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FIXED POINT THEOREM AND ITS APPLICATION TO
PERTURBED INTEGRAL EQUATIONS IN MODULAR

FUNCTION SPACES

AHMED HAJJI, ELAÏDI HANEBALY

Abstract. In this paper, we present a modular version of Krasnoselskii’s

fixed point theorem. Then this result is applied to the existence of solutions

to perturbed integral equations in modular function spaces.

1. Introduction

Using the same argument as in [1], we present a modular version of Krasnosel-
skii’s fixed point theorem, result that is well known in Banach spaces. The mod-
ular ρ considered here is convex, satisfies the Fatou property, and satisfies the
∆2-condition. We are interested in the existence of a fixed point for the application
S : B → B; where B is a convex, closed, and bounded subset of Xρ; S = T +U with
T : B → B that satisfies a contraction type hypothesis (see [1]); and U : B → B is
ρ-completely continuous.

Since ρ satisfies the ∆2-condition, U being ρ-completely continuous is equivalent
to the condition U, ‖·‖ρ-completely continuous, where ‖·‖ρ is the Luxemburg norm.
On the other hand if T is ρ-contraction, then T is not necessarily ‖ · ‖ρ-contraction
(see counterexample in [5, page 945, Ex. 2.15]).

We apply our main theorem to the study of solutions to the perturbed integral
equation

u(t) = exp (−t)f0 +
∫ t

0

exp (s− t)(T + h)u(s)ds (1.1)

in the modular space Cϕ = C([0, b], Lϕ), where Lϕ is the Musielak-Orlicz space,
f0 is a fixed element in Lϕ. Some hypotheses on the operators T and h are stated
below. Also, we present an example of this class of equations.

For more details about modular spaces, we refer the reader to the books edited
by Musielak [9] and by Kozlowski [6]. Now recall some definitions.

Let X be an arbitrary vector space over K (K = R or K = C).
(a) A functional ρ : X → [0,+∞] is called modular if

(i) ρ(x) = 0 implies x = 0.
(ii) ρ(−x) = ρ(x) for all x in X in the case of X being real. ρ(eitx) = ρ(x) for

any real t in the case of X being complex.
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(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) for α, β ≥ 0 and α + β = 1.
If in place of (iii) there holds

(iii’) ρ(αx + βy) ≤ αρ(x) + βρ(y) for α, β ≥ 0 and α + β = 1,
then the modular ρ is called convex.
(b) If ρ is a modular in X, then the set Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0} is
called a modular space.
(c) (i) If ρ is a modular in X, then |x|ρ = inf{u > 0, ρ(x

u ) ≤ u} is a F -norm.
(ii) If ρ is a convex modular, then ‖x‖ρ = Inf{u > 0, ρ(x

u ) ≤ 1} is called the
Luxemburg norm.

Let Xρ be a modular space. (a) A sequence (xn)n∈N in Xρ is said to be
(i) ρ-convergent to x, denoted by xn

ρ→ x, if ρ(xn − x) → 0 as n → +∞.
(ii) ρ-Cauchy if ρ(xn − xm) → 0 as n, m → +∞.
(b) Xρ is ρ-complete if any ρ-Cauchy sequence is ρ-convergent.
(c) A subset B of Xρ is said to be ρ-closed if for any sequence (xn)n∈N ⊂ B, such
that xn

ρ→ x, then x ∈ B. Here B
ρ

denotes the closure of B in the sense of ρ.
We say that the subset A of Xρ is ρ-bounded if:

supx,y∈A ρ(x− y) < +∞, and let the ρ-diameter of A, denoted by δρ(A), to be

δρ(A) = sup
x,y∈A

ρ(x− y).

Recall also that ρ has the Fatou property if ρ(x−y) ≤ lim inf ρ(xn−yn), whenever
xn

ρ→ x and yn
ρ→ y.

We say that ρ satisfies the ∆2-condition if:
ρ(2xn) → 0 as n → +∞ whenever ρ(xn) → 0 as n → +∞, for any sequence (xn)n∈N
in Xρ.

2. Main result

Theorem 2.1. Let ρ be a convex modular that satisfies the ∆2-condition, Xρ be a
ρ-complete modular space and B be a convex, ρ-closed, ρ-bounded subset of Xρ. As-
sume that U and T are two applications from B into B such that U is ρ-completely
continuous and there exist real numbers k > 0, and c > max(1, k) that satisfy
ρ(c(Tx − Ty)) ≤ kρ(x − y) for any x, y in B. And T (B) + U(B) ⊂ B. Then the
operator S = T + U has a fixed point.

Remark 2.2. Since an operator ρ-Lipschitz is not necessarily ‖.‖ρ-Lipschitz (see
counterexample in [5, page 945, Ex. 2.15]), then the result above gives a modular
version of Krasnoselskii’s fixed point theorem.

We need the following lemma for proving Theorem 2.1.

Lemma 2.3. Let ρ be a convex modular and Xρ be a modular space. If a subset B
of Xρ is ρ-bounded then B is ‖.‖ρ-bounded.

Proof. Suppose that B is not ‖.‖ρ-bounded. So there exist sequences (xn)n∈N and
(yn)n∈N in B such that ‖xn − yn‖ρ → +∞ as n → +∞. Hence for any A > 1
there exists N ∈ N, such that if n > N , then ‖xn − yn‖ρ > A i.e. ‖xn−yn

A ‖ρ > 1
whenever n > N . This implies ρ(xn−yn

A ) ≥ ‖xn−yn

A ‖ρ > 1 (see [9, p.8]). Hence,
1 < ρ(xn−yn

A ) ≤ 1
Aρ(xn − yn) whenever n > N . So A < ρ(xn − yn) for any n > N .

This shows that B is not ρ-bounded. Hence, the lemma is established. �
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Proof of Theorem 2.1. Firstly, we show that the operator I−T is a bijection from B
into U(B) (where I is the identity function). Let x in B, and consider the following
sequence defined by yn+1 = Tyn + Ux, with y0 a fixed element in B. Then the
sequence (yn)n∈N is Cauchy. Indeed,

ρ(yn+m − yn) = ρ(Tym+n−1 − Tyn−1)

= ρ(
1
c
(c(Tyn+m−1 − Tyn−1)))

≤ k

c
ρ(ym+n−1 − yn−1),

by induction, we have

ρ(ym+n − yn) ≤ (
k

c
)nρ(ym − y0)

and by hypothesis, B is ρ-bounded, then we have ρ(ym − y0) ≤ δρ(B) < ∞ for any
m ∈ N, which implies

ρ(ym+n − yn) ≤ (
k

c
)nδρ(B),

and by hypothesis c > max(1, k) we have (k
c )n → 0 as n → +∞. Therefore,

ρ(ym+n − yn) → 0 as n, m → +∞. Which implies that the sequence (yn)n∈N is ρ-
Cauchy. Since Xρ is ρ-complete, B is closed and T is continuous then the sequence
(yn)n∈N is convergent to an element y ∈ B and y = Ty + Ux. Indeed,

ρ(
y − Ty − U(x)

2
) = ρ(

y − yn + yn − Ty − U(x)
2

)

= ρ(
y − yn + Tyn−1 − Ty

2
)

≤ ρ(y − yn) + ρ(Tyn−1 − Ty),

which implies that y − Ty = U(x).
Then it follows that for any x ∈ B, there exists y ∈ B such that (I − T )y = Ux.

Therefore, we get that (I − T )(B) ⊂ U(B) (Indeed, if we suppose that there exists
y ∈ B such that y − Ty /∈ U(B) i.e., for any x ∈ B, we have y − Ty 6= U(x) which
is absurd), and I − T is a surjective operator from B into U(B).

Let y1, y2 in B such that (I−T )y1 = (I−T )y2, then y1−y2 = Ty1−Ty2; therefore,
ρ(y1 − y2) ≤ k

c ρ(y1 − y2), and since c > max(1, k) it follows that ρ(y1 − y2) = 0
and y1 = y2. Which shows that I − T is injective operator. Therefore, I − T is a
bijection operator from B into U(B).

Secondly, we show that (I − T )−1 is continuous. Let (xn)n∈N ⊂ U(B) be a
convergent sequence to x ∈ U(B), and consider the sequence defined by zn =
(I − T )−1(xn), then (zn)n∈N is ρ-Cauchy. Indeed,

zn+m − zn = zm+n − Tzm+n + Tzm+n − Tzn + Tzn − zn

= xm+n + Tzm+n − Tzn − xn

= xm+n − xn + Tzm+n − Tzn;

therefore, if we take α such that 1
α + 1

c = 1, then

ρ(zm+n − zn) = ρ(
1
c
(c(Tzm+n − Tzn)) +

1
α

α(xm+n − xn))

≤ k

c
ρ(zm+n − zn) +

1
α

ρ(α(xm+n − xn)).
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Then,

ρ(zm+n − zn) ≤ c

c− k

1
α

ρ(α(xm+n − xn)).

And since ρ(xm+n−xn) → 0 as m,n → +∞, then by the ∆2-condition ρ(α(xm+n−
xn)) → 0 as m,n → +∞. Therefore, ρ(zm+n − zn) → 0 as m,n → +∞, and by
hypothesis Xρ is ρ-complete, then the sequence (zn)n∈N is convergent to an element
z ∈ B. On the other hand, xn = zn− T (zn) is convergent to x = z− T (z). Indeed,

ρ(
zn − T (zn)− z + T (z)

2
) ≤ ρ(zn − z) + ρ(T (zn)− T (z)).

Since ρ(zn − z) → 0 as n → +∞ and T is continuous, ρ( zn−T (zn)−z+T (z)
2 ) → 0 as

n → +∞, and by ∆2-condition we have ρ(zn−T (zn)− (z−T (z)) → 0 as n → +∞.
Therefore, (I − T )−1(xn) converges to (I − T )−1(x), which implies that (I − T )−1

is continuous.
Finally, we consider the function f defined by

f(x) = (I − T )−1U(x).

Since U is ρ-completely continuous and (I − T )−1 is ρ-continuous, it follows by
the ∆2-condition that U is ‖ · ‖ρ- completely continuous and (I − T )−1 is ‖.‖ρ-
continuous. Which implies that f is ‖.‖ρ-completely continuous from B into B. By
the ∆2-condition, B is ‖.‖ρ-closed. Then, using Lemma 2.3 and Schauder’s fixed
point theorem, f has a fixed point. Let x0 be such that f(x0) = x0, then we have
x0 = f(x0) = (I − T )−1U(x0) which implies that x0 = (T + U)(x0). Therefore, S
has a fixed point , which completes the proof. �

The next section presents an application of Theorem 2.1. We study the existence
of solutions in the modular space Cϕ = C([0, b], Lϕ). For details about the spaces
Cϕ and Lϕ, we refer the reader to [1] and to books edited by Musielak [9] and
Kozlowski [6].

3. Perturbed integral equations

In this section, we study the existence of solutions to perturbed integral equations
on the Musielak-Orlicz space Lϕ. For this, we begin by setting the functional
framework of this integral equation.

Functional framework. Let Lϕ be the Musielak-Orlicz space. Then both the
modular ρ and its associated F-norm satisfy the Fatou property. Hence forth, we
assume that ρ is convex and satisfies the ∆2-condition (the F -norm becomes the
Luxemburg norm [4]). Therefore, we have

‖xn − x‖ρ → 0 ⇐⇒ ρ(xn − x) → 0

as n → +∞ on Lϕ. This implies that the topologies generated by ‖.‖ρ and ρ are
equivalent. Note that, under such conditions on ρ, (Lϕ(Ω), ‖.‖ρ) is a Banach space,
where Ω = [0, b] .

We denote by Cϕ = C([0, b], Lϕ) the space of all ρ-continuous functions from [0, b]
to Lϕ, endowed with the modular ρa defined by ρa(u) = supt∈[0,b] exp (−at)ρ(u(t)),
where a ≥ 0. On the space Cϕ one can consider the three topologies associated
with the modular ρa (see [9] and [2]), the Luxemburg norm ‖.‖ρa

, and the norm
|.|∞ defined by |u|∞ = supt∈[0,b] ‖u(t)‖ρ.
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We note that the three topologies above are equivalent in the following sense
ρa(xn − x) → 0 ⇔ ‖xn − x‖ρa → 0 ⇔ |xn − x|∞ → 0 as n → +∞. Indeed, let
(xn)n∈N be a sequence in Cϕ such that |xn−x|∞ → 0 as n → +∞ and with x ∈ Cϕ,
hence for all 0 < ε < 1 there exists N ∈ N such that for any n > N we have

sup
t∈[0,b]

‖xn(t)− x(t)‖ρ ≤ ε < 1.

On the other hand, ‖xn(t)−x(t)‖ρ ≤ ε < 1 for all t ∈ [0, b] implies ρ(xn(t)−x(t)) ≤
ε < 1 for all t ∈ [0, b]. Then

sup
t∈[0,b]

exp (−at)ρ(xn(t)− x(t)) ≤ ε

for all n ≥ N . This implies ρa(xn − x) → 0 as n → +∞. By the ∆2-condition we
have ‖xn − x‖ρa

→ 0 as n → +∞.
Conversely, by letting u > 0 be such that supt∈[0,b] exp (−at)ρ(xn(t)−x(t)

u ) ≤ 1,
we have

e−abρ(
xn(t)− x(t)

u
) ≤ e−atρ(

xn(t)− x(t)
u

) ≤ 1

for all t ∈ [0, b]. This implies

e−abρ(
xn(t)− x(t)

u
) ≤ sup

t∈[0,b]

exp (−at)ρ(
xn(t)− x(t)

u
) ≤ 1.

Therefore,

A := {u > 0; sup
t∈[0,b]

exp (−at)ρ(
xn(t)− x(t)

u
) ≤ 1}

⊂ B := e−ab{u > 0; ρ(
xn(t)− x(t)

u
) ≤ 1}.

Hence, inf(A) ≥ inf(B), which implies

‖xn − x‖ρa ≥ e−ab‖xn(t)− x(t)‖ρ

for all t ∈ [0, b]. Hence,

eab‖xn − x‖ρa
≥ sup

t∈[0,b]

‖xn(t)− x(t)‖ρ = |xn − x|∞.

Therefore, |xn−x|∞ → 0 as n → +∞ is equivalent to ‖xn−x‖ρa → 0 as n → +∞.
To study the integral equation (1.1). we set the following hypotheses:
(H1) Let B be a convex, ρ-closed, ρ-bounded subset of Lϕ, and 0 ∈ B.
(H2) Let T : B → B be an application for which there exists a real number k > 0

such that ρ(Tx− Ty) ≤ kρ(x− y) for all x, y ∈ B. Also let h : B → B be
an application ρ-completely continuous such that T (B) + h(B) ⊆ B.

(H3) Let f0 be a fixed element of B.

Theorem 3.1. Under these hypotheses and for any b > 0, the integral equation
(1.1) has a solution u ∈ Cϕ = C([0, b], Lϕ).

When we restrict our attention to the Banach space (Lϕ, ‖.‖ρ), Equation (1.1)
can be written as

u′(t) + (I − (T + h))u(t) = 0.
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When h ≡ 0, Equation (1.1) becomes

u(t) = exp (−t)f0 +
∫ t

0

exp (s− t)Tu(s)ds.

The equation above has been studied in [1] and [3]. The proof of Theorem 3.1 is
based on Lemma 2.3 and the next lemma.

Lemma 3.2. If a family M ⊂ Cϕ is equicontinuous in the sense of ‖.‖ρ, then M
is equicontinuous in the sense of ρ.

Proof. Recall that if ‖x‖ρ < 1, then ρ(x) ≤ ‖x‖ρ (see [9, p.2]). Let 0 < ε < 1, there
exists δ > 0 such that if |t − t| < δ then ‖f(t) − f(t)‖ρ ≤ ε < 1 for all f ∈ M .
Hence, ρ(f(t) − f(t)) ≤ ‖f(t) − f(t)‖ρ ≤ ε for any f ∈ M whenever |t − t| < δ.
This implies that M is ρ-equicontinuous and the proof is complete. �

Proof of Theorem 3.1. Let a > 0 and ρa be a modular in D = C([0, b], B) defined
by ρa(u) = supt∈[0,b] exp (−at)ρ(u(t)) for u ∈ D (see [1]).

By [1, Prop. 2.1 (3)], D is convex, ρa-closed and since B is ρ-bounded, then D
is ρa-bounded .
Claim: D is invariant under the operator S given by

Su(t) = exp (−t)f0 +
∫ t

0

exp (s− t)(T + h)u(s)ds.

First, we prove that Su is continuous from [0, b] into (Lϕ, ‖.‖ρ). Let tn, t0 ∈ [0, b]
such that tn → t0 as n → +∞. Since T and h are ρ-continuous, then (T + h)u is
ρ-continuous at t0. Indeed,

ρ((T + h)u(tn)− (T + h)u(t0))

≤ 1
2
ρ(2(Tu(tn)− Tu(t0)) +

1
2
ρ(2(hu(tn)− hu(t0))).

By the ∆2-condition, we have ρ((T +h)u(tn)−(T +h)u(t0)) → 0 as n → +∞. Again
by ∆2-condition, (T + h)u is ‖.‖ρ-continuous at t0. Hence Su is ‖.‖ρ-continuous at
t0.

Next, we prove that Su(t) ∈ B, for any t ∈ [0, b]. It is well known that in Banach
space (Lϕ, ‖.‖ρ),∫ t

0

exp (s− t)(T + h)u(s)ds

∈ (
∫ t

0

exp (s− t)ds)co‖.‖ρ{(T + h)u(s), 0 ≤ s ≤ t},

where co‖.‖ρ denotes the closure of the convex hull in the sense of ‖.‖ρ. Since
(T + h)(B) ⊆ B,

∫ t

0
exp (s− t)(T + h)u(s)ds ∈ (1 − exp(−t))co‖.‖ρ(B). But B

is convex and ρ-closed. Thus co‖.‖ρ(B) = B
‖.‖ρ ⊂ B

ρ
= B. Therefore, Su(t) ∈

exp(−t)B + (1− exp(−t))B ⊆ B for all t ∈ [0, b]. Hence, D is invariant by S.
Now consider the operators: T1u(t) = exp (−t)f0 +

∫ t

0
exp (s− t)Tu(s)ds and

h1u(t) =
∫ t

0
exp (s− t)hu(s)ds. Observe that S = T1 + h1. Next, we show that T1

and h1 satisfy the hypotheses of Theorem 2.1.
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(1) We note that, by the same argument in the proof of fixed point theorem (see
[1]), we show that D is invariant under h1 and T1 and there exists c > max(1, k0)
such that

ρa(c(T1u− T1v)) ≤ k0ρa(u− v), ∀u, v ∈ D,

where 1 < c ≤ eb

eb−1
, k0 = c k

1+a and a ≥ k. The same techniques used in the proof
of S(D) ⊂ D are used to establish T1(D) + h1(D) ⊂ D: By taking the hypothesis
T (B) + h(B) ⊂ B, which gives T1u(t) + h1v(t) ∈ exp(−t)B + (1− exp(−t))B ⊂ B
for any t ∈ [0, b] and u, v ∈ D.
(2) Claim: h1 is ρa-completely continuous. Let M ⊂ D, then h1(M) is equicontin-
uous in the sense of ‖.‖ρ. Indeed, let u ∈ M , we have

h1u(t)− h1u(t)

=
∫ t

0

exp (s− t)hu(s)ds−
∫ t

0

exp (s− t)hu(s)ds

= e−t

∫ t

0

eshu(s)ds− e−t

∫ t

0

eshu(s)ds

= e−t

∫ t

0

eshu(s)ds− e−t

∫ t

0

eshu(s)ds + e−t

∫ t

0

eshu(s)ds− e−t

∫ t

0

eshu(s)ds

= (e−t − e−t)
∫ t

0

eshu(s)ds + e−t

∫ t

t

eshu(s)ds.

Hence,

‖h1u(t)− h1u(t)‖ρ ≤ |e−t − e−t|bebδ‖.‖ρ
(B) + δ‖.‖ρ

(B)|
∫ t

t

esds|

≤ |e−t − e−t|bebδ‖.‖ρ
(B) + δ‖.‖ρ

(B)|et − et|

On the other hand, the functions t 7→ e−t and t 7→ et are uniformly continuous on
the compact [0, b]. Hence for ε > 0, there exists η1 > 0 such that if |t − t| < η1

then |e−t− e−t| ≤ ε
2bebδ‖.‖ρ (B)

, and there exists η2 > 0 such that if |t− t| < η2 then

|et − et| ≤ ε
2δ‖.‖ρ (B) .

Hence, there exists η = min(η1, η2) such that if |t − t| < η then ‖h1u(t) −
h1u(t)‖ρ ≤ ε for any u ∈ M . Therefore, h1(M) is equicontinuous in the sense of
‖.‖ρ, and by Lemma 3.2, h1(M) is ρ-equicontinuous. Otherwise,

h1u(t) =
∫ t

0

exp (s− t)hu(s)ds ∈ (1− exp(−t))co‖.‖ρ{hu(s), 0 ≤ s ≤ t}

⊂ (1− exp(−t))co‖.‖ρ(h(B)).

Hence h1(M(t)) ⊂ (1−exp(−t))co‖.‖ρ(h(B)) for all t ∈ [0, b]. But h(B) is ρ-compact
and by ∆2-condition h(B) is ‖.‖ρ compact, which implies that co‖.‖ρ(h(B)) is com-
pact. Therefore, h1(M(t)) is ‖.‖ρ compact for all t ∈ [0, b], and by Ascoli’s theorem

h1(M)
|.|∞ is compact. Hence, by the equivalence of three topologies considered

in functional framework, h1(M) is ρa-compact. Using the standard techniques [10,
proof of the Theorem 3 page 103], we show that h1 is ‖.‖ρa

-continuous then h1 is ρa-
continuous. Hence, h1 is ρa-completely continuous. It then follows from Theorem
2.1 that S has a fixed point which is a solution of the equation (1.1). �
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3.1. Example of equation (1.1). In this example, we study the existence of a
solution of the integral equation

u(t) = exp (−t)f0 +
∫ t

0

exp (s− t)(
∫ b

0

exp(−ξ)g2(s, ξ, u(ξ))dξ)ds

+
∫ t

0

exp(s− t)(
∫ b

0

exp(−ξ)g1(s, ξ, u(ξ))dξ)ds/

(3.1)

under the hypotheses stated below. Let Xρ be a finite dimensional vector subspace
of Lϕ, and ρ be a convex modular on Lϕ, satisfying the ∆2-condition. Let B be
a convex, ρ-closed, ρ-bounded subset of Xρ and 0 ∈ B. Let b > 0 very small,
g1, g2 be functions from [0, b]× [0, b]×B into B, γ : [0, b]× [0, b]× [0, b] → R+ and
β : [0, b]× [0, b] → R+ be measurable functions such that:

(H1’) (i) gi(t, ., x) : s 7→ gi(t, s, x) where i ∈ {1, 2} are measurable functions on
[0, b] for each x ∈ B and for almost all t ∈ [0, b].
(ii) gi(t, s, .) : x 7→ gi(t, s, x), where i ∈ {1, 2}, are ρ-continuous on B for
almost all t, s ∈ [0, b].

(H2’) For any i ∈ {1, 2}, ρ(gi(t, s, x) − gi(τ, s, x)) ≤ γ(t, τ, s) for all (t, s, x) and
(τ, s, x) in [0, b] × [0, b] × B and limt→τ

∫ b

0
γ(t, τ, s)ds = 0 uniformly for

τ ∈ [0, b].
(H3’) ρ(g2(t, s, x) − g2(t, s, y)) ≤ ρ(x − y) for all (t, s, x) and (t, s, y) in [0, b] ×

[0, b]×B.

These hypotheses have been used by Martin [8].
Now, assume that f0 is a fixed element of B, and that h, T are the Uryshon

operators on C([0, b], B) defined by:

[hu](t) =
∫ b

0

exp(−s)g1(t, s, u(s))ds,

[Tu](t) =
∫ b

0

exp(−s)g2(t, s, u(s))ds,

for t ∈ [0, b] and u ∈ (C([0, b], B), ρa) with (a > 0).

Proposition 3.3. (1) Under the hypotheses (H1’)–(H3’), the operator T is ρa-
Lipschitz from C([0, b], B) into C([0, b], B).
(2) Under the hypotheses (H1’)–(H2’), the operator h is ρa-completely continuous
from C([0, b], B) into C([0, b], B).

Proof. (1) We show that C([0, b], B) is invariant by T . (i) Note that (Xρ, ‖.‖ρ) is
a Banach space with finite dimension. By hypothesis (H1’)(i), g2(t, ., u(.)) : s 7→
g2(t, s, u(s)) is measurable, and since B is ρ-bounded, g2(t, ., u(.)) : s 7→ g2(t, s, u(s))
is an integrable function from [0, b] into (Xρ, ‖.‖ρ). Then for u ∈ C([0, b], B), we
have

[Tu](t) ∈
∫ b

0

exp(−s)dsco‖.‖ρ{g2(t, s, u(s)), s ∈ [0, b]}

⊂ (1− exp(−b))co‖.‖ρ(B).

But B is convex and ρ-closed thus co‖.‖ρ(B) = B
‖.‖ρ ⊂ B

ρ
= B. Since 0 ∈ B and

0 < 1− exp(−b) < 1, we have [Tu](t) ∈ B for all t ∈ [0, b].



EJDE-2005/105 FIX-POINT THEOREM 9

(ii) Let u ∈ C([0, b], B) then Tu is continuous from [0, b] into (B, ρ). Indeed, let
(tn)n∈N be a sequence and r in [0, b] such that tn → r as n → +∞ and we have

[Tu](tn)− [Tu](r) =
∫ b

0

exp(−s)(g2(tn, s, u(s))− g2(r, s, u(s)))ds.

Let K = {s0, s1, . . . , sm} be a subdivision of [0, b]. Then
∑m−1

i=0 (si+1− si)e−six(si)
is ‖.‖ρ-convergent. Thus ρ-converges to

∫ b

0
exp(−s)x(s)ds in Xρ when |K| =

sup{|si+1 − si|, i = 0, . . . ,m− 1} → 0 as m → +∞. Since∫ b

0

exp(−s)(g2(t, s, u(s))− g2(τ, s, u(s)))ds

= lim
m−1∑
i=0

(si+1 − si) exp(−si)(g2(t, si, u(si))− g2(τ, si, u(si))),

and
∑m−1

i=0 (si+1 − si) exp(−si) ≤
∫ b

0
exp(−s)ds = 1 − exp(−b) < 1, then by the

Fatou property we have:

ρ([Tu](tn)− [Tu](r))

≤ lim inf
m−1∑
i=0

(si+1 − si) exp(−si)ρ(g2(tn, si, u(si))− g2(r, si, u(si)))

≤ lim inf
m−1∑
i=0

(si+1 − si) exp(−si)γ(tn, r, si)

≤
∫ b

0

exp(−s)γ(tn, r, s)ds

≤
∫ b

0

γ(tn, r, s)ds

Hence by hypothesis (H2’) Tu is ρ-continuous at r.
(2) We show that T is ρa-Lipschitz. Let u, v in C([0, b], B), we have.

ρ([Tu](t)− [Tv](t))

≤ lim inf
m−1∑
i=0

(si+1 − si)(exp(−si))ρ(g2(t, si, u(si))− g2(t, si, v(si)))

≤ lim inf
m−1∑
i=0

(si+1 − si) exp(−si)ρ(u(si)− v(si))

≤ lim inf
m−1∑
i=0

(si+1 − si) exp(asi)ρa(u− v).

Therefore,

exp(−at)ρ([Tu](t)− [Tv](t)) ≤ exp(−at)(
∫ b

0

exp(as)ds) ρa(u− v)

≤ eba − 1
a

ρa(u− v).
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Hence,

ρa([Tu]− [Tv]) ≤ eba − 1
a

ρa(u− v).

(3) Using the same argument of (1), we show that C([0, b], B) is invariant by h.
(4) Now, we claim that h(C([0, b], B)) is equicontinuous in the sense of ρ, and
ρa-compact. We have:

[hu](t)− [hu](τ) =
∫ b

0

exp(−s)(g1(t, s, u(s))− g1(τ, s, u(s)))ds.

We easily obtain

ρ([hu](t)− [hu](τ)) ≤
∫ b

0

γ(t, τ, s)ds,

by using again the same argument in (1). And since, limt→τ

∫ b

0
γ(t, τ, s)ds = 0

uniformly for τ ∈ [0, b], then h(C([0, b], B)) is ρ-equicontinuous. On the other
hand, since B is ρ-bounded then, h(C([0, b], B)) is ρa-bounded subset of C([0, b], B).
Indeed, let u, v in C([0, b], B), we have

[hu](t)− [hv](t) =
∫ b

0

exp(−s)(g1(t, s, u(s))− g1(t, s, v(s)))ds.

Again from (1), we obtain

ρ([hu](t)− [hv](t))

≤ lim inf
m−1∑
i=0

(si+1 − si) exp(−si)ρ(g1(t, si, u(si))− g1(t, si, v(si)))

≤ lim inf
m−1∑
i=0

(si+1 − si) exp(−si)δρ(B)

≤ (
∫ b

0

exp(−s)ds) δρ(B).

Hence,
ρa([hu]− [hv]) ≤ (1− e−b)δρ(B) < ∞

Therefore, h(C([0, b], B)) is a ρa-bounded subset of C([0, b], B) and by Lemma 2.3, it
is ‖.‖ρa

-bounded subset of C([0, b], B). On the other hand, since (Xρ, ‖.‖ρ) is a Ba-
nach space with finite dimensional , then for each t ∈ [0, b] we have h(C([0, b], B))(t)
is ‖.‖ρ-compact. Thus, by Ascoli’s theorem we have h(C([0, b], B)) is ‖.‖ρa

-compact,
then h(C([0, b], B)) is ρa-compact. Hence for any M ⊂ C([0, b], B), we have h(M)
is ρa-compact. Using the standard techniques [10, Theorem 3 page 103], we that h
is ‖.‖ρa

-continuous then h is ρa-continuous. So h is ρa-completely continuous. �
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Département de Mathématique, Rabat (1994).

[4] M. A. Khamsi; Uniform noncompact convexity, fixed point property in modular spaces, Math.
Jap. 40 No 3 (1994), 439-450.

[5] M. A. Khamsi, W. M. Kozlowski, S. Reich; fixed point theory in modular function spaces,

Nonlinear Analysis, theory, methods and applications, Vol. 14, N0 11 (1990). 935-953.
[6] W. M. Kozlowski; Modular Function spaces, Dekker New-york (1988)

[7] M. A. Krasnoselskii; Topological methods in the theory of non linear integral equations, Perg-

amon press, 1954.
[8] R. H. Martin; Non linear operator and differential equations in Banach spaces, John-Wiley.

New-york (1976).

[9] J. Musielak; Orlicz spaces and modular spaces, L.N. vol. 1034, S.P. (1983).
[10] M. Roseau; Equations differentielles, Masson, Paris, 1976.

Ahmed Hajji

Department of Mathematics And Informatic, Mohammed V University, BP. 1014, Rabat,
Morocco

E-mail address: hajid2@yahoo.fr
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