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ABSTRACT

We consider the double sessile drop, which is formed of two connected drops of

liquid with prescribed volumes V1 and V2 resting in equilibrium on a horizontal

plane P in a vertical gravity field directed toward P . We suppose that the plane

is made of homogeneous material so that contact angles are constant. The size

and shape of each drop for any liquid is determined by the prescribed volume

and the solutions for the curves that enclose the liquid.

viii



I. BACKGROUND

In order to explore the double sessile drop, we consider previous findings for the

single sessile drop. The mathematics that describes this object are the

inspiration for the goal of this project: designing a computer program, that given

desired prescribed quantities, will model the double drop for any two liquids.

I.1 Sessile Drop

Figure I.1: Sessile drop

The standard reference is a manuscript by Finn [4]. Finn describes a tube of

infinite height. The tube rests in a circular container of large diameter, so that

the fluid surface level at a large distance provides a reference level z = 0 for

atmospheric conditions that do not perturb the fluid surface of the tube. With

this configuration, he limited his attention to surfaces z = (x, y). These are

capillary surfaces. Finn also described the fact that to every symmetric sessile
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u0

Figure I.2: Continued capillary section

drop, there corresponds a unique capillary surface. See Figures I.1 and I.2. That

is, a unique interface of at least two different materials: liquids or gases,

positioned adjacent to each other that do not mix such that at least one of those

materials is a liquid.

Assuming symmetry, the three-dimensional drop solves the following system of

differential equations parameterized by inclination angle


dr
dψ

= r cosψ
κru−sinψ

,

du
dψ

= r sinψ
κru−sinψ

.

(I.1)

Finn concluded, among other interesting results, that the set of all capillary

surfaces is determined by a one-parameter family of solutions to partial

differential equations in terms of center height u0.
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Figure I.3: Double sessile drop

I.2 Double Sessile Drop in 2D

Finn proved in [3] that this family of solutions that solved the set of all capillary

surfaces are also solutions for the n-dimensional system. Thus we are able to

explore the problem in terms of curvature which is the analog of mean curvature:

div Tu = κu− λ (I.2)

where

Tu =
1√

1− |Du|2
Du. (I.3)

So we study the lower dimension problem and describe the set of all symmetric

sessile drops as a one family parameter of curves in the coordinate system (x, u)

of two-dimensions using instead a family of ordinary differential equations.

With this view, the double sessile drop, shown in Figure I.3 , is composed of

enclosed volumes E1 and E2 by the three parameterized arcs each of which

corresponds to the family of solutions determined by each respective center

3



height uij, obtaining solutions from a corresponding system of differential

equations for the same family of curves, described as continued capillary sections

by Finn [4]. We will use this coordinate system with the fluids resting on the

plate in order to explore the configurations of the drops.
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II. DROP CONFIGURATIONS AND VOLUME COMPUTATIONS

II.1 Drop Configurations

We now begin the steps necessary to construct the volumes of the double drop.

We study the problem in a lower dimensional setting. We envision this lower

dimensional problem either for its own interests, or as a model of the double

sessile drop resting on a plate and trapped between two vertical planes that are a

small distance from each other. We assume homogeneous boundary data on

these vertical planes. In either case, we retain the intuitive language of volume,

though strictly speaking, it is actually an area. Since the double drop is formed

of two enclosed volumes, we will need to be able to implement a volume

computation in our program. Implementing this computation will allow us to

verify that the double drop we are generating matches the prescribed desired

quantity. If we can define a formula for the volume contained by a single

parameterized arc and its boundary, then we can later modify this result to

determine the volume contained by the three arcs and boundary that form the

double drop. First, we must understand the possible configurations so that we

may verify our formula will work for all drop types.

If we examine the enclosed volumes of the double sessile drop as permutations of

horizontal and vertical points along the arc, then we may examine all cases for

our configurations. We consider the following illustrations of configurations for

the ease of computing the enclosed volumes.

Let the right drop to be of a fixed type, then there are five cases for the left side

of the double sessile drop:

Case 1: no horizontal point, no vertical point

Case 2: one horizontal point, no vertical point

Case 3: no horizontal point, one vertical point

Case 4: one horizontal point and one vertical point

5



Case 5: one horizontal point and two vertical points

See Figures II.1-II.5.

For Case 1, the left side of the drop has no maximum points or vertical points

along the arc.

Figure II.1: Case 1

For Case 2, the left side of the drop has a maximum point along the arc in the u

direction.

For Case 3, the left side of the drop has a vertical point along the arc in the x

direction.

For Case 4, the left side of the drop has a vertical point in the x direction and a

maximum point in the u direction.

For Case 5, the left side of the drop has two vertical points in the x direction and

one maximum point in the u direction.
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Figure II.2: Case 2

Figure II.3: Case 3
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Figure II.4: Case 4

Figure II.5: Case 5
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II.2 Computing the Volume

x

u

(x0, u0)

(x(ℓ), u(ℓ))

u = u(ℓ)

x = x(ℓ)

(x(s), u(s))

Figure II.6: Enclosed volume of (x(s), u(s))

Lemma II.2.1 Let (x(s), u(s)) be a curve parameterized by arclength. Let ψ0 be

the inclination angle at the initial point (x0, u0). Let (x(`), u(`)) be the terminal

point, at ending arclength `. Then the volume enclosed by the line x = x(`), the

curve (x(s), u(s)) and the line u = u(`), that is the volume of the fluid between

the air interface and the upper boundary is given by

V = u(`)(x(`)− x(0))− 1

κ
(sinψ(`)− sinψ(0)) (II.1)

where the curves satisfy 
dx
ds

= cosψ,

du
ds

= sinψ,

dψ
ds

= κu

(II.2)
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with initial conditions 
x(0) = x0,

u(0) = u0,

ψ(0) = ψ0.

(II.3)

Proof. We will use the following approach to establish (II.1). We will compute

the volume for each case described above in terms of component surfaces that

describe the curves with no inflection points for the region enclosed by

(x(s), u(s)) and u = u(`) in terms of initial point and ending point of (x(s), u(s))

and the curves with inflection points for the region enclosed by (x(s), u(s)) and

u = u(`) in terms of initial point and ending point. We break the curve at

inflection points of (x(s), u(s)), which occur when u = 0 and at this point

ψ = ψmax. The second type of curve treats the case where an inflection point is

present. We describe the points of u(x) in terms of these component surfaces for

both cases, where u(x) is the height function of (x(s), u(s)) at point x.

For the computations, we use the fact u = 1
κ
dψ
ds

given by (II.3) and the chain rule

to obtain (II.6). The following cases will follow similarly.

Case 1, curve with no inflection points: no horizontal point and no

vertical point

For Case 1 we have no horizontal points and no vertical points. So to find the

volume we integrate our height function u(x) using the initial and terminal

points of our arc x(0) and x(`). The volume is given by

V =

∫ x(`)

x(0)

(u(`)− u(x)) dx (II.4)

= u(`)(x(`)− x(0))−
∫ x(`)

x(0)

u(x) dx (II.5)

= u(`)(x(`)− x(0))− 1

κ

∫ ψ(`)

ψ(0)

cosψ dψ (II.6)

= u(`)(x(`)− x(0))− 1

κ
(sinψ(`)− sinψ(0)). (II.7)

Case 1, curve with inflection points: no horizontal points and no

10



x

u

x(ℓ)x(0)

u(x)

Figure II.7: Case 1 without inflection point

vertical points

x(0) x(m)

x(ℓ)

u(x)

Figure II.8: Case 1 with inflection point

For Case 1 there are no horizontal points and no vertical points. However, we
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may reach an inflection point. So we perform the same calculation as above

except we do not integrate across an inflection point. We know this inflection

point will happen when ψ is at its maximum point. Therefore we identify the

point where dψ
dx

= 0. Since dψ
dx

= κu by (II.3) we know this will happen when

u(x) = 0. So we partition the integral at the point where the component surface

may cross the x-axis and denote this point (x(m), 0). The volume is given by

V =

∫ x(m)

x(0)

(u(`)− u(x)) dx+

∫ x(`)

x(m)

(u(`)− u(x)) dx (II.8)

= u(`)(x(`)− x(0))−
∫ x(m)

x(0)

u(x) dx−
∫ x(`)

x(m)

u(x) dx (II.9)

= u(`)(x(`)− x(0))− 1

κ

∫ ψ(m)

ψ(0)

cosψ dψ − 1

κ

∫ ψ(`)

ψ(m)

cosψ dψ (II.10)

= u(`)(x(`)− x(0))− 1

κ
(sinψ(m)− sinψ(0))

−1

κ
(sinψ(`)− sinψ(m)) (II.11)

= u(`)(x(`)− x(0))− 1

κ
(sinψ(`)− sinψ(0)). (II.12)

Case 2, curve without inflection points: one horizontal point and no

vertical points

For Case 2 there is a horizontal point and no vertical points. This horizontal

point (x(h), u(h)) occurs as the maximum point of the arc in the u direction.

This computation will be the same as Case 1 without inflection points except we

12



x(ℓ)x(h)
x(0)

Figure II.9: Case 2 without inflection point

include the point (x(h), u(h)). The volume is given by

V =

∫ x(h)

x(0)

(u(`)− u(x)) dx+

∫ x(`)

x(h)

(u(`)− u(x)) dx (II.13)

= u(`)(x(`)− x(0))−
∫ x(h)

x(0)

u(x) dx−
∫ x(`)

x(h)

u(x) dx (II.14)

= u(`)(x(`)− x(0))− 1

κ

∫ ψ(h)

ψ(0)

cosψ dψ − 1

κ

∫ ψ(`)

ψ(h)

cosψ dψ (II.15)

= u(`)(x(`)− x(0))− 1

κ
(sinψ(h)− sinψ(0))

−1

κ
(sinψ(`)− sinψ(h)) (II.16)

= u(`)(x(`)− x(0))− 1

κ
(sinψ(`)− sinψ(0)). (II.17)

In the above computation we have that x(0) < x(m). Note that in the case that

x(0) > x(m), the component surface is reflected. Thus by symmetry of the

integral the result will be identical.

Case 2, curve with inflection points: one horizontal point and no

vertical points

13



Here dψ
dx

will be strictly increasing along the curve. Thus ψ will not reach a

maximum point and our component surface will not include an inflection point.

It follows that the computation is identical to the above.

Case 3, curve without inflection points: no horizontal point and a

vertical point

x

u

x(a)

u
+(x)

u
−(x)

x(0)
x(ℓ)

Figure II.10: Case 3 without inflection point

Here we have a vertical point. If the vertical point occurs on the left side of the

arc we will denote this point (x(a), u(a)) with arclength s = a there and similarly

if the vertical point occurs on the right side of the arc we will denote this point

(x(b), u(b)) with arclength s = b there. Also, for our computations we use the

fact that (x(a), u(a)) is the point where angle ψ(a) = −π
2
and (x(b), u(b)) is the

angle ψ(b) = π
2
.

If there exist a vertical point, then let the height function u(x) be partitioned

into u+(x) and u−(x) above and below that point. The volume is given by

14



V =

∫ x(0)

x(a)

(u+(x)− u−(x)) dx+

∫ x(`)

x(0)

(u+(`)− u−(x)) dx (II.18)

= u+(`)(x(`)− x(0)) +

∫ x(0)

x(a)

u+(x) dx

−
∫ x(0)

x(a)

u−(x) dx−
∫ x(`)

x(0)

u−(x) dx (II.19)

= u+(`)(x(`)− x(0)) +
1

κ

∫ ψ(0)

−π
2

cosψ+ dψ

−1

κ

∫ ψ(0)

−π
2

cosψ− dψ − 1

κ

∫ ψ(`)

ψ(0)

cosψ− dψ (II.20)

= u+(`)(x(`)− x(0)) +
1

κ

(
sinψ+(0)− sin

(
−π

2

))
−1

κ

(
sinψ−(0)− sin

(
−π

2

))
−1

κ
(sinψ−(`)− sinψ−(0)) (II.21)

= u+(`)(x(`)− x(0))− 1

κ
(sinψ−(`)− sinψ+(0)). (II.22)

Case 3, curve with inflection point: no horizontal point and a vertical

point

We perform the same computation as above but as in Case 1 for a curve with an

inflection point we do not integrate across the inflection point (x(m), 0). The

15



x

u

u
+(x)

x(a)

u
−(x)

x(0) x(m)

x(ℓ)

Figure II.11: Case 3 with inflection point

volume is given by

V =

∫ x(0)

x(a)

(u+(x)− u−(x)) dx+

∫ x(m)

x(0)

(u+(`)− u−(x)) dx

+

∫ x(`)

x(m)

(u+(`)− u−(x)) dx (II.23)

= u+(`)(x(`)− x(0)) +

∫ x(0)

x(a)

u+(x) dx

−
∫ x(0)

x(a)

u−(x) dx−
∫ x(m)

x(0)

u−(x) dx−
∫ x(`)

x(m)

u−(x) dx (II.24)

= u+(`)(x(`)− x(0)) +
1

κ

∫ ψ(0)

−π
2

cosψ+ dψ − 1

κ

∫ ψ(0)

−π
2

cosψ− dψ

−1

κ

∫ ψ(m)

ψ(0)

cosψ− dψ − 1

κ

∫ ψ(`)

ψ(m)

cosψ− dψ (II.25)

= u+(`)(x(`)− x(0)) +
1

κ

(
sinψ+(0)− sin

(
−π

2

))
−1

κ

(
sinψ−(0)− sin

(
−π

2

))
− 1

κ

(
sin
(
−π

2

)
− sinψ−(0)

)
−1

κ

(
sinψ−(`)− sin

(
−π

2

))
(II.26)

= u+(`)(x(`)− x(0))− 1

κ
(sinψ−(`)− sinψ+(0)). (II.27)
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Case 4, curve without inflection points: one horizontal point and one

vertical point

Without loss of generality, assume we have a left vertical point. Then we have

both (x(h), u(h)) and (x(a), u(a)). We include both of these points in our

computation. The volume is given by

V =

∫ x(0)

x(a)

(u+(x)− u−(x)) dx+

∫ x(h)

x(0)

(u+(`)− u−(x))dx

+

∫ x(`)

x(h)

(u+(`)− u−(x)) dx (II.28)

= u+(`)(x(`)− x(0)) +

∫ x(0)

x(a)

u+(x) dx

−
∫ x(0)

x(a)

u−(x) dx−
∫ x(h)

x(0)

u−(x) dx−
∫ x(`)

x(h)

u−(x) dx (II.29)

= u+(`)(x(`)− x(0)) +
1

κ

∫ ψ(0)

−π
2

cosψ+ dψ

−1

κ

∫ ψ(0)

−π
2

cosψ− dψ −
∫ ψ(h)

ψ(0)

cosψ− dψ

−1

κ

∫ ψ(`)

ψ(h)

cosψ− dψ (II.30)

= u+(`)(x(`)− x(0)) +
1

κ

(
sinψ+(0)− sin

(
−π

2

))
−1

κ

(
sinψ−(0)− sin

(
−π

2

))
−1

κ
(sinψ−(h)− sinψ−(0))− 1

κ
(sinψ−(`)− sinψ−(h)) (II.31)

= u+(`)(x(`)− x(0))− 1

κ
(sinψ−(`)− sinψ+(0)). (II.32)

Case 4, curve with inflection point: one horizontal point and one

vertical point

For this case we have a horizontal point ((x(h), u(h)) and, without loss of

generality, a left vertical point ((x(a), u(a)). So we know that ψ reaches a

maximum and our component surface will include an inflection point. We include

(x(a), u(a)) in our computation and as before we do not integrate across the

17



inflection point (x(m), 0). The volume is given by

V =

∫ x(0)

x(a)

(u+(x)− u−(x)) dx+

∫ x(h)

x(0)

(u+(`)− u−(x)) dx

+

∫ x(m)

x(h)

(u+(`)− u−(x)) dx+

∫ x(`)

x(m)

(u+(`)− u−(x)) dx (II.33)

= u+(`)(x(`)− x(0)) +

∫ x(0)

x(a)

u+(x)dx−
∫ x(0)

x(a)

u−(x)dx

−
∫ x(h)

x(0)

u−(x) dx−
∫ x(m)

x(h)

u−(x) dx−
∫ x(`)

x(m)

u−(x) dx (II.34)

= u+(`)(x(`)− x(0)) +
1

κ

∫ ψ(0)

−π
2

cosψ+ dψ

−1

κ

∫ ψ(0)

−π
2

cosψ− dψ −
∫ ψ(h)

ψ(0)

cosψ− dψ

−
∫ ψ(m)

ψ(h)

cosψ− dψ −
∫ ψ(`)

ψ(m)

cosψ− dψ (II.35)

= u+(`)(x(`)− x(0)) +
1

κ

(
sinψ+(0)− sin

(
−π

2

))
−1

κ

(
sinψ−(0)− sin

(
−π

2

))
− 1

κ
(sinψ−(h)− sinψ−(0))

−1

κ
(sinψ−(m)− sinψ−(h))

−1

κ
(sinψ−(`)− sinψ−(m)) (II.36)

= u+(`)(x(`)− x(0))− 1

κ
(sinψ−(`)− sinψ+(0)). (II.37)

Case 5, curve without inflection point: one horizontal point and two

vertical points

For this case we have a both a left and right vertical point. Then we have a

horizontal maximum point (x(h), u(h)), left vertical point (x(a), u(a)) and right

vertical point (x(b), u(b)). We include each of these points in our computation.

18



The volume is given by

V =

∫ x(0)

x(a)

(u+(x)− u−(x)) dx+

∫ x(h)

x(0)

(u+(`)− u−(x)) dx+

+

∫ x(`)

x(h)

(u+(`)− u−(x)) dx+

∫ x(b)

x(`)

(u+(x)− u−(x)) dx (II.38)

= u+(`)(x(`)− x(0)) +

∫ x(0)

x(a)

u+(x) dx−
∫ x(0)

x(a)

u−(x) dx

−
∫ x(h)

x(0)

u−(x)dx −
∫ x(`)

x(h)

u−(x) dx

+

∫ x(b)

x(`)

u+(x) dx−
∫ x(b)

x(`)

u−(x) dx (II.39)

= u+(`)(x(`)− x(0)) +
1

κ

∫ ψ(0)

−π
2

cosψ+ dψ − 1

κ

∫ ψ(0)

−π
2

cosψ− dψ

−1

κ

∫ ψ(h)

ψ(0)

cosψ− dψ − 1

κ

∫ ψ(`)

ψ(h)

cosψ− dψ

+
1

κ

∫ π
2

ψ(`)

cosψ+ dψ − 1

κ

∫ π
2

ψ(`)

cosψ− dψ (II.40)

= u+(`)(x(`)− x(0)) +
1

κ

(
sinψ+(0)− sin

(
−π

2

))
−1

κ

(
sinψ−(0)− sin

(
−π

2

))
− 1

κ
(sinψ−(h)− sinψ−(0))

−1

κ
(sinψ−(`)− sinψ−(h)) +

1

κ

(
sin
(π

2

)
− sinψ+(`)

)
−1

κ

(
sin
(π

2

)
− sinψ−(`)

)
(II.41)

= u+(`)(x(`)− x(0))− 1

κ
(sinψ+(`)− sinψ+(0)). (II.42)

Case 5, curve with inflection point: one horizontal point and two

vertical points

This case includes both a left and a right vertical point. So we know that ψ

reaches a maximum and our component surface will include an inflection point.

We include (x(a), u(a)) and (x(b), u(b)) in our computation and as before split

the integration as we cross the inflection point (x(m), 0). The volume is given by
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V =

∫ x(0)

x(a)

(u+(x)− u−(x)) dx+

∫ x(h)

x(0)

(u+(`)− u−(x)) dx

+

∫ x(m)

x(h)

(u+(`)− u−(x)) dx+

∫ x(`)

x(m)

(u+(x)− u−(x)) dx

+

∫ x(b)

x(`)

(u+(x)− u−(x)) dx (II.43)

= u+(`)(x(`)− x(0)) +

∫ x(0)

x(a)

u+(x) dx−
∫ x(0)

x(a)

u−(x) dx

−
∫ x(h)

x(0)

u−(x) dx −
∫ x(m)

x(h)

u−(x) dx

−
∫ x(`)

x(m)

u−(x) dx+

∫ x(b)

x(`)

u+(x) dx−
∫ x(b)

x(`)

u−(x) dx (II.44)

= u+(`)(x(`)− x(0)) +
1

κ

∫ ψ(0)

−π
2

cosψ+ dψ

−1

κ

∫ ψ(0)

−π
2

cosψ− dψ − 1

κ

∫ ψ(h)

ψ(0)

cosψ− dψ

−1

κ

∫ ψ(m)

ψ(h)

cosψ− dψ − 1

κ

∫ ψ(`)

ψ(m)

cosψ− dψ

+
1

κ

∫ π
2

ψ(`)

cosψ+ dψ +
1

κ

∫ π
2

ψ(`)

cosψ− dψ (II.45)

= u+(`)(x(`)− x(0)) +
1

κ

(
sinψ+(0)− sin

(
−π

2

))
−1

κ

(
sinψ−(0)− sin

(
−π

2

))
− 1

κ
(sinψ−(h))− sinψ−(0))

−1

κ
(sinψ−(m)− sinψ−(h))− 1

κ

(
sinψ−(`)− sinψ−(m)

)
+

1

κ

(
sin
(π

2

)
− sinψ+(`)

)
− 1

κ

(
sin
(π

2

)
− sinψ−(`)

)
(II.46)

= u+(`)(x(`)− x(0))− 1

κ
(sinψ+(`)− sinψ+(0)). (II.47)
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x(0)

x(h) x(ℓ)x(a)

Figure II.12: Case 4 without inflection point

x

u

u
−(x)

u
+(x)

x(a) x(0)x(h) x(m)

x(ℓ)

Figure II.13: Case 4 with inflection point
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x

u

x(a) x(h) x(b)x(ℓ)
x(0)

u
−(x)

u
+(x)

Figure II.14: Case 5 without inflection point

x

u

x(a)

x(b)

u
−(x)

u
+(x)

x(h)

x(ℓ)

x(0) x(m)

Figure II.15: Case 5 with inflection point
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III. CAPILLARY CONSTANTS, SURFACE TENSIONS,

CONTACT ANGLES AND ENERGY DENSITY

We have discussed the solutions for the curves that enclose the liquids. The

capillary constant κ is a parameter in determining the size and the shape of each

drop. Specifically κ = ρg/σ, where ρ is the density of the fluid, g is the gravity

constant and σ is the surface tension of the fluid. Similarly, with multiple fluids,

we have multiple capillary constants, which we define as κij = (ρj − ρi)/σij for

i, j = 0, 1, 2.

Next, consider contact angles γjip of the double sessile drop at rest on horizontal

plane P . We note that Thomas Young in his 1805 essay [6] established in the

existence of the contact angle γ for boundary components in terms of surface

tensions σ. Where surface tension is force acting on a surface separating two

immiscible fluids in equilibrium. However, in more recent work Finn found in [5]

that fluid/fluid interfaces may be described in terms of surface tensions but

fluid/solid interfaces are more accurately described in terms of energy density. So

in considering the angles at the plate, a fluid/solid interface, we refer instead to

the more recently advanced version developed by Finn.

Thus we denote the energy density between the fluid Ei and horizontal plane P

as eiP . Where energy density is an attraction or repulsion of molecules between

two adjacent media at an interface leads to an areal energy density e on the

interface, which is the work per unit area required to form the interface.

Proposition III.0.2 Let γjip denote the contact angle inside Ej, at the triple

junction of fluid Ej with fluid Ei and horizontal plane P for fluids Ei, Ej andEk.

Given energy densities we have

cos γjip =
eiP − ejP

eij
. (III.1)
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So any two contact angles will determine the third contact angle given by

e01 cos γ10P + e12 cos γ21P = e02 cos γ20P . (III.2)

Proof. Consider fluids E0, E1 and E2 of the double sessile drop at rest on

horizontal plane P . We have the following equalities:

e01 cos γ10P = e0P − e1P (III.3)

e12 cos γ21P = e1P − e2P (III.4)

e02 cos γ20P = e0P − e2P (III.5)

We then have

e01 cos γ10P + e12 cos γ21P = e0P − e1P + e1P − e2P (III.6)

= e0P − e2P (III.7)

= e02 cos γ20P (III.8)

Next, consider three angles γij at the triple junction of fluids E0, E1 and E2.

Elcrat, Neel and Siegel established in [1] the contact angles at the triple junction

for a floating drop. These are the contact angles measured between fluid Ei and

Ej at the triple junction (x(j), u(j)). Obtaining the inclination angles at the

ending arclength ` for each surface ψij will be necessary to apply Lemma II.2.1

to the double drop.

Theorem III.0.3 Let the three contact angles be γij at the triple junction of

fluids E0, E1 and E2. Define ψ̄ij to be the inclination angle at the ending

arclength at the terminal point (x̄ij, ūij) for each surface Sij. Define ψ̄12 = θ̄ for

θ̄ ≤ π
2
and ψ̄12 = π − θ̄ for θ̄ > π

2
. Then for each ψ̄12 we can describe each

inclination angle at the terminal point in terms of θ̄ and contact angles γij given

24



by

ψ̄01 = θ̄ − γ02, (III.9)

ψ̄02 = π − θ̄ − γ01, (III.10)

Proof. Consider the inclination angles ψ̄ij at the terminal point (x̄ij, ūij) for

surfaces S12, S01, S02. We have defined ψ̄12 = θ̄ for θ̄ ≤ π
2
and ψ̄12 = π − θ̄ for

θ̄ > π
2
.

u = ū

T12

T01

γ02

θ̄

ψ̄01

Figure III.1: Inclination Angle of S01 at the Terminal Point

Consider ψ̄01. We implement the use of the horizontal u = ū, the plane P and

the tangent lines T01 and T12 at the point (x̄, ū). Notice that the acute angle

between the horizontal u = ū and tangent line T12 is equivalent to θ̄. Thus the

contact angle γ02 can be used to establish the equality

γ02 = ψ̄01 + θ̄. (III.11)
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See Figure III.1 We then have,

ψ̄01 = γ02 − θ̄. (III.12)

u = ū

T12

T02

γ01ψ̄02

θ̄

Figure III.2: Inclination Angle of S02 at the Terminal Point

Next consider ψ̄02. Using the same construction, this time examining the tangent

lines T02 and T12 at the point (x̄, ū) and the contact angle γ01. We have the

contact angle γ01 as measured between the surfaces S02 and S12 or equivalently

measured between the tangent lines T02 and T12 near (x̄, ū). Notice that the

obtuse angle above the horizontal u = ū measured to T12 is π − θ̄. We have that

the angles π − θ̄ and ψ̄02 can also be measured from T02 to T12. See Figure III.2.

We have

γ01 = π − θ̄ + ψ̄02. (III.13)

Notice that ψ̄02 is an angle of negative magnitude. Solving for ψ̄02 gives

ψ̄02 = π − θ̄ − γ01. (III.14)
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The other cases follow similarly.
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IV. THE TRANSLATED SYSTEM

From Lemma (II.2.1) we have solutions giving a curve (x(s), u(s)) parameterized

by arclength. We describe points on the curve using the height function u(x). As

in Chapter II, we refer to these curves as the component surfaces. In this chapter

we use the component surfaces to construct the physical configuration surfaces of

the double sessile drop.

In order to achieve this construction, we will utilize three component surfaces

and shift each height function uij, i, j = 0, 1, 2 to satisfy our volume constraints.

The result of these shifts are that each curve (xij, uij) of the component surfaces

will be translated so that we may obtain solutions for each surface Sij of the

double drop.

This can be achieved by using the Calculus of Variations with some Lagrange

multiplier λ. However, there are consequences to our normalized system of

ordinary differential equations (II.2) with initial conditions (II.3).

For the translated system the curves satisfy


dx1
ds

= cosψ1,

du1
ds

= sinψ1,

dψ1

ds
= κu1 − λ

(IV.1)

with initial conditions 
x1(0) = x1,0,

u1(0) = 0,

ψ1(0) = ψ1,0

(IV.2)

Solutions of the form of horizontal translations u(x+ c), c ∈ R are also solutions

to the normalized system. Also, solutions of the form of vertical reflections solve

the system. That is, if u(x) solves the system then −u(x) also solves the system.

However, a vertical shift is not a solution to the normalized system. So, we take
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solutions to (II.2) with initial conditions (II.3), and reflect them about the

x-axis, then translate the solutions in the positive u direction so that u(0) = 0 is

in the new system (IV.1) with initial conditions (IV.2). See Figure IV.1.

x

u

-u(x)+λ

u(x)

-u(x)

Figure IV.1: u translation

Next, let u(`) be the height of u at ending arclength ` for our component surface

and let ū be the height u at ending arclength ` for our physical configuration

surface. Then notice that

κū1 − λ = κu(`) (IV.3)

holds between the normalized system and the translated system. Thus λ is the

vertical shift between the solutions to the two systems.
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V. COMPUTING THE VOLUME OF THE DOUBLE DROP

x

u

(x1(ℓ), u1(ℓ))

x1 = x1(ℓ)

(x1(s), u1(s))

(x1(0), u1(0))

Figure V.1: Enclosed volume of (x1(s), u1(s))

Lemma V.0.4 Let (x1(s), u1(s)) be a curve parameterized by arclength. Let ψ1,0

be the inclination angle at the initial point (x1,0, u1,0). Let (x1(`), u1(`)) be the

terminal point, at ending arclength `. Then the volume enclosed by the line

x = x(`), the curve (x1(s), u1(s)) and the plate P , that is the volume of the fluid

between the air interface and the plate is given by

V = u1(`)

(
x1(`)− x1(0)− λ

κ

)
− 1

κ
(sinψ1(`)− sinψ1(0)) (V.1)

where the curves satisfy 
dx1
ds

= cosψ1,

du1
ds

= sinψ1,

dψ1

ds
= κu1 − λ

(V.2)
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with initial conditions 
x1(0) = x1,0,

u1(0) = u1,0,

ψ1(0) = ψ1,0.

(V.3)

See Figure V.1.

Proof. To establish (V.1), consider the following computation. Note that we use

the fact u1 = 1
κ
(dψ1

ds
+ λ), given by (IV.1) and the chain rule to obtain (V.6). Also

the linearity of the integrals is used to move the λ
κ
constant to the left term.

V =

∫ x1(`)

x1(0)

(u1(`)− u1(x)) dx (V.4)

= u1(`)(x1(`)− x1(0))−
∫ x1(`)

x1(0)

u1(x) dx (V.5)

= u1(`)(x1(`)− x1(0))− 1

κ

∫ ψ1(`)

ψ1(0)

cosψ1 dψ (V.6)

= u1(`)

(
x1(`)− x1(0)− λ

κ

)
− 1

κ
(sinψ1(`)− sinψ1(0)). (V.7)

The computations for the drop configurations follow similarly to the proof of

Lemma II.2.1.

Next, we apply Lemma V.0.4 to each physical component curve (x1,ij, u1,ij),

where x1 and u1 are from the translated system (IV.1) and ij denotes the surface

Sij referenced in the computation.

Theorem V.0.5 Let the three contact angles γjip be the contact angle inside Ej,

at the triple junction (x1(`), u1(`)) of fluid Ej with fluid Ei and horizontal plane

P for fluids i, j = 0, 1, 2. Let the three angles be γij at the triple junction of fluids

E0, E1 and E2. Let the left and right initial points be x1,01(0) and x1,02(0) where

x1,12(0) = 0. Let the height of the junction be ū1 = u1(`) and λ be a Lagrange

multiplier. Then the two volumes in the double sessile drop are given by
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E0

E1
E2

T12

γ2

0P
γ2

1P
γ1

0P

γ12

γ02
γ01

θ̄

Figure V.2: Angles of the Double Sessile Drop

|E1| =
1

κ01
(sin(γ10P )− sin(θ̄ − γ02)) +

1

κ12
(sin(θ̄)− sin(γ21P ))

−ū1
(
x1,01(0)− λ01

κ01
− λ12
κ12

)
(V.8)

and

|E2| =
1

κ02
(sin(−γ20P )− sin(γ01 + θ̄ − π))− 1

κ12
(sin(θ̄)− sin(γ21P ))

+ū1

(
x1,02(0)− λ02

κ02
− λ12
κ12

)
(V.9)

in terms of θ̄ where θ̄ is the inclination angle of S12 the surface of fluids E1 and

E2.

See Figure V.2.

Proof. From Lemma II.2.1 we are given a formula for component quantities that
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gives us |E1| with quantities for S01 and |E2| with quantities for S02. The cases

are θ̄ < π
2
, θ̄ > π

2
and θ̄ = π

2
. Consider Case 1, when θ̄ < π

2
E2 will have two

components. Denote these components E2a and E2b so that |E2| = |E2a|+ |E2b|.

We partition the areas enclosed by the double sessile drop at x = x̄, where (x̄, ū)

is the triple junction of fluids E0, E1 and E2. Then we have two regions

Rleft = |E1|+ |E2a| and Rright = |E2b|. When we apply Lemma II.2.1 to the

surface S01 enclosing Rleft and the plate P , to the surface S12 and P and the

surface S02 and the plate P .

We then have

|E1| = |E1 + E2a| − |E2a| (V.10)

|E2| = |Rright|+ |E2a| = |E2b|+ |E2a| (V.11)

Similarly for case 2, θ̄ > π
2
we partition again at x = x(j) and from Lemma II.2.1

we have two components for E1 so that E1 = E1a + E1b. Now Rleft = |E1a| and

Rright = |E1b| = |E2|. We then have

|E1| = Rleft + |E1b| = |E1a|+ |E1b| (V.12)

and

|E2| = Rright − |E1b| = |E1b|+ |E2| − |E1b| (V.13)

For case 3, θ̄ = π
2
the double sessile drop will be again partitioned at x = x(j)

where Rleft = |E1| and Rright = |E2|. Thus we apply Lemma II.2.1 to each region.

Applying Lemma II.2.1 to each component of (V.10) , the computation for θ̄ < π
2

is:
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|E1| = u1,01(`01)

(
x1,01(`01)− x1,01(0)− λ01

κ01

)
− 1

κ01
(sin(γ02 − θ̄)− sin(γ10P ))

−[u1,12(`12)

(
x1,12(`12)− x1,12(0)− λ12

κ12

)
− 1

κ12
(sin(θ̄)− sin(γ21P ))] (V.14)

Since at the triple junction (x̄, ū) = (x(`), u(`)) for each surface we let

ū1 = u1,01(`01) = u1,12(`12) = u1,02(`02) and

x̄1 = x1,01(`01) = x1,12(`12) = x1,02(`02). Recall that we chose x12(0) = 0. We then

have

|E1| =
1

κ01
(sin(γ10P )− sin(θ̄)− γ02)) +

1

κ12
(sin(θ̄)− sin(γ21P ))

−ū1
(
x1,01(0) +

λ01
κ01
− λ12
κ12

)
(V.15)

Similarly, applying Lemma II.2.1 to each component of (V.11) and inserting the

reflected angles for Region E2b the computation for θ̄ < π
2
is:

|E2| = u1,02

(
x1,02(0)− x1,02(`02)−

λ02
κ02

)
− 1

κ02
(sin(γ01 + θ̄ − π)− sin(−γ20P ))

+[u1,12(`12)

(
x1,12(`12)− x1,12(0)− λ12

κ12

)
− 1

κ12
(sin(θ̄)− sin(γ21P ))] (V.16)

Using the same equalities as above we have,

|E2| =
1

κ02
(sin(−γ20P )− sin(γ01 + θ̄ + π))− 1

κ12
(sin(θ̄)− sin(γ21P ))

+ū1

(
x1,02(0)− λ02

κ02
− λ12
κ12

)
(V.17)
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Cases 2 and 3 follow similarly.
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VI. CREATING THE DOUBLE DROP

After exploring the physical properties of the double drop, we are now prepared

to solve the problem. That is, given prescribed quantities for a set of drops, to

use our program to generate the drops desired. The physical quantities are: the

outer contact angles γ10P and γ20P ; capillary constants for each surface κ01, κ02

and κ12; surface tensions σ01, σ02 and σ12 and volumes V1 and V2 it will generate

a physical representation for any two fluids. Matlab is the software used to

construct this program.

Two solvers were implemented throughout the program: ode45 and fsolve.

According to the Matlab Guide [2], the solver ode45 is prescribed for nonstiff

differential equations. The algorithm is based on Runge-Kutta formulas. Fsolve is

a nonlinear system solver, that uses a trust-region dogleg method.

For our problem we used a shooting method, that is proposed a guess in terms of

arclength and height to obtain solutions from ode45 near the actual solution.

This guess is used together with a residual function to specify requirements for

the solution. The requirements used in the residual function are

ψ(`)− ψ̄ = 0 (VI.1)

and

x(`)− x̄ = 0. (VI.2)

That is, the difference between the output for ending arclength from ode45 ψ(`)

and the prescribed ψ̄ is near zero. Similarly, the difference between the ending x

position x(`) computed and the prescribed x̄ is near zero. This satisfies our

boundary conditions.

To solve the system, solutions were generated for a single curve. Then the curve

was replicated and translated in a modular fashion to create the surfaces S01, S12

and S02. The residual error is then minimized to implement the boundary
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conditions. The result is that all three surfaces were joined at the appropriate

boundaries to form the double drop.

There is a system of sixteen equations and sixteen unknowns identified that must

be solved to receive solutions for the double drop. The boundary conditions for

each of the three component surfaces are:

ψ01(`01)− ψ̄01 = 0 (VI.3)

ψ12(`12)− ψ̄12 = 0 (VI.4)

ψ02(`02)− ψ̄02 = 0 (VI.5)

x01(`01)− x̄01 = 0 (VI.6)

x12(`12)− x̄12 = 0 (VI.7)

x02(`02)− x̄02 = 0. (VI.8)

Many equations were of the same form but solved for each of the three surfaces.

We implemented this in a modular fashion. For example boundary conditions for

angles and x values (VI.1) and (VI.2) were implemented three times each as a

larger residual function, minimizing the residual error for each surface. Our first

six equations are (VI.3)-(VI.8).

Another condition that must be satisfied is that all three surfaces must end at

the triple junction J = (x̄, ū), as in

S01(`01) = (x̄, ū) (VI.9)

S12(`12) = (x̄, ū) (VI.10)

S02(`02) = (x̄, ū) (VI.11)

Solving these equations gives six equations one in x and one in u. These are the

next six equations.
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Next, we verify the angle conditions at the junction.

sin γ01
σ01

=
sin γ02
σ02

=
sin γ12
σ12

(VI.12)

Recall, that the surface tensions σij are forces acting on a surface separating two

immiscible fluids in equilibrium. With this view we may arrange our vectors σij

tangential to each surface at J to form a triangle in order to express the contact

angles γij in terms of the law of cosines.

For γ02 we have

σ2
02 = σ2

12 + σ2
01 − 2σ12σ01 cos(π − γ02) (VI.13)

γ02 = π − arccos

(
σ2
12 + σ2

01 − σ2
02

2σ12σ01

)
. (VI.14)

The construction for γ01 follows similarly and the result is

γ01 = π − arccos

(
σ2
02 + σ2

12 − σ2
01

2σ02σ12

)
. (VI.15)

For γ12 we use the fact γ12 = 2π − γ02 − γ01. We used the law of cosines for this

construction but we really wished to solve the law of sines at this location.

However, we note that cos(φ) = | sin(π
2
− φ)| for any φ and so our computation is

valid. By solving (VI.12) we have two more of our equations.

We have taken care of all of our requirements but the volume. The final two

equations verify that the difference between the prescribed volumes V1 and V2

and our computed volumes (V.8) and (V.9), denoted |E1| and |E2| are minimized.

V1 − |E1| = 0 (VI.16)

V2 − |E2| = 0 (VI.17)
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Therefore, using this system of sixteen equations and sixteens and unknowns

together for the prescribed quantities desired, we are able to generate a double

sessile drop for any two fluids.

The following is a collection of double drop examples. For each example, see

Figures VI.1-VI.3, we have included both the prescribed quantities and output

values. See Tables VI.1 and VI.2.

Table VI.1: Double drop examples

Prescribed quantities Figure VI.1 Figure VI.2 Figure VI.3
e01 20 20 20
e02 30 30 30
e12 40 40 40
ρ0 0 0 0
ρ1 3 3 3
ρ2 5 5 5
V1 0.75 0.75 0.75
V2 0.50 0.40 0.55
κ01 1.4715 1.4715 1.4715
κ02 1.6350 1.6350 1.6350
κ12 0.4905 0.4905 0.4905
γ10P 2π/3 π/2 π/2

γ20P π/3 2π/3 5π/12

γ21P 13π/48 2π/3 11π/24

Table VI.2: Double drop examples outputs

Output values Figure VI.1 Figure VI.2 Figure VI.3
θ̄ π/3 π/2 5π/12

x̄01 1.6239 2.9631 2.2580
x̄02 3.3251 1.2431 2.2957
x̄12 0.2906 -0.1317 0.0671
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Figure VI.1: Example 1

Figure VI.2: Example 2
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Figure VI.3: Example 3
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