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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR
SINGULAR SEMILINEAR PROBLEMS ON EXTERIOR
DOMAINS

JOSEPH A. IAIA

ABSTRACT. In this article we prove the existence of infinitely many radial
solutions of Au+ K (r)f(u) = 0 on the exterior of the ball of radius R > 0, Bp,
centered at the origin in RY with v = 0 on dBg and lim, o0 u(r) = 0 where
N > 2, fisodd with f < 0on (0,8), f > 0on (8,00), f is superlinear for large
u, f(u) ~ —1/(Ju|?"1u) with 0 < ¢ < 1 for small u, and 0 < K(r) < Ky /r®
with N + ¢(N —2) < a < 2(N — 1) for large r.

1. INTRODUCTION

In this article we study radial solutions of

Au+ K(r)f(u) =0 in RV\Bg, (1.1)
u=0 on JBg, (1.2)
u—0 as|z] = o0 (1.3)

where Bp is the ball of radius R > 0 centered at the origin in RY and K(r) > 0.
We assume that

(H1) f : R\{0} — R is locally Lipschitz, f is odd, f < 0 on (0,8), f > 0 on
(/B, m)?
_ 1
flu) = G
with 0 < ¢ <1 and ¢(0) = 0.
(H2) there exists p with p > 1 such that

+ g(u)

f(u) = |uP" u+ g1 (u), where uhﬁrr;o |g|1u(|1;)| —0.
We let F'(u) = fou f(s)ds. Since f is odd it follows that F is even and from (H1) it

follows that F' is bounded below by —F < 0, F' has a unique positive zero, v, with
0<p <7, and

(H3) —Fy < F <0on (0,7), and F > 0 on (v, c0).
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Since we are interested in radial solutions of (1.1)-(1.3)), we assume that u(z) =
u(|z|) = u(r) where z € RN and r = |z| = \/2? + - -+ + 2%, with 7 > R > 0 so that
u satisfies

N-—-1

U//+TU/+K(T’)‘]C(U) =0 on (R,00), (1.4)
u(R) = O,rllngo u(r) = 0. (1.5)

We also assume K is continuously differentiable and K(r) > 0 on [R,00). In
addition, we assume there exist positive constants o and C; such that

(H4) 0 < K(r) < Cy/r* on [R,00) where « > N + q(N — 2),

(H5) 2(N — 1) + =& > 0.

We note that solutions of — will not be twice differentiable at any points
where u = 0 because of the singularity of f at u = 0. Therefore multiplying
by 7V~ and integrating on (R,r) gives

PNl = RN/ (R) —/ tNTER () f(u) dt. (1.6)
R

So in this article by a solution of (1.4) we mean a u € C'[R, 00) N CY[R, ) that

satisfies ([1.6]). In this article we prove the following result.

Theorem 1.1. Let N > 2 and assuming (H1)-(H5). Then there exist infinitely
many radial functions u € C*'[R,00)NC°[R, 00) which satisfy (1.5)-(L.6) on [R, o).

A number of papers have been written on this and similar topics. Some have
used sub/super solutions, degree theory, or critical point theory to prove existence
of a positive solution [5] [0, 12] 13 I5]. Here we prove the existence of an infinite
number of solutions as in [IL 2] [} [8, OL 10, 11, [14] [16].

In section two we prove the main lemmas for this paper. In particular, we show
that if a particular parameter a > 0 is sufficiently small then u, stays positive on
(R,0). And we also show that if a is sufficiently large then u, has a large number
of zeros on (R, 00). We use these facts in section three to prove the main theorem.

2. PRELIMINARIES
We begin by first making the substitution ¢ = >~ and letting u(r) = v(r2=)

in (1.4)-(L.5). This gives

v" +h(t)f(v) =0 on (0,R*N), (2.1)
lim v(t) =0, wv(R*N)=0, (2.2)
t—0t
where
t 2(13]:21) K(t_ Nz )
h(t) = 2.3
) = — oy (23)
It follows from (H4) and (H5) that
h>0and k¥’ <0 on (0,R*"]. (2.4)
We now consider the initial value problem
v+ h(t)f(ve) =0 fort >0, (2.5)

lim v,(t) =0, lim v, (t) =a>0.
t—0+ t—0+
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We attempt to find values of @ > 0 for which v,(R2~Y) = 0 for then wu,(r) =

va (127N solves ([1.5)-(T.6).
Assuming there is a solution of (2.5)-(2.6) then integrating (2.5) on (0,¢) and
using ([2.6) gives

v (t) =a— /0 h(z) f(ve(x)) da. (2.7

—at—/ / h(z )) dz ds. (2.8)

Letting v, (t) = tya.(t . ) becomes

=a— 7/ / f(zya(x)) dx ds. (2.9)

We will show that there is a continuously differentiable solution of (2.9) (and thus
of (2.8)) on [0, €] for some € > 0.

Lemma 2.1. Let N > 2 and assume (H1)—(H5) hold. Then there exists an € > 0
and a unique solution of (2.8) on [0, €].

Integrating again gives

Proof. Let € >0 and a > 0. Also let
A={yeCl0,e]:y(0) =aand |y —a| < g} (2.10)

where C|0, €] is the set of continuous functions on [0, €] with the supremum norm,
I - I|. Next using (2.9) we define X : A — C|0, €] by

a fort=0
Xy(t) = 2.11
y(®) { — L (z))dzds fort > 0. (211)
Let ( )
. 2(N-1)—«a
By (H4) we have K(r) < <& on [R,00) then by (2.3) and (2.12) it follows that
h(t) < toj on (0, R* ] (2.13)

where Cy = (Nc_ilz)Q Then since o > N + ¢(N — 2) (by (H4)) we see that

t

g+a<1 and 7% (z)dx < Cst'=77% on (0, R*Y] (2.14)
0
c
where C5 = -

Assuming 0 <t < 1 we let L be the Lipschitz constant for g on [—2a, 2a] and let
Yo € A. Next using (2.11] — and (H1) we have

Xy(t) —af < - / / (e~ h(x)yy () + h(x)lg(zya(@))]) de ds
24 x4 T t aLxh(x)dz
g/o() h()d+/2Lh()d

a 0
< (3)ioyp-aa 4 209l
a 2
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( ) —q—a + QCLCQL€27O~L
2—a
< g if € is sufficiently small.

Thus X : A — A if € is sufficiently small. Suppose next that y;,y» € A and
0<t<1. Then

Xy — Xyp = / / ey () — Fley(x)) deds (2.15)

and therefore by (H1),

t

t
| Xy — Xy < / a” @)y, ! =y | da +/ 2aLah(z)|yr — yo|dz.  (2.16)
0 0
By the mean value theorem and the fact that y1,y2 € A we see that

- - 2\ q+1
lyr @ —y3 Y| Sq(a)q ly1 — yal.
Thus

| Xy — Xyo| < ||y1 — yQH/ qﬂqx*qh(x) + 2aLxh(x)> dz. (2.17)

Since x~9h(x) and zh(x) are integrable near ¢ = 0 (by (2.13))-(2.14))) then we see
the integral term in (2.17)) gets arbitrarily small as ¢ — 0" and so there exists an
€ >0 and 0 < ¢ < 1 such that for 0 <t < e and e sufficiently small we have

[ Xy1 — Xyo| < cllyn — w2l-

Thus we see X is a contraction. Hence by the contraction mapping principle [3]
there is a unique fixed point y, of (2.11]) and thus a solution v, (t) = ty.(t) of .
on [0, €.

Lemma 2.2. Let N > 2 and assume (H1)-(H5) hold. Then the solution v, of
[2-8) exists on (0, R?*~N].

Proof. Consider

107?
By = 5=+ F(va). (2.18)
Using and we see that
E = 71;;;2}1’ > 0. (2.19)
From we see lim;_,g+ E,(t) > 0 thus
E,>0 fort>0. (2.20)

Similarly it follows using and ( . ) that

%vf + hF(vg) = %aQ +/ B (x)F (vg) da. (2.21)
0

Now for t > € (where € is from Lemma[2.]) we have

1 /2 1 2 ! !
2V + hF(vg) = 2V (e)—i—h(e)F(va(e))—|—/6 W (2)F(v,) dx.
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Then since F' > —Fj by (H3) and A’ <0 by (2.4]) we see that

1 1
—v? —hFy < 511(’12 + hF(vq)

2 a
:%ﬁ@+h@FmﬁD+Llﬂmﬂ%Mx
< S0 + HOF (va() ~ Folh — h(e)).
Thus ) )
511;2 < 51}‘/12(6) + h(e)[F(vale)) + Fy] fort >e. (2.22)

It follows from Lemma [2.1] that v, (e) and v/, (€) are finite and so we see by
that v, and v/, are uniformly bounded on [e, RZ~"] from which it follows that v,
and v/, are defined on [e, R*~"]. Combining this with Lemma it follows that v,
and v/, are defined on all of [0, R>~] for all @ > 0. This completes the proof. O

Note that if v, is a solution of (2.8)) and there exists a z, € (0, RN | such that
va(24) = 0, then it follows from (2.20]) that

0< Ea(Za) = 5

and therefore v),(z,) # 0.

Lemma 2.3. Let N > 2 and assume (H1)—(H5) hold. Suppose v, solves (2.8).
Then the functions {v,} vary continuously with a > 0 on [0, R>~].

Proof. Let 0 < a < a. We consider the set of solutions y, of (2.9) such that
lya —al < § and 0 < a < a < @ From (2.17) it follows that for all a with
a < a <@ there is a common € > 0 such that the corresponding mapping X, from
Lemma is a contraction on [0,¢]. Then for 0 < ¢ <1 and for ¢ < ay < az <@

it follows from (2.8)),

1 t s
o = v ==z ¢ [ [ H@)wn,) ~ Fae)) dods.
0 Jo
Estimating as we did in (2.17) we see

t 2\ q+1 3 B
s~ vou] < Jan = aal + [ ((2)" " h0) + 2aLh(@)) o, — o] d
0 a

Using the Gronwall inequality [5] we then obtain

2\ at+l CQ 1—a—
|ya1 - ya2| < |a1 — a2‘ (<a> T2 ot q

= + 26Let17&) on [0, €]
1—-a—q

and therefore

2)q+1 s (l-a—a
———¢€

|%f%gmﬁ@wg +mmm)mm@(ma

l-a—gq
Thus we see the {v,} varies continuously on [0, €] for all a € [q,a].

More generally now let a* > 0. We want to show that v, — v, uniformly on
[O,RQ_N] as a — a*. So suppose not. Then there exists an ¢; > 0, a sequence
z; € [0, R*~V], and a subsequence vq, such that

[Va, (1) — vax(x5)| > €1 for all j. (2.24)
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However it follows from comments at the beginning of the proof of this lemma that
the v,; and vy, are uniformly bounded on [0, €] for all a; sufficiently close to a* and
then from we see that the v,; and vy, are uniformly bounded on [0, R*N)
for all a; sufficiently close to a*. Then by the Arzela-Ascoli theorem there is a
subsequence of the v, say Vay, ; such that Va;, = v* uniformly on [0, R?~] which
contradicts . This completes the proof. O

Lemma 2.4. Let N > 2 and assume (H1)—-(H5) hold. Then v, has only have a
finite number of local extrema on [0, R*~N]. In addition, ||v,| = max(y ge-n~7 [va| =
o0 as a — oo. Further, if v, has a local maximum, M,, with v, > 0 on (0, M,)
then vy (M) — 00 as a — 0.

Proof. First, if M,, € (0, R*~N] were distinct local extrema for v, then a subse-
quence (still labeled M,,) would converge to some M* € [0, R*~V] and it would
follow that v/, (M*) = 0. Since lim; ,g+ v}, (t) = a > 0 then M* > 0. Also by the
mean value theorem

0 = vg (My,) — vo(Myy1) = vy () (My, — Mj11)

with ¢ between M}, and M1 (and in particular ¢, # 0) and thus v/ (¢;) = 0 so
by we see f(vq(cr)) = 0. Since My — M* then we also have ¢, — M* and
thus f(ve(M*)) = 0 so vo(M*) = 0 or £ 8. This along with v, (M*) = 0 implies
by (H3) and that 0 < E(M*) = F(8) <0 or 0 < E(M*) = F(0) =0 so in
either case we get a contradiction. Thus v, has only a finite number of extrema on
[0, R2=N].

Next we show that

lvall = max |vg| = 00 as a— 0. (2.25)
[0,R2=N]

We assume by the way of contradiction that |v,| < Q on [0, R?~V].
First we rewrite (2.1) as (tv, — v,) = —th(t)f(v,) and so integrating on (0, )
gives tv), — va = — [y @h(x) f(va) dw. Thus (%) = —% fot xh(z) f(ve) do and so

Vg = at — t/ot %2 /Os xh(z) f(ve) dx ds (2.26)

Case 1: v, > 0 on (0, R2=]. It follows from (H1) that |g(v)| < Cy|v|P + C5 for all
v for some constants Cy and Cs. After rewriting and estimating (2.26) using (H1)
and that v, > 0 gives

t s
at:vath/ %/ xh(zx) f(ve) dx ds
0o S Jo
t 1 s
§va+t/ —2/ xh(x)g(ve) dx ds
0 i 0 (2.27)
< Q+t/ 8—2/ zh(x)(C1QP + C5) dz ds
0 0

Co(ChQ? + 05)752_&

ST aE-a
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Now let t = R?>~" in (2.27) and we obtain

C2(CaQP + C5) pa-nye-a)
(1-a)2-a)
which gives a contradiction because the right-hand side is bounded but the left-hand
side goes to co as a — oco. This completes Case 1.
Case 2: There exists z, with 0 < z, < R>~" such that v,(z,) = 0 and v, > 0 on
(0, 24)- In this case we see va has a local maximum, M,, with 0 < M, < z, < RN
and letting t = M, in we obtain
02(0462 + 05) C2(C1QP + CS)R(2—N)(2—&)
(1-a)2-a) (1-a)2-a) '
If M, > dy > 0 for all sufficiently large a then left-hand side of (2.29)) goes
to infinity as @ — oo but the right-hand side does not. Thus maxy g2-~) [ve| >
Ve (My) — 00 as a — oo.
Thus the only case left to consider is if M, — 0 as a — oco. So by way of

contradiction suppose that the v,(M,) are bounded by some constant ) and that
M, — 0 as a — oo. Then integrating (2.5)) on [t, M,] gives

oh(t) = / " h(2)f (vala)) de < / " h(@)g(va(x)) da.

Integrating on [0, M,] and using the Lipschitz constant Lo for g(v) on [0, Q] gives

/ / (2)) da dt
/ / (z)) dx dt
< Lova(M, / / 2) dz dt.

Then using (2 and that ve(M,) > 0 we obtain
L
1< LQ/ / ) dxdt < 22021\42 a (2.30)

Thus since & < 1 (by (2.14 - then the right-hand side of ( goes to zero (since
we are assuming M, — 0) but the left-hand side does not. Thus we obtain a
contradiction and so in Case 2 we see as well that maxjy p2-n~[va| > va(Ma) — 00
as a — 00.

Thus in all cases we see that ||v,|| = maxp ge-~)|va] — 00 as @ — oo. This
completes the proof. ([l

Lemma 2.5. Let N > 2 and assume (H1)—(H5) hold. Then if a > 0 is sufficiently
large then v, has a local mazimum, M,, with v), > 0 on (0,M,). In addition,
M, — 0 as a = c©.

aR* N <Q+ (2.28)

aM, < Q + M™% <Q+ (2.29)

Proof. We first define ¢, as the smallest value of ¢ (if one exists) such that v, (t,) = 8
and 0 < v, < . We see then that f(v,) <0 on (0,t,) and thus v/ > 0 on (0, t,).
It then follows that v, > at here. Thus we see v, gets larger than 3 on [0, R?~V]
if a is sufficiently large. Then letting t = ¢, in this inequality we see 8 > at, and
therefore

te >0 asa— oo. (2.31)
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Next we show v, has a local maximum if a is sufficiently large. So suppose not. Then
v, is increasing on [0, R2~] for sufficiently large a and since v, (0) = 0 it also follows
that v, > 0 on (0, R*~V]. From we see that v, (R*™V) = max g2-~] [va] =
oo as a — oo. Then from it follows that v? < 0 on [t,, R2~N] thus v, is
concave down here and therefore

t 2-N (RN
va< +§ )ZU(R2)+ﬂ—>oo as a — oo. (2.32)
Now let N
) f(va
A, = min h(t)f(va) (2.33)
[f«a-Hf_N , R2-N] Vq
Since h(t) > 0 is continuous on [§R* N R?>~N] 5 [M R?~N] it follows that
h(t) is bounded from below by a positive constant o 1R2 N R?*~N]. Also from
(H1) we see that f(v) is superlinear and so by (2.32)-(2-33) and the fact that v, is in-
creasing on [% R2N] we see £{ve) “) — 00 umformly fort € [%, R*N).
Thus
lim A, = . (2.34)
a— o0
Next we apply the Sturm comparison theorem [4]. We consider
h(t o
o+ (%)va =0 (2.35)
and
2"+ Az =0 (2.36)
where
ta + RQ*N ta + RQ*N , ta + RQ*N , ta + RQ*N
”“( 2 ):Z< 2 )>ﬂ’ U“( 2 ):Z( 2 )>0'

By way of contradiction we assume now that v, > 0 on (0, R2~V]. Since 2"/ + A,z =
0 and z # 0 then we know z is a linear combination of sin(v/A,t) and cos(y/Agt).

In particular, any interval of length \/% contains a zero of z(t). Thus there exists

a zg > 0 with 2(20) =0, z(¢) > 0 on [W,zo), and

ta + R2N - <ta+R2*N+ T

—_— <z .

2 0 2 VA,
Since F — 0 by (2.34) and t, — 0 by - as a — oo it follows that zp < R>~N
if a is sufficiently 1arge Now multiplying ([2.35) by z, - by v,, and subtracting

gives
h(t) f (va)
Vg
By assumption (%j“”) an)vaz >0 on [W’ zo] and so (v, z —vez") <0
to+R2N [ta-&-R?’N
2 2

(vhz —ve2") + ( - Aa)vaz =0. (2.37)

,t] with t < zg gives
ta + RQ—N
2
which implies ()" > 0 on [ﬂ, 2] and so after integrating we obtain v, < z

2—N
[ta"l‘]; ,

on | zo]. Integrating on

vpz — g2 <0 on |  %0] (2.38)

on 20]. In particular, v,(29) < z(z9) = 0 which contradicts that v, > 0

on (0, R?>~N]. Therefore if a is sufficiently large then our assumption that v, is



EJDE-2019/108 SINGULAR SEMILINEAR PROBLEMS ON EXTERIOR DOMAINS 9

increasing is false and so v, has a positive local maximum, M,, with t, < M, <
R?>~N and v, increasing on [0, M,). It then follows as in the proof of Lemma
that

Ve (My) — 00 as a — 0. (2.39)

Next we show M, — 0 as a — oco. Using (2.39) and the fact that v/ < 0 on
[%,Ma] gives

— 00 as a — 00. (2.40)

va<ta —|—2Ma) > va(Mg) + 4

Thus we see v, — oo uniformly on [fetMa 7).
Next notice from (H1) and (H3) that

f(w) > cov?  for v > ~ for some ¢ > 0. (2.41)
Thus
V" + coh(t)v? < 0" +h(t)f(v) =0 when v > 7. (2.42)
It then follows that
(Z}é)l +coh(t) <0  when v > 7. (2.43)

tat M,
2

Cy xT)axr . .
" Jue ) TRy

From (12.39)-(2.40) and since p > 1 (by (H1)) the right-hand side of (2.44]) goes to
0 as a — 0o0. Also since t, — 0 as a — oo by (2.31)) it follows that

Integrating this on [t, M,] then integrating on [ , M,] and estimating gives

M, —0 asa— 0. (2.45)

This completes the proof. ([

Lemma 2.6. Let N > 2 and assume (H1)—(H5) hold. Let n be a positive integer.
If a > 0 is sufficiently large then v, has n zeros on (0, R*~N] such that 0 < 21, <
294 < < Zpg and zpq — 0 as a — co.

Proof. Since E,(t) is nondecreasing we have

/2

%%" 4 F(vg) = Ba(t) > Ea(M,) = Flva(Ma,)). (2.46)
Now we have v, > 0 and v/, < 0 on (M,,t) for ¢ close to M,. We notice now that v,
cannot have a positive local minimum, mg, on (M,, R>~") with v, decreasing on
(M,, m,) for at such a point we would have 0 < v,(m,) < v, (M,) and since E, is
nondecreasing it follows that F(v,(mg)) = E(my) > E(M,) = F(ve(M,)) > 0 and
80 va(mg) > v but F is increasing (by (H1)-(H3)) for v > 7 and thus F(vg(m,)) <

F(vy(M,). Hence we get a contradiction.
Thus we see either v, is decreasing and positive on [M,, R*~] or v, has a zero
on [M,, R*~™]. Let us suppose the former. Then rewriting and integrating
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on (Mg, R*>~N) gives

/va(Ma) 1
o VAV (L) P
1

va(Ma)
2/ ds
va(R2-N) V2:/F (v, (M,)) — F(s)

. (2.47)
R —v! (1) gt
M. V2y/F(va(M,)) — F(va(t))
> " Vhdt.
M,

Since f is superlinear and v, (M,) — 0o as a — oo (by Lemma [2.5)) it follows that
the left-hand side of goes to 0 as a — oo but the right-hand side of
does not and so we obtain a contradiction. Therefore if a is sufficiently large then
vg has a zero, zq, on (M,,z,). Now rewriting and integrating on (M, z4)
we obtain

. L at> [V 2.4
> . .
/0 V20,06 — F(O t‘/Ma ' (2.48)

And again the left-hand side goes to 0 as a — 0o so therefore must the right-hand
side and since we know M, — 0 from Lemma it follows that z, — 0 as well
when a — oo.

Repeating this process it follows that given any positive integer n if a is suffi-
ciently large then v, will have n zeros, 0 < 21 < 20 < -+ < zp_1 < 2z < RN
and z, — 0 as a — co. This completes the proof. ([l

3. PROOF oF THEOREM [I.1]

Let
S, ={a > 0: v, has exactly n zeros on (0, R>~)}.

Then S,, is nonempty for some smallest value of n, say ng, by Lemma and S,
is bounded above by Lemma [2.6] Therefore we let

(n, = SUP Sy, -

We claim that v, has exactly ng zeros on (0, R*N) and v,,(R*~N) = 0.

First, if v,,  has an (ng + 1)st zero on (0, R2~N) then by the continuous de-
pendence on initial parameters of the {v,} (Lemma and since v(’l”0 (2) # 0 at
each zero, z, of vy, ~(by the note after Lemma it follows that v, will have an
(no+1)st zero on (0, R2~Y) for a slightly smaller than a,,, contradicting the defini-
tion of Sy, Similarly, if v,,  has fewer than ng zeros on (0, R%*~N)) then so would v,
for a slightly larger than a,, contradicting the definition of supremum. Thus Va,,
must have exactly ng zeros on (0, R*~"). Similarly it follows that v,, (R*~") =0
for if v,, (R*~N) > 0 then by continuous dependence v,(R*~™) > 0 for a slightly
smaller than a,, contradicting the definition of Sy, and if v, (R?*N) < 0 then
v, (R2~N) < 0 for a slightly larger than a,, contradicting the definition of supre-
mum. Thus v, (R*N) = 0.

Now for a slightly larger than a,,, due to continuous dependence and that
v’ (2) # 0 at each zero of v, then v, will have exactly ng + 1 zeros on (0, RZ~V)
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and therefore Sy, 41 will be nonempty. Again by Lemma [2.6]it follows that Sy, 41
will be bounded above thus we can define

Apgy+1 = SUP Sno+1

and similarly we show that v, has exactly ng + 1 zeros on (0, R2~") and

o+l
Va,, . (R*Y) = 0. Continuing in this way we can obtain an infinite number of

solutions of (1.4)-(1.5), one with any number, n, of zeros on (0, R2=) for n > ny.
This completes the proof of the main theorem.
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