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IMPULSIVE DIFFERENTIAL INCLUSIONS WITH CONSTRAINS

TZANKO DONCHEV

Abstract. In the paper, we study weak invariance of differential inclusions

with non-fixed time impulses under compactness type assumptions. When the

right-hand side is one sided Lipschitz an extension of the well known relaxation
theorem is proved. In this case also necessary and sufficient condition for strong

invariance of upper semi continuous systems are obtained. Some properties

of the solution set of impulsive system (without constrains) in appropriate
topology are investigated.

1. Preliminaries

This paper is concerned with the impulsive differential inclusion

ẋ(t) ∈ F (t, x(t)), x(0) = x0 ∈ D, a.e. t ∈ I = [0, 1], t 6= τi(x), (1.1)

∆x|t=τi(x) = Si(x), i = 1, . . . , p, x(t) ∈ D, (1.2)

Here D is a closed subset of a Banach space E and F : I ×D → E is multifunction
with nonempty compact values. Every absolutely continuous on (τi, τi+1) function
for i = 0, 1, . . . , p, p + 1 (τ0 = 0 and τp+1 = 1) with (possible) jumps ∆x|t=τi(x) =
Si(x(τi(x)− 0)) called impulses, i.e. x(τi(x) + 0) = x(τi(x)− 0) + Si(x(τi(x)− 0),
is said to be a solution of (1.1)–(1.2).

Further we assume that x+ Si(x) ∈ D for every x ∈ D.
Differential inclusions without impulses have been studied extensively; see [2, 3,

9, 12, 14, 16, 20, 29] and references therein. We refer to [5, 18, 22, 23, 28] for the
theory of impulsive differential equations. The existence of solutions of impulsive
differential inclusions in infinite dimensional spaces is very comprehensively studied
in [7], see also [6, 8, 30]. In these works the authors use mainly fixed point argu-
ments. Method of averaging and some other qualitative properties of impulsive
differential inclusions are studied in [25, 26, 27]. We refer to [1, 4, 11] for impulsive
differential inclusions with constrains in finite dimensional space.

Our first purpose is to present sufficient (and necessary) conditions for the exis-
tence of solutions in arbitrary (not necessarily separable) Banach space when the
right-hand side is almost USC. We also prove sufficient conditions when the right-
hand side is USC at some points and LSC in others. This is done in the second
section. Notice that our compactness conditions are weaker that those in [7, 6, 8].
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In the present paper, we are not able to use fixed points approach. We follow the
method used in [14, 9] with some modifications.

Our second purpose is to describe the structure of solution set (in appropriate
metric). We extend the well-known relaxation theorem. We use a modification of
the very short proof of this theorem presented in [15] for systems without impulses.
Namely we prove that the solution set of

ẋ(t) ∈ extF (t, x(t)), x(0) = x0 a.e. t ∈ I = [0, 1], t 6= τi(x), (1.3)

∆x|t=τi(x) = Si(x(τi(x)− 0)), i = 1, . . . , p, x(t) ∈ D, (1.4)

is dense in the solution set of (1.1)–(1.2). We do not know any related results in
this case (impulsive system with non-fixed time of impulses).

For problems without constrains in finite dimension, i.e. D ≡ Rn, we show that
the solution set of (1.1)–(1.2) is Rδ.

Notation and terminology. The multifunction G : E → E with nonempty
closed bounded values is said to be upper semi-continuous (USC) at x0, when for
every ε > 0 there exists δ > 0 with G(x0) + εB ⊃ G(x0 + δB). Here B is the open
unit ball. The multifunction G(·) is said to be lower semi-continuous (LSC) at x0

when for every f ∈ G(x0) and every sequence {xi}∞i=1 converging to x0 there exist
fi ∈ G(xi) such that fi → f0. When G(·) is USC (LSC) at every x ∈ D it is called
USC (LSC). The multifunction F (·, ·) is said to be almost USC when for every
ε > 0 there exists a compact set Iε ⊂ I with Lebesgue measure meas(Iε) > 1 − ε
such that F (·, ·) is USC on Iε ×D. The almost LSC maps are defined analogously.

Given M > 0 we define the cone ΓM = {(t, x) ∈ R+ × E : ‖x‖E ≤ Mt}. If
Ω ⊂ R×E is nonempty and f : Ω → E we say that f is ΓM -continuous at the point
(t0, x0) when, given ε > 0 one can find δ > 0 such that (t, x) ∈ Ω, t0 < t < t0 + δ
and (t, x) − (t0, x0) ∈ ΓM imply |f(t, x) − f(t0, x0)| < ε. The functionf is said to
be ΓM -continuous if it is ΓM -continuous at each point of Ω.

For A,B ⊂ E recall that dist(a;B) = infb∈B |a−b|; ex(A,B) = supa∈A dist(a,B)
and DH(A,B) = max{ex(A,B), ex(B,A)} is the Hausdorff distance. Let D ⊂ Rn

be a closed set.
We denote by extA the set of all extreme points of A.
TD(x) :=

{
v : lim infh↓0

dist(x+hv;D)
h = 0

}
is the Bouligand contingent cone of D

at x.
The following definition is taken from [13] (see also [17]).
Let D ⊂ Rn be (locally) closed. A proximal normal to D at a point x ∈ D is a

vector ξ ∈ Rn such that there exists α > 0 with 〈ξ, x′ − x〉 ≤ α|x′ − x|2, ∀x′ ∈ D.
The set of all such vectors is a cone denoted by NP

D (x) and it is called proximal
normal cone to D at x. If no such a vector exists we set NP

D (x) = 0.
Denote R+ = [0,∞). A Caratheodory function w : I × R+ → R+ is said to be

Kamke function if it is integrally bounded on the bounded sets, w(t, 0) ≡ 0 and the
only solution of the differential equation ṡ(t) = w(t, s(t)), s(0) = 0 is s(t) ≡ 0.

In the next section we study the existence of solutions under compactness type
conditions. Notice that our assumptions are more general that those in [14, 9]. It
is also impossible to use fixed point arguments (because the constrain sets are non-
convex). To our knowledge there are no existence results in the existing literature
when the right-hand side changes its kind of semicontinuity as Theorem 2.8 below.

In the last section we consider differential inclusion (1.1)–(1.2) in Rn. We prove
that the solution set is Rδ in appropriate metric.
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The proof of the relaxation theorem is a modification of the author’s proof ([15]).
It will be very difficult (if possible at all) to prove such a theorem using the approach
of Pianigiani and Tolstonogov ([24, 29]). We also extend a very recent strong
invariance result of [17].

2. Existence of solutions

In this section we study the existence of solutions for the Cauchy problem (1.1)–
(1.2). First we need a result for a problem without impulses. We consider

ẋ(t) ∈ F (t, x(t)), x(0) = x0 ∈ D, t ∈ I.

In this case we need the following hypotheses:
(H1) There exists a Kamke function ω(·, ·) such that χ(F (t, A)) ≤ ω(t, χ(A)) for

every bounded A ⊂ D and a.e. t ∈ I. Here

χ(A) = inf{r > 0 : A can be covered by finitely many balls of radius ≤ r}

is the Hausdorff measure of non-compactness.
(H2) There exists a null set N ⊂ I such that F (t, x) ∩ TD(x) 6= ∅ for every

t ∈ I \ N and every x ∈ D.
The following theorem has been proved under condition stronger than (H1); see for
example [9, 14]. We present a complete proof because this theorem will be essential
in this paper.

Theorem 2.1. Let F (·, ·) be almost USC with nonempty convex compact values
satisfying (H1). Assume there exist an L1(I,R+) function λ(·) such that |F (t, x)| ≤
λ(t)(1+ |x|) (linear growth). The system (2) admits a solution defined on the whole
interval I for every x0 ∈ D if and only if (H2) holds.

Proof. As it is shown in [14], one can reduce the growth condition to the case
|F (t, x)| ≤ C for some constant C > 0 without destroying the other hypotheses.

For ε > 0 we will prove that there exists ε –solution x(·) on [0, 1], i.e.
(1) dist(x(t), D) < ε for every t ∈ I,
(2) ẋ(t) ∈ F (t, x(t) + εB ∩D) on a set Iε with measure greater than 1− ε
(3) ẋ(t) ∈ F (t, x(t)) + 2CB otherwise.

Fix ε > 0. There exists a set Iε ⊂ I wit Lebesgue measure meas(Iε) > 1 − ε such
that F (·, ·) is USC on Iε × E and F (t, x) ∩ TD(x) 6= ∅ for every x ∈ D and every
t ∈ Iε. One can suppose also without loss of generality that ω(·, ·) is (uniformly)
continuous on Iε × [0, 2M ].

Since x0 ∈ D, there exists a maximal number 0 ≤ τ ≤ 1 such that there exists a
ε –solution x(·) on [0, τ) and x(τ) := limt↑τ x(τ) ∈ D (x(τ) exists, because x(·) is
C–Lipschitz). We are done if τ = 1. Let τ < 1. Two cases are possible:

Case a: τ ∈ Iε. Since F (τ, x(τ)) ∩ TD(x(τ)) 6= ∅, one has that there exist
f ∈ F (τ, x(τ)) ∩ TD(x(τ)) and sequences hn ↓ 0 and yn → 0 such that x(τ) +
hn(f − yn) ∈ D. Let δ > 0 be such that be such that ω(t, s) − ω(τ, ξ)| < ε and
F (τ, x(τ)) ⊃ F (t, y) when |t− τ | < δ, |s− ξ| < Cδ and |x(τ)− y| < Cδ (t, τ ∈ Iε).
If hn < δ, then we let x(t) = x(τ) + (t− τ)(f − yn). Thus x(τ + hn) ∈ D and it is
easy to see that x(·) satisfies (1), (2) (3) on [0, τ + hn].

Case b: τ /∈ Iε. Since I \ Iε is open, one has that it is an union of countable
many pairwise disjoint open intervals. That means that there exists T > τ such
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that (τ, T ) ⊂ I \Iε and T ∈ Iε. We let x(t) ≡ x(τ) on [τ, T ]. Evidently x(·) satisfies
(1), (2) and (3) on [0, T ].

Applying Zorn’ lemma one obtains that x(·) is extendable on [0, 1].
Let εi+1 = εi

3 (ε0 = ε) and let {xi(·)}∞i=1 be a sequence of εi– solutions.
Their derivatives ẋn(·) are strongly measurable and hence almost separable val-
ued. Therefore there exist a separable space X0 ⊂ E and a null set A such that
which ẋn(t) ∈ X0 for every n and every t ∈ I \ A. We can assume without loss
of generality that xn(t) are in X0. Define B(t) = χ

(
∪∞n=1 {xn(t)}

)
. From [14,

Proposition 9.3], we know that

χ
({ ∫ t+h

t

ẋk(t) : k ≥ 1
})

dt ≤
∫ t+h

t

χ
(
{ẋk(t) : k ≥ 1}

)
dt.

Taking into account the definition of xn(·) one has that B(·) is absolutely continuous
and for every ε > 0 there exists a compact set Iε with meas(Iε) > 1− ε such that
Ḃ(t) ≤ ω(t, B(t)) + ε on Iε and Ḃ(t) ≤ ω(t, B(t)) + 2C on I \ Iε. Since ε > 0 is
arbitrary one has that Ḃ(t) ≤ ω(t, B(t)) for a.a. t ∈ I. However, B(0) = 0 and
hence B(t) ≡ 0.

Due to Arzela’s theorem the sequence {xn(·)}∞n=1 is C(I, E) precompact. Hence
passing to subsequences vn(t) → x(t) uniformly on I. The proof that x(·) is a
solution of (1.1)–(1.2) is standard. �

We will use the following assumptions in this article:
(A1) τi(·) are Lipschitz function with a constant N , and τi(x) ≥ τi(x+ Si(x)).
(A2) τi(x) < τi+1(x) for every x ∈ D.
(A3) There exists a constant C such that |F (t, x)| ≤ C for every x ∈ D and a.e.

t ∈ I and NC < 1.
These assumptions prevent the beating phenomena (see the following lemma, which
proof follows [26, 27]).

Lemma 2.2. Under (A1)–(A3), every solution of (1.1)–(1.2) (if it exists) inter-
sects every surface t = τi(x) at most once.

Proof. Suppose the contrary, i.e. there exists a solution x(t) which pass through
the surface t = τi(x) at the time t′ = τi(x′)+0 and on the time t” the same surface
(t”, x”), t” = τi(x”).

Due to (A2), x(·) is continuous on the interval (t′, t”). and ẋ(t) ∈ F (t, x(t)).
Denote hi =

∫ t”

t′
ẋ(t) dt. By (A2) and (A3), we have

t”− t′ = τi(x”)− τi(x′)

= τi(x′ + Si(x′) + hi)− τi(x′ + Si(x′)) + τi(x′ + Si(x′))− τi(x′)

≤ N

∫ t”

t′
|ẋ(t)| dt+ τi(x′ + Si(x′))− τi(x′)

≤ NC(t”− t′) + τi(x′ + Si(x′))− τi(x′)

i.e.
(1−NC)(t”− t′) ≤ τi(x′ + Si(x′))− τi(x′) ≤ 0

which is a contradiction. �

Theorem 2.3. Let F be almost USC with convex (and compact) values. If (A1)–
(A3), (H1)–(H2) hold, then the system (1.1)–(1.2) has a solution.
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Remark 2.4. Obviously the conclusion of Lemma 2.2 holds for the system ẋ ∈
G(t, x) when |F (t, x)| ≤ C is replaced by G(t, x) := F (t, x) ∩ CB 6= ∅. Moreover,
the conclusion of Theorem 2.3 holds when (H2), (A1) are replaced by There exists
a constant C > 0 such that NC < 1 and F (t, x) ∩ CB ∩ TD(x) 6= ∅ for every x ∈ D
and a.a. t ∈ I.

Proof of Theorem 2.3. Note first that due to (A3) if Gε(t, x) = coF (([t− ε, t+ ε]∩
I) \A, x+ εB∩D) then |Gε(t, x)| ≤ C, where A is a null set and B is the unit ball
in E.

Let 0 be a point of impulse. Then we consider (1.1)–(1.2) with an initial condi-
tion x0 +S1(0) ∈ D. Consequently one can suppose without loss of generality that
0 is not impulsive point. Due to Theorem 2.1 the problem (2) admits a nonempty
C(I, E) compact solution set. Therefore there exists s := max{τ > 0 : every solu-
tion of (2) is continuous on (0, s)}. If s = 1 then the proof is complete. Otherwise
s < 1 is an impulsive point for some solution x(·), i.e. s = τ1(x(s)). Since x(s) ∈ D,
one has that x′ := x(s) + S1(x(s − 0)) ∈ D. We study the problem (1.1)–(1.2) on
[s, 1] with an initial condition x(s) = x′. Applying Theorem 2.1 and Lemma 2.2
one can derive the existence of solution x(·) on [s = τ1(x), T = τ2(x)), where T > s.
Since x(·) is C-Lipschitz, one has that limt↑T x(t) exists. If T < 1, then we study
(1.1)–(1.2) on [T, 1]. One can extend the solution x(·) on the whole interval I using
the same method.

Due to (A1) and (A2), there exists an interval [0, s] (with s > 0) such that every
xi(·) is continuous on [0, s]. �

Remark 2.5. It is possible to prove local existence of solutions, when (A3) is
replaced by the linear growth assumption as in Theorem 2.1. However, in this case
it is possible the solution to exists only on some neighborhood of 0 (not on the
whole I).

Corollary 2.6. Under the conditions of Theorem 2.3 there exists a constant λ >
0 such that for every solution y(·) of (1.1)–(1.2) τi+1(y(t)) − τi(y(t)) ≥ λ, i =
1, 2, . . . , p− 1.

Proof. Suppose the contrary, i.e. there exist a sequence {yk(·)}∞k=1 such that

min
i

(
τi+1(yk(t))− τi(yk(t))

)
→ 0 as k →∞. (2.1)

Denote by τk
i the i-th impulse of yk(·). Passing to subsequences if necessary, we

may assume that limk→∞ τk
i = τi. Since yk(·) are C Lipschitz on every [τk

i , τ
k
i+1]

there exists a subsequence converging to a solution y(·) of (1.1)–(1.2) with impulsive
points τi for i = 1, 2, . . . , p. Due do (2.1) either τi(x(τi)+Si(x(τi))) = τi+1 for some
i-contradiction with (A1), or τi = τi+1-contradiction with (A2). �

Now we study the mixed semicontinuous case, namely we assume that F (·, ·) is
almost USC with convex compact values in some points and it is almost LSC with
compact values in others.

Note that the most papers consider the case when F (·, ·) is either almost USC or
it is almost LSC. The tedious proofs of the existence result in mixed semicontinuous
case were simplified in separable Banach spaces in the very recent papers [16] and
[19]. Here we extend the results presented in these papers to the case of differential
inclusions with impulses.
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Assume that E is a separable Banach space. Let A ⊂ I ×D and let A ∈ L⊗B,
where L is the class of Lebesgue measurable subsets of I and B – the class of Borel
subsets of E. We require also that for every t with (t, x) ∈ A the projections
{z ∈ D : (t, z) ∈ A} be relatively open (in D).

(A4) F (·, ·) is almost LSC on A. F (·, x) is measurable for every x ∈ D, F (t, ·) is
USC with convex values on (I ×D) \ A. Moreover, there exists a constant
C such that |F (t, x)| ≤ C for every x ∈ D and a.e. t ∈ I, and NC < 1.

(A5) There exists a null set N ⊂ I such that F (t, x) ⊂ TD(x) for every (t, x) ∈ A
when t /∈ N .

The following lemma is used in the proof of Theorem 2.8 below.

Lemma 2.7 ([10, Theorem 2]). Let X,Z be two Banach spaces, let Ω ⊂ I ×X be
nonempty and let M > 0. Then any closed valued LSC multifunction from Ω into
Z admits a ΓM -continuous selection.

Theorem 2.8. Under assumptions (A1)–(A5) and (H1)–(H2), the system (1.1)–
(1.2) has a solution.

Proof. Since F (·, ·) is almost LSC, one has that there exists a sequence {Jn}∞n=1

of pairwise disjoint compacts Jn ⊂ I such that F (·, ·) is LSC on (Jn ×D) ∩ A for
every n. Furthermore, its union is of full measure (without loss of generality we ca
assume that it is equal to I \ N ). Let Ωn = (Jn ×D) ∩ A. Then define

G(t, x) =


F (t, x) (t, x) ∈

(
Jn ×D) \ Ωn

Gn(t, x) (t, x) ∈ Ωn, n = 1, 2, . . .
0 t ∈ N

Here Gn(t, x) = ∩ε>0co fn(Aε), Aε =
(
[t− ε, t+ ε]× (x+ εU)

)
∩Ωn, where fn(·, ·)

are ΓC+1 continuous selections of F (·, ·) on Ωn. It is easy to see that due to (H1)
G(·, ·) is almost USC.

There exists a measurable selection of TD(x) ∩ G(·, x). From [14, proposition
5.1] we know that there exists an almost USC G0(t, x) ⊂ G(t, x) with convex
and compact values satisfying the conditions of Theorem 2.3 such that for every
measurable u(·), v(·) with v(t) ∈ G(t, (u(t)) it follows that v(t) ∈ G0(t, (u(t)). Let
D′ = {xi}∞i=1 be a dense subset of D. Fix ε > 0. Let fi(t) ∈ G(t, xi) ∩ TD(xi)
be measurable. Therefore there exists a compact Iε ⊂ I with meas(Iε) > 1 − ε
such that fi(·) are continuous on Iε for every i. Due to (H1) for every t ∈ Iε
every sequence {fi(t)}∞i=1 has a density point say ft. Let xi → x, therefore ft ∈
G0(t, x), because G0(t, ·) is USC. Thus G0(·, ·) admits nonempty values and hence
G0(t, x) ∩ TD(x) 6= ∅. Therefore G0 satisfies all the conditions of Theorem 2.3.

Hence the system (1.1)–(1.2) with F replaced by G0 has a solution. �

3. Properties of the solution set of impulsive differential inclusion

Let Imk,L be the set of all functions x(·) which are L-Lipschitz on [ti(x) +
0, ti+1(x)] and have no more than k jump points t1(x) < t2(x) < · · · < tk(x). Note
that in general ti depend on x, i.e. the impulses are not fixed times.

Proposition 3.1. The space Imk,L equipped with the usual L1(I, E) norm becomes
a complete metric space.
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Proof. One must only show that every Cauchy sequence {xk(·)}∞k=1 converges to a
Imk,L function, because Imk,L ⊂ L1. By Egorov’ theorem if a sequence {yk(·)}∞k=1

of L-Lipschitz functions converges in L1 norm to y(·) then the latter is also L-
Lipschitz. Let {xn(·)}∞n=1 be a Cauchy sequence in Imk,L. Denote by tnj (as
j = 1, 2, . . . , k) the times of (possible) jumps of xn(·). Passing to subsequences
if necessary one can assume that limn→∞ tnj = tj for j = 1, 2, . . . , k. Let 0 ≤ t1 ≤
t2 ≤ · · · ≤ tk ≤ 1. Given ε > 0 we consider Iε = ∪k

j=1(tj − ε
k , tj + ε

k ). It is easy
to see that L1 limit of this (sub)sequence on I \ Iε is L-Lipschitz function. Since it
is valid for every ε > 0 one can conclude that the limit function x(·) is L-Lipschitz
on every (tj , tj+1). The L1 limit is unique and hence x(·) ∈ Imk,L. �

We will also need the following assumption.
(A6) The functions Si : D → D are Lipschitz continuous with constant µ such

that Cµ < 1.
Let E be a Banach space with single valued duality map J : E → E∗. Recall
that the map F : I ×D → E is said to be One Sided Lipschitz (OSL) when there
exists a constant L such that hF (t, x, J(x− y))− hF (t, y, J(x− y)) ≤ L|x− y|2 for
every x, y ∈ D, where hF : I × E × E∗ → R is the lower Hamiltonian defined as
hF (t, x, p) = inf{〈p, v〉 : v ∈ F (t, x)}. We refer to [15, 16] and the references therein
for theory of OSL differential inclusions.

We will use the following lemma which is a particular case of [25, Lemma 2].

Lemma 3.2. Let a1, a2, b ≥ 0 and for i = 1, 2, . . . , p let

δ+i ≤ a1δ
−
i , δ−i ≤ a2δ

+
i−1 + b

then δ−i ≤ b
∑i−1

j=0(a1a2)j + δ0(a1a2)i, where δ+0 ≥ 0.

The following result is the well known relaxation theorem. However, to our
knowledge this theorem has not been studied in case of impulsive differential inclu-
sions. We follow the proof from [15] (given there for system without impulses).

Theorem 3.3. Let F (·, ·) be almost continuous with nonempty convex compact
values. Further we assume that it is OSL and |F (t, x)| ≤ C. If ext F (t, x) ⊂ TD(x)
for every x ∈ D and a.a. t ∈ I then under (A1)–(A6), (H1), the solution set of
(1.3)–(1.4) is dense in the solution set of (1.1)–(1.2).

Proof. Let x(·) be a solution of (1.1)–(1.2). Denote R(t, x) = extF (t, x(t)). Since
F (·, ·) is almost continuous, one has that R(·, ·) is almost LSC [29, Lemma 2.3.7]).
Define:

Gε(t, y) =
{
v ∈ R(t, x(t)) : 〈J(x(t)− y), ẋ(t)− v〉 < L|x(t)− y|2 + ε2/2

}
.

From [20, prop. 2.62 p. 55 vol. I] we know that Gε(·, ·) is almost LSC with
nonempty compact values. One can prove as in the proof of Theorem 2.8 that the
system

ẏ(t) ∈ Gε(t, y(t)), y(0) = x0 a.e. t ∈ I = [0, 1], t 6= τi(y),

∆y|t=τi(y) = Si(y(τi(y)− 0)), i = 1, . . . , p, x(t) ∈ D
(3.1)

has a solution. Indeed, let gε(t, x) ∈ Gε(t, x) be almost ΓC+1 continuous, i.e. gε(·, ·)
is ΓC+1 continuous on Ik × D (k = 1, 2, . . . ), where ∪∞k=1Ik has full measure and
Ik are nonempty pairwise disjoint compact sets.
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We let gk(t, x) := ∩δ>0co gε ((t− δ, t+ δ) ∩ Ik, x+ βB) for t ∈ Ik. Define

g(t, x) :=

{
gk(t, x) t ∈ Ik, k = 1, 2, . . .
0 otherwise.

It is easy to see that g(t, x) ⊂ F (t, x) is almost USC and it satisfies all the assump-
tions of Theorem 2.3. Hence (1.1)–(1.2) with F replaced by g admits a solution.
Let y(·) be a solution of (3.1). On every common interval of continuity of x(·) and
y(·) one has 〈J(x(t)− y(t)), ẋ(t)− ẏ(t)〉 ≤ L|x(t)− y(t)|2 + ε2/2. That is

d

dt
|x(t)− y(t)|2 ≤ 2L|x(t)− y(t)|2 + ε2.

Consequently, on every such interval [τ, ν] one has |x(t) − y(t)|2 ≤ e2L(t−τ)δ2 +
ε2

∫ t

τ
e2L(t−s) ds, where δ = |x(τ)− y(τ)|. Hence

|x(t)− y(t)| ≤ eL(t−τ)δ + f(t)ε, (3.2)

where f(t) = max{1, eL(t−τ)}. Let a1 = 1+N+Cµ
1−Cµ , let a2 = max{eL, 1} and let

b = εeq(L), where

q(L) =

{
eL−1

L L 6= 0
1 L = 0.

We are ready to apply Lemma 3.2. Let δ+0 = |x0 − y0| (when y(0) = y0 6= x0 in
(3.1)). We will show that for fixed δ > 0 there exists ε(δ) > 0 such that: For every
0 < ε < ε(δ) there exists a solution y(·) of (3.1) such that |x(t) − y(t)| < δ for
t ∈ I \ ∪p

i=1[τ
−
i , τ

+
i ], where τ−i = max{τx

i , τ
y
i } and τ+

i = min{τx
i , τ

y
i }. Moreover,

p∑
i=1

|τx
i − τy

i | < δ.

Here τx
i and τy

i are the jump points of x(·) and y(·). First we assume that τx
i < τy

i+1

and τy
i < τx

i+1 and afterward we will see that for sufficiently small ε it is the case.
The rest of the proof is very similar to the proof of Theorem 2 of [25] and will

be given, for reader convenience. Due to (3.2) one has |x(t)− y(t)| ≤ a1δ
+
0 + b on

[0, τ−1 ]. Hence δ−1 = |x(τ−1 0)− x(τ−1 0)| ≤ a1δ
+
0 + b, because obviously f(t) < b and

a2 > eL(t−τ) for any interval [τ, ν]. Evidently denoting δ+i = |x(τ+
i +0)−y(τ+

i +0)|
one has that δ−i−1 ≤ a2δ

+
i + b.

If τy
1 < τx

1 then |x(τ+
i −0)−y(τ−i −0)| ≤ δ−i + |x(τ+

i −0)−x(τ−i )| ≤ δ−i +C(τ+
i −

τ−i ). Consequently, τ+
i −τ

−
i = |τi(x(τ+

i −0)−τi(y(τ−i 0)| ≤ µ|x(τ+
i −0)−y(τ−i −0)| ≤

µ
(
δ−i + C(τ+

i − τ−i )
)

and hence

τ+
i − τ−i ≤ µδ−i

1− Cµ
. (3.3)
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Therefore, |x(τ+
i − 0)− y(τ−i − 0)| ≤ δ−i + C

µδ−i
1−Cµ . For δ+i we have

δ+i ≤ δ−i + |x(τ+
i )− x(τ−i − 0)|+ |y(τ+

i )− y(τ−i − 0)|

≤ δ−i + |S(x(τ+
i − 0)− S(y(τ+

i − 0)|+

∣∣∣∣∣
∫ τ+

i

τ−i

ẋ(t)− ẏ(t) dt

∣∣∣∣∣
≤ δ−i + 2C(τ+

i − τ−i ) +N |x(τ+
i − 0)− y(τ−i − 0)|

≤ δ−i +
2Cµδ−i
1− Cµ

+N
(
δ−i + C

µδ−i
1− Cµ

)
= a1δ

−
i .

Due the symmetry one can conclude that δ+i ≤ a1δ
−
i also when τx

1 ≤ τy
1 . This is true

for i = 1, 2, . . . , p. It follows from Lemma 3.2 that δ−i ≤ b
∑i−1

j=0(a1a2)j + δ0(a1a2)i.
We have only to see that τx

i < τy
i+1 and τy

i < τx
i+1 to complete the proof. For

sufficiently small ε it follows that

|τx
i − τy

i | < min
0<i<p−1

τx
i+1 − τx

i

4

thanks to (3.3). Note that x(·) is fixed and hence τx
i are known. It is evidently also

that for every δ > 0 there exists ε(δ) such that for every 0 < ε < ε(δ) there exists
a solution y(·) of (3.1) with

∑p
i=1 |τx

i − τy
i | < δ. �

Further, in this section we assume that E ≡ Rn. We will study (1.1)–(1.2) with
the help of the assumption

(H3) There exists a null set N ⊂ I with hF (t, x, ζ) ≤ 0, for all ζ ∈ NP
D (x), for

all x ∈ S, for all t ∈ I \ N .

Remark 3.4. The condition (H3) is weaker than (H2) when E is a Hilbert space,
however it is not applicable in more general spaces.

We assume further that F (·, ·) is almost USC with nonempty convex compact
values. The following theorem is proved for autonomous F (·) in [12, 13] and ex-
tended to non-autonomous case in [17].

Theorem 3.5. Under assumptions (A1)–(A3), the system (1.1)–(1.2) has a solu-
tion if and only if (H3) holds.

Proof. Assume that t(x0) is not impulsive point. Therefore, there exists a neigh-
borhood x0+εB where t(x) is not a jump point for every x ∈ x0+εB. Consequently
from Theorem 1 of [17] we know that there exists t′ > t such that the system (1.1)–
(1.2) has a solution on [t, t′]. One can continue as in the proof of Theorem 2.3. If
x0 is an impulsive point then we consider the system (1.1)–(1.2) with x0 replaced
by x(0) + S1(x0) (the solution after impulse).

The proof of only if part is omitted, because it is the same as the proof in case
without impulses (cf. [17]). �

When F (·, ·) is defined on the whole space the invariance problem becomes sim-
pler. We will call the solutions x(·) which belong to D viable.

The system (1.1)–(1.2) is called weakly invariant when there exists a viable
solution x(·). The system (1.1)–(1.2) is said to be (strongly) invariant when all the
solutions are viable.
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We will say that the multivalued map G(t, x) ⊂ F (t, x) is a submultifunction (of
F ) when G(·, ·) is almost USC with nonempty convex compact values.

The following lemma is an extension of [17, Proposition 3 ].

Lemma 3.6 (Invariance principle). Suppose that (A1)–(A3) hold. If F (t, ·) is OSL,
then the system (1.1)–(1.2) is invariant if and only if the system

ẋ(t) ∈ G(t, x(t)), x(0) = x0 ∈ D, a.e. t ∈ I = [0, 1], t 6= τi(x), (3.4)

∆x|t=τi(x) = Si(x), i = 1, . . . , p, x(t) ∈ D, (3.5)

is weakly invariant for every submultifunction G.

Proof. Let (1.1)–(1.2) be strongly invariant. Since the system (3.4)–(3.5) has a
solution (thanks to Theorem 3.5, one has that it is strongly (and hence weakly)
invariant. Let (3.4)–(3.5) be weakly invariant for every submultifunction G. Let
x(·) be a solution of (1.1)–(1.2). We define the multifunction

G(t, y) =
{
v ∈ F (t, y) : 〈x(t)− y, ẋ(t)− v〉 ≤ L|x(t)− y|2

}
.

Since F (t, ·) is OSL, one has that G(·, ·) is nonempty valued. Let u, v ∈ G(t, y)
then 〈x(t)− y, ẋ(t)− λu+ (1− λ)v〉 ≤ (λ+ (1− λ)v)L|x(t)− y|2, i.e. G is convex
valued. Let F be USC on A×Rn, let (t, y) ∈ A×Rn and let ẋ(·) is continuous on
A. If A 3 ti → t, yi → y and G(ti, yi) 3 vi → v, then

lim
i→∞

〈x(ti)− yi, ẋ(ti)− vi〉 = 〈x(t)− y, ẋ(t)− v〉.

Moreover, limi→∞ L|x(ti)−yi|2 = L|x(t)−y|2. Thus G(·, ·) is almost USC (because
G(t, x) ⊂ F (t, x)).

Therefore, G is a submultifunction of F . Let y(·) be viable solution of (3.4)–(3.5).
If [µ, ν] is an interval without impulses of x(·) and y(·), then 〈x(t) − y(t), ẋ(t) −
ẏ(t)〉 ≤ L|x(t)−y(t)|2. Thus d

dt |x(t)−y(t)| ≤ 2L|x(t)−y(t)|2. If x(µ) = y(µ), then
x(t) ≡ y(t) on [µ, ν] thanks to Gronwall inequality.

However, x(0) = y(0) = x0. Consequently x(t) ≡ y(t) on the whole interval I and
hence x(t) ∈ D for every t ∈ I. The last implies that (1.1)–(1.2) is invariant. �

The following theorem is an immediate corollary of Theorem 3.5 and Lemma
3.6. It extends [17, Proposition 3] to impulsive systems.

Theorem 3.7. Let the conditions of Lemma 3.6 hold. Then system (1.1)–(1.2) is
invariant if and only if for every submultifunction G there exists a null set NG such
that hG(t, x, ζ) ≤ 0, for all ζ ∈ NP

D (x), for all x ∈ S, for all t ∈ I \ NG.

Recall that A is said to be absolute (metric) retract [14, p. 83] if, given a
metric space Ω, closed B ⊂ Ω and continuous f : B → A, there exists a continuous
extension f̃ : Ω → A of f . A is said to be Rδ if A = ∩k≥1Ak for decreasing sequence
of compact absolute retracts Ak.

The set B is said to be contractible if there is x0 ∈ B and continuous h :
[0, 1]×B → B such that h(0, x) = x and h(1, x) = x0 on B. It is well known that
A is Rδ if and only if A = ∩n≥1Bn with decreasing sequence of closed contractible
sets (cf. [21]).

Theorem 3.8. Let D ≡ Rn and let F (·, ·) be almost USC with nonempty con-
vex compact values. Under assumption (A1)–(A3) and (A6) the solution set of
differential inclusion (1.1)–(1.2) is nonempty Rδ in Imp,L.
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Proof. Due to Lemma 2.2 the solution set of (1.1)–(1.2) is in Imp,L (it is nonempty
thanks to Theorem 2.3). Now we will use the locally Lipschitz approximation of
USC multifunctions.

Let I \ I = ∪∞j=1Ij be a sequence of pairwise disjoint compacts such that F
is USC on Ij × E and meas(I) = 0. Define Fn(t, x) =

∑
λ∈Λ ψλ(t, x)Cλ on

Ij × E with Cλ := coF (t, x + 2rnB), where rn = 3−n. It is easy to see that
F (t, x) ⊂ Fn+1(t, x) ⊂ Fn(t, x) ⊂ coF (t, x + 2rnB). We can take a strongly mea-
surable selection gλ of F (·, xλ) and define f(t, x) =

∑
λ ϕλ(x)gλ(t). Therefore,

f(·, x) is strongly measurable and f(t, ·) is locally Lipschitz (cf. [14, Lemma 2.2]).
Consequently, the system

ẋ(t) = f(t, x(t)), a.e. on I, x(t) = y t 6= τi(x), (3.6)

∆x|t=τi(x) = Si(x(τi(x)− 0)), i = 1, . . . , p, (3.7)

admits a unique solution, which depends continuously on (t, y) (cf. [5, 28]). Thus
the solution set of (1.1)–(1.2) with F replaced by Fn has a nonempty contractible
solution set Soln (cf. [14, p. 82] ). Furthermore it is easy to see that the solution
set Sol of (1.1)–(1.2) satisfies Sol = ∩∞n=1Soln. Consequently Sol is Rδ set. �
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