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Abstract. In mathematics and physics, the Kardar-Parisi-Zhang equation

or quasilinear stationary version of a time-dependent viscous Hamilton-Jacobi
equation in growing interface and universality classes is also known as the

quasilinear Riccati type equation. The existence of solutions to this type
of equations still remains an interesting open problem. In previous studies

[36, 38], we obtained global bounds and gradient estimates for quasilinear

elliptic equations with measure data. The main goal of this article is to obtain
the existence of a renormalized solution to the quasilinear stationary solution

for the degenerate diffusive Hamilton-Jacobi equation with finite measure data

in Lorentz-Morrey spaces.

1. Introduction

This article is devoted to the existence of renormalized solution of the following
stationary degenerate diffusive Hamilton-Jacobi equation, with respect to a given
measure data µ,

−div(A(x,∇u)) = |∇u|q + µ in Ω,

u = 0 on ∂Ω,
(1.1)

in the Lorentz-Morrey spaces Ls,t;κ(Ω) (the optimal range of s, t and κ will be
clarified in our proof later). It is noticeable that our domain Ω ⊂ Rn (n ≥ 2)
is a bounded domain whose complement satisfies a p-capacity uniform thickness
condition. Specifically and precisely, in the present work, we consider for extended
case, in which p ∈ ( 3n−2

2n−1 , n). Moreover, in our problem, the nonlinearity A :
Ω × Rn → Rn is a Carathédory vector valued function which satisfies growth and
monotonicity conditions, i.e., there exist positive constants c1, c2 such that for some
p > 1 it holds

|A(x, ξ)| ≤ c1|ξ|p−1,

〈A(x, ξ1)−A(x, ξ2), ξ1 − ξ2〉 ≥ c2(|ξ1|2 + |ξ2|2)
p−2
2 |ξ1 − ξ2|2,
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for every ξ, ξ1, ξ2 ∈ Rn \ {0} and x ∈ Ω almost everywhere.
This type of equations often appear in physical theory of surface growth, also

known as the Kardar-Parisi-Zhang (KPZ) equation, where the study of this equation
is still a challenge for mathematicians. It can be viewed as a quasilinear stationary
version of a time-dependent viscous Hamilton-Jacobi equation, and it would be
applied much in growing interface and universality classes (see [14, 17]). Specifically,
for the case of A(x, ξ) = |ξ|p−2ξ, the considered equation (1.1) is a type of standard
p-Laplace equation

−∆pu = |∇u|q + µ.

This equation has been studied extensively by several authors with their fine pa-
pers [3, 13, 21], in both historical view of mathematics and physics. Since then,
for the general nonlinearity A, much attention has been devoted to the existence of
solution also some comparison estimates, regularity theories of the problem. There
have been several studies to the existence of solution to (1.1) under different as-
sumptions, and later extended to several spaces. More precisely, it was mentioned
in [3, page 13-14] about the sharp existence for the p-Laplacian problem in super-
critical case. And later, in many works of Martio [22], Mengesha et al. [24], Phuc et
al. (see [24, 32, 33]) and Tran et al. (see [37]), it is also related to the existence
of renormalized solution to (1.1) under different hypotheses of domain Ω, the non-
linearity operator A and the functional spaces. Motivated by these works, we are
interested in the solvability of (1.1) in Lorentz-Morrey spaces for the supercritical

case q ∈ (n(p−1)
n−1 , p) under the p-capacity uniform thickness condition of the domain

Ω.
There are several tools developed for linear and/or nonlinear potential and

Calderón-Zygmund theories in recent years (see [4, 7, 9, 10, 23, 25, 27, 31, 33]).
It is worth pointing out that in our study, the key ingredients were based on some
local comparison estimates of renormalized solution to the quasilinear elliptic equa-
tion

− div(A(x,∇u)) = µ in Ω,

u = 0 on ∂Ω.
(1.2)

Earlier, there were a series of works by Mingione et al. [9, 10, 18, 19, 25, 26],
Phuc et al. [1, 31, 32, 33], Nguyen et al. [27, 28, 30, 29] Tran et al. [36, 38], in which
authors gave a local a nd global gradient estimates in Lorentz or Lorentz-Morrey
spaces under various assumptions on Ω.

Using the hypothesis of p-capacity uniform thickness condition in [32], the gra-
dient estimate of renormalized solution to (1.2) were obtained for the regular case
of p ∈ (2 − 1

n , n). And in our previous work [38], we established the Lorentz-
Morrey global bound for quasilinear elliptic equation (1.2) in the singular case of
p ∈ ( 3n−2

2n−1 , 2−
1
n ]. The Morrey global bound for equation (1.2) in the singular case

is also studied in [30] under hypotheses of Reifenberg domain Ω and smallness BMO
of operator A. In this article, as an application of global gradient estimates studied
in [38], we discuss the solvability of (1.1) in Lorentz-Morrey spaces for singular
cases with only the hypothesis of p-capacity uniform thickness condition. More
precisely, the domain Ω has its complement Rn \ Ω which is uniformly p-capacity
thick. However, we connect the estimates in [32] and [38] to obtain a complete
existence result for both regular and singular cases, that is why we generalize our
result for p ∈ ( 3n−2

2n−1 , n).
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On the other hand, it is worth mentioning that in this paper, we adopt a weak
assumption on domain Ω. This condition is stronger than Weiner’s condition de-
scribed in [16], and weaker than the usual Reifenberg flatness condition (The class
of domains include all C1-domains, Lipschitz domains with small Lipschitz con-
stants, and domains with fractal boundaries), see [35, 8, 15] and various references
therein. Moreover, the gradient estimates obtained in [38] can be proved using two
facts that are the reverse Hölder’s inequality (or Gehring’s type inequality) and
the comparison estimates. To our knowledge, the p-capacity assumption is neces-
sary and weakest sufficient condition on the boundary of the domain in which the
Gehring’s type inequality hold.

The existence and uniqueness of the renormalized solution to (1.2) is classical
and can be found in [2]. The authors proved that the unique solution u of (1.2)

satisfies |∇u|p−1 ∈ L
nγ
n−γ (Ω) if provided µ ∈ Lγ(Ω) for 1 < γ < np

np−n+p on given

data. Later, for the borderline case, Mingione in [26] considered the Morrey density
condition which is also a classical topic (see [5, 6, 20]), that is

ρκ−n
∫
Bρ

|µ|γdx ≤ C, 0 ≤ κ ≤ n,

holds for all ball Bρ in Ω. This function belongs to the Morrey space Lγ,κ(Ω)
equipped to

‖µ‖γLγ,κ(Ω) := sup
Bρ⊂Ω

ρκ−n
∫
Bρ

|µ|γdx.

It is important to notice that Lγ,n(Ω) ≡ Lγ(Ω) and Lγ,0(Ω) ≡ L∞(Ω), and Min-
gione in his fine paper [26] also emphasized that Morrey spaces provide a scale
“orthogonal” to L ebesgue spaces. And it is natural to motivate our approach
with assumption that the data µ belongs to Lorentz-Morrey spaces which are more
general than Morrey spaces.

We now recall the Lorentz-Morrey global bounds of renormalized solution to
equation (1.2), that was proved in [32] and [38]. The following theorem is obtained
by combining the gradient estimate results for the regular case in [32, Theorem
1.1] and the singular case in [38, Theorem 1.1]. We notice that the quasi-norm
‖·‖Ls,t;κ(Ω) in Lorentz-Morrey space Ls,t;κ(Ω) will be presented in the next section.

Theorem 1.1. Let n ≥ 2, p ∈ ( 3n−2
2n−1 , n) and Ω ⊂ Rn be a bounded domain

whose complement satisfies a p-capacity uniform thickness condition. Assume that

µ ∈ L
s(θ−1)
θ(p−1)

,
t(θ−1)
θ(p−1)

;
s(θ−1)
p−1 (Ω) for some s ∈ (0, p], t ∈ (0,∞] and θ ∈ [p, n]. Then for

any renormalized solution u to (1.2), there exists a positive constant C such that

‖∇u‖
L
s,t;

s(θ−1)
p−1 (Ω)

≤ C‖µ‖
1
p−1

L
s(θ−1)
θ(p−1)

,
t(θ−1)
θ(p−1)

;
s(θ−1)
p−1 (Ω)

. (1.3)

In this article, we prove an existence result of a renormalized solution to (1.1)
in Lorentz-Morrey space for both singular and regular cases p ∈ ( 3n−2

2n−1 , n) in the

super-critical case q > n(p−1)
n−1 . Our proof is based on applying Theorem 1.1 and the

Schauder Fixed Point Theorem in [11]. The main idea of this proof comes from the
proof of the existence result studied in [24]. More precisely, we consider a closed
and convex set S as the form

S =
{
v ∈W 1,1

0 (Ω) : ‖ |∇v|q‖
L
s,t;

sq(θ−1)
p−1 (Ω)

≤ ε
}
,
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where the positive constant ε is chosen later. We note that the convexity of S
will be obtained for qs > 1. For every v ∈ S, we define by T (v) = u the unique
renormalized solution to the equation

−div(A(x,∇u)) = |∇v|q + µ in Ω,

u = 0 on ∂Ω.

We refer to [7] for the uniqueness of renormalized solution to above equation. By
Theorem 1.1, we can prove that the mapping T : S → S is well-defined, continuous
and T (S) is precompact under the strong topology of W 1,1

0 (Ω). The existence result
can be obtained by the Schauder Fixed Point Theorem. Let us state our main result
in the following theorem.

Theorem 1.2. Let n ≥ 2, p ∈ ( 3n−2
2n−1 , n) and Ω ⊂ Rn be a bounded domain whose

complement satisfies a p-capacity uniform thickness condition. Assume that

max
{n(p− 1)

n− 1
, p− 1 +

1

n

}
< q < p. (1.4)

For any q ≤ t ≤ ∞, and

max
{

1,
1

q

}
< s ≤ min

{p
q
,
n

θ

}
, (1.5)

with θ = q
q−p+1 . There exists δ0 > 0 such that if ‖µ‖Ls,t;θs(Ω) ≤ δ0 then (1.1)

admits a renormalized solution u satisfying

‖∇u‖q
Lqs,qt;θs(Ω)

≤ θδ0 − ‖µ‖Ls,t;θs(Ω). (1.6)

The rest of this article is organized as follows. In the next section, we recall
the definitions of Lorentz and Lorentz-Morrey spaces. Moreover, we introduce a
norm which is equivalent to the quasi-norm in Lorentz-Morrey spaces. The proof
of Theorem 1.2 is given in the last section.

2. Lorentz-Morrey spaces

In this section, we give some backgrounds about the definitions of Lorentz and
Lorentz-Morrey spaces equipped to an usual quasi-norm in general. The nice feature
is that this quasi-norm is equivalent to a norm in these functional spaces (see [12]).
In this paper, we give a simple proof for the equivalence between two norms which is
useful for our proof in the next section. We assume that Ω is an open bounded subset
of Rn with n ≥ 2. For convenience of the reader, we first recall the definition of
renormalized solution which details can be found in several papers such as [2, 7, 36].

2.1. Renormalized solution. For each integer k > 0, and for s ∈ R we firstly
define the operator Tk : R→ R as

Tk(s) = max{−k,min{k, s}}, (2.1)

which belongs to W 1,p
0 (Ω) for every k > 0, and satisfies

−divA(x,∇Tk(u)) = µk

in the sense of distributions in Ω for a finite measure µk in Ω.
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Definition 2.1. Let u be a measurable function defined on Ω which is finite almost
everywhere, and satisfies Tk(u) ∈ W 1,1

0 (Ω) for every k > 0. Then, there exists a
unique measurable function v : Ω→ Rn such that

∇Tk(u) = χ{|u|≤k}v, almost everywhere in Ω, for every k > 0. (2.2)

Moreover, the function v is so-called “distributional gradient ∇u” of u.

We define Mb(Ω) as the space of all Radon measures on Ω with bounded total
variation. The positive part, the negative part and total variation of a measure
µ in Mb(Ω) are denoted by µ+, µ− and |µ| - is a bounded positive measure on Ω,
respectively. For every measure µ in Mb(Ω) can be written in a unique way as
µ = µ0 + µs, where µ0 in M0(Ω) and µs in Ms(Ω). The following Definition 2.2
of renormalized solution to equation (1.2) was introduced in [7], and we reproduce
them herein as.

Definition 2.2. Let µ = µ0 + µs ∈ Mb(Ω), where µ0 ∈ M0(Ω) and µs ∈ Ms(Ω).
A measurable function u defined in Ω and finite almost everywhere is called a
renormalized solution of (1.2) if Tk(u) ∈ W 1,p

0 (Ω) for any k > 0, |∇u|p−1 ∈ Lr(Ω)
for any 0 < r < n

n−1 , and u has the following additional property. For any k > 0

there exist nonnegative Radon measures λ+
k , λ

−
k ∈M0(Ω) concentrated on the sets

u = k and u = −k, respectively, such that µ+
k → µ+

s , µ−k → µ−s in the narrow
topology of measures and that∫

{|u|<k}
〈A(x,∇u),∇ϕ〉dx =

∫
{|u|<k}

ϕdµ0 +

∫
Ω

ϕdλ+
k −

∫
Ω

ϕdλ−k ,

for every ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

2.2. Lorentz spaces. For some s ∈ (0,∞) and t ∈ (0,∞], the Lorentz space
Ls,t(Ω) is defined as the set of all Lebesgue measurable functions f on Ω such that:

‖f‖Ls,t(Ω) :=
[
s

∫ ∞
0

λt|{x ∈ Ω : |f(x)| > λ}
∣∣∣t/s dλ

λ
]1/2 <∞, (2.3)

as t 6=∞ and

‖f‖Ls,∞(Ω) := sup
λ>0

λ |{x ∈ Ω : |f(x)| > λ}|1/s <∞,

where |O| denotes the n-dimensional Lebesgue measure of a set O ⊂ Rn. The space
Ls,∞(Ω) is known as the usual weak Ls(Ω) or Marcinkiewicz space with notice that
Ls(Ω) ⊂ Ls,∞(Ω) ⊂ Lr(Ω) for 1 < r < s <∞.

It is well known that for t = s, the Lorentz space Ls,s(Ω) in (2.3) is exactly
the Lebesgue space Ls(Ω). Moreover, for some 0 < r < s < t ≤ ∞, we have the
following remark, with continuous embeddings

Lt(Ω) ⊂ Ls,r(Ω) ⊂ Ls(Ω) ⊂ Ls,t(Ω) ⊂ Lr(Ω).

In fact, the quasi-norm ‖ · ‖Ls,t(Ω) may be defined as the other form which is
given by Lemma 2.3 below. For a measure function f in Ω, the distribution function
df : [0,∞)→ [0,∞) of f is defined by

df (λ) = |{x ∈ Ω : |f(x)| > λ}|.
The decreasing rearrangement f∗ : [0,∞)→ [0,∞) of f defines as follows

f∗(λ) = inf{η > 0 : df (η) ≤ λ}.
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Lemma 2.3. Let s ∈ (0,∞) and t ∈ (0,∞]. For some f ∈ Ls,t(Ω), it holds

‖f‖Ls,t(Ω) =

{
[
∫∞

0
(λ1/sf∗(λ))t dλλ ]1/2, t <∞,

supλ>0 λ
1/sf∗(λ), t =∞.

(2.4)

The proof of this lemma can be found in [12, Proposition 1.4.9].

2.3. A norm in the Lorentz space. We define by f∗∗ : [0,∞) → [0,∞) the
maximal functional of f as follows

f∗∗(λ) =
1

λ

∫ λ

0

f∗(η)dη, or λ > 0 and f∗∗(0) = f∗(0).

For some s ∈ (1,∞), t ∈ [1,∞] and for any f ∈ Ls,t(Ω), let us introduce

‖|f‖|Ls,t(Ω) :=
[ ∫ ∞

0

(λ1/sf∗∗(λ))t
dλ

λ

]1/2
, (2.5)

if 1 ≤ t <∞, and

‖|f‖|Ls,∞(Ω) := sup
λ>0

λ1/sf∗∗(λ). (2.6)

The following lemma was obtained in book authored by Rakotoson in [34], or
one can find easily in [12, Exercise 1.4.3]. Here, for the convenience of the reader,
we provide a brief proof.

Lemma 2.4. Let s ∈ (1,∞) and t ∈ [1,∞]. The functional ‖| · ‖|Ls,t(Ω) defined by
(2.5)-(2.6) is a norm in Lorentz space Ls,t(Ω). Moreover, for any f ∈ Ls,t(Ω) it
holds

‖f‖Ls,t(Ω) ≤ ‖|f‖|Ls,t(Ω) ≤
s

s− 1
‖f‖Ls,t(Ω). (2.7)

Proof. We prove that the functional ‖| · ‖|Ls,t(Ω) defined by (2.5)-(2.6) is a norm in
Lorentz space Ls,t(Ω). We remark that

f∗∗(λ) =
1

λ

∫ λ

0

f∗(η)dη =
1

λ
sup
|E|=λ

∫
E

|f(x)|dx.

This indicate the subadditivity of the maximal functional, i.e., for any measurable
function f, g and for any λ > 0, it holds

(f + g)∗∗(λ) =
1

λ
sup
|E|=λ

∫
E

|f(x) + g(x)|dx

≤ 1

λ
sup
|E|=λ

∫
E

|f(x)|dx+
1

λ
sup
|E|=λ

∫
E

|g(x)|dx

= f∗∗(λ) + g∗∗(λ).

By the above subadditivity and Minkowski’s inequality, it follows that the functional
‖| · ‖|Ls,t(Ω) is a norm in Lorentz space Ls,t(Ω).

The first inequality of (2.7) is obtained from Lemma 2.3 and the fact that f∗(λ) ≤
f∗∗(λ) for every λ > 0. We then prove the second inequality of (2.7).
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For any 1 < t <∞, by Holder’s inequality with 1
t + 1

t′ = 1, we obtain(∫ λ

0

f∗(η)dη
)t

=
(∫ λ

0

f∗(η)η
1
s−

1
ts η−

1
s+ 1

ts dη
)t

≤
(∫ λ

0

(f∗(η))tη
t
s−

1
s dη
)(∫ λ

0

η−
t
s+ t′

ts dη
)t/t′

=
(∫ λ

0

(f∗(η))tη
t
s−

1
s dη
)(∫ λ

0

η−
1
s dη
)t−1

=
( 1

1− 1/s

)t−1

λ(t−1)(1−1/s)

∫ λ

0

(f∗(η))tη
t
s−

1
s dη,

(2.8)

for any λ > 0. It is easy to see that the inequality (2.8) also holds for t = 1. By
integrating both sides of (2.8) from zero to infinity and using Fubini’s Theorem we
obtain

‖|f‖|Ls,t(Ω) =
[ ∫ ∞

0

λ
t
s−t−1

(∫ λ

0

f∗(η)dη
)t
dλ
]1/2

≤
[( 1

1− 1/s

)t−1
∫ ∞

0

λ
1
s−2

∫ λ

0

(f∗(η))tη
t
s−

1
s dηdλ

]1/2
=
[( s

s− 1

)t−1
∫ ∞

0

(f∗(η))tη
t
s−

1
s

∫ ∞
η

λ
1
s−2dλdη

]1/2
=

s

s− 1
‖f‖Ls,t(Ω),

which deduces the second inequality for t ∈ [1,∞). In the case of t = ∞, we also
have

‖|f‖|Ls,∞(Ω) = sup
λ>0

λ
1
s−1

∫ λ

0

η−
1
s η1/sf∗(η)dη

≤ sup
λ>0

λ
1
s−1
( ∫ λ

0

η−
1
s dη
)
‖f‖Ls,∞(Ω)

=
s

s− 1
‖f‖Ls,∞(Ω).

�

2.4. Lorentz-Morrey spaces. Let s ∈ (0,∞), t ∈ (0,∞] and κ ∈ (0, n]. The
Lorentz-Morrey functional spaces Ls,t;κ(Ω) is the set of all functions g ∈ Ls,t(Ω)
such that

‖f‖Ls,t;κ(Ω) := sup
0<ρ≤diam(Ω);x∈Ω

ρ
κ−n
s ‖f‖Ls,t(Bρ(x)∩Ω) <∞, (2.9)

where Bρ(x) denotes the ball centered x with radius ρ in Rn.
It is clear to see that in the case s = t, the Lorentz-Morrey space Ls,s;κ(Ω) is

coincident to the Morrey space Ls;κ(Ω) and another case κ = n, the Lorentz-Morrey
space Ls,t;κ(Ω) is exact the Lorentz space Ls,t(Ω). In addition, with these spaces,
the functional ‖ ·‖Ls,t;κ(Ω) is just a quasi-norm in general. Therefore, it is necessary
to define a norm where the Lorentz-Morrey spaces are endowed with.

Let s ∈ (1,∞), t ∈ [1,∞] and κ ∈ (0, n]. For any f ∈ Ls,t;κ(Ω), let us set

‖|f‖|Ls,t;κ(Ω) := sup
0<ρ≤diam(Ω);x∈Ω

ρ
κ−n
s ‖|f‖|Ls,t(Bρ(x)∩Ω). (2.10)
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The following corollary is directly obtained by definition (2.10) and Lemma 2.4.
And with this norm, the set Vε defined by (3.1) in the next section will be convex.

Corollary 2.5. Let s ∈ (1,∞), t ∈ [1,∞] and κ ∈ (0, n]. The function ‖|·‖|Ls,t;κ(Ω)

defined by (2.10) is a norm in Lorentz-Morrey space Ls,t;κ(Ω). Moreover, for any
f ∈ Ls,t;κ(Ω), it holds

‖f‖Ls,t;κ(Ω) ≤ ‖|f‖|Ls,t;κ(Ω) ≤
s

s− 1
‖f‖Ls,t;κ(Ω). (2.11)

3. Proof of main theorem

The proof is divided into four steps under the hypotheses of Theorem 1.2. the
key idea of our proof is based on applying Schauder Fixed Point Theorem (see [11])

for a continuous mapping T : Vε → Vε, where Vε is closed, convex and T (Vε) is a

compact set under the strong topology of W 1,1
0 (Ω).

Proof of Theorem 1.2. Let q, s, t satisfying (1.4), (1.5) and set θ = q
q−p+1 as in

Theorem 1.2. For every ε > 0, we consider the set

Vε =
{
u ∈W 1,1

0 (Ω) : ‖|∇u‖|Lqs,qt;θs(Ω) ≤ ε
}
. (3.1)

We introduce the mapping T : Vε → Vε defined by

T (v) = u, for v ∈ Vε, (3.2)

where u is the unique renormalized solution to the equation

−div(A(x,∇u)) = |∇v|q + µ in Ω,

u = 0 on ∂Ω.
(3.3)

First step: Vε is closed and convex under the strong topology of W 1,1
0 (Ω). We

first prove that Vε is convex. Indeed, for any u, v ∈ Vε and η ∈ [0, 1], we must
to show that w = ηu + (1 − η)v ∈ Vε. We remark that ‖| · ‖|Ls,t(O) is a norm in
Lorentz-Morrey space Ls,t(O), for any subset O of Ω. Therefore, for any z ∈ Ω and
0 < ρ ≤ diam(Ω), we have

‖|∇w‖|Ls,t(Bρ(z)∩Ω) ≤ η‖|∇u‖|Ls,t(Bρ(z)∩Ω) + (1− η)‖|∇v‖|Ls,t(Bρ(z)∩Ω).

Multiplying both sides of this inequality by ρ
κ−n
s , we obtain

ρ
κ−n
s ‖|∇w‖|Ls,t(Bρ(z)∩Ω)

≤ ηρ
κ−n
s ‖|∇u‖|Ls,t(Bρ(z)∩Ω) + (1− η)ρ

κ−n
s ‖|∇v‖|Ls,t(Bρ(z)∩Ω),

which implies

‖|∇w‖|Ls,t;κ(Ω) ≤ η‖|∇u‖|Ls,t;κ(Ω) + (1− η)‖|∇v‖|Ls,t;κ(Ω) ≤ ε,
which gives w ∈ Vε.

Next we show that Vε is closed under the strong topology of W 1,1
0 (Ω). Let

{uk}k∈N be a sequence in Vε such that uk converges strongly in W 1,1
0 (Ω) to a

function u. Let z ∈ Ω and 0 < ρ ≤ diam(Ω), we note that ∇uk converges to ∇u
almost everywhere in Bρ(z) ∩ Ω. By [12, Proposition 1.4.9], it follows that the
sequence (∇uk)∗ converges to (∇u)∗ in [0,∞). For any λ > 0, by Fatou’s lemma,
we obtain that

1

λ

∫ λ

0

(∇u)∗(η)dη ≤ lim sup
k→∞

1

λ

∫ λ

0

(∇uk)∗(η)dη,
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which asserts that

(∇u)∗∗(λ) ≤ lim sup
k→∞

(∇uk)∗∗(λ).

We thus obtain

ρ
κ−n
s ‖|∇u‖|Ls,t(Bρ(z)∩Ω) ≤ lim sup

k→∞
ρ
κ−n
s ‖|∇uk‖|Ls,t(Bρ(z)∩Ω)

≤ ‖|∇uk‖|Ls,t;,κ(Ω) ≤ ε.

It follows that

‖|∇u‖|Ls,t;κ(Ω) = sup
0<ρ≤diam(Ω), z∈Ω

ρ
κ−n
s ‖|∇u‖|Ls,t(Bρ(z)∩Ω) ≤ ε,

which leads to u ∈ Vε.
Second step: There exist δ0 > 0 and ε0 > 0 such that if ‖µ‖Ls,t;θs(Ω) ≤ δ0 then
the mapping T : Vε0 → Vε0 in (3.2) is well-defined. Under the hypotheses (1.4)
and (1.5), by Corollary 1.1, there exists a positive constant C such that for any
renormalized solution u to equation (1.2), it holds

‖∇u‖p−1
Lqs,qt;θs(Ω)

≤ C‖µ‖Ls,t;θs(Ω). (3.4)

We first prove that there exists δ0 > 0 such that if ‖µ‖Ls,t;θs(Ω) ≤ δ0 then there
exists a positive number y0 satisfying

Cs

s− 1
(

qs

qs− 1
)p−1(y0 + ‖µ‖Ls,t;κ(Ω)) = y

p−1
q

0 . (3.5)

We consider the function g : [0,∞)→ R defined by

g(y) = (cy + ca)
θ
θ−1 − y, (3.6)

with c = Cs
s−1 ( qs

qs−1 )p−1 and a = ‖µ‖Ls,t;θs(Ω). Noting that θ > 1, let us choose

δ0 =
1

cθ

(θ − 1

cθ

)θ−1

> 0.

If a ≤ δ0 then the function g given by (3.6) satisfies g(0) > 0 and limy→∞ g(y) =∞.

Moreover, g′(y) = θc
θ−1 (cy + ca)

1
θ−1 − 1, thus g′(y) = 0 if and only if y = y∗ given

by

y∗ =
1

c
(
θ − 1

cθ
)θ−1 − a = θδ0 − a > 0.

It follows that the minimum value of g on [0,∞) is

g(y∗) = (cy∗ + ca)
θ − 1

cθ
− y∗ = a− δ0 ≤ 0.

For this reason, we conclude that g has exactly one root y0 ∈ (0, y∗] which satisfies
(3.5).

Let us set ε0 = y
1/q
0 . By the definition of T , for any v ∈ Vε0 , u = T (v) ∈W 1,1

0 (Ω)
is the unique renormalized solution to equation (3.3) (see [7] for the uniqueness of
renormalized solution to (3.3)). Applying (3.4) and Corollary 2.5, we obtain

‖∇u‖p−1
Lqs,qt;θs(Ω)

≤ C‖|∇v|q + µ‖Ls,t;θs(Ω) ≤ C‖||∇v|q + µ‖|Ls,t;θs(Ω). (3.7)
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Combining (3.7) with the triangle inequality and Corollary 2.5, one has

‖|∇u‖|p−1
Lqs,qt;θs(Ω)

≤
( qs

qs− 1

)p−1

‖∇u‖p−1
Lqs,qt;θs(Ω)

≤ C(
qs

qs− 1
)p−1[‖|(|∇v|q)‖|Ls,t;θs(Ω) + ‖|µ‖|Ls,t;θs(Ω)]

≤ Cs

s− 1

( qs

qs− 1

)p−1[
‖∇v‖q

Lqs,qt;θs(Ω)
+ ‖µ‖Ls,t;θs(Ω)

]
≤ Cs

s− 1

( qs

qs− 1

)p−1[
‖|∇v‖|q

Lqs,qt;θs(Ω)
+ ‖µ‖Ls,t;θs(Ω)

]
.

(3.8)

Note that ‖|∇v‖|q
Lqs,qt;θs(Ω)

≤ y0, with y0 is the root of (3.5) and ε0 = y
1/q
0 . Then,

we can rewrite (3.8) as

‖|∇u‖|p−1
Lqs,qt;θs(Ω)

≤ y
p−1
q

0 = εp−1
0 ,

which yields T (v) = u ∈ Vε0 . We conclude that the mapping T is well-defined.

Third step: T : Vε0 → Vε0 is continuous, and T (Vε0) is a compact set under the

strong topology of W 1,1
0 (Ω). Let us consider {vk}k∈N as a sequence in Vε0 such that

vk converges strongly in Sobolev space W 1,1
0 (Ω) to a function v ∈ Vε0 . For every

k ∈ N, we denote by uk = T (vk) the renormalized solution to the equation

−div(A(x,∇uk)) = |∇vk|q + µ in Ω,

uk = 0 on ∂Ω,
(3.9)

with
‖∇vk‖Lqs,qt;θs(Ω) ≤ ε0. (3.10)

We obtain
‖∇vk‖Lr(Ω) ≤ ε0, (3.11)

for any q < r < qs. Therefore there exists a subsequence {vkj}j∈N of {vk}k∈N such
that ∇vkj converges to ∇v almost everywhere in Ω. It follows from (3.11) and
Vitali Convergence Theorem that ∇vkj converges to ∇v strongly in Lq(Ω). It can
be concluded that ∇vk converges to ∇v strongly in Lq(Ω).

By the stability result of renormalized solution in [7, Theorem 3.4], there exists
a subsequence {ukj} such that {ukj} converges to u almost everywhere in Ω, where
u is the unique renormalized solution of the equation

−div(A(x,∇u)) = |∇v|q + µ in Ω,

u = 0 on ∂Ω.

In addition, ∇ukj also converges to ∇u almost everywhere in Ω. We can do a
similar way as above by applying again Vitali Convergence Theorem with the facts
that qs > 1 and

‖∇ukj‖Lqs,qt;θs(Ω) ≤ ε0,

it follows that uk converges strongly to u in W 1,1
0 (Ω). It guarantees the continuity

of the mapping T .
To prove the relative compactness of the set T (Vε0) under the strong topology of

W 1,1
0 (Ω), we can use by the same method as above. Indeed, let {um} = {T (vm)}m∈N

be a sequence in T (Vε0) where {vm} ⊂ Vε0 , then we get (3.9), (3.10). Thanks to [7,

Theorem 3.4], there exist a subsequence {umj} and a function u ∈ W 1,1
0 (Ω) such

that ∇umj → ∇u almost everywhere in Ω. Finally, applying Vitali Convergence
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Theorem again, it implies that the subsequence {umj} strongly converges to u in

W 1,1
0 (Ω).

Fourth step: Applying Schauder Fixed Point Theorem. By Schauder Fixed Point
Theorem, the mapping T : Vε0 → Vε0 has a fixed point u in Vε0 . This gives
a solution u to equation (1.1). Moreover, applying Corollary (2.5) and the last
inequality in the proof of the second step, we obtain the estimation

‖∇u‖q
Lqs,qt;θs(Ω)

≤ ‖|∇u‖|q
Lqs,qt;θs(Ω)

≤ y∗ ≤ θδ0 − ‖µ‖Ls,t;θs(Ω).

The proof is complete. �
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[34] J.-M. Rakotoson; Réarrangement Relatif: Un instrument d’estimations dans les problèmes
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