ATPENDAROE AND PROGRESS FACTORS IN TEST NORMS

Approved:

Presented to the Faculty of the Graduate School of Southorest Texas State Teachers College In Partial Fulfillment of the Requifrements

Fox the Degree of
MASTER OR ARTS
BY
Rosa Commandex. B. A.
Bxady, Texas
San Marcos TexasAuguat. 1937

ACKOOLEDGRENSS

The writer gratefully acknowledges the assistance and cooperation of the many persons who have made thes study possible by their encouragement and criticism.

To Dr. David F. Votaw of Southwest Texas State Terohers College, San Marcos, Texas, whose suggestion led to the selection of the problem and whose guidance and untiring assistance as Chairman of the Committee was most helpful, the writer is especially indebted.

Special acknowledgment is made of the generous codperation and aid of Dr. J. Eloyd Rogers of the Edu* cation department and of Professor Gatea Thomas, Director of the mingish department, who, as members of the Committee, spent valuable time and energy in the consideration of each detail of this manuscript.

Flnally, the writer whes to express appreciation for her sister, Miss Valaree Commander, and for Mrs. Dixie Barber and Mr. Kenneth A. MIIler, two fellow members of the graduate school, for their aid in checking the statistical pesults of this study. To these persons and to Hrs. Maxgaret Walker, the writer is Indebted for oncouragement and irtendly interest.

CONTENTS

Chapter Page
I. TRE PROBLER OF THE SURVIVAL RATE FACROR 1
2. Basis of Pheta study. 1
2. Other Investigations in the Same Field 5
3. Uses of Tests. 6
4. Limitations of forms as a Basis fox Comparisons 9
II. THE METIIOD OE PTEE IRVESTIGATTON 16

1. Sources of the Data. 16
2. Procedure 18
3. Results and Interpretations 22
III. THE ATMENAHCI FAGTOR ARD A NEN-TYPE FORM 37
4. Method Bmployed in the Constmuctionof a Sertes of Noms37
5. Interpretation of the Seale 42
IV. SUMMARY, CONCLUSIONS, AND RECOMDEDATIONS 49
6. Summary 49
7. Conolusions and Recommendations. 50
APPENDIX 52
BIBLIOGLAPHY 54

LIST OF TABLES

Page

1. Resutts of the Computation of a Series of
Conffleients of Comelation 22
2. Compelation Between the Test Means and the Attendence Factori 3
3. Corielation Between the Test Means and the
Coeffichenta of Variation $\quad . \quad 24$
4. Comelation Between the Test Means and the Regressian Goetificlents. 25
5. Correlation Between the Test Means and the Percentages of Overageness 26
6. Comelation Between the Attendance Factor and the Coefficients of Variation 27
7. Correlation Between the Attendance Pactor and tho Regression Coeffiofents. 28
8. Cormelation Between the Coeffiaients of Varifation and the Pereentages of Overagenesa. O 9
9. Correlation Between the Coefficients of Tariation and the Regression Coeffleionts * 3
10. Correlation Between the Regreasion coeftacients
and the Percentages of Overagenems . 3J
11. Correlation Between the Attendance Factor and the Percentages of Overaceness. 2
12. Compamativo Scales for Test Reans and Attendance mactora. 7
13. Graphie Presentation of the Comparative scales 48

ATIENDAWCE AND PROGRESS FACTORS IN TEST NORIS

CHAPTEER I

THE PROBIEA OF THE SURVIVAL RATE FAOTOR

1. Basis of This Study

The main problem of the investigation is to make a eritical study of the influence on educational test nome of the important variableg of (1) the peraentage of scholasties in average daily attendance or the ratio between the number of scholasties on the census poll and the actual muber who are in average daily attendance, and (2) the age-grade status of a school, or the amount of retardation and acceleration.

A prominent place la belng given to standardized tests In oup educational system, and the genoral feoling is that thelm place lis secure In the past twenty years there have been great developments in the improvement and populamitation of measurement in oducation and on the whole the progreas in the field has been substantial and real. However, there are many problema related to testing which are atily unsolved.

One of the outstanding problems in educational measurements is the use and interpretation of test norms. An analysis of most educational test nomms roveals that
they are Influenced by many uncontrolled factors. Grade norms and age norms have for some time been considered seriously unceliable. Hampy A. Greene, in his introduction to the University of Iowe studies in Education, Research Bulletin mumber 1 , states that

> Grade noms are generally constdered serlously unveliable. Age nomns may improve the gituation somewhat but the analyshs of typioal practices In the derivation of such noms indicates that there are still many variables which are not controlled. Age noms based upon the re-groupins of the same students who are used in the demivation of age noms introduce many unusual conditions. surely age is not the only factor which must be controlled. Does the mental abiluty of the individual or the educational progress heve any influence on expeoted age or grade scores? Is the abllity of the twelveyear old in the fifth grade the same as that of the twelve -year old in the seventh grade? The answer is obvionsly In the negative. 1
J. F. Crawford${ }^{2}$ has made a comprohensive study of the influence on educational test noms of three important vardables: namely, chronologleal age, mental age, and the school progress of the indyviuals used in the derivation of the norms. Ho has also suggestod that ainilar studies should be made for the purpose of Investigating all phases of the eflects of these and other possible factorg on test noms.

1. University of Iowa. Studies in Education. Researeh Studies in Education I. D. 5 .
2. Crawford, J. R. Age and Progresg Bactors in Test Noms Doctor's dissertation, 1934, Univerisity of Iowa. (Abstract in: iniversity of Iowa. Stuaies in Education Research studies In Education, I.)

This study introduces what may be termed the "survival rate tactor, " by which is meant the nature and extent to which the percentage of scholastics in average dafly attendence and the age-grade status of a school system affect test norms. The problem was suggested by an article whith appeared in the Texas Outiook for December, 1936, written by the authors of the New-South Achfevement Teste. Rather than make comparisons by the use of means or averages, which would mean that most pupils in the grade would have to be considered et ther above-grade or below-grade, the authorg established soore-zones for the various grades within which a child ta considered at-grade.

Each zone is abort one and one-half grades wide and overiaps about a heat gracte upon the next grade above. Por a given grade, the nomal score for the tho of school year determines the center of the zone.

These zones permit the elassification of all pupils as either above-grade, at-crade, or belowmrade. Numbers falling into these classifications may be converted to percentages, and comparisons may be rade between schools or with normal expectations. 3

When comparisons of percentages of above-grade, at-grade, and below-grade pupils were made on the basis of three types or schools (namely, small indopendent districts, large city schools, and rural or county schools), it was found that the following conditions existed: 4
3. Gray, Hob, and Votaw, David F., "Making Reports of Test Results Meaningful;" The Texas outlook, Vol. 20, no. 12 (Decermber, 1936), p. 21.
4. IbIC. p * 21.

Pepcentages

Abave grada
Small Imdependent 31.2
Large Independent 15.3
Rural of County 11.5

At-grade
Below-grade

35.4	33.4
31.3	52.8
27.9	60.6

33.4
60.6

The authoxs of this article do not fasl to emphasize that these data should never be taken as an absolute criterion for judging the efficiency of achool system, for thas would mear that the small independent distroicts are more efficient than the large oity schools, an Inference that the watter agrees would be highly doubtrul upon such little evidence.

Such data should never be taken as an absolute eriterion of the afticiency of a school aysteme There are other measures of efticiency. For oxample, the lawge ot ty schools may have a very high aurvival rate in the grades" I. e. they may keep all theix ohildren in school. Suxely a high survital rate is a mare of exfletency, but it invarlably reduces a school s averace test scores below the average possible for it to mantain by foraiog onilaren of low ablituios out of school by means of high soholastio pressure and retardation. Where possible, test results should be coupled with age-grade studies, grade-progress studies, or survival rate studies to give fuller meanling. 5

The difference in the perfoxmance of the three types of schools Is perhaps Iargely attributable to factors not considered in the noming of the test. If there are factors operating to cause the differences among the three types of schools, ft seems reasonable to belleve that some of these factors operate to cause differences
5. Ibid: D. 22.
among the various schools whthin each typo This study will be limited to only one of the forementioned trpes of schools, that of the srall independent districts.
2. Other Investigations in the same Pleld

Other than Crawford ${ }^{\text {a }}$ dismertation entitled Age and Progress Factors in Test Nomms, the writer was unable to find any mamuser美pts or bulleting similar to the present study A careful study of the literature in the field and of published lists of theses and bulletins revealed that only a mall percentage of all investigations in the field of tosts and measumenents conducted in the last ilve years deala in any way whth tost noms. 6 Many studies have
6. The Pollowing list was seloctod Prom the Bubllography of Researoh Studies 1n Eaucation, 1929-1929, 1930-1931, and 1934-1935, propared by minh i G Gay in the Libnamy Division, Unhted Statos Department of the Intorion offtce of Fducation*
 of Attalment on certain Standardized Tosts. in28. Thi vorst of lrobsgan, Ann Arbori
2. Bobbitt, Joseph 解thew, II, A Compilation of Norms on Several Tests of Learming Masterig thesia, 1933, Tnt verestyy of Southern cantomna.
3. Gulver, Mary Maxjorie, Preparation of a Mom for "the Juntor High School lechantcal Aptltude test Tor ghade Y-1. hastory thestis, 1035, Syracuse. $59 \mathrm{p}=\mathrm{ms}$
4. Eison, Robert olay The Inf Iuence of Variations of Adminustration Upon Ehe Norms of the Seashore Pitch Discrimination Test Master's Thesis, 1934,
 of Coloredo studios Abstracts of Theses for FIgher Degrees, 1934: $19-20$.)
been made recently on the uses of tests. A few of these studies deel witw the use of tests for making comparisons of some type. It is evident thet thore is still a need for research that will Investigate the influence of various possible uncontrolled factors upon test norms.

3. Uses of Tests

Although teachers have alwaws ondeavored to measure the progress of thelw pupils, it was not until about 1908 that any mothod other than the teacherts juagments of all traits and abilities was employed.

There are severel itaportant reasons why the vast change in educational neasurements occurred. For one thing, the use of tests in the amy during 1917 and 1918 gave a new impetus to the movement; the use of the test results in placing men where they were of greatest service demonstratod the usefulness of tho new test mothods. Educators ther hegan to renlize that these new-trpe tests could be of great value in the classroon to ostinate the quallty and effectivenoss of classroom worls. Investigations were made that revealed that teachers " marks and ratings could not be relled apon as being accurate. 7 Incoln and
7. For a sumary of these early studies of marks. consult Starch, Daniel, Educational Psychology, chap. 22. Hew York * The facmilan Company 1924 .

Workman sumarize the reasons for such a vast change by saying

Whth the unveliability of teachers' marizs and judgments clearly indicated by the results of many investigations; and the need for rellable measuring instruments keenly felt, it is not surprising that the growth of the testing movement has been very rapid. 8

The testing movement, although comparatively new, has made the use of educetional tests for the general purpose of improving instmotion almost as comonplace as the use of textbooks. Rilions of tests have been given throughout the country, and students of education have become extremely conscious of the importance and extent of this relatively new device. Of what value are these tests in the solving of teaching and administrative problems? If the tests are merely given because it seems the popular thing to do, then the procedure is exceedingly unwise and expensive. Pressey and Pressey state that many times it appears as though tests were given for no other reason than because every one else was doing so.

The writers have known several school superintendents who bought-at considerable expense-blanks for a survey of their system, made the survey at the cost of much time and effort on the part of all concermed, and then-filed the papers and made no use whatever of the results. 9

There should always be a definite purpose back of every testing program.
8. Lincoin, E. A., and Workman, L. L., Testinc and the Uses of Test Results, p . 27 .
9. Pressey, S. Le, and Pressey, Luella, Introduction to the Use of Standard Tests, $p .20$.

There are rany ways to classify the uses of tests. For example, Lincoln and Workmen classify the use of standard tests under the following headings:10

1. Survey
2. Experiment
3. Individual diagnosis
4. Drinl

The Review of Educational Research mentions the folloving uses of testag 21

1. Determining and evaluating administrative policies, including the classification of pupils, provision for individual afferonces, standardization of teachers" maxks, curntculum construction, and supervisory activitios.
2. Setting up objectives and evaluating the products of the educational program.
3. Evaluating mothods of teaching.
4. Improving learning through a discovery of learming afficulty, the sources of motivatian, and the uses of self-teaching test materials.

Doubtless there are many more ways of classifying the uses of standard tests, for every book has a slightly different plan. The main purpose here, however, is to show that the uses of tests affect educational theory and practices in many ways. Ono of the major uses, and the one that will concern this discussion chiefly, is that of furnishing a basts for making comparisons and evaluations. Under the Incoln-Worman classification mentioned above,
 p. 27 .
11. Revtex of Edugational Research, Vo1. 3 (December, 1933). p. 50.
this would be known as the survey use. The purpose of the survey is to gtudy groups rather than indivituals; that is, to decide whether or not the classes, grades, and schools of a communty are attaining the levels of accomplishment established by the noms of the tests. Comparisons may be made betweon one grade and another within the same school, betweon a grade and the noms given for that grade, between Individuals and the norms, between one school and another; and so on, Thus it is evident that tests can be made valuable and practical instruments for use in the schoois. It should be remembered, however, that in any type of comparison there is always an opportuntity for opror unless the nom is clearly defined.

4. Limitations of Norms as a Basis for Comparisons

Standerdized tests are distingulshed by the fact that they are accompanled by norms; many informal objective tests neet all other requirenents of a standardized test except this one. Nomas are defined in various ways. Greene and Jorgensen say that "nomns represent the actuel levels of achtevement of typical school chifldren under controlied condtions."II

There are vartous kinds of noms, sweh as age normes, grade noms, percentile norms, and tentative norms.
12. Grevene, H. Acy and Jorgensen, A. N., The Use and Interpretation of Edncational Tests. p. 178

Previously tests have been accompanied by ofther gade norms or age noms, and in a few instances by both types. The manner of grouping the pupils used in deriving the norms will detemine the kind of norm provided. When pupils are grouped by ages, without regard to grades, the resulting norms are age noms, If papils are grouped by school grades without regard to ages or the length of tine they have attended school, the resulting norms are grade norms.

Noms are obtained by giving the tests to a large smmie of individuels representing the population for which the norm is intended. If the norms are ostablished by controlling a single factor, such as age or grade, and all other factors are elther ignored or considered to be distributed so that their influences are counterbalanced, then any comparison with the norm will be in exror if those same factors are not present in the group bofng comparea fust as they were in the original group. The realization that such conditions do not operate in exactiy the same maner has caused writers in the fleld of educational measurements to interpret the results of testing very carefully and cautlously.

The fact that test noms should not be used as an absolute basis for classifythe pupils has been recognized fow many years. As eanly as 1922, the statement was made that The educational tests and mental tests are perhaps the most rellable means of clessifying puptis but they should never be considered
slone. .t The noms on standards uged in thege
tosts must be studied very carefuliy in amiving
at pestits. ... We shovid also know the amomt
of retardation in the group from whion standards
are derived. 13

Another early writer melres the following statoment:
Tests are valuable, then, In that ther help to interpret the pupil's school record. On the other hand, the school reoord and teachera: Juadmenta are of ten valuable as means of interpreting the resultis of tests. The tests do not furnish a complete measure of the capacity which undorises achlovemert. id

Yet many administrators of testa still persist in using the scores made on a standandined tost as the sole basid for classifying and promoting students, without seming to reallze the value of many elements not measumed by tests or the influence of stily other factors not operating in the same mamer as they were operating on the original group.

Another important phase of the use of test norms is their use for mosuring teaching ablyty based upon the meanurement of pupil achlevement.

The assumption under ly ing this mothod of measuxing teaching ablyity Is that the pupils of good teachers whll, under certain conditions, achteve mone as measured by standardszed tests of pupil achfevement than the puphls taught ${ }^{\text {bry }}$ poor teachers. Acconding to this method of measuring tarachagg ablilty ohanges in the aducational statua of pupile from the begiming of the school year to the end may be used to measure the efflelency of teachers. 15
13. Amentrout, W. D. "Classification and Promotion of Puplis, " Eaucatson, Vol. 42 (Apri1, 1922). p. 509.
14. Freeman, Frante N., Bases on Which Studerita Can Be Olasslifed Efioctuely" School Review. Vol. 29 (December. 1921). p. 744.
15. Halker, Helen Mo, edo, The Measurement of feaching reficlencys $p .74$.

Surely if schools are conducted for the sake of the chlldren, then teaching shoula be judgea by its ofiect on the children. Dr. Wallerl6 gtates though that the use of tosts as a sole oriterion of pupil change, and therefore of teaching officlenct, is Idable to eriticism becanse the result is Ifrely to be the gelection of good drily masters with no other desiranle qualiffcation. Experiment has shown that a child's achsevement acore is nore closely related to his own ability than to any help a teacher can give him; pupil change on achievenent tests usually shows a low conrelation with any direct measure of teachar traita.

Another discouraesing aspeot of the attempt to find a measure whloh wlil show high correlation with pupll change 19 the apparent tendency of pupil change to be condiftioned by a vory large number of othex variables. These may include such governing factors as intelligence, the pupil's own habite of study, interest, and physical condition. Pupil change may also be affected by factorg asaociated whth the teacher his peresonality, voice dress, clamity of thought and expresston, sense of humor. and so on. In addution to the forogoing are a large muber of tactons guch as the size of the class, the physteal condition of the bulldingy and so on and on. Let ua say there are fifty such factors. though of course no one knows how many there are. Unless these fiffty are thomselves closely related, then pupll change mast ineyttably show a low melationship to most of them. 17

Gextannly no one has yet found a definite foolproof method for the measurement of teaching efficiency phe
16. Tbic. p. xt.
17. TbId., p. xili.
study of this problem is one of the most oballenging in the iseld on educational research. once it is possible to measure the suceess of teachers, a criterion by which to evaluate all phases of the present educational system can be establishad. When one mecognizes the validity of the foregoligg statemonts akout the measumement of toaching efitojency, he will not fusist on using the scores made by pupils on stendardized fests to measume the erfieiency of toachers.
J. Re Onawfort, in his investigation of the nature and extent to which the theoe factors, (1) ohronological age, (2) mental age, and (3) school progresay operate to Influence test nombs, found that these factoma affected test nomm to zuch a degree that the use of norms based on groups in wheh these are not controlled are of doubtrut values th other words indruidual pupil achiovement canot be evaluated adequately and solely in relation to any strole type of tent noxne If the nomms of tests as they are usually gjven camot be usod to judge the achsevement of individuals, then should these same nome Fe baren as an absoluto critexion for judging the offictency of a school sygtem, elther in comparison of the system With the nomas on in oomparison of one school syatem with anothex? Certain policiles of the various school systems may aftect blue nomas. Many schools have a general polley agalngt double promotions and do not hesitate to fall
students, while other systems fail few and give extra promotions. Naturally a school with a comparatively high percentage of overageness will score higher on a standardized test than will a achool vith a lov percentage of overageness. simply because its pupils have been in school longer and are older, grade for grade than a normal situation would permit. 18 Other pollcies such as the ase at which chilaren enter school, tho grade in which various subjects are Introduced, and the Inte have their effect on noms. Therefore the ase-grade stuation of a school system should be Investigated before important conclusions regarding the comparative standing of a school system can be definitely and safely stated.

Another factor that mast not be overlooked in establishing criteria for judging the efficiency of a school syster is that of the percentage of students in averace daily attendance. Althongh Texas has a compulsory atterdance law, up to the present time 位t has not been very effective. This is perhaps due, more than to ary othor one thing, to the fact that nearly all of the money apportioned by the State to the separate school districts Is distributed on a per capita basis-mthat is, the number of scholastics or names on the census roll-minther that on some besis of attendance. It can easily be understood why some schools
18. Fow an oleborgtion of thif point see Pressey. S. L.: and Pressey. Luclia. op. cit. pp. 65-6.
ape not concerned when a large percentage of their scholastios are not attending school. These children are for the most part the "andesinable fr element of the cormunty thexefore, some school systams mach preser that they do not attend. On the other hand a school syister tiat desines to serve its commalty to the fullest W111 encourage if not require all children in the district to attend school regularly. This may reduce the schoolis average test seore but should not cause a school systera of this type to be judged less oxflolent.

GHAPMER II

THE METHOD OF THE INVESTIGATION

1. Sourees of the Data

In order to study the effecta of the survital rate factor on hest noms it was necessary to have acceas to age-grade distributions, the number of scholasties in average daily attendance, and the mean scores as well as the standard deviations on an achievement test administered to the vamious schools usod in this stuay. It was Ossental that these scores be on the ame achievement test. Since the JewwSouth Achievement Tests are normed for schoola of soven rather than elght elementary grades and in many ways are partioulanly sultable for use in Texas, they have been used extendively throughout the State. The Texas Comission on Coordination In Education, 19 an organization for the pumpose of furthering the dovelop ment of educational opportunftes recommends as a part of Its program the use of the New-South Achlevement Tests In the seventh grado. Because of the statemide testing
19. For a fullor discussion of the organtzation and aetivitles of the Texas Gommission on Coordination In Education, consult its Fesearch Bulletin, numbers three and four Untwersity Station, Austin, Texas. the commission. 1937.
program and the almost exclusive use of the New-South fests, it wes not a difficult matter to obtain test scorea for this gtudy. It was not necessary for the writer to administer the teats; neither was it necessary to obtain the results on the tests from the sohools themselves. Many of the data could be obtained from the Commision 20 since schools cooperating with the Commisslon subntt a copy of the results to the Central Bureau for stady. These data are preferable in so far as accuracy and rellability are coneerned, but employing them necessitated the use of 1935-36 results; as the 1936-37 material had not yet been compiled. Since schools coöperating with the Commission are likely to be a comparatively homogeneous group, care was used to select for this study only those schools which represented a wide rance on the seale, in order that one type would not have too much welght in the results.

A pert of the scores was obtanned through The E. $\mathrm{I}_{\text {. }}$ Steck Compeny publishers of the New-South Achievement Tests. The pesults were on the 1936-37 administration of the tests. The difference in the dates of the scores on the tests will be of no consequenoe provided the other material used in making comparisons corresponds to the dates of the test material.
20. The Texas Gommisiton on Coordination in Eduoation, as well as The E. I. Steck Company, were glad to cooperate with the writer of this thesis with the definite underistand Ing that no publicity would be given to the gtanding of the separate schools, elther to individuals or in the publishea nesulte.

The momber of scholastics in average daily attendance and the age-grade distributions for the various schools wore obtained from the Superintendents' Anmal Reports subristed to the State Department of Education, Matorial on thirty-three small independent school distriots scattered throughout the state of Texas was obtained from these sources.

2. Procedure

In submitting the test scores used in this study, each of the sehools was provided with a form that called for distributions of the scores made by its students on each of the nine divistons of the New-South Achievement Tests as well as a distribution of the total average scores. The total average score for each ohild was determined by adding his scores on each of the nine divisions and dividing the sum by nine. The first step In the actual treatment of the data was to determine the mean and standard deviation for each of the thirtythree schools. This involved the use of the frequency distributions besed on the total average scores rather than those based on each of the separate divisions. Three schools failed to submit distributions based on the total average scores: therefore, it was necessary to compute their standard deviations by inference. Fror this purpose a patio, based on the noms given for the seventh grade
on the New-South Achievement Tests, was established between the standard deviations of each of the separate divisions. 21 The standard deviations for these three cases were inferred on the assumption that this same ratio would exist between the average of their standard deviations for the separate nine divisions and the standard deviation for the total average score. The standard deviations for the nine divisions were easily determined from the distributions given. The next step was to divide the sum of these standard deviations by 1.4246 (the ratio found to exist under the nom conditions) to determine what would probably have been the standard deviation for the distribution of total average scores. The test mean for each of these three cases was obtained by computing the means for the separate divisions and dividing their total by nine.

In a study dealing with age-grade date, it is necessary to define the normal age for each grade. Cubberleyzi allows for each grade a nomal age zone of eighteen months. fins means that on September i the normal age for grade 1 would be from five years and nine months to seven years and three monthss the normal
21. The norms are given in the Manual of pirections and Interpretations Eor Forms A, B, C, and D of the NewSouth Achlevement Tests, p. Ti, pable I.
22. Cubbexley, Ellwood P. Public Sohool Administration, p. 439, Flgure 37.
age for grade 2 would be from six years and nine months to efeht years and three months, and so on Moehtman ${ }^{23}$ uses a two-year span, while other writexg have used a one-year span. To the writer the eqghteen-months apan Would seem preferable in most instances; however, since the age-grade distributions were available only in terms of whole years, the one-year span was used in this study. This moans a child is assumed to be at-age for grade 1 if on September I of the school year he has reached his stxth year but not seventh. To be at-age for grade 7 a child should be twelve years old but not thirteen. The percentages of overageness, normal ageness, and underageness for each of the seven elementary frades as well as for the total were detemaned on this basis for each of the thirtythree schools. Because of the use of the narrow nomal age span, the percentages of overageness were comparatively high.

It was pertinent to thls study to detemine for comparative purposes the fractional part of a grade made by the students of each of the schools in one chronological year. In other words, the relationship between chronological age and grade placement was established to show the rate of progress of the students through the grades. This was shown by the computation of the regression coefficients of
23. Woehlman, Arthrar B. . Child Accounting; p. 97.
grade on age. The Ayres method ${ }^{24}$ for computing the regression coefficients was enployed.

An inportant factor used in this study was found by determining the ratio between the muber of children In averaga daily attendance and the number of scholastics on the census roll. This means that the mamer of pupils in averace dally attendance as shown in the Superintendents ${ }^{1}$ Ammal Reports was divided by the number of white scholastics on the census roll. That ratio will be referred to throughout the discusgion as the "attendance factor" Centain Imitations of this factor mast not be overlooked. Since the Anmal Reports male no distinction between Anglo-Anerican children and Mexican children, this factor does not take into account the proportion of Mexiean children; nelther is it affected by the length of the school texm.

All these data are compiled in Table A of the Appendix. With these data at hand, the actual study of their pelationship to each other was begun. This called for the computation of a series of coofricients of correlation in order to determine whether ar not any two of the sets of data under consideration were related, and to what extent the relathonship existod. The scattergrams from which the correlations were computed are given in
24. This method is discussed in odell, Charles W., Statistion Method in Education, p. 24.

Tables 2-11, and the results are complled in Table 1 , Section 3, of this chapter. The formula used in the computation of all comelations given in this atudy as as follows

3. Results and Interpretations

TABLE 1

RESULTS OF THE OORPUTATION OF A SERIES OF GOEFFICTEMTS OF CORRETATION

\author{

1. Test Meand
}

$$
\begin{aligned}
& -{ }^{2} 3716-6964-1957+.1022 \\
& \pm .0992 \pm .0521 \pm .1182 \pm .1129 \\
& +.6730+.2185 \text { none } \\
& \pm .0643 \pm .1085 \\
& +.1203-.1406 \\
& \pm .1184 \pm .1118 \\
& -.6383 \\
& \pm .0673
\end{aligned}
$$

4. Legression Coofifcients
5. Overageness

It will be observed from Table 1 that the correlation between the attendance fector and the test means made on the New-South Tests is not a high correlation When, however, due consideration $i s$ made of the limptations

COREBLATION BETVEEM THE TEST JEANS AND THE ATJENDANCE FACTOR

TABLE 3
CORRELATION BETWEST PTE TESP MEANS AID THE COEFPTCTEYTS OF VARIATION

	$\begin{gathered} 48 \circ \\ 49.99 \end{gathered}$	$\begin{gathered} 50= \\ 51.99 \end{gathered}$	$\begin{gathered} 52 \% \\ 53.99 \end{gathered}$	$\begin{gathered} 54- \\ 55.99 \end{gathered}$			Heans 6061.99	$62=$ 63.99	6465.99	$\begin{gathered} 66- \\ 67.99 \end{gathered}$				
${ }_{24}^{C \cdot}-25.90$	49.99	51.99	53.99	55.99	$\begin{gathered} 57.99 \\ 1 \end{gathered}$	59.99	61.99	63.99	65.99	67.99	x_{2}		$\mathrm{P}_{2} \mathrm{~d}_{4}$	$f_{5_{6}}^{d_{2}}$
22-23.99	1										1		3	9
20-21.99		1		2							2	2	4	8
18-19,99		1		1		2					4	1	4	4
16-17.99		1		2	2	4	1	1			21	0		
14-15.99			1			1	3	1	2		8	-1	-8	8
12-13.99							1	1	1		3	-2	-6	12
10-11.99									1		1	-3	-3	9
8-9.99										1	1	-4	-4	16
6-7.99									1		1	-5	-5	25
$f_{\text {I }}$	1	3	1	4	3	7	5	3	5	2	33 33		-12	107
d_{x}	-5	-4	-3	-2	-1	0	1	2	3	4				
$\mathrm{f}_{\mathrm{xd}} \mathrm{d}_{\mathrm{x}}$	-5	-22	-3	- 5	-3		5	6	15	4	-1			
$\mathrm{f}_{\mathrm{x}} \mathrm{x}^{2}$	25	48	9	16	3		5	12	45	16	179			
$\mathrm{f}_{\bar{z} \mathbf{z}} \mathrm{~d}_{z}$	3	3	-1	3	4	1	-5	-3	-12	-4	-11			
$f_{x z}^{\prime} d_{z} d_{x}$	-15	-12	4	-6	-4		-5	-6	-36	-16	-95			
					$x=$	58.94	$\sigma_{x}=$	4.64						
					$H_{2}=1$	6.34	$\sigma_{Z}=$	3.54						

CORRETATTON BETWHYY THE TEST MEANS AM THE PGRETTATES OF OVEEACBTESS

TABLE 6
CORRELATHON BETHETN THE ATTENDANCE FACTOR AND THE COEFFTCTENTS OF VARTATTON

PABLE 7

CORRELASTON BETHEFM THE ASTENDANCE FACTOR ADD THE REGRESSTON GOEFFIGTENTS

					Regres	sion	Coorfi	ients					
	$\begin{array}{r} .40- \\ .449 \end{array}$	$\begin{array}{r} .450 \\ .499 \end{array}$	$.50=$	$.55-$	$.60-$	65	$\begin{aligned} & 70- \\ & .7010 \end{aligned}$						
$\begin{array}{r} \text { A.Fs } \\ .75-789 \\ .70-749 \end{array}$	$.449$	$.499$.549	. 599	-649	$\begin{gathered} 699 \\ 1 \end{gathered}$	$.749$	$\begin{gathered} 709 \\ 1 \end{gathered}$	$.8<9$	$\mathrm{f}_{\text {V }}$	${ }^{\text {d }}$	${ }^{4} \mathrm{y}_{8}^{\text {dy }}$	$\mathrm{f}_{\mathrm{y}_{3}{ }^{4}{ }^{2}}$
.65-.699						2	1			3	2	6	12
.60-. 649					2	3	2	3	1	11	1	11	12
.55-. 599		1			1		1	2		5	0		
.50-. 549				1	1		3			5	-1	-5	5
. $45-489$				2		1				3	-2	-6	12
. 40 -. 449				1				1		2	-	-6	18
.35-.399	1									1	-4	-4	16
.30-.349											-5		
.25-. 239									1	1	-6	-6	36
$f_{\text {w }}$	3	1		4	4	7	7	7	2	33		-2	148
$d_{\text {m }}$	-5	-4	-3	-2	-I	0	1	2	3				
$f_{\text {max }} \mathrm{d}_{1}$	-5	-4		-8	-4		7	14	6	6			
$\mathrm{f}_{\mathrm{w}} \mathrm{dm}^{2}$	25	16		16	4		7	28	18	114			
$f_{\text {wy }} \mathrm{d}_{\mathrm{y}}$	-4			-8	1	9	1	4	-5	-2			
$\mathrm{P}_{\text {wy }} \mathrm{y}^{\text {d }} \mathrm{y}^{\text {d }}$	20			16	-1		2	8	-15	28			
				. 6	4 6	-. 093							
				$=.5$	$2 \sigma_{y}$. .10		.					
				$\mathrm{p}+$	2185	t. 108							

TABLE 8
CORRETATTON BEMHEEN PHE OOEFETCTEMTS OF VARIATIOR AND THE PERCEMTACES OP OVERAGENESS

					Coer	leient	ts of	Variati	On					
0.A.	$6-$	8-	10-	12-	14-	16-	$18 \div$	20-	22-	24-				
68-70.99	7.99	9.99	11.99	13.99	15.99	17.99	19.9	21.99	23.99	25.99		$\mathrm{a}_{\text {明 }}$	$f_{m} a_{m} a_{m}$	$\mathrm{E}_{3} \mathrm{~d}_{38}$
65-67.99			1	1							$\frac{1}{2}$	6	12	49 78
62-64.99							1				1	5	5	25
50-61.99					1	1					2	4	8	32
$56-58.99$				1				1			2	3	6	18
$55-55.99$		1			1		1				3	2	6	12
50-52.99					2	1	2	1			5	1	5	5
$47-49,99$					1	3	1			1	6	0		
44-46.99					2	2			2		4	-1	-	4
41-43.99					1	$\underline{1}$					2	-2	-4	8
38-40.99				1		2					3	-3	- 6	27
35-37.99												-4	-	27
32-34.99						1					1	-5	-5	
29-31.99						1					1	-6	-6	35
$\mathrm{I}_{\underline{z}}$	1	1	2	3	8	11	4	2	2	2	33		21	\$18
d_{z}	-5	-4	-3	-2	-1	0	2	2	3	4				
$\hat{S}_{4} \mathrm{C}_{4}$	-5	-4	-5	-6	-8		4	4	3	4	-11			
$\mathrm{f}_{\mathrm{z}} \mathrm{C}_{\mathrm{z}}{ }^{2}$	25	16	9	12	8		4	8	9	16	107			
$\mathrm{f}_{4 \mathrm{~m}}{ }^{\text {ctin }}$	7	2	6	6	4	-15	8	4	-1		81			
	-35	-8	-18	-12	-4		32	16	-3		-32			
$H_{\text {H }}=16.34 \quad \sigma_{z}=2.54$														
$x--1406 \pm$ T1,18														

TADIE 9

TABLE 10

TABLE 12
CORRELATION BETWEEN DHE ATHENDTHE FACTOR AND TYE PRROENTAGES OF OVERAGENESS

O．A．	$\begin{aligned} & 25- \\ & .299 \end{aligned}$	$\begin{array}{r} 30- \\ .349 \end{array}$	$\begin{gathered} .35 \\ .399 \end{gathered}$	$.40-$	$\begin{gathered} \text { Att } \\ .45- \\ .499 \end{gathered}$	$\begin{aligned} & \text { tondand } \\ & .50- \\ & .549 \end{aligned}$	$\begin{aligned} & \text { ce Fial } \\ & .55- \end{aligned}$ $.599$	$\begin{aligned} & 401 \\ & .60= \\ & .649 \end{aligned}$	$\begin{gathered} 65- \\ .699^{-} \end{gathered}$	$\begin{array}{r} 770-749 \\ .749 \end{array}$					
0．A．79．99					$.499$	$\begin{gathered} 549 \\ 1 \end{gathered}$	． 599	.649	$.699$	$.749$	＊ 799	f_{m}		$f_{\pi \frac{1}{7}}^{a_{m}}$	$\mathrm{xmd}^{\text {m }}{ }^{2}$
65－67．99			1		1							2	6	12	49
62－64．99								1				1	5	12	72
59－61．99				1		1		1				2	4	8	25
56－58．99							8					2	3	8	38
53－55．99							1	1	1			3	2	6	18
50－52．99						1		4				5	1	5	12
47－49．99					1	1	1	8	1			6	0	5	5
44－46．99						1		1	1	．		4	－2		
41－43．99					1			1	2	－	1	2	－2	－4	4
38－40，99	1							1			I	3	－	－4	8
35－57．99	1							1			2	3	－ 4	-9	27
32－34．99							1					1	-5		
29－81．99				2								1	－6	－6	25 36
f_{Y}	1		1	2	3	5	5	21	3		2	33		21.	313
d^{4}	－6	-5	－4	－3	－2	-1	0	1	2	5	4				
$\sum_{y} \partial_{y}$	－ 6		－4	－6	－6	－5		21	6		8	-2			
$f_{7} \mathrm{~d}^{2}$	36		16	18	12	5		11	12		32	142			
$\mathrm{f}^{\text {d }}$	－3	＊	6	－2	4	11	3	5	1		－4	21			
$f_{\text {mig }} d_{y} \mathrm{~d}_{\text {m }}$	18		-24	6	-8	－11．		21	24		-16	0			
					硓 $=$.572	$\sigma_{y}=$	104							
					理边	49.91	$\sigma_{\mathrm{m}}=8$	． 94							
						$y=0$									

of this Investigation and of the many factors which may In some way aftect the efriciency of a school system, it sems reasonahte to state that this amount of complation Is afgnticant. Rugs regards correlation as betig " maviredy preaentry when renges from 35 on 40 to -50 or . 60.425 The negative comrolathon it in iteelf an sudteation of the existence of a detintio relationshtp betwean the attendance ractor and the test neans. Negative correlation here maticetes a tendeney for high attendance factora to be associated with low test means and vice versa.

Qtnce nothing has been said in the previous dism cusston about the coefftefent or vartation, or coefficient of voriablutty as it is sometines callod, it might bo woll to recatl to the readerts mind the reasons for using the coefficients of variation wather than the standard deviations. The coermcient of variation may bo defined as rollows

- enan absolute mumber that measures the relative and not the absolute variablility of the mearures in a distribution. ... It is only by the use of such a measure ... that distributions expressed in different units or having averages that are materidily different can be satisfactorily compared with regard to their varlability. 26
The amount of correlation existing between the attendance factor and the coerefolents of variation is

25. Ruge, Farold o., Statistical Method Applied to Hducation, p. 256.
26. Odell, Charles w. w op. cit., p. 140 .
maxited evidence that achools with a hifg atbendance factor tend to have a high eooftickent of variation Thes means that schools with a Zarge percontago of scholastics in average chaly attendance are IMrezy to have a oomparatively hath disporshom or scatteration on the other hand a correlation of -6964 between the coefficionts of tareation and the test means sugeests that schools with a laree scattrataton, or a high coefficient of variation, tend to nake comparatively low moand on an achzemement tosti. mhis nuy be takent with eertain Ismitations, as a further Indication of the extstence of negattvo pelathonshlp on comelation between the attendance factor and the test means nade on an achlevement test.
me tondency for a low atotendence factor to be associated with a low coeffictent of variation and a
 are not attending the sohools where these conditions exist. It seems evident that the poorer trpe of student has efther been forced ont of school by high soholastic pressure or has mot been urged to attend. The fact that as the attendance factor becomes highor the coefrsctent of variation and the best mean become lower ahows further that it is the poorer students who tend to remain out of school.

The age-grade status and its influence on test norms thould now be considered. When the correlation between the regression cooticients and the percentages of overageness was computed, it was round as would reasonably be expected, that a Migh regression coefficient is usually accompanted by a low percentage of overageness. This means stmply that a small percentage of overaceness is usually caused by a low amount of retardation and a general polley favoring dowble promotions: therefore, under these conditions chllaren progress theough the grades at a comparatively rapid rete. When it was found that a correlation of +2185 existed between the regression coef lefents and the attendance ractor, the concluston was that schools with a high attondanee factor are the schools in which the general polyey is to fail as few children as possible and cive extra promotions liberally. The statement has beon made in a provious chapter that schools in which there is a generel polley favorine retardation and few domble promotions will naturally make higher socres on an achievement test then will schools with littie retardation, and therefore small percentages of overagenoss; the children are older, crade for grade, and have attended school for a longer pertod of time. The results of this stuay seem to conflym this statement. The schools with the hich regreaston coefficlenta are the ones which tend to make low scores on the achievement test used in this study.

The data prosented thus far demonstrate that the agemgada status of school is related positutvely to tha attandance factor with ragard to the amount of normal agenoss, and that the moar test ocone to be expected of a achool la relatod mogathroly to both.

THE ATYENDANGE FACTOR AND A NET-TYPE NORU

> 1. Hethod Fmployed in the Constmuction of a Series of Noms

According to the date presented In the preceding chapter, the survival fate factor does affect test nomas and should therefore be tatron into consideration In the establishment of nomas which will be used as a basis Eox judging the efficiency of a school system No single norm will bo sufficienty comprehensive to meet the need for a new-type norm in which the survival pate factor is considered a sertes of noms should be provided.

In opder to estimate the moasures in one series when those In another are known, use is made of the regression equations.

The regression equationa are the equations, two In mumber, that best filt, thet as, come nearest to, the means of the columas and of the rows rospectively, in a compelation table. The one that comes nearest to the means of the rowe is called the regression Iine of X on X or, in other words, the coxresponding equation is that by which X values may be found when those of Y are already known. Correspondingly the regresston Inne that best fits the means of the columins is the regresaion Ine of Y on X... Unless the ooefficients of correlation equal ± 1.00, neither regression line nor its corresponding equation vields the exact values of one variable assom clated with values of the other, but only the most prokable values. 27
27. Ode11, Charles W. op. elt. p. 239.

The X fiactor in this case is the mean scores made on the New-South Achievement Tests and the X factor is the attendance factor. The information needed to find the equations 28 of the lines of xegression of these two series of measures is as follows:

	X	Y
Mean	58.94	. 572
Standard Deviation	4.64	. 104
$x_{z y}$		

When the proper values were substiduted for the ins, $6^{\prime} \mathrm{s}$, and x in the equations for X and Y, respectively, the Pollowing equations resulted:

$$
\begin{aligned}
& X=-.3716 \frac{4.64}{.104} x-\left(-.3716 \frac{4.64}{.104}\right) \cdot 572+58.94 \\
& \bar{Y}=-.3716 \frac{.104}{4.64} x-\left(-.3716 \frac{.104}{4.64}\right) \cdot 58.94+.572
\end{aligned}
$$

These reduce to

$$
\begin{aligned}
& \bar{X}=-16.5791 Y+68.4232 \\
& \bar{y}=-.0033 x+1.0612
\end{aligned}
$$

In the equation in which X appears alone on the left, any known value of \mathbb{Y} may be substituted in order to estimate the value of X, whereas if one knows the values of the X
28. The fommlae for these two regression equations may be found in OdeII, Charles W., op cit. p. 241.
measures and wishes to estimate the Y values; the second equation is used. The 7 -scores camot be found from the X equation retther can tho X-scores be obtained by substituting in the Y equation.

Unless the coefticients of correlation are ± 1.00, It is not certain that either regression $11 n e$ will yield the actual score, but only the most probable value. the woaker the correlation the greater the chance that the actual score will deviate widely from the estimated score. This means that the probable error of the estimate should be determined. When substitutions were made in the formula,

$$
P E_{\theta s t}=.67456 \sqrt{1-x^{2}}
$$

the probable error of the estimate for the X equation given above was found to be 2.8543 and for the Y equation .0651. This means that there is a probability of onehalf that an actual measure will be within one probable error of estimate of the preafeted score. For example, if a predicted score is found to be .715 from the Y equation, then there is a one hatif probability that the actual score would be within . 0651 of .715 . When these probable arrors are interpreted in terms of σ, it is found that the probable oxpor of each equation is .6260 standard deviations. In other words, there is a onehalf probablilty that the actual scoxe would be within . 6260 standard deviations of the predicted score.

In astimating the values for the scale construeted In this study, neither of the equations given previousiy was used. It was desirable to construet a single scale from an equation from which both X and Ψ values could be determined when elther of the semies of measumer was used ad the knom values. For this purpose the equation Was detemmod for the Inne that would biseot the mall angle made by the IInes of the oquations for X and Y. This necossitated the changing of the X equation to the Y form an follows:

$$
X=-16.5791 \Psi+62.4232
$$

or, dividing through by the coefficient of Y

$$
I=-0603 x+3.7652
$$

In order to detemine the new equation briefly the procedure was an follows:

The size of each of the two angles formed by the X axis and the respective regression Ilnes, one with a tangent of . 0083 and the other with a tangent of .0603 , was determined and thelr sum divided by two. From the resulting angle, the now tangent was determined to give the slope of the bisectins IIne. With the slope of the new Ilne and whth one point, which in this cese was represented by the test means, the ilne was determined.

Substitutions were made in the equation,

$$
m=\frac{y_{1}-y}{x_{1}-x}
$$

or

$$
.0343=\frac{.572-y}{58.94-x}
$$

which simplifitea to the form

$$
Y=-.0343 X+2.5936
$$

This is the equation for the line that would bisoct the angle fomped by the two regression lines. In this equation any known value for X may be substituted to find the corresponding value for Y. In the construction of the scale that accompanies this study as Tables 12 and 13 , values for Y were determined for X Values ranging from 49.0 to 69.0 at intervals of . 5 , such as $49.0,49.5$. 50.0, and so to 60.0. In order to avoid having convenient scale values on one side of the scale only, it was necessary to determine the values of X when X values were known. This sane equation in termas of IY would read as follows:

$$
X=-89.1545 Y+75.61 .52
$$

Values for I rangirg from 230 to .920 were substintuted at intervals of .010 , such as $, 230, .240$, and so on, to determine the corresponding values of X. Since the actual
range of the x data, or the test means, of this study was from 48.0 to 68.0 and the Y data was trom .250 to -800, some of the values in the scale are extrapolated. The oxtent to which the scale was projected beyond the actual range of the data of thas study was determined by the practicability of its use. Ho school would very 11kely have an attendance factor of more than . 920 nor less than . 227 . The scale was extended in both directions an equal distance from the mean of the X data, which was 58.94.

2. Interpretation of the Scale

The question might well be raised as to why the attendance factor was used as the variable with which to associate corresponding test means. According to the results of the study as presented in the preceding chapter, the atterxance factor semed the most mportant index to the conditions of a school system. The acergradeprogress status of the school system was Iargely conditioned by ita attitude toward the attendance ratio. When, therefore it was desired to select a neasure for the purpose of establishing a serios of norms that would be inclusive enouch to provide for the baste factors which might affect the efffelency of a school system, the attendance factor seemed the most likely one to meet the requirement as well as other criteria for a useful test
norm. Grawford ${ }^{29}$ gives the following criteria for a new type of norma

1. It ghould be based on a woll-defined group.
2. It should be inclusive enough to provide for the baste factors and comblnations of factors which may affect achievement.
3. It should be based on measures thich are obtainable in any school system.
4. It should be readily interpreted by all test users.

The efficiency of a school systern should be judged on the basis of its servitee to the comminty and state. In using the attendane factor as the variable with witeh to associate corresponding test means, the assumption mas made that the attendance factor is the best single index to the service pendered by the school. The public school. syftem is maintained for the education of the rasses and is supported by the general and direct taxation of all property Especlaliy in a democraey is ft important to maintain a good standard of pubilc education. It is thereroxe the duty of the school system to see that all tus chataren are educated for attzenship by attending the puble schools, either by encouragement or by computsion, if necessart.

The attendanee factor seems to be a Bood Index to the sexvice of a school system not only because it signifies

[^0]what percentage of its school population is in actual attendance but also because it indicatea the nature and chamacter of the school system. A school syster that is Intorested in the entire conmunty will attempt to malntain a varied curriculum that whll meet the needs of all groups of students and will not attompt to ostablish scholastic standards that are too high for the pupils of Lower ablitties to meat. This vill mean less petardation and less stress on the acaderfic side of education. The scale as given in Tables 12 and 13 is oasily used. The I values (attendance factor) have been placed In the fistst coltmn, since it semed reasonable to assume that the attendance factor will be obtalnable easily for a school. With the attondance factor of a school known, one needs merely to refer to the comparative seales to find the test mean nowmaly axpectod for the school. Of courge, if the test mean is known, the coxresponding attendance factor expected for the school may be found from the comparative scales. One of the measures, elther the test mean made by a school or the attendance factor; must be lmown to ind the corresponding value For example, If a school aystom 1 in known to have an attendance factor of 820 , then it should be expected to make a mean seore of only 51. 8 for the seventh grade on the New-South Achlevement Tests at the end of the school year, not* Wthstanding the fact that 58.9 ls the norm established
by the authors of the test. From this expected mean, a school system may be found to be above, below, or at the mean or norm. Educational achievement in a school having an attendance factor of 820 and a mean test score of 51.8 is equivalent to educational achieverment in another school having an attendance factor of .343 and a mean test score of 65.5. In both of these cases normal aut cational achievement has been accomplished for the types of school population being ministered to. A school with an attendance factor of .370 and a test mean of 64.7 would be rated lower than one with an attendance factor of 587 and a test mean of 60.0 , while an attendance factor of 518 and a test mean of 60.5 deserves a better rating than an attendance factor of 483 and a test mean of 60.5.

If the mean score for the seventh grade of a sehool system is know, the corresponding attendance factor may bo found on the scale. If a seventh grade has made a mean score of 58.5 , then the attendance factor for the school system should be .587. If the actual attendance factor was Iater found to be lower than . 587 , the conclusion would be that the school had not made so high a test mean as it should. The test mean nomally to be expected could then be located on the comparative scales. The corresponding attendance factor of a school system making a test moan of 61.7 may be found by interpolation from the scale.

The writer has not offered this scale as one that should be used with a high degree of feith in its accuracy. In the first place, it is recognizod that the data on when the scale was based were not obtained from a truly representative sample of the school situation. Secondly, there are doubtless many finfuences that have not been controllen or measured here. It is merely hoped that a suggestion has been given that w111 lead to the study of the effects of various factors on test norras and to the establishment of reliable norms for achievement tests that will attempt to measure the influence of these factors on achievement test norms. By use of the technique omployed here, the writer belleves that this study may be greatiy extended to produce vartable test norms dependent upon the composite influence of several faotors. Until such additional investigations are made, however, the scale of test norms given heroln to correspond to the attendance factor (the ratio of the nurber of pupils in averace daily attendance to the maber of scholastics), is a safer gutce to expected achievement on the Nev-South Achievement Tests for a seventh crade of an independent distriot of Texas than is any absolute seventh crade nom which disregards the attendance factor.

TABLT 12

COMPARAPIVE SCALES FOR THST MEANS AMD ATMERDANCE EACTORS

When the Attendance Factor Ts	The Corresponding Mean Is	When the Attendance Factor Is	The Corresponding Mean Is
. 920	49.8	. 560	59.8
. 913	49.0	. 553	59.5
.910	49.1	. 550	59.6
.900	49.4	. 540	59.9
. 896	49.5	. 536	60.0
.890	49.7	. 530	60.2
- 879	50.0	. 520	60.4
.870	50.3	. 518	60.5
. 861	50.5	. 510	60.7
. 350	50.3	.501	61.0
. 844	51.0	. 490	61.3
. 840	51.1	. 434	61.5
.830	51.4	. 480	62.6
.827	51.5	. 470	61.9
.820	51.7	. 467	62.0
. 310	52.0	. 460	62.2
. 800	52. 3	. 450	62.5
. 793	52.5	.440	62.8
.790	52.6	. 433	63.0
.780	52.9	.430	63.1
.7776	53.0	.420	63.4
.770	53.2	. 416	63.5
.750	53.5	. 410	63.7
.750	53.3	. 398	64.0
.741	54.0	. 390	64.2
. 730	54.3	. 381	64.5
. 724	54.5	. 370	64.8
.720	54.6	. 364	65.0
-710	54.9	. 360	$66^{6.1}$
. 707	55.0	.350	65.4
. 700	55.2	. 347	65.5
. 690	55.5	. 340	65.7
. 680	55.3	. 330	66.0
. 6773	56.0	.320	66.3
. 670	56.2	.313	66.5
.660	56.4	. 310	66.6
. 656	56.5	. 300	66.9
. 650	56.7	.296	67.0
. 639	57%	. 290	67.2
. 621	57.5	. 278	67.5
. 610	57.8	-270	67.7
. 604	58.0	.261	68.0
. 600	58.1	+.250	68.3
. 590	53.4	. 244	68.5
- 587	58.5	. 240	68.6
. 580	58.7	-230	68.9
. 570	59.0	. 227	69.0

fAll above are extrapolated. tall below are axtrapolated.

TABIE 15
GRAPHEC PRESEDTANTOR OF THE COUPAEAMIVE SCALES

OHAPTER IV

SUMIMAY, CONCTUSIOXS ATD RECOMMENDATIOMS

1. Surmary

The problem of this atudy was to determine the nature and extent of the influence of the attendance and prouress factors on test noms. If these factors were found to affect norms to the extent that errors in interpretation might result, 解 was haped to suggest a method for establishing norms which would at least in part control this effect.

The data used were the test soores made on the NewSouth Achievement Tests and the age-grade diatributions as well as the proportion of scholastios in average dafly attendance for thirty-three small Independent districts throughout the state of Rexas. From these data the following information was obtained for each of the schools: the mean scores, the standard deviat?ons and the coafelcients of variability on the achievenent tests; the attentance factor; the percontages of overageness, nomal aceness, and underaceness; and the regression coofficients for grade on chronological age. The coefrlcents of correlation for the different comm bizathons of these factors were computed.

The results of this procedure indicated the need for a new type of norm which would make possible more valld comparisons. An attempt to ostablish such a norm showed that the attendance factor could bo used as a basts for determining the test means that should be expected on the NewmSouth Achtevement Tests A scale was construeted by wheh the comresponting value of ofther the attondance factom or the tost mean conld be found when the measure in the other serles was known.
2. Conclusions and Recommendations

On the basis of the findengs presented in this study, the following conclustons and pecommendations appear ralid:

1. Attendance and progess factors affect test norms to the extent that they should be considered in normine tests. Noms eateblished on groups in which these factors are not controlied are of doubtinl value in judsing the eftictency of school syetems. Achsevement tests should be accompented by varyable tegt nome that taire into consideration the Influence of these and other factoris on test norms.
2. A high attendance factor tends to be accompanted by a high coeffichent of varyation and a low mean score on an achiovement test This is an indication thet a school syatem in which the opposite of these conditions exists has only the most capable and most desirable
element of its school population in attendance. These latter conditions should not be encouraged by judging this type of school system more efficient on the basis of ats score on an achlevement test.
3. The school systems with the low regression coefficients, which are indicative of slow progress through the grades, tend to make higher mean scores on an achievement test than do the schools with low amounts of retardation. It seems evident that the efficiency of these schools should be judged on the basis of variable nomens.
4. The achool systems with the high attendance factors have comparatively low amounts of retardation, This seems to indicate that these schools are not only interested in having children attend school but are also encouraging them to atay in school for a longer period of time by refusing to discourage them through retardation. Even in these schools, however, the percentages of overageness are much too high. An atterapt to reduce the amount of retardation should be made.
5. In so far as the data of the study may be consldered typical, most schools have a much lower percentage of scholastics in average daily attendanee than a system besed on the ldea of universal education should allow. A greater effort should be made to strengthen and enforce the compulsory atterdance law.

APPENDIX

Town	Tleat 1	mablis a RAW DATA							
		Attendene Factor $\frac{A D A}{}$			Age-frade Status Percentages		Test	Test	
		Scholestios		Overageness	Normal Agoness	zrageness	Hean	Stendard Deviation	Coetficient of Vaxtation
2	14	. 787	. 865	44.8	49.5	5.7	49.29	11.06	22.43
2	180	. 785	.785	38.8	53.9	7.2	59.72	9.85	16.49
5	28	. 871	. 681	46.8	51.3	1.9	58.72	8.85	15.07
4	64	. 682	. 672	54.2	41.4	4.4	59.87	11.66	19.47
5	41	. 654	. 716	48.7	48.1	3.2	57.61	0.65	16.75
6	62	. 644	. 773	44.7	42.2	13.1	54.64	9.51	17.41
7	69	. 638	. 785	38.1	54.6	7.3	56.49	9.05	16.02
8	51	. 619	. 743	42.8	52.1	5.1	64.94	9.48*	14.57
9	51	. 618	.722	49.8	44.9	5.3	58.18	9.70	16.67
10	37	. 616	. 650	50.0	43.9	6.1	53,08	7.55	14.22
11.	29	. 615	. 766	51.9	45.7	2.4	65.10	9.05	15.28
12	20	. 611	. 821	83.1	35.6	1.3	51.75	9.40	18.18
13	21	. 809	. 826	49.7	46.4	3.8	55.91	10.56	18.88
14	13	. 808	. 826	50.3	36.9	12.9	54.86	11.88	21.67
15	19	. 607	. 890	55.2	41.7	3.1	60.95	0.25	15.18
16	68	. 607	. 686	50.7	43.5	5.9	58.60	10.78*	18.39
17	77	. 599	. 795	34.6	60.7	4.7	62.35	10.75	17.24
18	34	. 593	- 459	56.1	37.6	6.3	62.34	8.56	13.67
19	40	. 579	.706	56.6	38.6	3.8	50.54	10.37	20.51
20	6	. 568	. 648	55.9	41.4	2.8	67.83	6.70	9.88
21	50	-565	. 767	47.0	48.4	4.6	61.72	9.22	14.94
22	103	. 543	. 702	50.2	42.9	6.9	59.05	9.77	16.55
23	48	. 539	. 746	45.5	50.4	4.1	60.48	9.33	15.43
24	18	. 532	. 645	49.7	50.3	0.0	51.44	8.95	17.40
25	17	. 525	. 707	59.4	33.6	7.0	55.53	9.05	16.30
26	8	. 521	. 553	70.7	27.1	2.2	65.13	4.95	7.60
27	48	. 489	. 675	42.5	58.9	4.6	59.35	10.45	17.60
28	37	. 469	. 563	67.2	30.8	2.0	64,03	8.66	13.58
29	12	. 467	.595	48.9	42.1	9.0	57,61	13.95	24.21
30	52	. 444	. 598	59.8	38.1	2.1	63.38	9.67	15.26
31	35	. 435	. 788	30.0	65.2	4.8	60,62	10.12^{*}	16.69
32	25	. 364	. 419	67.5	31.8	0.6	65.60	7.00	10.67
38	19	- 277	. 808	30.8	49.3	0.9	61.47	7.75	12.61
Mean		. 572	. 688	49.91			58.94	9.45	16.34
S. D.		.104	. 093	8.94			4.64	1.50	2.54

*Computed by inference

Books

Crawford, J. Re, Age and Prorress Factors in Test Norms, University of Iowa, Towa CIty, 1934. TIn Its Studies In Education, Research Studies in Educational Measurements. I. pp. I-39.)

Gubberley, Ellwood Po, Fublic School Administration, Revised and enlarged edition, Houghton Miffiln Company, New York, 1929.

Greene, Harry A. and Jorgensen, Albert N. . The Use and Interpretation of Educattonal Tests, Longmans, Green and Company, New York, 1929.

Hollineshead, Arthur Dack, An Evaluation of the Use of Certain Educat onal and Mental Measurements for Purposes of Classification, Teachers College, Columbia University, New York, 1928. (Contributions to Education, number 302.)

Iincoln, Edward Andrews and Womman, Linwood Ie, Testing and the Uses of Test fesults, The Macmilian Company, New Yorl: 1935.

Moohlman, Arthur B_{0}, Child Accounting, Courtie Standard Tests, Detroit, 1924.

Wonroe, Walter Scott, An Introduction to the Theory of Educational Measurements, Houghton MIffin Company, New York. 1923.

Mort, Paul R. and Gates, Arthur In, The Acceptable Uses of Achievement Tests, Teachers College, Columbia Tniversity, Hew York; 1932.

Odell, Charles W., Statistical Method In Education. D. Appleton-Century Company, New York, 1935.

Otis, Arthur Sinton, Statistical Mathad in Educational Measuxement, World Book Company, Yonkers-on-fudson, New York, 1925.

Pressey, Sidney I. and Pressey, Luella, Introduction to the Use of Standard Teste, Revised edition, World Book Company, Yonkers-on-Hudson, New York, 1931.

Fugg. Harold o. Statistical Methods Applied to Education, Houghton Mifimin Company, Now York, 1917 .

Walker, Helen M. ed., The Measurement of Teaching Efficiency, The Hacmillan Company, New York, 1935.

Periodicals

Armentrout, W. D., "Classification and Promotion of Pupils," Education, Vol. 42. Apri1, 1922, pp. 506-512.

Goy, Genevieve Lo, "A Study of Various Factors What ch Influence the Use of the Accomplishment Quotlent as a Measure of Teaching Efficiency, " Joumal of Educational Research, Vol. 21, January, 1930. p. 29.
"Educational Testa and Their Uses, " Revtew of Educational Research, Vol. 3 , Fobmary, 1933, number I.

Freaman, Prank Ne, "Bases on Which Students Can Be Classiflea Effectively, "School Reviev, Vol. 29. December, 1921, pp. 735-745.

Gray, Hob and Votaw, David F. "Making Reports of Test Results Meaningful, "The Texas Outlook, Vol. 20, number 12. December. 1936, pp. 20-22.

Jenkins, A. U., Measurement of Teaching Efficiency by Means of Standardzzed Tests, National Education Association, Department of Elementary School Princlpals, Bulletin, Vol. 8, April, 1929, pp. 373382.

Lewis, A. B., "Practical Use for Test Scores," Edu= cational Fecord, Vol. 17, January, 1936, Supplement, pp. 130-132.

Shamon, J. R., "Comparison of Phree Means for Measuring Efficiency in Teaching," Journal of Educational Hesearch, Vol. 29, Narch, 1936, pp. 501-50g.

Tyler, H. W., "Appralsing Progressive Schools," Educa= tional Method, Vol. 15. Way, 1936. pp. 412-3.15.

[^0]: 29. Grawrord. t. Re op. cit*: p. 26.
