminaries and definitions for proving our

response-time bounds.

• Chapter 5 provides the derivation of basic and improved response-time bounds

under fully preemptive G-EPPF.

• Chapter 6 provides the derivation of basic and improved response-time bounds

under non-preemptive G-EPPF.

• Chapter 7 implements an experimental evaluation to our models, compares and

analyzes the scheduling performance.

• Chapter 8 presents the conclusions.

4



2. RELATED PRIOR WORK

There are two general approaches for mapping sporadic task sets on multiprocessor

platforms. One is global scheduling, that is all generated tasks are scheduled from a single

global queue and tasks may migrate among processors. In [2], Goossens and Devillers

showed that G-EDF can schedule independent task sets successfully on m processors if

the total utilization is at most m(1− umax) + umax. Baruah and Baker in [3] derived a new

sufficient G-EDF schedulability test to determine whether a given sporadic task system is

guaranteed to be scheduled with all deadlines be met upon an identical multiprocessor

platform fully preemptively. In contrast to global scheduling, partitioned scheduling is

that for each task, a specific processor is assigned statically in advance, and each

processor schedules its assigned tasks with a uniprocessor scheduling algorithm. Baruah

and Fisher in [4] presented an algorithm for constrained-deadline and arbitrary sporadic

tasks on identical multiprocessors platform. Due to the global EDF could make much

more utilization of processors than partitioned EDF scheduling, we select G-EDF as our

approach.

Devi and Anderson in [5] considered when total utilization of a task system without

restriction but may equal the number of processors, the single tardiness for all tasks of

G-EDF on multiprocessors could be bounded of all tasks in terms of plus a common

added expression to task’s WCET in soft real-time (SRT). Based on this, Erickson et al.

provided a tighter bound on maximum tardiness through deriving separate tardiness

bounds in [6]. In 2007, Leontyev and Anderson [7] derived tardiness bounds for global

FIFO scheduling. Later on, they presented a generalized tardiness bound in [8] to a wide

variety of global scheduling algorithms like EDF, FIFO, RM, LLF, EDZL, and PD by

giving each job a priority for SRT scheduling. The scheduler always picked the job with

the highest priority to execute. They defined the absolute deadline of a job as its priority

for G-EDF and set the prioritization function associated with each released job to

specified their priority. For instance, under the preemptive EDF algorithm they defined the
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priority equal to the absolute deadline, while in least-laxity-first (LLF) algorithm, they

associated priority to a time-dependent equation with parameters consist of the deadline,

utilization, and a modified execution time. This work provided a general applied bound

rather than the tightest. Furthermore in 2011, Leontyev et al. [9] defined the priority of

each job as some per-task constant after the job released which is the class of GEL

schedulers. Erickson et al. in [10] proposed global fair lateness(G-FL) scheduling, where

compliant-vector analysis(CVA) is applied to demonstrate that G-FL minimized the

maximum lateness bound over all GEL schedulers. To improve the tardiness bounds, they

derived response-time bounds via lateness, defined as the difference between deadline and

completion time, for arbitrary GEL schedulers since jobs of tasks can be guaranteed to

complete by point before their deadlines.

The feasibility condition on uniform multiprocessors was first derived by Funk et al.

[11]. In [12, 13, 14], they also investigated the EDF scheduling of the periodic task

systems on uniform multiprocessors. Yang and Anderson in [15, 16] extended the

tardiness bounds for G-EDF to uniform multiprocessors. They also studied EDF-based

semi-partitioned scheduling on uniform multiprocessors in [17, 18]. In an npc-sporadic

task system, jobs are not subject to intra-task precedence constraints and such system was

first studied by Erickson and Anderson [19]. Yang and Anderson in [20] showed that an

optimal G-EDF-based scheduler of npc-sporadic task system on a uniform multiprocessor

is possible. They proved that both preemptive and non-preemptive G-EDF algorithms

guarantee to bound the response time for any feasible npc-sporadic task system, and they

also derived the feasibility conditions. Elliott et al. [21] and Yang et al. [22, 23] later

adapted these techniques to the scheduling of directed-acyclic-graph (DAG) based

systems.

Other prior work such as [3, 24, 25] had derived important results of G-EDF

schedulability analysis for constrained-deadline sporadic task systems. While Baruah and

Baker [1] and Andersson et al. [26] presented analysis techniques for arbitrary-deadline
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sporadic task system with close schedulability results to the constrained-deadline work. In

this thesis, we will explore arbitrary-deadline task sets of HRT sporadic task systems.

To the experimental approaches and analysis techniques, Bini and Buttazzo in 2005

[27] created the UUniFast algorithm to efficiently generate a fixed utilization value with a

number of task sets on a uniprocessor. The utilization distribution of UUniFast algorithm

is equivalent to uniformly sampling the task utilization value, and then keeping those task

sets with the selected total utilization. In 2009, Davis and Burns [28] extended UUniFast

method to UUniFast-Discard by simply discard task sets containing invalid values until

the task amount satisfied the requirement on multiprocessor platforms.

Baker first designed a practical test for G-EDF schedulability analysis of sporadic

task systems in [29, 30] by assuming a task’s job missed its deadline, then derived if there

exist necessary conditions that all tasks must be satisfied in order to guarantee this

deadline miss occur. Negatived these conditions to yield a sufficient schedulability test.

Bertogna and Cirinei in [25] developed Baker’s analysis technique from uniprocessor

scheduling domain to multiprocessor by iteratively computing improved bounds of

response time on WCET of jobs. Baruah and Baker in [1] contributed an analysis

technique with the load of a task set to evaluate arbitrary sporadic task systems upon

preemptive multiprocessor platforms. In our thesis, we will compare the results of our

models with Density test and Load test.
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3. SYSTEM MODEL

We consider an identical multiprocessor platform with m processors. For each

processor i(1 ≤ i ≤ m), the maximum amount of work that can be done within one time

unit of each processor is identical, in the sense that each processor has the same computing

capability as every other processor. We normalize the speed of each processor to be 1.0. To

our identical multiprocessors model, the accumulative speed of amount i processors is i.

In our HRT sporadic task system, jobs have deadlines associated with them and it is

required all deadlines be met. We consider a task set τ of n sporadic tasks,

τ = {τ1, τ2, τ3, ..., τn}. The jobs are those repeatedly invocations within a task during the

continuous-time. τ can be referred to all jobs generated by this system. In general sporadic

task model, each task τi is characterized by a 3-tuple parameters τi = (Ci, Ti, Di), where

Ci is the worst-case execution time (WCET) of task τi; Ti is the minimum inter-arrival

separation between any two successive jobs of task τi; Di is the relative deadline of task τi

where (Di ≥ 0). We let n ≥ m. If this is not the case, each task is able to be assigned to a

separate processor and consequently no job of each τi is going to have response time

exceeding Ci.

The jth job (j ≥ 1) of task τi is denoted as τi,j . We denote its release time as ri,j , its

absolute deadline as di,j , and its response time as Ri,j , where di,j = ri,j +Di. If a job

finishes its execution at time fi,j , then Ri,j = fi,j − ri,j . We denote the lateness of τi,j as

∆i,j , and ∆i,j = fi,j − di,j . For task τi, we use Ri to refer to the response-time bound and

∆i refer to the lateness bound. The utilization of a task τi is the ratio of its WCET to its

period, denoted as ui = Ci/Ti , and the total utilization of entire task system τ is

Usum =
∑n

i=1 ui.

We focus on global scheduling. That is, all released jobs are pushed into a single

global queue, then the scheduler will select the first m ready jobs with the highest

priorities to execute if at least m jobs are ready, and will schedule all ready jobs if less

than m jobs are ready. The priority of each job τi,j is determined by its PP, denoted by

8



yi,j , and the earlier the priority point the higher the priority, i.e., job τi,j has a higher

priority than job τk,` if yi,j < yk,`. Each task τi is given a relative priority point, denoted

by Yi, such that the PP of an arbitrary job τi,j of this task is calculated by yi,j = ri,j + Yi.

In this thesis, we assume that jobs of the same task may run simultaneously on

different processors if such processors are available. In other words, if a job has not

completed its execution and the following job of the same task is released (this is possible,

due to arbitrary deadlines), the later job can start its execution without waiting for the

earlier one to complete if sufficient processors are available. Therefore, in this thesis, for a

system to be feasible, it only requires that

Usum ≤ m. (3.1)

9



4. PRELIMINARIES

Definition 1. For any time instant t > 0, a job τi,j is unreleased if ri,j > t, pending if

ri,j ≤ t and fi,j < t, and completed if fi,j ≥ t.

Definition 2. We denote A(S, τi,j, t1, t2) to the accumulative processor capacity allocation

to job τi,j in an arbitrary schedule S within the time interval [t1, t2]. Similarly in task level,

denote the arbitrary schedule be A(S,J , t1, t2), the J represents all jobs in a task set.

A(S,J , t1, t2) =
∑
τi,j∈J

A(S, τi,j, t1, t2). (4.1)

Ideal schedule. Define πIDEAL = {u1, u2, ..., un} as an ideal multiprocessor for the task

set τ with n processors each of which matches the utilization of a task in τ . Let I be the

partitioned schedule for τ on πIDEAL such that each task τi execute on a dedicated

processor of speed ui. Then, each job τi,j must begin to execute at its release time ri,j and

complete its execution within one period Ti. Therefore, we get

A(S, I, t1, t2) ≤ ui · (t2 − t1) and for an arbitrary job set J ⊆ τ ,

A(I,J , t1, t2) ≤ Usum · (t2 − t1). (4.2)

The above notion guarantees that a single job will not be paralleled on multiple processors.

Furthermore, we can upper bound the amount of unfinished work for any job of task

τi at its priority point by Li, which is defined as follows.

Definition 3. Let Li denote the difference between period Ti and priority point Yi, then we

have Li = ui ·max{0, (Ti − Yi)}, and Lsum =
∑n

i=1 Li. Thus in I, for any time instant t,

the amount of incomplete work with priority point at or before t is at most Lsum.

Moreover, based on the function of A, we define two useful functions lag and LAG as

follows.

10



Definition 4. Let the difference between the total allocation to a job τi,j in I and an

actual schedule S up to time t as

lag(τi,j, t,S) = A(I, τi,j, 0, t)− A(S, τi,j, 0, t), (4.3)

and to an arbitrary job set J , the total allocation difference is

LAG(J , t,S) =
∑
τi,j∈J

lag(τi,j, t,S). (4.4)

Based on (4.3) and Definition 2, given any time interval [t1, t2], there is

lag(τi,j, t2,S) = lag(τi,j, t1,S) + A(I,J , t1, t2)− A(S,J , t1, t2), (4.5)

and by (4.1), (4.3) and (4.4), there is,

LAG(J , t2,S) = LAG(J , t1,S) + A(I,J , t1, t2)− A(S,J , t1, t2). (4.6)

Lemma 1. If a job τi,j is unreleased or complete at time t, then lag(τi,j, t,S) ≤ 0; if τi,j is

pending at t, then 0 < lag(τi,j, t,S) ≤ Ci.

Proof. Follows from Definition 1 and 4.

Job of interest. To derive response-time bounds, we consider an arbitrary job τk,` in τ ,

and upper bound its response time. Let ty be the PP of τk,`, i.e., ty = yk,`.

Definition 5. To our HRT system, denote Ψ to the job set of all jobs with priority points at

or before ty. We call jobs in Ψ as competing jobs for τk,`.

Definition 6. For any time instant t, if all m processors are executing jobs belong to Ψ,

then t is a busy instant for Ψ; else t is a non-busy instant for Ψ. For any time interval

[t1, t2], if every time instant is a busy instant for Ψ, then [t1, t2] is a busy interval for Ψ; if

not, non-busy interval.
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Lemma 2. If [t1, t2] is a busy interval for Ψ in S, then LAG(Ψ, t1,S) ≥ LAG(Ψ, t2,S).

Proof. By (4.6), LAG(Ψ, t2,S) = LAG(Ψ, t1,S) + A(I,J , t1, t2)− A(S,J , t1, t2).

Because [t1, t2] is a busy interval for Ψ in S, we have A(S,J , t1, t2) = m · (t2 − t1).

Then, by (3.1) and (4.2), we have

A(I,J , t1, t2)− A(S,J , t1, t2) ≤ Usum · (t2 − t1)−m · (t2 − t1) ≤ 0

Therefore, LAG(Ψ, t2,S) ≤ LAG(Ψ, t1,S), and the lemma follows.

Definition 7. For any time instant t, denote t+ to the time instant (t+ ε) and t− to the

time instant (t− ε), where ε→ 0+.

Definition 8. The competing work for a job τi,j at time t is defined by the summation of

the remaining work at time t of all jobs (pending or to be released) with a priority higher

than or equal to τi,j (including the work of τi,j itself). That is, the competing work for our

job of interest, τk,`, at time t is simply the remaining work of jobs in Ψ at time t (including

those to be released after time t).
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5. RESPONSE-TIME BOUNDS UNDER FULLY PREEMPTIVE G-EPPF

In this chapter, we study the fully preemptive global earliest-priority-point-first

(G-EPPF) scheduler, under which the priority of a job is determined by its priority point

(PP). In addition, any preemption and migration are allowed to enable that: at any time

instant, if there are at most m pending jobs, then all of them are scheduled; if there are

more than m pending jobs, then the m such jobs with the earliest PP are scheduled.

We aim at deriving response-time bounds for all jobs in the system under G-EPPF

scheduling. In particular, we focus on an arbitrary job τk,` and derive a response-time

bound for it. Because job τk,` is an arbitrary one in the system, the derived bound is

applicable to any job. Moreover, in this chapter, we use S to denote the fully preemptive

G-EPPF schedule specifically.

5.1 A Basic Response-Time Bound

We first derive a response-time bound here in Section 5.1. This bound is based on a

classic real-time schedulability analysis technique that studies the busy time intervals.

Later in Section 5.2, we will present techniques to improve such bound.

Lemma 3. For any non-busy instant t which is at or before ty,

LAG(Ψ, t,S) ≤ (m− 1) · Cmax.

Proof. We consider three subsets of Ψ: Ψ1 is the set of all jobs in Ψ that are unreleased at

time t, Ψ2 is the set of all jobs in Ψ that are pending at time t, and Ψ3 is the set of all jobs

in Ψ that are complete at time t. It is clear that Ψ1, Ψ2, and Ψ3 are disjoint and
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Ψ1 ∪Ψ2 ∪Ψ3 = Ψ. Therefore,

LAG(Ψ, t,S) = LAG(Ψ1, t,S) + LAG(Ψ2, t,S) + LAG(Ψ3, t,S)

=
∑

τi,j∈Ψ1

lag(τi,j, t,S) +
∑

τi,j∈Ψ2

lag(τi,j, t,S) +
∑

τi,j∈Ψ3

lag(τi,j, t,S)

≤
∑

τi,j∈Ψ1

0 +
∑

τi,j∈Ψ2

Ci +
∑

τi,j∈Ψ3

0

≤ |Ψ2| · Cmax

≤ (m− 1) · Cmax.

Note that, the first “≤” is by Lemma 1.The last “≤” is because under the fully preemptive

G-EPPF scheduling, there can be at most (m− 1) pending jobs at a non-busy time instant

t; otherwise, m jobs would be scheduled and time t and it would be a busy time

instant.

Lemma 4. At or after time ty, once job τk,` starts executing, it must continuously execute

until it completes.

Proof. Because the relative priority point Yi ≥ 0,∀i, no job with PP earlier than ty can be

released at or after time ty, i.e., no job that is released at or after ty has a higher priority

than τk,` and can preempt τk,`. Therefore, once τk,` executes at or after ty, its execution

will be continuous until its completion.

Lemma 5. In S, the amount of competing work for τk,` at ty is at most

Lsum + (m− 1) · Cmax.

Proof. According to Definition 3 and 4, the competing work in S pending at ty is at most

Lsum + LAG(Ψ, t,S). Let t′ be the latest non-busy instant at or before ty; if no such time

instant exists, we let t′ = 0. Then, by Lemma 2, we have LAG(Ψ, t
′
,S) ≥ LAG(Ψ, ty,S),

and by Lemma 3 we have LAG(Ψ, t
′
,S) ≤ (m− 1) · Cmax. Based on these, we can derive

that LAG(Ψ, ty,S) ≤ (m− 1) · Cmax, and the lemma follows.
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Lemma 6. We denote the competing work for τk,` at ty by W . Then, the job τk,` will

complete execution no later than time

ty +
W − Ck

m
+ Ck. (5.1)

Proof. If τk,` is complete at or before ty, then the lemma trivially holds. Therefore, in the

rest of this proof, we focus on the case where τk,` is not complete at or before ty. Denote δ

as the amount of work in τk,` that has been completed by ty, and denote ek,` as the real

execution requirement of τk,`. Then the remaining execution work of τk,` at ty is ek,` − δ.

If τk,` does not execute within time period [ty, ty +
W−(ek,`−δ)

m
), we can conclude this time

period must be a busy interval for Ψ. In this case, the competing work that is completed

within this busy interval will be W − (ek,` − δ), cause within a busy interval all processors

executing competing work with a total speed m, and the remaining competing work at

ty +
W−(ek,`−δ)

m
is ek,`− δ, which must be totally belong to τk,`. As a result, τk,` will execute

at time ty +
W−(ek,`−δ)

m
. Conversely, if τk,` does not complete at or before ty, then the latest

time τk,` starts execution after ty will be ty +
W−(ek,`−δ)

m
. Recall Lemma 4, τk,` will not be

preempted once it executes after ty, and the execution speed is 1.0, τk,` will complete
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within(at) ek,` − δ time units. With all above, we can conclude τk,` will complete by

ty +
W − (ek,` − δ)

m
+ (ek,` − δ)

={rearranging}

ty +
W

m
− ek,`

m
+ ek,` + (

δ

m
− δ)

≤{because δ ≥ 0 and m ≥ 1, (
δ

m
− δ) ≤ 0}

ty +
W

m
− ek,`

m
+ ek,`

≤{because ek,` ≤ Ck and m ≥ 1}

ty +
W

m
− Ck
m

+ Ck

=ty +
W − Ck

m
+ Ck,

and the lemma follows.

Theorem 1. Under fully preemptive G-EPPF scheduling on m identical unit-speed

processors, the response time of an arbitrary job τk,` in τ is at most

Yk +
1

m
· Lsum +

(m− 1)

m
· Cmax +

(m− 1)

m
· Ck.

Proof. The theorem follows directly from Lemma 5 and Lemma 6.

5.2 An Improved Response-Time Bound

In this section, we improve the response-time bound for fully preemptive G-EPPF in

Theorem 1 mainly by the following two observations:

• We have focused on busy intervals. However, in fact, intervals that the system LAG

does not increase would be sufficient.

• We have investigated the execution job τk,` of our interest after its priority point ty.

Such investigation could be extended to as early as τk,`’s release time rk,`.
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To begin with, we introduce a new integer Λ, which is defined as:

Λ = dUsume . (5.2)

Lemma 7. At any time instant t where at most (Λ− 1) processors are busy, it must hold

that LAG(Ψ, t,S) ≤ (Λ− 1) · Cmax.

Proof. Similar to Lemma 3, we consider three subsets of Ψ: Ψ1, Ψ2, and Ψ3 — the sets of

all jobs in Ψ that are unreleased, pending, and complete, respectively, at time t. Therefore,

LAG(Ψ, t,S) = LAG(Ψ1, t,S) + LAG(Ψ2, t,S) + LAG(Ψ3, t,S)

=
∑

τi,j∈Ψ1

lag(τi,j, t,S) +
∑

τi,j∈Ψ2

lag(τi,j, t,S) +
∑

τi,j∈Ψ3

lag(τi,j, t,S)

≤
∑

τi,j∈Ψ1

0 +
∑

τi,j∈Ψ2

Ci +
∑

τi,j∈Ψ3

0

≤ |Ψ2| · Cmax

≤ (Λ− 1) · Cmax.

The last “≤” is because only (Λ− 1) = (dUsume − 1) < Usum ≤ m processor being busy

implies that all pending jobs are scheduled, by the fully preemptive G-EPPF scheduler.

Thus, the lemma follows.

Lemma 8. For any time instant t, LAG(Ψ, t,S) ≤ (Λ− 1) · Cmax.

Proof. For any time instant t, we let t0 denote the latest time instant at or before time t

such that at most (Λ− 1) processors are busy. Then, it directly implies that at least Λ

processors are busy at any time instant in (t0, t], and this means

A(S,Ψ, t0, t) ≥ Λ · (t− t0). (5.3)
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Also, by Lemma 7, LAG(Ψ, t0,S) ≤ (Λ− 1) · Cmax. Therefore,

LAG(Ψ, t,S) ={by (4.6)}

LAG(Ψ, t0,S) + A(I,Ψ, t0, t)− A(S,Ψ, t0, t)

≤(Λ− 1) · Cmax + A(I,Ψ, t0, t)− A(S,Ψ, t0, t)

≤{by (4.2)}

(Λ− 1) · Cmax + Usum · (t− t0)− A(S,Ψ, t0, t)

≤{by (5.3)}

(Λ− 1) · Cmax + Usum · (t− t0)− Λ · (t− t0)

≤{because Λ = dUsume ≥ Usum}

(Λ− 1) · Cmax,

and the lemma follows.

Lemma 9. Suppose the competing work for τk,` at rk,` is W . Then the response time of

τk,` is upper bounded by

W − Ck
m

+ Ck.

Proof. Recall that we denote the release time and finish time of τk,` by rk,` and fk,`,

respectively. Because the fully preemptive G-EPPF scheduler always actively schedule

pending jobs on available processors for execution, any time instant within [rk,`, fk,`] must

be either busy on competing workload or executing τk,`. Therefore, competing workload

other than τk,` itself could prevent τk,` from being executed for at most W−Ck

m
time units

and τk,` could execute for at most Ck time units. Thus, τk,` must be complete within

(W−Ck

m
+ Ck) time units after rk,`. The lemma follows.
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Lemma 10. The competing work for τk,` at rk,` is at most

Usum · Yk + Lsum + (Λ− 1) · Cmax.

Proof. By the definition of the idea schedule and by Definition 3, the total workload in the

system with a priority higher than or equal to τk,` is at most Lsum + A(I,Ψ, 0, ty).

Meanwhile, by Definition 2 and the definition of Ψ, A(S,Ψ, 0, rk,`) denotes the amount of

such workload that has been done by time rk,` in the fully preemptive G-EPPF schedule

S. Therefore, the competing work for τk,` at rk,` is at most

Lsum + A(I,Ψ, 0, ty)− A(S,Ψ, 0, rk,`)

=Lsum + A(I,Ψ, 0, rk,`) + A(I,Ψ, rk,`, ty)− A(S,Ψ, 0, rk,`)

=A(I,Ψ, rk,`, ty) + Lsum + (A(I,Ψ, 0, rk,`)− A(S,Ψ, 0, rk,`))

≤{by (4.2) and by Definition 4}

Usum · (ty − rk,`) + Lsum + LAG(Ψ, rk,`,S)

={by its definition, ty = rk,` + Yk}

Usum · Yk + Lsum + LAG(Ψ, rk,`,S)

≤{by Lemma 8}

Usum · Yk + Lsum + (Λ− 1) · Cmax.

Thus, the lemma follows.

Theorem 2. Under fully preemptive G-EPPF scheduling on m identical unit-speed

processors, the response time of an arbitrary job τk,` in τ is at most

Usum
m
· Yk +

1

m
· Lsum +

Λ− 1

m
· Cmax +

m− 1

m
· Ck, (5.4)

where Λ = dUsume.
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Proof. This theorem directly follows from Lemma 9 and Lemma 10.
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6. RESPONSE-TIME BOUNDS UNDER NON-PREEMPTIVE G-EPPF

Non-preemptive G-EPPF is similar to fully preemptive G-EPPF in the sense that

when multiple jobs are eligible to be selected to execute on available processors, the ones

with earlier priority points are selected; however, under non-preemptive G-EPPF

scheduling, once a job starts execution, it will continuously execute to completion without

being preempted or migrated. In this section, we let S denote the non-preemptive

G-EPPF schedule specifically.

Definition 9. Given a non-busy time instant t for Ψ, if every pending job in Ψ is currently

executing, then t is a non-blocking non-busy instant for Ψ; otherwise if some pending job

in Ψ is blocked by jobs that are not in Ψ, then t is a blocking non-busy instant for Ψ. In a

time interval [t1, t2], if every time instant is a blocking non-busy instant for Ψ, then [t1, t2]

is a blocking non-busy interval for Ψ.

Definition 10. For any time instant t, we denote B(t) to be the set of jobs which are not in

Ψ but executing in schedule S. Denote B(t) as the blocking work to those incomplete

work of jobs in B(t).

Because B(t) is after all a set of jobs that are being executed, it must hold that

|B(t)| ≤ m for all t, and therefore B(t) ≤ m · Cmax for all t.

6.1 A Basic Response-Time Bound

In this section, we will derive a response-time bound for non-preemptive G-EPPF.

Similar to the analysis for fully preemptive G-EPPF, this response-time bound is based

on the analysis of busy and non-busy time intervals at or before time ty and the execution

after time ty. By contrast, for non-preemptive G-EPPF, we further consider two cases:

blocking and non-blocking for a non-busy time instant.

Lemma 11. For any non-blocking non-busy time instant t,

LAG(Ψ, t,S) +B(t) ≤ m · Cmax.
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Proof. Let b = |B(t)| (0 ≤ b ≤ m). Then B(t) ≤ b · Cmax, and by the definition of a

non-blocking non-busy time instant, the number of pending jobs in Ψ is at most m− b.

Then, by decomposing Ψ into three disjointed subsets: Ψ1,Ψ2, andΨ3 that consist of jobs

that are unreleased, pending, complete respectively, we have

LAG(Ψ, t,S) +B(t)

=LAG(Ψ1, t,S) + LAG(Ψ2, t,S) + LAG(Ψ3, t,S) +B(t)

=
∑

τi,j∈Ψ1

lag(τi,j, t,S) +
∑

τi,j∈Ψ2

lag(τi,j, t,S) +
∑

τi,j∈Ψ3

lag(τi,j, t,S) +B(t)

≤
∑

τi,j∈Ψ1

0 +
∑

τi,j∈Ψ2

Ci +
∑

τi,j∈Ψ3

0 +B(t)

≤|Ψ2| · Cmax +B(t)

≤(m− b) · Cmax +B(t)

≤(m− b) · Cmax + b · Cmax

=m · Cmax,

and the lemma follows.

Lemma 12. If [t1, t2] is a busy interval for Ψ in S, then

LAG(Ψ, t1,S) +B(t1) ≥ LAG(Ψ, t2,S) +B(t2).

Proof. From Lemma 2, if t1, t2 ∈ [t1, t2] is a busy interval for Ψ in S, then

LAG(Ψ, t1,S) ≥ LAG(Ψ, t2,S). And B(t1) = B(t2) = ∅, therefore B(t1) = B(t2) = 0.

We can conclude that LAG(Ψ, t1,S) +B(t1) ≥ LAG(Ψ, t2,S) +B(t2).

Lemma 13. If [t1, t2] is a blocking non-busy interval for Ψ in S, then any blocking

job(i.e., any job that is not in Ψ but executing at some time instant t in [t1, t2]), must

execute continuously in [t−1 , t2].

Proof. Since [t1, t2] is a blocking non-busy interval for Ψ, for any time instant

within[t1, t2] there is at least one job in Ψ pending but not executing. Meanwhile, since
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any job in Ψ has an earlier deadline or higher priority than any job not in Ψ, there is no job

not in Ψ or not executing at [t−1 ] can execute in [t1, t2].

Lemma 14. If [t1, t2] is a blocking non-busy interval for Ψ in S, then

LAG(Ψ, t1,S) +B(t1) ≥ LAG(Ψ, t2,S) +B(t2).

Proof. We let [t, t
′
] denote a sub-interval of [t1, t2] such that |B(t)| = |B(t

′
)|. By

Lemma 13, the blocking jobs at every time instant in [t, t
′
] are exactly the jobs in B(t). Let

p denote the number of processors on which blocking jobs execute in [t, t
′
]. Then,

B(t
′
) = B(t)− p · (t′ − t).

Since [t, t
′
] ⊆ [t1, t2] is a blocking non-busy interval, the other (m− p) processors must

execute jobs in Ψ; otherwise, it would be a non-blocking non-busy interval. Therefore,

LAG(Ψ, t
′
,S)

= LAG(Ψ, t,S) + A(I,Ψ, t, t′)− A(S,Ψ, t, t′)

≤ LAG(Ψ, t,S) + Usum · (t
′ − t)− (m− p) · (t′ − t).

Thus,

LAG(Ψ, t
′
,S) +B(t

′
)

≤ LAG(Ψ, t,S) + Usum · (t
′ − t)− (m− p) · (t′ − t) +B(t)− p · (t′ − t)

= LAG(Ψ, t,S) +B(t) + Usum · (t
′ − t)−m · (t′ − t)

≤ {since Usum ≤ m}

LAG(Ψ, t,S) +B(t)
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Then, for every such sub-interval [t, t
′
] ⊆ [t1, t2], we have

LAG(Ψ, t,S) +B(t) ≥ LAG(Ψ, t
′
,S) +B(t

′
).

Thus, the lemma follows.

Lemma 15. In S, the competing work for τk,` plus the blocking work at ty is at most

Lsum +m · Cmax.

Proof. Similarly to Lemma 5, the competing work pending at ty is at most

Lsum + LAG(Ψ, ty,S). The blocking work at ty is B(ty), therefore the competing work for

τi,j plus the blocking work at ty is at most Lsum + LAG(Ψ, ty,S) +B(ty). Let t′ denote

the latest non-blocking non-busy instant at or before ty (time 0 if no such time instant

exists). Then by Lemma 11, we could have

LAG(Ψ, t
′
,S) +B(t

′
) ≤ m · Cmax (6.1)

Besides, by the definition of t′ , time interval (t′, ty] consists of busy intervals and/or

blocking non-busy intervals. Therefore, by Lemma 12 and Lemma 14,

LAG(Ψ, t
′
,S) +B(t

′
) ≥ LAG(Ψ, ty,S) +B(ty) (6.2)

Thus, LAG(Ψ, ty,S) +B(ty) ≤ m · Cmax and the lemma follows.

Lemma 16. Letting W denote the competing work plus the blocking work for τk,` at ty,

the job of interest τk,` will complete execution by

ty +
W − Ck

m
+ Ck.

Proof. Under non-preemptive G-EPPF, if τk,` starts its execution at or before time ty,

then it will continuously execute and complete by time ty + Ck. We then focus on the case
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where τk,` does not start its execution at or before time ty. We let ek,` denote the actual

execution time of τk,` — by the definition of Ck, ek,` ≤ Ck. Then, the competing work for

τk,` from other jobs plus the blocking work at time ty is (W − ek,`), which can prevent τk,`

from starting its execution for at most W−ek,`
m

time units. That is, τk,` must start its

execution by time ty +
W−ek,`
m

and therefore complete by time ty +
W−ek,`
m

+ ek,`. Because

ek,` ≤ Ck and m ≥ 1, it is clear that

ty +
W − ek,`

m
+ ek,` ≤ ty +

W − Ck
m

+ Ck,

and the lemma follows.

Theorem 3. Under non-preemptive G-EPPF scheduling on m identical unit-speed

processors, the response time of an arbitrary job τk,` in τ is at most

Yk +
1

m
· Lsum + Cmax +

m− 1

m
· Ck.

Proof. The theorem follows directly from Lemmas 15 and 16.

6.2 An Improved Response-Time Bound

Following the LAG-based analysis framework, the analysis resulting in Theorem 3 in

Section 6.1 focused on the competing and blocking work at time ty. However, under

non-preemptive G-EPPF, once a job starts to execute, it continuously executes until

completes. Therefore, it could especially benefit to further analyze the competing and

blocking work since the release of the job of interest, i.e., time rk,`. Based on this

observation, we derive the following improved response-time bound for non-preemptive

G-EPPF.

Lemma 17. For any time instant t at or before ty, LAG(Ψ, t,S) +B(t) ≤ m · Cmax.

Proof. Let t′ denote the latest non-blocking non-busy instant at or before ty (or time 0 if
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no such non-blocking non-busy instant exists). According to Lemma 11, we have

LAG(Ψ, t′,S) +B(t′) ≤ m · Cmax

Moreover, because t′ is the latest such time instant at or before ty, time interval (t′, ty]

must consist of busy intervals and/or blocking non-busy intervals. Therefore, by

Lemma 12 and Lemma 14,

LAG(Ψ, t′,S) +B(t′) ≥ LAG(Ψ, ty,S) +B(ty)

Thus, LAG(Ψ, ty,S) +B(ty) ≤ m · Cmax and the lemma follows.

Lemma 18. Letting W denote the competing work plus the blocking work for τk,` at rk,`,

the job of interest τk,` will complete execution by

rk,` +
W − Ck

m
+ Ck.

Proof. We let ek,` denote the actual execution time of τk,` — by the definition of Ck,

ek,` ≤ Ck. Then, the competing work for τk,` from other jobs plus the blocking work at

time rk,` is (W − ek,`), which can prevent τk,` from starting its execution for at most
W−ek,`
m

time units. (Recall that, by Definition 8, competing work includes work that is not

released yet but to be released.) That is, τk,` must start its execution by time rk,` +
W−ek,`
m

and therefore complete by time rk,` +
W−ek,`
m

+ ek,`. Because ek,` ≤ Ck and m ≥ 1, it is

clear that

rk,` +
W − ek,`

m
+ ek,` ≤ ty +

W − Ck
m

+ Ck,

and the lemma follows.

Lemma 19. The competing work plus the blocking work for τk,` at rk,` is at most
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Usum · Yk + Lsum +m · Cmax.

Proof. By Definitions 3, 4, 5 and 10, the competing work plus the blocking work for τk,`

at rk,` is

Lsum + A(I,Ψ, 0, ty)− A(S,Ψ, 0, rk,`) +B(rk,`)

={by Definition 2}

Lsum + A(I,Ψ, 0, rk,`) + A(I,Ψ, rk,`, ty)− A(S,Ψ, 0, rk,`) +B(rk,`)

={by Definition 4}

Lsum + LAG(Ψ, rk,`,S) + A(I,Ψ, rk,`, ty) +B(rk,`)

≤{by (4.2)}

Usum · (ty − rk,`) + Lsum + LAG(Ψ, rk,`,S) +B(rk,`)

≤{because ty = rk,` + Yk and by Lemma 17}

Usum · Yk + Lsum +m · Cmax.

The lemma follows.

Theorem 4. Under non-preemptive G-EPPF scheduling on m identical unit-speed

processors, the response time of an arbitrary job τk,` in τ is at most

Usum
m
· Yk +

1

m
· Lsum + Cmax +

m− 1

m
· Ck.

Proof. This theorem directly follows from Lemma 18 and Lemma 19.
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7. EVALUATION

7.1 Linear Programming Based Schedulability Tests

In a task set, each competing task τk = (Ck, Tk, Dk) is given two extra variables: Yk

and Lk respectively represent the relative PP and the difference between relative period

and relative PP. The goal is to solve the values of {Yk} and {Lk} under the constraints we

have derived in Chapter 5 and Chapter 6 to guarantee the absolute deadlines to be met in

each task set, so to minimize the sum of {Lk}.

The time complexity of each Linear Program(LP) depends on the number of

variables and the number of constraints. As the definitions of {Yk} and {Lk}, there are 2n

variables of each task set while the other parameters are constants. To each LP, 3n linear

constraints are set to help bound the response time.

The formulations are shown below:

LP1:

minimize
n∑
k=1

Lk (7.1)

subject to

Lk ≥ 0, ∀k : 1 ≤ k ≤ n, (7.2)

Lk ≥ (Tk − Yk) · Uk, ∀k : 1 ≤ k ≤ n, (7.3)

Yk +
1

m
· Lsum +

m− 1

m
· Cmax +

m− 1

m
· Ck ≤ Dk, ∀k : 1 ≤ k ≤ n, (7.4)

The objective function (7.1) minimizes the sum of difference between each absolute

period and the corresponding PP. We set constraint (7.2) and constraint (7.3) by

Definition 3 that Li = ui ·max{0, (Ti − Yi)}. Constraint (7.4) set the basic response-time
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bound of the arbitrary-deadline jobs for fully preemptive variant derived in Theorem 1.

LP2:

minimize
n∑
k=1

Lk (7.5)

subject to

Lk ≥ 0, ∀k : 1 ≤ k ≤ n, (7.6)

Lk ≥ (Tk − Yk) · Uk, ∀k : 1 ≤ k ≤ n, (7.7)

Usum
m
·Yk+

1

m
·Lsum+

Λ−1

m
·Cmax+

m−1

m
·Ck ≤ Dk, ∀k : 1 ≤ k ≤ n, (7.8)

The objective function (7.5) and constraints (7.6) and (7.7) are similarly. Constraint

(7.8) set the improved response-time bound of the arbitrary-deadline jobs for fully

preemptive variant derived in Theorem 2. Note that Λ = dUsume as defined in (5.2) of

Chapter 5.2.

LP3:

minimize
n∑
k=1

Lk (7.9)

subject to

Lk ≥ 0, ∀k : 1 ≤ k ≤ n, (7.10)

Lk ≥ (Tk − Yk) · Uk, ∀k : 1 ≤ k ≤ n, (7.11)

Yk +
1

m
· Lsum + Cmax +

m− 1

m
· Ck ≤ Dk, ∀k : 1 ≤ k ≤ n, (7.12)

The objective function (7.9) and constraints (7.10) and (7.11) are similarly.

Constraint (7.12) set the basic response-time bound of the arbitrary-deadline jobs for the
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non-preemptive variant derived in Theorem 3.

LP4:

minimize
n∑
k=1

Lk (7.13)

subject to

Lk ≥ 0, ∀k : 1 ≤ k ≤ n, (7.14)

Lk ≥ (Tk − Yk) · Uk, ∀k : 1 ≤ k ≤ n, (7.15)

Usum
m
· Yk +

1

m
· Lsum + Cmax +

m− 1

m
· Ck ≤ Dk, ∀k : 1 ≤ k ≤ n, (7.16)

The objective function (7.13) and constraints (7.14) and (7.15) are similarly.

Constraint (7.16) set the improved response-time bound of arbitrary-deadline tasks for the

non-preemptive variant derived in Theorem 4.

7.2 Task Sets Generation

To evaluate our derivations, we randomly generate task sets and calculate the

response-time bound for each task in our models. Instead of generating WCET of each

task directly, it is more common to generate task utilization and then calculate the WCET

with Ci = Ui × Ti. The reason for this is because the total utilization is a common

covariate in schedulability test experiments and it is often related to the number of

processors m. We conduct the experiments separately on 16, 8, and 4 identical

multiprocessor platforms, where the total utilization Usum ≤ m. In each platform, we

increase the total utilization step by step from an initialized u greater than zero. 1000 task

sets are generated within one step and for each task set 50 tasks are generated. We

implement the UUniFast-Discard algorithm, suggested by Davis and Burns in [28], to

generate utilization of each task, that keeps all tasks utilization uniformly random and the

sum utilization equals to a sampled value for multiprocessor systems.
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We take the period of each task randomly from {200, 400, 500, 600}, and the least

common multiple(lcm) of this list is 6000. We also compare this period setting with {200,

300, 400, 500, 600, 700, 800, 900, 1000} and the uniform period {500}, the lcm for the

former is 252000 and the latter is 500 itself. As our models are arbitrary-deadline tasks,

we set the relative deadline by multiply a coefficient from list {0.3, 0.5, 0.7, 1.0, 1.5, 2.0,

3.0, 5.0} to period. Then we could compute WCET with the product of utilization and

period for each task.

7.3 Schedulability Experiments

7.3.1 G-EPPF v.s. Prior Work on G-EDF

We examine whether a task set is schedulable under HRT sporadic task

multiprocessor platforms and calculate the scheduled ratio of all task sets under a total

utilization. We employ Density test and Load test as the comparative models. And then

examine both basic and improved response-time bounds for each task set of our fully

preemptive variant. The four lines represent Density test, Load test, basic, and improved

response-time bounds respectively in the plots. With the LP we have formalized in Section

7.1, the optimal solution of the LP will provide the proper values of {Yk} and {Lk} of

Theorem 1 and Theorem 2. Here we implement [31] (version 9.1.0), a powerful

mathematical optimization solver, to find if there exists an optimal solution for each task

set, and if there does, calculate the corresponding values.

Due to the space limitation, all experiment results under various settings are reported

in Chapter 8 attached at the end of this thesis. In this section, we will only illustrate

several representative plots for a better explanation.

As Figure 2 depicts, on a 16 processors platform when the relative deadline is 2.0

times as large as the period, the lower total utilization, the better schedulability ratio for all

four schedulers. Specifically, the schedulability of Density test and Load test drop down

sharply before half of the accumulative total utilization. While both fully preemptive
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Figure 2: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 2.0 ×
period.

variant basic and improved lines start to decline after they exceed half. The basic model

line declines relatively slowly just after half point, while the improved model line almost

starts to drop after 70% of the total. Overall, our fully preemptive variant has better

schedulability than the prior work, and the improvement, especially for improved

response-time bound scheduler, is more significant. Similar results can be obtained on 8

and 4 processor systems with relative deadlines larger than the period.

In terms of processor amount, in Figure 2 and Figure 3, we keep all parameters the

same except comparing the impact of processors amount. The precise ratios are displayed

in Table 1. Under the same total utilization, it is simple to get a higher schedulability ratio

with more processors. However, compared to the limited increasing schedulability ratios

of Density test and Load test, fully preemptive response-time bounds take more

advantages to the growth of processors number.
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Figure 3: m = 8, 1000 task sets per given total utilization, 50 tasks per set, deadline = 2.0× period.

Table 1: Schedulability Ratio Comparison with m = 16 and m = 8

Utilization m density load fpbasic fpimprv
4.0 16 99.7 95.5 100.0 100.0
4.0 8 97.4 45.1 99.9 100.0
6.0 16 86.4 14.8 98.9 100.0
6.0 8 0.0 0.0 96.5 100.0
8.0 16 11.7 0.0 82.1 100.0
8.0 8 0.0 0.0 67.2 67.2

In terms of task number, in Figure 4, we allocate 100 tasks to each task set and keep

all other parameters remaining the same. We can conclude that increases the number of

tasks do improve the schedulability of all schedulers. Compare to Density test and Load

test, the fully preemptive variant gets more significant improvement, even more than 20%

schedulability ratio at the full utilization with the maximum computing capability.
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Figure 4: m = 16, 1000 task sets per given total utilization, 100 tasks per set, deadline = 2.0 ×
period.

To all these four schedulability test models, in order to examine various

arbitrary-deadline setting, we first test task sets with all deadlines have a fixed coefficient

to its periods. Figure A.1 to Figure A.4 show the results under constrained-deadline

conditions. Compare to Density test and Load test, fully preemptive basic response-time

bound performs poorly whereas the improved bounds keep the best schedule performance

out of the four. When the deadline getting larger than the period, the basic bounds

gradually surpass the Load test then the Density test, while the improved bounds

enlarge greatly as shown in Figure A.5 and Figure A.6. Fully preemptive variant could

even come up to 100% scheduled if the relative deadline is large enough, this is shown in

Figure A.7 to Figure A.8. Similar results can be obtained with 8 and 4 processors

platforms, as shown from Figure A.13 to Figure A.25. Secondly, we break the coefficient

list randomly and mix the deadline arbitrarily in each task set. Figure A.9, Figure A.19
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and Figure A.26 illustrate this hybrid condition of deadline. The improved bound has a

better schedulability than prior work for arbitrary-deadline tasks.

In term of period values, Figure A.10 shows the results from uniform period {500},

and Figure A.11 shows the results from period list {200, 300, 400, 500, 600, 700, 800,

900, 1000}. The smaller the difference between the minimum and the maximum period,

the better the scheduling performance. Though the large range of the period list has a

negative impact on the whole, the improved response-time bound keeps better

schedulability than prior work.

7.3.2 Fully Preemptive v.s. Non-preemptive G-EPPF

As illustrated in Figure 5, the basic and improved bounds of fully preemptive surpass

the corresponding lines of non-preemptive variant, which indicates that the former could

schedule better than the latter under the same conditions. In particular, the improved

bound of fully preemptive variant offers a more significant improvement.

From the point of conventional view, the non-preemptive scheduling will have a

substantial loss compared to the fully preemptive case. While in our experiment, the

non-preemptive bounds perform relatively close to the fully preemptive basic bound,

which indicates that our analysis techniques can hold effectiveness in scheduling. Similar

results with different parameters can be found in Figure A.27 to Figure A.31.

According to various requirements, there are several ways to set the parameters of

our bounds. Firstly, as the number of processors m is a parameter in our models, increase

m would reduce the response-time bounds and consequently improve the performance of

scheduling. Secondly, if we increase the task number n in each task set, the allocated

utilization ui to each task would getting smaller under a fixed total utilization. Due to

ui = Ci/Ti, the Cmax would probably also getting smaller if keep Ti the same, thus we

could obtain a better schedulability. Thirdly, the period list with a narrow range would

have better schedulability under the same conditions.
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Figure 5: Comparison of fully preemptive and non-preemptive cases: m = 16, 1000 task sets per
given total utilization, 50 tasks per set, deadline = 2.0 × period.
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8. CONCLUSION

In this thesis, we explore that the G-EPPF schedulers can be driven by the priority

point of a task. Chapter 5 and Chapter 6 derived the basic and improved response-time

bounds of our G-EPPF scheduling algorithm, under both fully preemptive and

non-preemptive variants, for scheduling arbitrary-deadline tasks of HRT sporadic task

system upon multiprocessor platforms. We address the problem of setting PP for a set of

tasks to meet their specified deadlines by solving a LP. In the LP, the number of variables

is linear to 2n and the number of LP constraints is linear to 3n. Thus, the task set is

schedulable if the LP has a feasible solution, and the priority point setting is directly

obtained by the the feasible solution of the LP.

In arbitrary-deadline task systems, our basic bound of fully preemptive variant

performs relatively pessimistic under constrained-deadline conditions, but shows better

schedulability than Density test and Load test for tasks with longer deadlines relative to

their periods. As for the improved response-time bound of fully preemptive scheduling, it

outperforms both Density test and Load test in most of the cases, especially offers more

significant improvement when tasks’ relative deadlines are larger than their periods.

In contrast to Density test and Load test, which are not applicable to

non-preemptive cases, our non-preemptive bounds have close results to the basic bound of

fully preemptive cases, which indicates that our analysis techniques are applicable and

effective to non-preemptive schedulers.
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APPENDIX SECTION

APPENDIX 1: Schedulability Results for G-EPPF v.s. G-EDF
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Figure A.1: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 0.3 ×
period.
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Figure A.2: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 0.5 ×
period.

2 4 6 8 10 12 14 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

density
load
fpbasic
fpimprv

Figure A.3: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 0.7 ×
period.

39



2 4 6 8 10 12 14 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

density
load
fpbasic
fpimprv

Figure A.4: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 1.0 ×
period.
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Figure A.5: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 1.5 ×
period.
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Figure A.6: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 2.0 ×
period.
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Figure A.7: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 3.0 ×
period.
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Figure A.8: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 5.0 ×
period.
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Figure A.9: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = random
× period.
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Figure A.10: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 2.0 ×
period, each period = 500.
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Figure A.11: m = 16, 1000 task sets per given total utilization, 50 tasks per set, deadline = 2.0 ×
period, period selected from {200, 300, 400, 500, 600, 700, 800, 900, 1000}.

43



2 4 6 8 10 12 14 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

density
load
fpbasic
fpimprv

Figure A.12: m = 16, 1000 task sets per given total utilization, 100 tasks per set, deadline = 2.0 ×
period.
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Figure A.13: m = 8, 1000 task sets per given total utilization, 50 tasks per set, deadline = 0.5 ×
period.
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Figure A.14: m = 8, 1000 task sets per given total utilization, 50 tasks per set, deadline = 0.7 ×
period.
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Figure A.15: m = 8, 1000 task sets per given total utilization, 50 tasks per set, deadline = 1.0 ×
period.
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Figure A.16: m = 8, 1000 task sets per given total utilization, 50 tasks per set, deadline = 1.5 ×
period.
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Figure A.17: m = 8, 1000 task sets per given total utilization, 50 tasks per set, deadline = 2.0 ×
period.
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Figure A.18: m = 8, 1000 task sets per given total utilization, 50 tasks per set, deadline = 3.0 ×
period.
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Figure A.19: m = 8, 1000 task sets per given total utilization, 50 tasks per set, deadline = random
× period.
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Figure A.20: m = 4, 1000 task sets per given total utilization, 50 tasks per set, deadline = 0.5 ×
period.
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Figure A.21: m = 4, 1000 task sets per given total utilization, 50 tasks per set, deadline = 0.7 ×
period.
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Figure A.22: m = 4, 1000 task sets per given total utilization, 50 tasks per set, deadline = 1.0 ×
period.
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Figure A.23: m = 4, 1000 task sets per given total utilization, 50 tasks per set, deadline = 1.5 ×
period.
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Figure A.24: m = 4, 1000 task sets per given total utilization, 50 tasks per set, deadline = 2.0 ×
period.
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Figure A.25: m = 4, 1000 task sets per given total utilization, 50 tasks per set, deadline = 3.0 ×
period.

50



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

density
load
fpbasic
fpimprv

Figure A.26: m = 4, 1000 task sets per given total utilization, 50 tasks per set, deadline = random
× period.

51



APPENDIX 2: Schedulability Results for Fully Preemptive G-EPPF v.s.

Non-Preemptive G-EPPF
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Figure A.27: Comparison of fully preemptive and non-preemptive cases: m = 16, 1000 task sets
per given total utilization, 50 tasks per set, deadline = 2.0 × period.
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Figure A.28: Comparison of fully preemptive and non-preemptive cases: m = 8, 1000 task sets per
given total utilization, 50 tasks per set, deadline = 1.5 × period.
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Figure A.29: Comparison of fully preemptive and non-preemptive cases: m = 8, 1000 task sets per
given total utilization, 50 tasks per set, deadline = 2.0 × period.
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Figure A.30: Comparison of fully preemptive and non-preemptive cases: m = 4, 1000 task sets per
given total utilization, 50 tasks per set, deadline = 1.0 × period.
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Figure A.31: Comparison of fully preemptive and non-preemptive cases: m = 4, 1000 task sets per
given total utilization, 50 tasks per set, deadline = 2.0 × period.
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