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EXISTENCE OF SOLUTIONS FOR SUBLINEAR EQUATIONS
ON EXTERIOR DOMAINS

JOSEPH A. IATA

ABSTRACT. In this article we consider the radial solutions of Au+ K (r)f(u) =
0 on the exterior of the ball of radius R > 0, B, centered at the origin in R
with v = 0 on 0BR and lim, .o u(r) = 0 where N > 2, f is odd with f < 0 on
(0,8), f >0on (8,00), f(u) ~uP with 0 < p < 1 for large u and K(r) ~r~¢
with W < a < N —p(N —2) for large r. We prove existence of n
solutions - one with exactly n zeros on [R, c0) - if R > 0 is sufficiently small. If
R > 0 is sufficiently large then there are no solutions with lim, . u(r) = 0.

1. INTRODUCTION

In this article we study radial solutions of

Au+ K(r)f(u) =0 in RN\Bg, (1.1)
u=0 on JBpg, (1.2)
u—0 as|z] — o0 (1.3)

where Bp is the ball of radius R > 0 centered at the origin in RY and K(r) > 0.
We assume:

(H1) f is odd and locally Lipschitz, f < 0 on (0,3), f > 0 on (f,00), and
f'(0) < 0.

Let F(u) = [, f(s)ds. Since f is odd it follows that F is even and from (H1) it
follows that F' is bounded below by —F < 0, F' has a unique positive zero, 7, with
0<pB <7, and

(H2) —Fy < F <0on (0,7), F >0 on (y,00).
We also assume:

(H3) There exists p with 0 < p < 1 such that f(u) = |u|P"'u + g(u) where
lim,, o 1201 — 0 and g(u) >0 for u > .

ulP

In addition, we assume K is differentiable on (R, 00) and that there exist constants
ko > k1 > 0, and a with w < a < N —p(N — 2) such that
(H4) kir=* < K(r) < kor~® on [R, o), and:
(H5) limrﬁm%« = —qa for w < a < N-p(N-2), and TTK/ >
—2(N = 1) on [R, c0).
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Note that (H5) implies 72N~V K (r) is increasing.

Interest in the topic for this article comes from recent papers [0, 6 11, 12
14] about solutions of differential equations on exterior domains. When f grows
superlinearly at infinity - i.e. lim, .o f(u)/u = oo, & = RY and K(r) = 1 then
the problem , has been extensively studied [11 2] [3, [0} 13| 15].

In this article we consider the case where f grows sublinearly at infinity - i.e.
limy, oo ff;) =¢p > 0 with 0 < p <1and K(r) ~ r~® with W <
a < N —p(N — 2). In earlier papers [7, [8, [10] the cases where f is sublinear with
0<a<2, N—p(N-2)<a<2(N-1),and a > 2(N — 1) were investigated.

In [14] existence of a positive solution if R > 0 is sufficiently small was proved
using sub and super solutions when f is semipositone. Here we prove the existence
of n solutions if R > 0 is sufficiently small.

Since we are interested in radial solutions of — we assume that u(z) =

u(|z|) = u(r) where x € RN and r = |z|=y/2% 4+ - -- + 2% so that u solves
N-—-1
u’(r) + TUI(T) + K(r)f(u(r)) =0 on (R,o0) where R > 0, (1.4)
w(R) =0, W(R)=beR. (1.5)

In this article we prove the following result.

Theorem 1.1. Assume (H1)-(H5) hold. Then given a nonnegative integer n there

exists a solution of (L.4)-(1.5) with n zeros on (R,00) and lim, . u(r) = 0 if
R > 0 is sufficiently small.

We note that if 0 < @ < 2 then it was shown in [7] that there are solutions for
all R > 0 whereas when o > 2 and R is sufficiently large then it was shown in [§]
that there are no solutions of — with lim, . u(r) = 0. In this paper we
prove existence of solutions of (L.I)-(L-3) for w <a < N-—p(N-2)and
R > 0 sufficiently small. A similar result was proved in [§], [10] for N —p(N —2) <
a < 2(N —1) and for a > 2(N —1).

2. BEHAVIOR FOR SMALL b >0
We suppose that U(r) solves and then make the change of variables:
U(r) = u(r®>=N).
Then for 0 < t < co we see that u satisfies

v’ + h(t)f(u) =0, (2.1)
where o
_tEN K(tTV)
h(t) = W

It follows from (H4), (H5) that
h(t) >0, R'(t)<0, hit7? <h(t) < hot™? (2.2)
for t > 0 where ¢ = 21— 5 (N]i’é)Q. In addition it follows from (H3), (H5),

N—2
and (2.2]) that

l<p+l<g<2 (2.3)

We also assume that
w(0) =0, u'(0)=>b>0. (2.4)
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For the rest of this article we will focus on finding solutions of (2.1)), such
that u(R?~Y) = 0. If such a solution exists then U(r) = u(r>~) will be a solution
of (L1,

We first examine , assuming (H1)—(H5). It is straightforward to show
that there is a unique solution u € C*([0,¢€)) N C?(0,€) of for some € > 0
such that holds. A proof is provided in the appendix. Then from (H3) since
| f(u)| < Ciu] for some constant C; > 0 it follows that the solution of (2.I]),
exists on (0, 00).

Since u > 0 for small positive ¢ (by ) and since f(u) < 0 for 0 < u < (3 by
(H1) it follows from that «” > 0 when 0 < u < 3. Therefore v’ > «/(0) = b
when 0 < u < (. Integrating this on (0,¢) and using we obtain

u>bt when 0 <u < f. (2.5)

It then follows that there is a smallest positive value of ¢, t,, such that u(t,) = 8
and 0 < u < 8 on (0,).

We next show that u gets larger than . So suppose not. That is suppose
0 <u <~ forallt >0 and consider

1 u'?
Ezih(t) + F(u) fort>0. (2.6)
Then from and we have
B = (;;(; +F(u))'=—%l2 >0 (2.7)
and so by the initial conditions we see that
1 u'
:§W+F(U)>O for t > 0. (2.8)

Now while 0 < u < -y we have F(u) < 0 and since F(v) = 0 with F'(v) = f(v) >
0 (since v > f3) then we find that —F(u) > ag(y—wu) for 8 < u < v for some ag > 0.
Using this in (2.8) we obtain

u? > —2hF(u) > 2aph(y —u) for t > ty,. (2.9)
Then by (2.2) and (2.9) we have
/

\/% > \2a0hit™ % for t > t;. (2.10)
Integrating this on (¢,t) gives
tl—% _ tlly_%

\/7—U(t)<\/7—ﬂ—\/2aoh1< T

Since 1 < ¢ < 2 it follows that the right-hand side of goes to —oo as t — oo
contradicting that 0 < w < . Thus u eventually gets larger than v and so there
exists tp 4 > tp, such that u(tp~) =y and 0 < u <y on (0,t).

Next we denote tp2 as the smallest positive value of ¢ such that u(tp2) = g
Note that t, 0 <ty <ty 5.

Lemma 2.1. Assume (H1)-(H5) and let u solve (2.1)), (2.4). Then lim;, o+ tp2 =
00.

) for ¢ > ty. (2.11)
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Proof. From the above arguments we know u > 0 and «' > 0 on (0,%, ). Also it
follows from (H1) that

f(u) > —aju  for u > 0 for some a; > 0 (2.12)
so that integrating (2.1)) twice on (0,t) gives
t s t
0<u<bt+ al/ / h(z)u(z)dx ds < bt + alt/ h(z)u(z) dx. (2.13)
o Jo 0
Now let
t
y=b+a / h(z)u(x) dx. (2.14)
0
Then from (2.13))-(2.14) we have
O0<u<ty and ¥y =ajhu (2.15)
and from (2.2)), (2.15) we obtain
y' = arhu < aithy < a1hot' ™ %y. (2.16)

Dividing (2.16]) by v, integrating on (0, ), exponentiating, and recalling that ¢ < 2
gives

hot? 1
u < bt exp (al227) fort >0 (2.17)
—q
so that evaluating (2.17)) at ¢, 2 gives

2—q

I6] a hgtb 2
D <t (5. 2.18
9 = b,2 €Xp 2 ¢ ( )
Since ¢ < 2 it then follows from (2.18) that ¢, 2 — oo as b — 0T. This completes
the proof. [l

Now let ¢ = ?_;Z and note from (2.3) and (H5) that £ < ¢ < 1. We also note

that y = cot® with ¢g = ¢(1 — c)_ﬁ > 0 is a solution of 3" + % y? = 0 for t > 0.
Lemma 2.2. Assume (H1)—-(H5) and let u solve (2.1), (2.4). Then

. l—c, 1 _
blir(.r)lJr thou (tp2) =0.

Proof. Using (2.2) and (2.12) in (2.1]) gives

n_why, g (2.19)
Letting
9/arhy 2
u(t) = \/Ew( . a_lq%%) (2.20)

then using (2.4]) and (2.19) it follows that w satisfies

. w(t) 2—q \7=¢
< 1 = b. 2.21
)w =0, et e (2\/a1h2> (221)

1 1
" !
w1 —=
W (‘+Q—@%2

Now let w; satisfy

1 1 . w(t) 2—q \z=
1 !
Sl — 14———f) —0, 1 :( ) b (222
el * twl ( * (2 — q)2t2 b til(gl+ tﬁ 2\/a1h2 ( )
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That is, w; satisfies the modified Bessel equation and in fact

wi(t) = (23%)21 (t) (2.23)

where I_1_ (t) is the modified Bessel function of order 2—iq that is finite at the origin.
It is well-known [4] that

I (t)>0, I'y (t)>0 fort> 0, lim I (t) = o0,
—q 2—q

—0o0 2-4q

I (t) (2.24)

there exists a > 0 such that lim ——%— = a.

t—0t t2—¢

It is also true that

I, (#)

1
2—gq

I ()

A proof of (2.25) is provided in the appendix.
It then follows from (2.23)), (2.25) that

‘ <ap fort > 1 for some as > 0. (2.25)

o
—L =29 <qy fort>1. (2.26)
w1 I2qu
Next multiplying (2.21)) by twq, (2.22) by tw, and subtracting gives
[t(w'w; —wijw)]" <0 for t > 0. (2.27)
Since
t t 2— P
limw():limwll():( q)qu
t—0t $3—g  t—0T 3¢ 2v/a1ha
and
(t 1t 1 2—q \73
lim wqgl) = lim w;fl) = ( 4 )2 b,
=0t i= =0t pimg 2—q\2Vaihy
then integrating (2.27) on (0,t) gives
w'w; —ww) <0 for t > 0. (2.28)

Since u > 0 on (0,t2) it follows from (2.20) that w > 0 on (0,%2). It also
follows that wy > 0 since Iz% > 0 by (2.24). Now dividing (2.28) by ww;, using

(2.26)), and recalling ¢, » — oo as b — 01 from Lemma gives

/ /
w < 0 <ap fort >ty if b> 0 is sufficiently small. (2.29)

w w1

Next we return to (2.20)) and differentiate to obtain

t—l 4 !
u = 2u + alhgt_fu%. (2.30)
Using (2.29)-(2.30), Lemma and assuming b > 0 is sufficiently small we

obtain

l—c, / 1 u l—c—1 w' " u l—c—4
10 = = Vahg 7 us < 2 agvarhat' ™ fu (2.31)
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for t >t 5. Since 1 —c— 4 = —% < 0 and % < ¢ < 1, evaluating (2.31)) at
tp,2 along with Lemma 2.1] gives

502

102

0<t;26u'(tb 2) < —0 asb—0T.

aq h2 t
This completes the proof. O

Lemma 2.3. Assume (H1)-(H5) and let u solve (2.1)), (2.4). Then

1— c /
bli%lth w(ton) =0

Proof. Rewriting (2.1) we see that
(') = (1 — e)t™u’ — t1°h(t) f (u). (2.32)

Integrating this on (tp2, ) gives

B () = 1550 (1) + / = o) ds — / s (s) f(u) ds. (2.33)

tp,2 tp,2
The first term on the right-hand side of ([2.33)) goes to 0 as b — 0% by Lemma
Integrating the first integral in (2.33) by parts gives
ty
/ (I—c)s™u'ds = (1—c)t, Sy — (1~ )tb_2§ + c(l—c)s_c_luds. (2.34)
ty,2 tp,2

The first two terms on the right-hand side of this go to 0 as b — 0T by Lemma

Since g <u <7yon (ty2,ty,) estimating the third term on the right-hand side of

(2-34) and using Lemma [2.1] we obtain
ty,~
| / o(l=c)s™tuds| < (1- )y(tys —ty5) =0 asb— 0t. (2.35)
t

Finally, on [3/2,v] we have |f| < ag for some constant az > 0 and thus by (2.2),
asha(ty "~ —155")

—0 asb— 0"
2—-q—c

| o sl_ch(s)f(u) ds| <

th,2

since 2 —q—c = p(2 Q) < 0. Thus it follows from Lemma [2.2| and (2.34)-(2.35)

that the right-hand 81de of - goes to 0 as b — 07 and so the lemma follows.
This completes the proof. O

Lemma 2.4. Assume (H1)-(H5) and let u solve (2.1), (2.4). Let u = t°v. Then

limy_, g+ tbﬁv’(tbﬁ) =0.

Proof. We make the change of variables u = t°v and after differentiating we obtain
= = cv+tv'. (2.36)

Evaluating (2.36) at 3, we see by Lemma 2.3 that the left-hand side of (2.36) goes

to 0 as b — 0T. Also by Lemma since tp, > tp2 — 00 as b — 01 and since
v(tp ) = % = tc —0asb— OJr we see that the first term on the right-hand
side of (2.36) goes to 0 as b — 01 when evaluated at ¢, 5 and thus it follows that

to 0 (th) — 0 as b— 0T

This completes the proof. [
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Next substituting u = t“v into (2.1) and using (H3) gives
20" + 2ctv’ + c(c — 1)v + t9h(t)v? + 2 °h(t)g(tv) =0 fort > t..  (2.37)

Now for ¢ > t;, we have u > v > 0 (and hence v > 0) and then by (H3) we have
g(t°v) = g(u) > 0. Then by (2.2) we have

t20" + 2ctv’ +d(v) <0 fort >ty (2.38)
where d(v) = c¢(c — 1)v + hy|v|P~1v. Next we let v; be the solution of
t2v] 4 2ctv] + d(vy) = 0, (2.39)
v1(toy) = v(tey),  Vi(tes) =V (ty)- (2.40)
Now let
By = %t%f + D(v1) (2.41)

where D(v1) = [ di(s) ds = Ao y2 4 ﬁ\vl [P+, Tt follows from (2.39) that

1
El = (1-2c)tv? <0 since 5 Se<l (2.42)

Note d(0) = 0 and that d(vy) is increasing near v; = 0 since 0 < p < 1. Also
notice d(v1) has a unique positive zero at oc; > 0 and d(v1) < 0 for v > aq. Similarly
D(0) = 0 and D(v) is increasing near v; = 0. In addition, D has a local maximum
at a7 and a unique positive zero at ag > a7 > 0. Also D(v1) < 0 for v1 > ao.

Next it follows from Lemmaand since v1(tp) = v(tpy) = 7= — 0asb — 0T

.
(by Lemma [2.1)) that
1 1
Ev(toy) = 55,07 (tor) + D(01(t7)) = 55,0 (tr5) + D(v(ts5)) = 0 (243)
as b — 0T, and since F is non-increasing for 3 < ¢ <1 (by (2.42)) it follows that

1
§t2v§2 + D(v1) = E1(t) < Ey(ty ) < € (2.44)

for t > 3, and b sufficiently small.

Lemma 2.5. Assume (H1)-(H5) and let u solve (2.1)), (2.4). If b is sufficiently
small then vy has a local mazimum, My, and vi >0 on (ty, M1yp).

Proof. We suppose by way of contradiction that v{ > 0 for all ¢ > ¢, .. Then
v1(t) > vi(tsy) = 7= > 0 and by (2.44) if b is sufficiently small then D(v;) <
b,y

E, <e€ift >ty and so it follows that 0 < v; < %al if b is sufficiently small. In
particular, vy is bounded and since vy is increasing then vy — L as t — oo where
0 < L < aq. Since D(v1) — D(L) as t — oo and since Ef < 0 it follows that F;
has a finite limit as ¢ — oco. Thus from we have t?vi2 — A > 0 for some
A>0. If A> 0 then vf > 4 for large ¢ implying v (t) > vi(to) + Aln(t/tg) — oo
as t — oo contradicting that vy is bounded. It follows therefore that A = 0 and
thus tv) — 0 as t — co. Using this and taking limits in we see that

lim t?v} = —d(L).
t—oo
If d(L) # 0 then using a similar argument as we just showed with v; would imply

that v} is unbounded contradicting tvj — 0 so it must be that d(L) = 0 but this is
impossible since 0 < L < ay. Therefore from this contradiction we see that v, has



8 J. A. IATA EJDE-2018/181

a first local maximum, M; 3, and v] > 0 on (4, M) if b > 0 is sufficiently small.
This completes the proof. ([

Lemma 2.6. Assume (H1)—(H5) and let u solve (2.1), (2.4). Then v has a local
mazimum on (ty.~, Mip) if b is sufficiently small.

Proof. We assume v' > 0 on (¢4, M) otherwise we are done. Since v' > 0 it

follows that v > v(tp ) =7 > 0 on (¢ 4, M1 ). Multiplying (2.38) by v1, (2.39)) by
v, and subtracting gives

t2(v1v" — vv)) + 2ct(v1v" — vv)) 4 hy(vPv; — viv) < 0.
Multiplying this by #2¢~2 gives
(£ (v0" — vvi))/ + hat?* 2pu (P =P <0 for t >ty (2.45)
Notice it follows from ([2.38)—(2.40)) that
taw(vﬂ(tb,v) - U;/(tbﬂ)) <0

and so v < vq on (tp 4, ¢~ +€o) for some ¢y > 0. We next show that v and v, do not
intersect on (¢ ~, M1 ). Suppose they did and so there is a tg with ¢, 4 < to < My
such that v < vy on (¢ 4,t0) and v(ty) = v1(to). Integrating on (tp,,t0) and
using gives

to
£2¢ (v1(to)v' (to) — v(to)v)(to)) + hl/ 2 20 (VP! — vfﬁl) dt <0. (2.46)

th,~

Since v < vy on (tp,t0) and 0 < p < 1 it follows that vP~! > vf_l on (ty,,to)

and so the integral in (2.46|) is positive. So from (2.46) we see (v1(to)v'(to) —
v(to)v](to)) = v(to) (V' (to) — vi(to)) < 0 and since v(tg) > 0 we see that

’U/(t()) < U’l (to). (247)

On the other hand, since v < v on (t,,t0) and v(ty) = vi(to) then v(t) —v(ty) <
v1(t) — v1(tp) and so U(ti:fo(t") > Ul(ti:fg(t”) for ¢, < t < tg. Therefore taking
limits as t — ¢, gives

o (to) = v} (to) (2.48)
which contradicts (2.47). Thus we see that v < vy on (¢4, M1 ). Now we integrate
(2.45) on (tp,, M7 ) and obtain

My
Micbvl (My p)v' (Myp) + by / 2 20, (qu — v"ffl) dt <0. (2.49)
tb’,y

Then as earlier it follows that vP~! > U{’_l on (tp,~, My) thus the integral term in

(2.49) is positive. But also v1 (M )v'(M1,p) > 0 since v/ > 0 on (¢ ~, Mi ) and
so we get a contradiction to (2.49). Thus v must have a local maximum, M, p, on
(ty,, M1 p) if b > 0 is sufficiently small. This completes the proof. a

Lemma 2.7. Assume (H1)—(H5) and let u solve (2.1)-(2.4). Then u has a local

mazx if b is sufficiently small.

Proof. Since u = t°v, it follows that u’ = t~1(tv' + cv) and so in order to show
u' < 0 somewhere we want to show that tv’ 4+ cv gets negative for some t > t; ..
So by the way of contradiction let us suppose u’ > 0 for t > ¢, . Thus it follows
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that u > 0 and hence v > 0 for ¢t > 5 ,. We next show that v < vy for ¢ > t; 5.

Integrating (2.45) on (tp,,t) gives

t

t2¢ (0" — vv}) 4+ hy / 2 2pp (0P =T dE <0 for t >t . (2.50)
tb,'y

Now using an identical argument as in Lemma [2.6] it follows that v and v do

not intersect for ¢t > ¢, 4 and thus 0 < v < vy for ¢ > t;,. It follows then from

(2.50)) that viv" —vv} < 0 for t > ¢ . And since vq > v > 0 we then have %/ <4

vy °

From this it follows that tv' 4+ cv < t%v +cv = = (tv] +cvy) for t >ty . Thus to
show v’ gets negative it suffices to show tv] + cv; gets negative for some ¢ > t; 5.

Now recall from Lemma that v; has a local maximum at AM;;,. Thus

vi(Mip) = 0 and v} (M7p) < 0. In fact by the uniqueness of solutions of initial

value problems v} (M ) < 0 and so d(v1(Mi,)) > 0. Thus
0< Ul(Ml,b) < oq. (251)

Now vy cannot have a positive local minimum at mq, > M, with v; < 0 on
(M, m1y) for at such a point we would have v}(mip) = 0 and v{(mip) > 0
implying d(v1(m1)) < 0 which would imply v1(m1,5) < 0 contradicting 0 < v < v;.
Thus

vy <0 for ¢ > M. (2.52)

Next we observe that if v{’ < 0 for ¢ > M ;, then v has a zero for ¢t > M; j, which
implies v has a zero since v < v; but this contradicts that v > 0. Thus v; has an
inflection point t3 > M, with vf < 0 on (M, t2). In addition, v; cannot have
another inflection point t3 > t5 with v” > 0 on (¢2,t3) for at such a point ¢3 then
v} would have a local maximum so v{ (t3) = 0 and v{’(¢3) < 0. Using this and then
differentiating this implies (2 + ¢+ phyo? ™! (t3))v} (t3) > 0 and so v} (t3) > 0
but this contradicts (2.52). Thus v{ > 0 for ¢ > t,.

Now substituting that v} > 0 for ¢ > ¢ into gives:

2ctv] +d(v1) < 0 for t > to

and so rewriting

tv] + cvp <

1+4¢ hav¥ p(l+c 1, M
2 T T2 :”1< 2 1T 2
Now for b > 0 sufficiently small we know D(v;) < € for t > t,, by ([2.44). In

particular, D(v1(M)) < € and since we also know this implies that for b > 0

sufficiently small then vy is also arbitrarily small. In particular, for sufficiently small

b > 0 the right-hand side of is negative which implies v} + cv; and hence v’

gets negative. Therefore u has a local maximum. This completes the proof. O

) for ¢t > ty. (2.53)

Lemma 2.8. Assume (H1)—(H5) and let u solve (2.1)), (2.4]). Then u has a zero if
b sufficiently small.

Proof. From Lemma@we know that u has a local maximum, M, 3, with M, ; >
ty, if b > 0 is sufficiently small and so from we see that u” < 0 while f(u) > 0.
It follows then that u must become less than or equal to 8 and so there exists
sp > M, such that u(sy) = 5. Returning to we see then that %”Tlg + F(u) =
E > Ey > 0 for t > s and since F(u) < 0 for 0 < w < (it follows from
that —u’ > /2Eghit~ % for t > s;. Integrating this on (sp,t) it then follows that
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q

2

1_4q

u(t) < ulsp) — \/2E0h1(&) — —oo as t — oo since 1 < ¢ < 2 and so u has
2

a zero. This completes the proof. O

3. BEHAVIOR FOR LARGE b > 0

We now examine , for large b > 0. We want to show that either u; > 0
on (0,00) or if there exists z, > 0 such that up(zyp) = 0 with u > 0 on (0, z,)
then 2, — 0o as b — 00. So let us suppose that 2, is finite and suppose there
exists S such that 0 < z,;, < .S for all large b.

Integrating (2.1)) twice on (0,t) gives

up = bt — // f(up) da ds.
wb—t—// bw” da ds (3.1)

and then letting vy, = ty, gives
b
/ / acyb dx ds.

It follows from (H1) and (H3) that |f(u)| < Cl|u\ for some C; > 0. Thus

Letting vy, = & gives

lyp] <14 C1/0 xh(z)|yp(z)| dz. (3.2)

We now denote the right-hand side of ( as ¢p. Then we see ¢ = C1th(t)|ys|
and so ) reads % = lyp| < op. Rewrltlng and integrating this on (0,t) gives

[y Cihg 5
—_— = < < [ — q .
; be|_¢b_e><p(2_qt )

Thus

h
|tp| < texp (%tz_q) < (Cy on [0,S] for some constant Cy > 0. (3.3)
Also from (3.1]) we have

wg_1/0t’m)€(b¢b>dx. (3.4)

It follows then from (B.3)-(3.4), since |f(u)| < Ci|u|, and since 0 < th(t) < hat'~4
is integrable near ¢ = 0 (because 1 < ¢ < 2) that there is a constant Cs > 0 such
that

t

¢
Cih
[y <1+ Cl/ h(z)|p|de <1+ Cl/ xh(z) exp (21725(:2_(]) dx < C5 (3.5)
0 0 -
on [0,S]. Thus from (3.3) and (3.5) we have || and [¢;| are uniformly bounded
on [0,S] and so the {;} are equicontinuous on [0, S]. In addition, differentiating
(3.4) and using l} we see there is some constant Cy > 0 such that

bwb

Cih
i) < | "I < ooy < Cutn(e)exp (S ST) < Oyt
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on [0, S]. It then follows that

to C
(1) — ()] < / | <

29— 279 on [0, S]. 3.6
. 2_q|2 1 [0, 5] (3.6)

Thus since ¢ < 2 we see from (3.6) that {¢}} are also equicontinuous on [0, S]. It
then follows by the Arzela-Ascoli theorem that there is a subsequence (still denoted
1p) such that

¥y — 1 and 1), — 1" uniformly on [0, 5] as b — oo. (3.7)

Now since u (and hence v) has a zero z,; it follows that u, has a local max-
imum, M, p, with 0 < M, < 2,5 < S. Then since E is nondecreasing (by (2.7))
we have

1 u/?

5 Tb + F(ub) < F(ub(Mu,b)) for0<t< Mu,b-

Rewriting and integrating this on [0, M, ] using (2.2) gives

dt =

@) FO e VA Fan M)~ Pl

/ub(Mu,b) dt Mup |ug
0

Since F(t) > —Fy where Fy > 0 it follows that the above inequality and (H3) imply

g
up(Myp) < Vh?Mi,b2 < VhyS'—3
V2 /Csluy(My )Pt T+ Fy —  1-4 = 1-1
for some C5 > 0. It follows from this and since 0 < p < 1 that u(M, ) must be

bounded and thus u is bounded. Then since ¢, = 7 it follows that ¥, — 0 on

[0,5]. Thus (3.7) implies ¥ = 0. In addition, (3.7) also implies ¢;, — ¥’ = 0 but
from (3.4) it follows that 0 = ¢’(0) « ¢;(0) = 1 # 0 yielding a contradiction. Thus
the assumption that the z,; are bounded must be false. Therefore z,;, — oo as
b — oo.

4. PROOF OF THEOREM [I.1]
‘We now consider the set
Sog={b>0:u,>0o0n (0,RZN).

From section three it follows that if b > 0 is sufficiently large then u, > 0 on
(0, R?>~N) and so Sy is nonempty. From section two we know that if b > 0 is
sufficiently small then u, will have a zero on (0, 00) and so then if R > 0 is sufficiently
small then since N > 2 it follows that R?>~% is sufficiently large and thus wu; will
have a zero on (0, R2~N). Thus Sy is bounded from below by a positive quantity.
Then we let

bo = inf{b > 0 : uy solves (2.1), [2.4) and u > 0 on (0, RZ~M)}.
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Then by > 0 and a straightforward argument as in [13] shows up, > 0 on (0, R2~V)
and up, (R?~) = 0. We then define

Sy = {b > O|uy, solves (2.1), (2:4) and has exactly one zero on (0, R2~V)}.

Choosing b slightly smaller than by it follows then by continuity with respect to
initial conditions that u; will have at least one zero on (0, R2~%). And as in [13] it
follows that if b is sufficiently close to by then u has at most one zero on (0, R2=)
and so S is nonempty. Then letting

b1 = inf Sl

a similar argument shows wu,, has one zero on (0, RZ~%) and w,, (R*~N) = 0.
In a similar fashion we can show that given any n then if R > 0 is sufficiently
small then there exists by, by, - - , b, such that uy, (t) has k zeros on (0, R>~) and
up, (R2N) = 0. Finally, letting Uy, (t) = up, (t277) it follows that Uy, (t) satisfies
(L.1)-(L.3) and Uy, has k zeros on (R,o0). This completes the proof of the main
theorem.

5. APPENDIX

Lemma 5.1. Assume (H1)-(H5). Then for any b > 0 there is a solution u €
C10,e) N C?(0,€) of on (0,¢€) for some € > 0 and such that (2.4) holds.

Proof. Integrating ([2.1)) twice on (0,t) and using (2.4]) gives

= bt—/ot/osh(x)f(u)dxds.

Substituting u = tv gives

v=>b— 1/; /OS h(z)f(zv) dz ds. (5.1)

Defining the right-hand side of (5.1) as Tv then we see that T : C[0,¢] — C]0, €]
where C[0, €] is the set of continuous functions on [0, €] such that v(0) = b with the
supremum norm, | -||. Then

1 t s
Tvy — Tvs = —;/ / h(z)[f(zv1) — f(zve)] dads
o Jo
and so
Ll t s
[Tvy — Tws| < 7/ / xh(x)|vy — va| dx ds
0o Jo
where L; is the Lipschitz constant for f near v =b. Then
L1h262_q
2-9)B-q)
and so T is a contraction if € > 0 is sufficiently small. It then follows from the

contraction mapping principle that v(t) is a solution of (5.1) and therefore u(t) =
to(t) satisfies (2.1)), (2.4)) on [0, €]. This completes the proof. O

Lemma 5.2. Let I be the solution of

|Tvy — Tosg| < lvr — va|

1 1 I
I//JF?I/_(HW)I:O and  lim =2 =a>0.  (52)
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Then there exists a constant Cg > 0 such that

I/
|7|§C6 fort>1.

Proof. A straightforward computation using (5.2)) shows that

1 /!
(t21’2 — 2] — )21) =t <0.

(2—¢

Thus since I(0) = 0, it follows that

Therefore

t2[’2—t2I27ﬁ12§0 for t > 0.
—q

1/2

<l

r= T aoge

So we see that there exists a Cg > 0 such that

Il
|7|§C’6fort>1.

This completes the proof. ([l

(1

(11]

(12]
(13]
(14]

15]
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