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EXISTENCE OF SOLUTIONS FOR SUBLINEAR EQUATIONS
ON EXTERIOR DOMAINS

JOSEPH A. IAIA

Abstract. In this article we consider the radial solutions of ∆u+K(r)f(u) =

0 on the exterior of the ball of radius R > 0, BR, centered at the origin in RN
with u = 0 on ∂BR and limr→∞ u(r) = 0 where N > 2, f is odd with f < 0 on
(0, β), f > 0 on (β,∞), f(u) ∼ up with 0 < p < 1 for large u and K(r) ∼ r−α

with
(N+2)−p(N−2)

2
≤ α < N − p(N − 2) for large r. We prove existence of n

solutions - one with exactly n zeros on [R,∞) - if R > 0 is sufficiently small. If
R > 0 is sufficiently large then there are no solutions with limr→∞ u(r) = 0.

1. Introduction

In this article we study radial solutions of

∆u+K(r)f(u) = 0 in RN\BR, (1.1)

u = 0 on ∂BR, (1.2)

u→ 0 as |x| → ∞ (1.3)

where BR is the ball of radius R > 0 centered at the origin in RN and K(r) > 0.
We assume:

(H1) f is odd and locally Lipschitz, f < 0 on (0, β), f > 0 on (β,∞), and
f ′(0) < 0.

Let F (u) =
∫ u
0
f(s) ds. Since f is odd it follows that F is even and from (H1) it

follows that F is bounded below by −F0 < 0, F has a unique positive zero, γ, with
0 < β < γ, and

(H2) −F0 < F < 0 on (0, γ), F > 0 on (γ,∞).
We also assume:

(H3) There exists p with 0 < p < 1 such that f(u) = |u|p−1u + g(u) where
limu→∞

|g(u)|
|u|p = 0 and g(u) ≥ 0 for u ≥ γ.

In addition, we assume K is differentiable on (R,∞) and that there exist constants
k2 > k1 > 0, and α with (N+2)−p(N−2)

2 ≤ α < N − p(N − 2) such that
(H4) k1r

−α < K(r) < k2r
−α on [R,∞), and:

(H5) limr→∞
rK′

K = −α for (N+2)−p(N−2)
2 ≤ α < N − p(N − 2), and rK′

K >
−2(N − 1) on [R,∞).
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Note that (H5) implies r2(N−1)K(r) is increasing.
Interest in the topic for this article comes from recent papers [5, 6, 11, 12,

14] about solutions of differential equations on exterior domains. When f grows
superlinearly at infinity - i.e. limu→∞ f(u)/u = ∞, Ω = RN , and K(r) ≡ 1 then
the problem (1.1), (1.3) has been extensively studied [1, 2, 3, 9, 13, 15].

In this article we consider the case where f grows sublinearly at infinity - i.e.
limu→∞

f(u)
up = c0 > 0 with 0 < p < 1 and K(r) ∼ r−α with (N+2)−p(N−2)

2 ≤
α < N − p(N − 2). In earlier papers [7, 8, 10] the cases where f is sublinear with
0 < α < 2, N − p(N − 2) < α < 2(N − 1), and α > 2(N − 1) were investigated.

In [14] existence of a positive solution if R > 0 is sufficiently small was proved
using sub and super solutions when f is semipositone. Here we prove the existence
of n solutions if R > 0 is sufficiently small.

Since we are interested in radial solutions of (1.1)-(1.3) we assume that u(x) =
u(|x|) = u(r) where x ∈ RN and r = |x|=

√
x2

1 + · · ·+ x2
N so that u solves

u′′(r) +
N − 1
r

u′(r) +K(r)f(u(r)) = 0 on (R,∞) where R > 0, (1.4)

u(R) = 0, u′(R) = b ∈ R. (1.5)

In this article we prove the following result.

Theorem 1.1. Assume (H1)–(H5) hold. Then given a nonnegative integer n there
exists a solution of (1.4)-(1.5) with n zeros on (R,∞) and limr→∞ u(r) = 0 if
R > 0 is sufficiently small.

We note that if 0 < α < 2 then it was shown in [7] that there are solutions for
all R > 0 whereas when α > 2 and R is sufficiently large then it was shown in [8]
that there are no solutions of (1.1)-(1.3) with limr→∞ u(r) = 0. In this paper we
prove existence of solutions of (1.1)-(1.3) for (N+2)−p(N−2)

2 ≤ α < N−p(N−2) and
R > 0 sufficiently small. A similar result was proved in [8], [10] for N − p(N − 2) <
α < 2(N − 1) and for α > 2(N − 1).

2. Behavior for small b > 0

We suppose that U(r) solves (1.4) and then make the change of variables:

U(r) = u(r2−N ).

Then for 0 < t <∞ we see that u satisfies

u′′ + h(t)f(u) = 0, (2.1)

where

h(t) =
t

2(N−1)
2−N K(t

1
2−N )

(N − 2)2
.

It follows from (H4), (H5) that

h(t) > 0, h′(t) < 0, h1t
−q < h(t) < h2t

−q (2.2)

for t > 0 where q = 2(N−1)−α
N−2 , hi = ki

(N−2)2 . In addition it follows from (H3), (H5),
and (2.2) that

1 < p+ 1 < q < 2. (2.3)
We also assume that

u(0) = 0, u′(0) = b > 0. (2.4)
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For the rest of this article we will focus on finding solutions of (2.1), (2.4) such
that u(R2−N ) = 0. If such a solution exists then U(r) = u(r2−N ) will be a solution
of (1.1)-(1.3).

We first examine (2.1), (2.4) assuming (H1)–(H5). It is straightforward to show
that there is a unique solution u ∈ C1([0, ε)) ∩ C2(0, ε) of (2.1) for some ε > 0
such that (2.4) holds. A proof is provided in the appendix. Then from (H3) since
|f(u)| ≤ C1|u| for some constant C1 > 0 it follows that the solution of (2.1), (2.4)
exists on (0,∞).

Since u > 0 for small positive t (by (2.4)) and since f(u) < 0 for 0 < u < β by
(H1) it follows from (2.1) that u′′ > 0 when 0 < u < β. Therefore u′ > u′(0) = b
when 0 < u < β. Integrating this on (0, t) and using (2.4) we obtain

u > bt when 0 < u < β. (2.5)

It then follows that there is a smallest positive value of t, tb, such that u(tb) = β
and 0 < u < β on (0, tb).

We next show that u gets larger than γ. So suppose not. That is suppose
0 < u < γ for all t > 0 and consider

E =
1
2
u′2

h(t)
+ F (u) for t > 0. (2.6)

Then from (2.1) and (2.2) we have

E′ =
(1

2
u′2

h(t)
+ F (u)

)′
= −h

′u′2

h2
≥ 0 (2.7)

and so by the initial conditions (2.4) we see that

E =
1
2
u′2

h(t)
+ F (u) > 0 for t > 0. (2.8)

Now while 0 < u < γ we have F (u) < 0 and since F (γ) = 0 with F ′(γ) = f(γ) >
0 (since γ > β) then we find that −F (u) > a0(γ−u) for β < u < γ for some a0 > 0.
Using this in (2.8) we obtain

u′2 ≥ −2hF (u) > 2a0h(γ − u) for t > tb. (2.9)

Then by (2.2) and (2.9) we have

u′√
γ − u

>
√

2a0h1t
− q2 for t > tb. (2.10)

Integrating this on (tb, t) gives√
γ − u(t) <

√
γ − β −

√
2a0h1

( t1− q2 − t1− q2b

1− q
2

)
for t > tb. (2.11)

Since 1 < q < 2 it follows that the right-hand side of (2.11) goes to −∞ as t→∞
contradicting that 0 < u < γ. Thus u eventually gets larger than γ and so there
exists tb,γ > tb such that u(tb,γ) = γ and 0 < u < γ on (0, tb,γ).

Next we denote tb,2 as the smallest positive value of t such that u(tb,2) = β
2 .

Note that tb,2 < tb < tb,γ .

Lemma 2.1. Assume (H1)–(H5) and let u solve (2.1), (2.4). Then limb→0+ tb,2 =
∞.
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Proof. From the above arguments we know u > 0 and u′ > 0 on (0, tb,γ). Also it
follows from (H1) that

f(u) ≥ −a1u for u > 0 for some a1 > 0 (2.12)

so that integrating (2.1) twice on (0, t) gives

0 < u ≤ bt+ a1

∫ t

0

∫ s

0

h(x)u(x) dx ds ≤ bt+ a1t

∫ t

0

h(x)u(x) dx. (2.13)

Now let

y = b+ a1

∫ t

0

h(x)u(x) dx. (2.14)

Then from (2.13)-(2.14) we have

0 < u ≤ ty and y′ = a1hu (2.15)

and from (2.2), (2.15) we obtain

y′ = a1hu ≤ a1thy ≤ a1h2t
1−qy. (2.16)

Dividing (2.16) by y, integrating on (0, t), exponentiating, and recalling that q < 2
gives

u ≤ bt exp
(a1h2t

2−q

2− q

)
for t > 0 (2.17)

so that evaluating (2.17) at tb,2 gives

β

2
≤ btb,2 exp

(a1h2t
2−q
b,2

2− q

)
. (2.18)

Since q < 2 it then follows from (2.18) that tb,2 → ∞ as b → 0+. This completes
the proof. �

Now let c = 2−q
1−p and note from (2.3) and (H5) that 1

2 ≤ c < 1. We also note

that y = c0t
c with c0 = c(1− c)−

1
1−p > 0 is a solution of y′′ + 1

tq y
p = 0 for t > 0.

Lemma 2.2. Assume (H1)–(H5) and let u solve (2.1), (2.4). Then

lim
b→0+

t1−cb,2 u
′(tb,2) = 0.

Proof. Using (2.2) and (2.12) in (2.1) gives

u′′ − a1h2

tq
u ≤ 0. (2.19)

Letting

u(t) =
√
t w
(2
√
a1h2

2− q
t

2−q
2

)
(2.20)

then using (2.4) and (2.19) it follows that w satisfies

w′′ +
1
t
w′ −

(
1 +

1
(2− q)2t2

)
w ≤ 0, lim

t→0+

w(t)

t
1

2−q
=
( 2− q

2
√
a1h2

) 1
2−q

b. (2.21)

Now let w1 satisfy

w′′1 +
1
t
w′1 −

(
1 +

1
(2− q)2t2

)
w1 = 0, lim

t→0+

w1(t)

t
1

2−q
=
( 2− q

2
√
a1h2

) 1
2−q

b. (2.22)
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That is, w1 satisfies the modified Bessel equation and in fact

w1(t) =
( 2− q

2
√
a1h2

) 1
2−q b

a
I 1

2−q
(t) (2.23)

where I 1
2−q

(t) is the modified Bessel function of order 1
2−q that is finite at the origin.

It is well-known [4] that

I 1
2−q

(t) > 0, I ′ 1
2−q

(t) > 0 for t > 0, lim
t→∞

I 1
2−q

(t) =∞,

there exists a > 0 such that lim
t→0+

I 1
2−q

(t)

t
1

2−q
= a.

(2.24)

It is also true that ∣∣∣I ′ 12−q
(t)

I 1
2−q

(t)

∣∣∣ ≤ a2 for t > 1 for some a2 > 0. (2.25)

A proof of (2.25) is provided in the appendix.
It then follows from (2.23), (2.25) that

w′1
w1

=
I ′ 1

2−q

I 1
2−q

≤ a2 for t > 1. (2.26)

Next multiplying (2.21) by tw1, (2.22) by tw, and subtracting gives

[t(w′w1 − w′1w)]′ ≤ 0 for t > 0. (2.27)

Since

lim
t→0+

w(t)

t
1

2−q
= lim
t→0+

w1(t)

t
1

2−q
=
( 2− q

2
√
a1h2

) 1
2−q

b

and

lim
t→0+

w′(t)

t
q−1
2−q

= lim
t→0+

w′1(t)

t
q−1
2−q

=
1

2− q

( 2− q
2
√
a1h2

) 1
2−q

b,

then integrating (2.27) on (0, t) gives

w′w1 − ww′1 ≤ 0 for t > 0. (2.28)

Since u > 0 on (0, tb,2) it follows from (2.20) that w > 0 on (0, tb,2). It also
follows that w1 > 0 since I 1

2−q
> 0 by (2.24). Now dividing (2.28) by ww1, using

(2.26), and recalling tb,2 →∞ as b→ 0+ from Lemma 2.1 gives

w′

w
≤ w′1
w1
≤ a2 for t > tb,2 if b > 0 is sufficiently small. (2.29)

Next we return to (2.20) and differentiate to obtain

u′ =
t−1u

2
+
√
a1h2t

− q2 u
w′

w
. (2.30)

Using (2.29)-(2.30), Lemma 2.1, and assuming b > 0 is sufficiently small we
obtain

t1−cu′ =
t−cu

2
+
√
a1h2 t

1−c− q2 u
w′

w
≤ t−cu

2
+ a2

√
a1h2t

1−c− q2 u (2.31)
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for t > tb,2. Since 1− c− q
2 = − (2−q)(1+p)

2(1−p) < 0 and 1
2 ≤ c < 1, evaluating (2.31) at

tb,2 along with Lemma 2.1 gives

0 < t1−cb,2 u
′(tb,2) ≤

βt−cb,2
4

+
βa2

2

√
a1h2 t

1−c− q2
b,2 → 0 as b→ 0+.

This completes the proof. �

Lemma 2.3. Assume (H1)-(H5) and let u solve (2.1), (2.4). Then

lim
b→0+

t1−cb,γ u
′(tb,γ) = 0.

Proof. Rewriting (2.1) we see that

(t1−cu′)′ = (1− c)t−cu′ − t1−ch(t)f(u). (2.32)

Integrating this on (tb,2, tb,γ) gives

t1−cb,γ u
′(tb,γ) = t1−cb,2 u

′(tb,2) +
∫ tb,γ

tb,2

(1− c)s−cu′ ds−
∫ tb,γ

tb,2

s1−ch(s)f(u) ds. (2.33)

The first term on the right-hand side of (2.33) goes to 0 as b→ 0+ by Lemma 2.2.
Integrating the first integral in (2.33) by parts gives∫ tb,γ

tb,2

(1− c)s−cu′ ds = (1− c)t−cb,γγ− (1− c)t−cb,2
β

2
+
∫ tb,γ

tb,2

c(1− c)s−c−1u ds. (2.34)

The first two terms on the right-hand side of this go to 0 as b→ 0+ by Lemma 2.1.
Since β

2 < u < γ on (tb,2, tb,γ) estimating the third term on the right-hand side of
(2.34) and using Lemma 2.1 we obtain∣∣ ∫ tb,γ

tb,2

c(1− c)s−c−1u ds
∣∣ ≤ (1− c)γ(t−cb,2 − t

−c
b,γ)→ 0 as b→ 0+. (2.35)

Finally, on [β/2, γ] we have |f | ≤ a3 for some constant a3 > 0 and thus by (2.2),∣∣ ∫ tb,γ

tb,2

s1−ch(s)f(u) ds
∣∣ ≤ a3h2(t2−q−cb,γ − t2−q−cb,2 )

2− q − c
→ 0 as b→ 0+

since 2 − q − c = −p(2−q)1−p < 0. Thus it follows from Lemma 2.2 and (2.34)-(2.35)
that the right-hand side of (2.33) goes to 0 as b → 0+ and so the lemma follows.
This completes the proof. �

Lemma 2.4. Assume (H1)–(H5) and let u solve (2.1), (2.4). Let u = tcv. Then
limb→0+ tb,γv

′(tb,γ) = 0.

Proof. We make the change of variables u = tcv and after differentiating we obtain

t1−cu′ = cv + tv′. (2.36)

Evaluating (2.36) at tb,γ we see by Lemma 2.3 that the left-hand side of (2.36) goes
to 0 as b → 0+. Also by Lemma 2.1 since tb,γ > tb,2 → ∞ as b → 0+ and since
v(tb,γ) = u(tb,γ)

tcb,γ
= γ

tcb,γ
→ 0 as b→ 0+ we see that the first term on the right-hand

side of (2.36) goes to 0 as b→ 0+ when evaluated at tb,γ and thus it follows that

tb,γv
′(tb,γ)→ 0 as b→ 0+.

This completes the proof. �
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Next substituting u = tcv into (2.1) and using (H3) gives

t2v′′ + 2ctv′ + c(c− 1)v + tqh(t)vp + t2−ch(t)g(tcv) = 0 for t > tb,γ . (2.37)

Now for t > tb,γ we have u > γ > 0 (and hence v > 0) and then by (H3) we have
g(tcv) = g(u) ≥ 0. Then by (2.2) we have

t2v′′ + 2ctv′ + d(v) < 0 for t > tb,γ (2.38)

where d(v) = c(c− 1)v + h1|v|p−1v. Next we let v1 be the solution of

t2v′′1 + 2ctv′1 + d(v1) = 0, (2.39)

v1(tb,γ) = v(tb,γ), v′1(tb,γ) = v′(tb,γ). (2.40)

Now let
E1 =

1
2
t2v′21 +D(v1) (2.41)

where D(v1) ≡
∫ v1
0
d1(s) ds = c(c−1)

2 v2
1 + h1

p+1 |v1|
p+1. It follows from (2.39) that

E′1 = (1− 2c)tv′21 ≤ 0 since
1
2
≤ c < 1. (2.42)

Note d(0) = 0 and that d(v1) is increasing near v1 = 0 since 0 < p < 1. Also
notice d(v1) has a unique positive zero at α1 > 0 and d(v1) < 0 for v > α1. Similarly
D(0) = 0 and D(v1) is increasing near v1 = 0. In addition, D has a local maximum
at α1 and a unique positive zero at α2 > α1 > 0. Also D(v1) < 0 for v1 > α2.

Next it follows from Lemma 2.4 and since v1(tb,γ) = v(tb,γ) = γ
tcb,γ
→ 0 as b→ 0+

(by Lemma 2.1) that

E1(tb,γ) =
1
2
t2b,γv

′2
1 (tb,γ) +D(v1(tb,γ)) =

1
2
t2b,γv

′2(tb,γ) +D(v(tb,γ))→ 0 (2.43)

as b→ 0+, and since E1 is non-increasing for 1
2 ≤ c < 1 (by (2.42)) it follows that

1
2
t2v′21 +D(v1) = E1(t) ≤ E1(tb,γ) < ε (2.44)

for t > tb,γ and b sufficiently small.

Lemma 2.5. Assume (H1)–(H5) and let u solve (2.1), (2.4). If b is sufficiently
small then v1 has a local maximum, M1,b, and v′1 > 0 on (tb,γ ,M1,b).

Proof. We suppose by way of contradiction that v′1 > 0 for all t > tb,γ . Then
v1(t) > v1(tb,γ) = γ

tcb,γ
> 0 and by (2.44) if b is sufficiently small then D(v1) ≤

E1 < ε if t > tb,γ and so it follows that 0 < v1 <
1
2α1 if b is sufficiently small. In

particular, v1 is bounded and since v1 is increasing then v1 → L as t → ∞ where
0 < L < α1. Since D(v1) → D(L) as t → ∞ and since E′1 ≤ 0 it follows that E1

has a finite limit as t → ∞. Thus from (2.41) we have t2v′21 → A ≥ 0 for some
A ≥ 0. If A > 0 then v′1 >

A
2t for large t implying v1(t) > v1(t0) + A ln(t/t0)→∞

as t → ∞ contradicting that v1 is bounded. It follows therefore that A = 0 and
thus tv′1 → 0 as t→∞. Using this and taking limits in (2.39) we see that

lim
t→∞

t2v′′1 = −d(L).

If d(L) 6= 0 then using a similar argument as we just showed with v1 would imply
that v′1 is unbounded contradicting tv′1 → 0 so it must be that d(L) = 0 but this is
impossible since 0 < L < α1. Therefore from this contradiction we see that v1 has
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a first local maximum, M1,b, and v′1 > 0 on (tb,γ ,M1,b) if b > 0 is sufficiently small.
This completes the proof. �

Lemma 2.6. Assume (H1)–(H5) and let u solve (2.1), (2.4). Then v has a local
maximum on (tb,γ ,M1,b) if b is sufficiently small.

Proof. We assume v′ > 0 on (tb,γ ,M1,b) otherwise we are done. Since v′ > 0 it
follows that v > v(tb,γ) = γ > 0 on (tb,γ ,M1,b). Multiplying (2.38) by v1, (2.39) by
v, and subtracting gives

t2(v1v′ − vv′1)′ + 2ct(v1v′ − vv′1) + h1(vpv1 − vp1v) ≤ 0.

Multiplying this by t2c−2 gives(
t2c(v1v′ − vv′1)

)′
+ h1t

2c−2vv1(vp−1 − vp−1
1 ) ≤ 0 for t > tb,γ . (2.45)

Notice it follows from (2.38)–(2.40) that

t2b,γ(v′′(tb,γ)− v′′1 (tb,γ)) < 0

and so v < v1 on (tb,γ , tb,γ+ε0) for some ε0 > 0. We next show that v and v1 do not
intersect on (tb,γ ,M1,b). Suppose they did and so there is a t0 with tb,γ < t0 < M1,b

such that v < v1 on (tb,γ , t0) and v(t0) = v1(t0). Integrating (2.45) on (tb,γ , t0) and
using (2.40) gives

t2c0 (v1(t0)v′(t0)− v(t0)v′1(t0)) + h1

∫ t0

tb,γ

t2c−2vv1(vp−1 − vp−1
1 ) dt ≤ 0. (2.46)

Since v < v1 on (tb,γ , t0) and 0 < p < 1 it follows that vp−1 > vp−1
1 on (tb,γ , t0)

and so the integral in (2.46) is positive. So from (2.46) we see (v1(t0)v′(t0) −
v(t0)v′1(t0)) = v(t0)(v′(t0)− v′1(t0)) < 0 and since v(t0) > 0 we see that

v′(t0) < v′1(t0). (2.47)

On the other hand, since v < v1 on (tb,γ , t0) and v(t0) = v1(t0) then v(t)− v(t0) <
v1(t) − v1(t0) and so v(t)−v(t0)

t−t0 > v1(t)−v1(t0)
t−t0 for tb,γ < t < t0. Therefore taking

limits as t→ t−0 gives
v′(t0) ≥ v′1(t0) (2.48)

which contradicts (2.47). Thus we see that v < v1 on (tb,γ ,M1,b). Now we integrate
(2.45) on (tb,γ ,M1,b) and obtain

M2c
1,bv1(M1,b)v′(M1,b) + h1

∫ M1,b

tb,γ

t2c−2vv1(vp−1 − vp−1
1 ) dt ≤ 0. (2.49)

Then as earlier it follows that vp−1 > vp−1
1 on (tb,γ ,M1,b) thus the integral term in

(2.49) is positive. But also v1(M1,b)v′(M1,b) ≥ 0 since v′ > 0 on (tb,γ ,M1,b) and
so we get a contradiction to (2.49). Thus v must have a local maximum, Mv,b, on
(tb,γ ,M1,b) if b > 0 is sufficiently small. This completes the proof. �

Lemma 2.7. Assume (H1)–(H5) and let u solve (2.1)-(2.4). Then u has a local
max if b is sufficiently small.

Proof. Since u = tcv, it follows that u′ = tc−1(tv′ + cv) and so in order to show
u′ < 0 somewhere we want to show that tv′ + cv gets negative for some t > tb,γ .
So by the way of contradiction let us suppose u′ > 0 for t > tb,γ . Thus it follows
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that u > 0 and hence v > 0 for t > tb,γ . We next show that v < v1 for t > tb,γ .
Integrating (2.45) on (tb,γ , t) gives

t2c(v1v′ − vv′1) + h1

∫ t

tb,γ

t2c−2vv1(vp−1 − vp−1
1 ) dt ≤ 0 for t > tb,γ . (2.50)

Now using an identical argument as in Lemma 2.6 it follows that v and v1 do
not intersect for t > tb,γ and thus 0 < v < v1 for t > tb,γ . It follows then from
(2.50) that v1v′ − vv′1 < 0 for t > tb,γ . And since v1 > v > 0 we then have v′

v <
v′1
v1

.

From this it follows that tv′ + cv < t
v′1
v1
v + cv = v

v1
(tv′1 + cv1) for t > tb,γ . Thus to

show u′ gets negative it suffices to show tv′1 + cv1 gets negative for some t > tb,γ .
Now recall from Lemma 2.5 that v1 has a local maximum at M1,b. Thus

v′1(M1,b) = 0 and v′′1 (M1,b) ≤ 0. In fact by the uniqueness of solutions of initial
value problems v′′1 (M1,b) < 0 and so d(v1(M1,b)) > 0. Thus

0 < v1(M1,b) < α1. (2.51)

Now v1 cannot have a positive local minimum at m1,b > M1,b with v′1 < 0 on
(M1,b,m1,b) for at such a point we would have v′1(m1,b) = 0 and v′′1 (m1,b) ≥ 0
implying d(v1(m1,b)) ≤ 0 which would imply v1(m1,b) ≤ 0 contradicting 0 < v < v1.
Thus

v′1 < 0 for t > M1,b. (2.52)
Next we observe that if v′′1 < 0 for t > M1,b then v1 has a zero for t > M1,b which

implies v has a zero since v < v1 but this contradicts that v > 0. Thus v1 has an
inflection point t2 > M1,b with v′′1 < 0 on (M1,b, t2). In addition, v1 cannot have
another inflection point t3 > t2 with v′′ > 0 on (t2, t3) for at such a point t3 then
v′1 would have a local maximum so v′′1 (t3) = 0 and v′′′1 (t3) ≤ 0. Using this and then
differentiating (2.39) this implies (c2 + c+ph1v

p−1
1 (t3))v′1(t3) ≥ 0 and so v′1(t3) ≥ 0

but this contradicts (2.52). Thus v′′1 > 0 for t > t2.
Now substituting that v′′1 > 0 for t > t2 into (2.39) gives:

2ctv′1 + d(v1) < 0 for t > t2

and so rewriting

tv′1 + cv1 <
1 + c

2
v1 −

h1v
p
1

2c
= vp1

(1 + c

2
v1−p
1 − h1

2c

)
for t > t2. (2.53)

Now for b > 0 sufficiently small we know D(v1) < ε for t > tb,γ by (2.44). In
particular, D(v1(M1,b)) < ε and since we also know (2.51) this implies that for b > 0
sufficiently small then v1 is also arbitrarily small. In particular, for sufficiently small
b > 0 the right-hand side of (2.53) is negative which implies tv′1 + cv1 and hence u′

gets negative. Therefore u has a local maximum. This completes the proof. �

Lemma 2.8. Assume (H1)–(H5) and let u solve (2.1), (2.4). Then u has a zero if
b sufficiently small.

Proof. From Lemma 2.8 we know that u has a local maximum, Mu,b, with Mu,b >
tb, if b > 0 is sufficiently small and so from (2.1) we see that u′′ < 0 while f(u) > 0.
It follows then that u must become less than or equal to β and so there exists
sb > Mu,b such that u(sb) = β. Returning to (2.8) we see then that 1

2
u′2

h + F (u) =
E ≥ E0 > 0 for t > sb and since F (u) < 0 for 0 < u < β it follows from (2.2)
that −u′ ≥

√
2E0h1t

− q2 for t > sb. Integrating this on (sb, t) it then follows that
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u(t) ≤ u(sb)−
√

2E0h1

( t1− q2−s1− q2b

1− q2

)
→ −∞ as t→∞ since 1 < q < 2 and so u has

a zero. This completes the proof. �

3. Behavior for large b > 0

We now examine (2.1), (2.4) for large b > 0. We want to show that either ub > 0
on (0,∞) or if there exists zu,b > 0 such that ub(zu,b) = 0 with u > 0 on (0, zu,b)
then zu,b → ∞ as b → ∞. So let us suppose that zu,b is finite and suppose there
exists S such that 0 < zu,b ≤ S for all large b.

Integrating (2.1) twice on (0, t) gives

ub = bt−
∫ t

0

∫ s

0

h(x)f(ub) dx ds.

Letting ψb = ub
b gives

ψb = t−
∫ t

0

∫ s

0

h(x)f(bψb)
b

dx ds (3.1)

and then letting ψb = tyb gives

yb = 1− 1
t

∫ t

0

∫ s

0

h(x)f(bxyb)
b

dx ds.

It follows from (H1) and (H3) that |f(u)| ≤ C1|u| for some C1 > 0. Thus

|yb| ≤ 1 + C1

∫ t

0

xh(x)|yb(x)| dx. (3.2)

We now denote the right-hand side of (3.2) as φb. Then we see φ′b = C1th(t)|yb|
and so (3.2) reads φ′b

C1th
= |yb| ≤ φb. Rewriting and integrating this on (0, t) gives

|ψb|
t

= |yb| ≤ φb ≤ exp
(C1h2

2− q
t2−q

)
.

Thus

|ψb| ≤ t exp
(C1h2

2− q
t2−q

)
≤ C2 on [0, S] for some constant C2 > 0. (3.3)

Also from (3.1) we have

ψ′b = 1−
∫ t

0

h(x)f(bψb)
b

dx. (3.4)

It follows then from (3.3)-(3.4), since |f(u)| ≤ C1|u|, and since 0 < th(t) < h2t
1−q

is integrable near t = 0 (because 1 < q < 2) that there is a constant C3 > 0 such
that

|ψ′b| ≤ 1 + C1

∫ t

0

h(x)|ψb| dx ≤ 1 + C1

∫ t

0

xh(x) exp
(C1h2

2− q
x2−q

)
dx ≤ C3 (3.5)

on [0, S]. Thus from (3.3) and (3.5) we have |ψb| and |ψ′b| are uniformly bounded
on [0, S] and so the {ψb} are equicontinuous on [0, S]. In addition, differentiating
(3.4) and using (3.3) we see there is some constant C4 > 0 such that

|ψ′′b | ≤
∣∣∣h(t)f(bψb)

b

∣∣∣ ≤ C1h(t)|ψb| ≤ C1th(t) exp
(C1h2

2− q
t2−q

)
≤ C4t

1−q
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on [0, S]. It then follows that

|ψ′b(t1)− ψ′b(t2)| ≤
∫ t2

t1

|ψ′′b | ≤
C4

2− q
|t2−q2 − t2−q1 | on [0, S]. (3.6)

Thus since q < 2 we see from (3.6) that {ψ′b} are also equicontinuous on [0, S]. It
then follows by the Arzela-Ascoli theorem that there is a subsequence (still denoted
ψb) such that

ψb → ψ and ψ′b → ψ′ uniformly on [0, S] as b→∞. (3.7)

Now since ub (and hence ψb) has a zero zu,b it follows that ub has a local max-
imum, Mu,b, with 0 < Mu,b < zu,b ≤ S. Then since E is nondecreasing (by (2.7))
we have

1
2
u′2b
h

+ F (ub) ≤ F (ub(Mu,b)) for 0 ≤ t ≤Mu,b.

Rewriting and integrating this on [0,Mu,b] using (2.2) gives∫ ub(Mu,b)

0

dt√
2
√
F (ub(Mu,b))− F (t)

dt =
∫ Mu,b

0

|u′b|√
2
√
F (ub(Mu,b))− F (ub)

dt

≤
∫ Mu,b

0

√
h dt

≤
√
h2M

1− q2
u,b

1− q
2

.

Since F (t) ≥ −F0 where F0 > 0 it follows that the above inequality and (H3) imply

ub(Mu,b)√
2
√
C5[ub(Mu,b)]p+1 + F0

≤
√
h2M

1− q2
u,b

1− q
2

≤
√
h2S

1− q2

1− q
2

for some C5 > 0. It follows from this and since 0 < p < 1 that ub(Mu,b) must be
bounded and thus ub is bounded. Then since ψb = u

b it follows that ψb → 0 on
[0, S]. Thus (3.7) implies ψ ≡ 0. In addition, (3.7) also implies ψ′b → ψ′ ≡ 0 but
from (3.4) it follows that 0 = ψ′(0)← ψ′b(0) = 1 6= 0 yielding a contradiction. Thus
the assumption that the zu,b are bounded must be false. Therefore zu,b → ∞ as
b→∞.

4. Proof of Theorem 1.1

We now consider the set

S0 = {b > 0 : ub > 0 on (0, R2−N )}.

From section three it follows that if b > 0 is sufficiently large then ub > 0 on
(0, R2−N ) and so S0 is nonempty. From section two we know that if b > 0 is
sufficiently small then ub will have a zero on (0,∞) and so then ifR > 0 is sufficiently
small then since N > 2 it follows that R2−N is sufficiently large and thus ub will
have a zero on (0, R2−N ). Thus S0 is bounded from below by a positive quantity.
Then we let

b0 = inf{b > 0 : ub solves (2.1), (2.4) and ub > 0 on (0, R2−N )}.
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Then b0 > 0 and a straightforward argument as in [13] shows ub0 > 0 on (0, R2−N )
and ub0(R2−N ) = 0. We then define

S1 = {b > 0|ub solves (2.1), (2.4) and has exactly one zero on (0, R2−N )}.

Choosing b slightly smaller than b0 it follows then by continuity with respect to
initial conditions that ub will have at least one zero on (0, R2−N ). And as in [13] it
follows that if b is sufficiently close to b0 then ub has at most one zero on (0, R2−N )
and so S1 is nonempty. Then letting

b1 = inf S1

a similar argument shows ub1 has one zero on (0, R2−N ) and ub1(R2−N ) = 0.
In a similar fashion we can show that given any n then if R > 0 is sufficiently
small then there exists b0, b1, · · · , bn such that ubk(t) has k zeros on (0, R2−N ) and
ubk(R2−N ) = 0. Finally, letting Ubk(t) = ubk(t2−N ) it follows that Ubk(t) satisfies
(1.1)-(1.3) and Ubk has k zeros on (R,∞). This completes the proof of the main
theorem.

5. Appendix

Lemma 5.1. Assume (H1)–(H5). Then for any b > 0 there is a solution u ∈
C1[0, ε) ∩ C2(0, ε) of (2.1) on (0, ε) for some ε > 0 and such that (2.4) holds.

Proof. Integrating (2.1) twice on (0, t) and using (2.4) gives

u = bt−
∫ t

0

∫ s

0

h(x)f(u) dx ds.

Substituting u = tv gives

v = b− 1
t

∫ t

0

∫ s

0

h(x)f(xv) dx ds. (5.1)

Defining the right-hand side of (5.1) as Tv then we see that T : C[0, ε] → C[0, ε]
where C[0, ε] is the set of continuous functions on [0, ε] such that v(0) = b with the
supremum norm, ‖ · ‖. Then

Tv1 − Tv2 = −1
t

∫ t

0

∫ s

0

h(x)[f(xv1)− f(xv2)] dx ds

and so

|Tv1 − Tv2| ≤
L1

t

∫ t

0

∫ s

0

xh(x)|v1 − v2| dx ds

where L1 is the Lipschitz constant for f near v = b. Then

|Tv1 − Tv2| ≤
L1h2ε

2−q

(2− q)(3− q)
‖v1 − v2‖

and so T is a contraction if ε > 0 is sufficiently small. It then follows from the
contraction mapping principle that v(t) is a solution of (5.1) and therefore u(t) =
tv(t) satisfies (2.1), (2.4) on [0, ε]. This completes the proof. �

Lemma 5.2. Let I be the solution of

I ′′ +
1
t
I ′ −

(
1 +

1
(2− q)2t2

)
I = 0 and lim

t→0+

I(t)

t
1

2−q
= a > 0. (5.2)
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Then there exists a constant C6 > 0 such that

|I
′

I
| ≤ C6 for t ≥ 1 .

Proof. A straightforward computation using (5.2) shows that(
t2I ′2 − t2I − 1

(2− q)2
I
)′

= −tI2 ≤ 0 .

Thus since I(0) = 0, it follows that

t2I ′2 − t2I2 − 1
(2− q)2

I2 ≤ 0 for t > 0.

Therefore
I ′2

I2
≤ 1 +

1
(2− q)2t2

.

So we see that there exists a C6 > 0 such that∣∣I ′
I

∣∣ ≤ C6 for t > 1 .

This completes the proof. �
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