
Designing Real-Time Systems
with Intelligent Sensors

Thesis

Presented to the Graduate Council of
Southwest Texas State University

in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

by

Jerry D. Cavin
B.S., Computer Science

A.A.S. Electronic Technology

San Marcos, Texas

April, 1993

2

ACKNOWLEDGMENTS

I would like to express my sincere appreciation and gratitude to my thesis

supervisor Dr. Janusz Zalewski, for patient assistance throughout this project. Additional

thanks are due to Dr. Thomas McCabe, and Dr. Carol Hazelwood for their service as

members of my thesis committee.

I would also like to thank Alvin Moczygemba, Maintenance Supervisor of the

Austin Dekker Lane Power Plant, for the tour and detailed explanation of the inner

working of power plant.

3

Table of Content

1.0. INTRODUCTION .. 6
I. I. THE NATURE OF INTELLIGENT SENSORS .. 8
1.2. EXAMPLES OF INTELLIGENT SENSORS .. 11
1.3. SUMMARY ... 17
2.0. SYSTEM DESIGN WITH INTELLIGENT SENSORS 18
2.1. DATA FUSION .. 18
2.1. l. PROBABILISTIC DATA FUSION ... 18
2.1.2. THE LEAST-SQUARE METHOD ... 18
2.1.3. KALMAN FILTERING .. 21
2.1.4 SUMMARY ... 22
2.2. FAULT TOLERAN"CE ... 24
2.2.1 CONFIGURATION FLEXIBILITY .. 24
2.2.2. SAFER SYSTEMS ... 26
2.2.3. SUMMARY .. 29
2.3.1. PHYSICALLAYER ... 32
2.3.2 DATA LINK LAYER .. 34
2.3.3. XTP -- THE XPRESS TRAN"SFER PROTOCOL ... 37
2.3.4. NTP -- THE NETWORK TIME PROTOCOL .. 39
2.3.5. EXTERNAL DATA REPRESENTATION ... 40
2.3.6 SUMMARY .. 43
2.4. GLOBAL STATEAWARENESS ... 45
2.4. l. GLOBAL AND LOCAL STATE TABLES .. 45
2.4.2. SCI- SCALABLE COHERENT INTERFACE .. 46
2.4.3. SUMMARY ... 46
2.5 LOCAL PROPERTIES OF THE INTELLIGENT SENSORS 47
2.5.1 THE KERNEL .. 47
2.5.2. TASK SCHEDULING ... 48
2.5.3. TIME ... 48
3.0. PROBLEM FORMULATION AND PROCEDURE .. 50
4.0. REAL-TIME SYSTEM EXAMPLE .. 51
4.1. BOILER .. 51
4.2 REMAINING COMPONENTS .. 55
5.0. REAL-TIME SYSTEM DESIGN ... 57
5.1 THE SYSTEM OBJECT ... 62
5.2. THE TURBINE OBJECT .. 63
5.3. THE GENERATOR OBJECT .. 64
5.4 THE CONDENSER OBJECT .. 65
5.5 THE DEAERATOR OBJECT .. 66
5.6. THE BOILER OBJECT ... 67

4

6.0 IMPLEMENTATION .. 75
REFERENCES .. 78
APPENDIX A ... 80
APPENDIX B ... 87
APPENDIX C ... 156

5

1.0. INfRODUCTION

Contemporary industrial applications using real-time systems tend to be very large

and complex. They may include hundreds of processors scattered over large areas

connected together by a communication network. Many of toady's real-time projects

require systems containing up to one million sensors that are collecting data at a hundred

to a thousand times a second. If real-time systems are to continue to be a viable solution

for massively complex systems, then the current real-time system architecture will need to

be improved. This level of complexity can only be handled by distributing the intelligence,

or processing capabilities, throughout the system. In the past, the majority of the

processing has been done by the central computer of the real-time system as shown in

Figure la, and more recently configured as in Figure lb.

sensing devices

(a) Real-time Systems of the Past

communication networic

Interconnect

sensing devices

(b) Contemporary Real-time Systems (c) Future Real-time Systems

Figure 1 - Today's and Tomorrow's Real-time Systems

One of the leaders in real-time system design, John Stankovic pointed out

6

"The next generation of real-time-systems will be in

similar application areas as current systems, but will

be more complex in that they will be distributed, contain

highly dynamic and adaptive behavior, exhibit intelligent

behavior, have long lifetimes and be characterized as

having catastrophic consequences if the logical or timing

constraints of the system are not met." 12

These future requirements will force the sensors of real-time systems to gain more

intelligence (see Figure le). This means turning responsibility over to the sensor to

perform not only measurement and control functions but also analyze of the data taken,

and to some extent, partake in decision making.

7

1.1. THE NATURE OF INTELLIGENT SENSORS

The idea central to the intelligent sensor is that the majority of the processing is

done by the intelligent sensor rather than the main processor. The central computer then

becomes a site for data storage and transferal, and to maintain control over the entire

system. The overall design of a system designed with intelligent sensors is a combination

of the classic real-time system and a distributed control system. The classic real-time

system in this sense is defined as being a system that has stringent timing constraint

requirements, achievable through proper task scheduling and task pre-emption. A

distributed control system is a system that maintains control over a number of instruments

and sensors over a large network. The distributed control system usually has few, or no

timing constraints. By combining the timing constraint requirements of the classic real­

time system and the control network of a distributed control system it is possible to

control a large number of intelligent sensors.

Real-time systems have been increasing in complexity every year as they are called

upon to handle more sophisticated duties. The higher level of complexity requires the

system designer to build systems that can meet timing constraints that were impossible a

few years ago. Another problem of system designers is task pre-emption, which adds a

great amount of overhead to the time required to execute a task given a signal from the

outside environment. Recently this has meant simply to build faster and faster chips to be

used in embedded applications. For many years CPU clock speeds have been increasing

dramatically to keep up with the demand for faster machines. Today the chip designers

are reaching the theoretical limits of the micro connections on the computer chips. This

should be a major concern for the real-time systems designers who still have projects on

the drawing boards hoping for future technologies to solve their problems. This

bottleneck for real-time systems has been caused by localizing the system functions of task

8

scheduling and task pre-emption into a central processor. In their study of advanced

sensor systems Muntz and Horowitz pointed out these as the "deficiency of the classical

execution model for hard real-time systems" . IO Only by using a more distributed real­

time architecture will the problems of scheduling and pre-emption be solved.

The distribution of functions and delegating them to sensors. mean that

intelligence of sensors must increase significantly, making them capable to perform the

following:

I. Preprocessing

The intelligent sensor must, using a local processor, perform data preprocessing,

(i.e. data fusion), upon the measurements taken from the sensors. The results of the

analysis must contain information about the system's environment which can not be

extracted from the measurements alone. The processor then performs actions based upon

the analyzed data. The class of the local processor used in the intelligent sensor may range

from highly specialized embedded micro controller to an 8, 16, or 32-bit micro computer.

2. Fault-Tolerance

If, for any reason, the intelligent sensor fails it must not cause a failure of the entire

system. The fault should be detected and steps taken to recover from the failure, or to fail

gracefully in a fail-safe manner, and the functions of the faulty unit taken over by another

unit. This will have increasing importance as human life will be at stake as control systems

of the future becomes more prevalent in modem society.

9

3. Communications

The intelligent sensor must communicate with the central computer and other

intelligent sensors over a high speed real-time communication network, to download run­

time softvvare, and transmit and receive local state tables. The communications network

must also meet the deterministic criteria of real-time systems. The system designer must

be able to reliably predict packet arrivals to ensure timing constraints placed on the

system. One of the most common choices for real-time netvvorks, discussed in later

sections, is the Token-Ring network.

4. Global Awareness

A key item in many systems is data. The data must flow unobstructed throughout

the system so that it may be used to form decisions on which actions are to be taken. To

accomplish this a mechanism must be established to store data at a central site or make

these visible to all or most of the units in some other way. At the central site the data is

time-stamped and stored in a global database. The intelligent sensor of the system can then

store measured data taken. The sensor can also request data from the central computer

that has been stored by intelligent sensors elsewhere in the system. If the central

storage/repository is not practical or cannot be set for some reason, data stored at

different places should be accessed using cache coherent technologies.

10

1.2. EXAMPLES OF INTELLIGENT SENSORS

The term "intelligent" is widely used in modem technology. Its use in the phrase

"intelligent sensors" is intended to imply machine intelligence used by the devices which

interface with the outside world. In this case it is a computational process that occurs in

the electronics of a device used to collect information about the environment or to cause

an event in the environment.

The circuitry of the intelligent sensor contains any number of the devices used to

measure the quantity of a particular environmental characteristic. (See Appendix A)

Signals of this type may cause a robotic actuator to move, or turn ON or OFF other

devices that cause a physical change in the environment. Other components the intelligent

sensor may contain would be RAM, ROM, and a microcomputer or micro controller. It

may contain any number of other highly specialized processors such as integer processors,

floating point processors, graphics processors, or image processors.

In this system a high-speed real-time communication network would connect all of

the intelligent sensors with the main computer. This network would give the intelligent

sensor the capability to receive commands to execute, programming instructions, or data

from other intelligent sensors or the central computer. The intelligent sensor could also

relay everything it receives to a neighboring sensor.

The intelligent sensors may consist of a number of specialized chips. Today there

exist hundreds of types of microprocessor and micro controller chips. There are also

many support chips for interfacing to computer networks, high speed numeric processing,

and controllers for specialized devices. The processor used can range from small 8-bit

processors to the fastest 64-bit processor with multiple arrays of specialized processors.

11

With the advances in today's micro electronics and data processing technology it is

possible to miniaturize microprocessors along with a variety of sensors onto a single chip.

Today there is a growing number of manufacturers experimenting with miniaturization of

sensing devices and actuators, and more will be needed in the future.

The processor of the intelligent sensor may have a large number of roles to satisfy.

One way to accomplish this task is to use a number of CPUs for each function, as

illustrated in the following examples.

Display
Processor

1•11::,..__R_S2_32 _ ____,.

Master
Processor

Intelligent Sensor

Communication Network

RS232

Slave
Processor

.n
actuators sensors

Figure 2. Example of an Intelligent Sensor using a micro controller.

Example 1. In the example in Figure 2 the master micro controller receives and

transmits messages over the network. The slave micro controller is responsible for the

data measurements and control. The third micro controller may be connected to a display

that allows the user to view the status of the system. •••

12

There are many 8-bit micro controllers on the market today. The manufacturers of

these chips have been adding a multitude of features to fill almost every applications need.

In addition to RAM and ROM, some EEPROM (Electrically Erasable Programmable

Read Only Memory) have also been recently added. Micro controllers with timers,

counters, serial ports, parallel ports, interrupt controllers, DMA (Direct Memory Access)

controllers, PW (Pulse Width) Modulators, ADCs (Analog-to-Digital Converters), DACs

(Digital-to-Analog Converter), and interfaces to communication networks are all available

today.

Example 2. For Intel 8051 micro controllers, it is possible to connect the internal

processors of an intelligent sensor together through their parallel ports for one-way

communications without having to provide buffers (see Figure 3a). This provides a high­

speed method of transmitting micro controller data within an intelligent sensor. If bi­

directional communication is desired between micro controllers a single 8255 PPI

(Programmable Peripheral Interface) can be utilized (see Figure 3b). If there is a

significant distance between micro controllers two 8255 PPis may be required (see Figure

3c) to ensure proper transmission.

13

:1:-!i!!iil.i!:!:!l--:--RX-TX-<11•

111~1111111~1111

,JI
(d)

1488/1489

lllllllllllll:1111!!!lk>11~l~ll1!IIIII
(a) (b) 75174/75175

(c) (e)

Figure 3. Inter processor Communication

For serial communications it is possible to connect micro controllers directly for

short distances (see Figure 3d). If longer distance are required adding RS232 or

RS422/485 buffers, as shown in Figure 3e, are appropriate

Example 3. Using the UART (Universal Asynchronous Receiver/fransmitter) of

the 8051 loops can be set up that echo's incoming messages to all of the processors, as

shown in Figure 4a. This approach is similar to that of the Token-Ring. Each processor

around the circle would echo the data to the next. This type of addressing, called SDLC

(Synchronous Data Link Control), is built into the Intel 8044 micro controller. Other

manufactures have done this with their chips as well, Signetics has implemented the 12c

data communications controller into some of the Signetics 8051 micro controller chips.

The system designer must use caution in designing these simple networks to avoid

having to build sophisticated protocols to handle ACK's (Acknowledgment), NAK's

(Negative Acknowledgment) and all of the overhead of handshaking protocols.

Extensive communication activity would also take cycles away from their intended control

14

purposes.•••

Example 4. Another configuration of processors in a sensor would be the tree

configuration as shown in Figure 4b. In this scheme there is a single master processor

receiving message from the communication network and passing the messages to the

individual processors. The way in which the processors are addressed is through the use

of a ninth bit. When the ninth bit is set, it commands all of the processors to "wake-up"

for the next byte, which contains the address. The processor that corresponds to the

address sent will then start to receive the incoming message addressed to it, all of the

others would ignore it. •••

15

TX RX

111111111111111111 >1111:11111111111111
: ~L:··-------

11111111111i111:111111 111.
RX TX

~::111TX

/ii/!!!!!lllli/jilllll RX RX :11•
ji:iiililliiiiiliiili RX RXill-

(a) (b)

Communication
Network

(c)

Intelligent Sensor

(d)

Figure 4. Intelligent Sensor Connections

Example 5. The micro controller in an intelligent sensor may also be configured

to communicate with a master micro controller through hardware ports, as shown in

Figure 4d. By collecting sensor information and processing it the resulting data may be

16

collected by the master micro controller for further use. This would effectively "hide" the

complexity of the design by modularizing it into smaller tasks and distributing it to a

number of smaller controllers. An example of this type of design may be seen in a tracking

system that displays the x, y, and z axis position of an object. Each slave controller would

be responsible for a single axis in the coordinate system. The data would be gathered by

each controller and analyzed concurrently. After the calculations are made and the

position determined the information is made available at each of the three ports. The

central controller would record the information at the three ports as the x-y-z position. •••

1.3. SUMMARY

It is clear that most of the presented configurations do not meet all the four criteria

for functionality, 1) Preprocessing, 2) Fault-tolerance, 3) Communications, and 4) Global

Awareness. All of these design criteria may not be well suited, or even desirable, for

some types of problems where the control mechanism is very simplistic. However, for

intelligent sensors, all of them should be taken into account. It is therefore necessary to

take a closer look at the functionality of intelligent sensors.

17

2.0. SYSTEM DESIGN WITH INTELLIGENT SENSORS

2.1. DATA FUSION

Data fusion involves talcing the data collected by the sensors and perfonning

analysis on the data to extract more information than what would be obtained by analyzing

the data of a single sensor. Data fusion can be done by one sensor combining various data

measurements about the same object. The data is ''fused" by one of two fusion

techniques: (1) probabilistic models by using robust statistics or Bayesian reasoning, or (2)

least-square techniques, such as the Kalman filtering.

2.1.1. PROBABILISTIC DATA FUSION

Statistical estimation is based only in part upon previously measured data. There

are many assumptions that must be made concerning the data about randomness,

probability distribution and many other, sometimes unknown, parameters. The statistical

procedures used for probabilistic data fusion must be "robust". A robust procedure

signifies an insensitivity to small deviations in the assumptions. Larger deviations from the

assumptions should not be catastrophic.

2.1.2. THE LEAST-SQUARE METHOD

A very important branch of inferential statistics, regression analysis, is used to

compare previously collected data to discover any relationships that may exist. One of the

most common procedure is the Least-Square Method.

18

y • M
V

I
e regression line a a
s 1
u u
r e
e s
d /

X

Time

Figure 5. Direct Linear Regression Line

This method starts by creating a scatter diagram of the measurements taken. Once

the diagram is established a line is computed that best ''fits" the data as shown in Figure

10. The regression line, or regression curve, can have many shapes and characteristics

depending upon the relationship of the data involved. In this example the relationship is

assumed to be linear for simplicity. This type of diagram only gives a rough idea of the

kind of relationship, if any, between any of the measurements. To get a more accurate of

regression requires some calculation. In the linear example the equation of the line is

written as

y=mx + b,

where b is they-value at which the line intersects the vertical axis and m is the slope of the

line. For each value of x the corresponding y value differs from the value it would have if

the data point were exactly on the line. These differences are shown in the figure by the

vertical lines. Choosing another line would probably make some of these differences

greater and some smaller. The most common procedure to choose the line for which the

sum of the squares of all of these differences is at the minimum, thus the name of this

procedure, the method of the least squares. The method of finding the least squares curve

19

or least square line involves the use of optimization techniques. The variable y' is used

instead of y to distinguish the predicted values from the y-values of the pre-measured data

points. The least square line y' = m:x + b that provides the best fit to the data points (x 1,

Y1), (x2, Y2), (xn, Yn) has a slope of

and the y'-intercept is

n(I,xy) - (Ix)(I,y)
m=--------

I,y- m(I,x)
b=-------­

n

Once an equation for the least square line has been found it is important to

determine how well any future estimates will fit the points already observed. This can be

done by calculating the coefficient of correlation by using the following formula,

n(I,xy) - (I,x)(I,y)

r=------------------

The value ofr is always between 1 and -1. Values that are found to be exactly 1

or -1 indicate the data points lay exactly on the least squares line. If r = 1 then the least

square line has a positive slope; if r = -1 the least square line has a negative slope. If r =
0, then there is not linear relation between the data points. It could be a curve that may

better represent the relationship between the data points rather than a linear construct.

20

2.1.3. KALMAN FILTERING

A Kalman filter is a recursive algorithm that uses all information that can be

provided, regardless of precision, to estimate the current state of a system. This includes

data concerning knowledge of the system under test, the dynamics of the devices

performing the measurements, the description of system noises, measurement errors, and

any information available about the initial state of any of the variables of interest. A

recursive algorithm in this sense refers to the Kalman Filter algorithm ability to recompute

the probability density given a new measurement. This eliminates the need to store a

large amount of previously recorded data for the probability density to be recalculated

System error
sources

Controls).

System state
(desired, but

not known)

Figure 6. Kalman Filter Overview.

Optimal estimate
of system state

In this case the ''filter" is simply a computer algorithm. The algorithm, as shown in

the above figure, tries to obtain an optimal estimate of the environment. The algorithm

does this by computing the conditional probability density of the desired quantities based

upon the actual data coming from the measuring devices. Once the conditional

21

probabilities are computed the "optimal" estimate can be defined. Possible choices may

include the mean - the "center of the probability mass" estimate; the mode - the value of x

that has the highest probability, located at the peak of the density; and the median - the

value of x so that half of the probability weight lies to the left of x and the other half to the

right.

y

Figure 7. Example Conditional Probability Density

The Kalman filter performs this conditional probability density for problems in

which the system can be described in a linear model, and where the noise measurements

are classified as being white noise, that is, have no correlation with time.

2.1.4 SUMMARY

The review of data fusion techniques reveals problems with using intelligent

sensors. Kalman filtering is used to predict behavior of objects in a dynamic systems. In

order to accurately predict the behavior the designer must understand how all the

environmental variables can affect the characteristic of the object under study. If all

variables are not accounted for the predictive mechanism of the Kalman filter, it will be

22

unusable. There is a great need to understand how to pick these variables so the Kalman

filtering accuracy can be predetermined and verified.

When working with microcontrollers used in embedded systems such as intelligent

sensors there is a limit to the amount of resources available. The amount of RAM, clock

speeds, and processor ability places a limit on the sophistication of algorithms used. As a

result the algorithms must not only be accurate, but must be compact enough to fit into

smaller memories, and have fast execution times to work on smaller CPU's. Therefore the

efficiency, as well as the accuracy, of the Kalman filters must be studied to determine

which should be selected dependent upon processor memory size and application.

23

2.2. FAULT TOLERANCE

2.2.1 CONFIGURATION FLEXIBILITY

By allowing the software of the intelligent sensors to be stored remotely and

loaded via the network, the system has the capability of altering its configuration. This

adaptability is non-existent in the classical form of the real-time system.

The design of a system utilizing intelligent sensors fits comfortably within the

philosophy of the object-oriented design approach. The intelligent sensor acts as an

"information hiding" object where the problems of timing constraints and those of task

switching would become invisible outside. Any change to the environmental interface

requirements of this part of the system would only affect the design of the intelligent

sensor, and not the entire system.

To start this process, systems interactions with the environment are the first

requirements to be identified. Once all of the interactions are known they are divided into

system sub-objects based on their timing requirements and common information

requirements. The requirements of these system sub-objects would become the

requirements of the intelligent sensors. In this fashion a large complex system can be

divided into a set of smaller sub-objects, each handled by its respective intelligent sensor.

The problems with the object-oriented design methodology are two-fold. Due to

the concentration on the smaller sub-objects, the system designer has difficulty in getting

an overall view of the entire system. The identification of the system timing constraints

and subsequent classification of the system sub-objects has been described more as an art

than a science.

24

Computer Network

Iii - -
Figure 8. In1ine Sensor Configuration

The inline intelligent sensor configuration allows all the intelligent sensors to

communicate with the central real-time computer (Figure 8). As shown in Figure 9, each

Computer Network

L ---Local Communication
Network

=
Figure 9. Sensor Tree Configuration

25

intelligent sensor can have any number of smaller sensors, as described in the Sensor

Classification Table (see Appendix A), that they control.

In the tree type of configuration only one intelligent sensor is in communication

with the central real-time computer. This intelligent sensor would be "relaying" the

information (if needed) from all of its subordinate intelligent sensors. All of the sun­

ordinate sensors would be carrying out their assigned task using whatever sensor/actuating

interface to which they are attached to.

An intelligent sensor configuration in large is determined by the application.

Some of the design characteristics the sensors have in common would be a channel of

communication. By using this communication channel the intelligent sensor is capable of

receiving new programming instructions and/or commands that would allow remote re­

programming of the entire system. This ability is of vital importance where the remote

sensors are in a very inhospitable environment, such as in a nuclear reactor, at the bottom

of the ocean, on the moon, or even on another planet. The intelligent sensor would also

be capable of transmitting processed data, in the form of state tables, over the

communication channel to the main processor, and other sensors, as needed.

2.2.2. SAFER SYSTEMS

With the classical real-time design, a failure at the central CPU site or one of the

major sensors would have catastrophic results. In this case there is nothing the system

designer can do to prevent unusual behavior of the system as it loses control. In systems

designed with intelligent sensors, as long as power is applied, the sensor would be able to

sense the catastrophic failure when it loses communications with the central computer. It

would then start a fail-safe shutdown of the parts of the system under its immediate

26

control.

Control

Figure 10. Hot Standby Configuration

Designing real-time systems with intelligent sensors would allow a safer system.

By moving the workload to smaller and cheaper processors at the sensor level it is easier

to design multiply redundant systems where faults can be detected and appropriate

diagnostics used to prevent system failure. In Figures 10 and 11 two different types of

fault recovery by use of two types of redundancy can be seen.

The first form ofredundancy is the "hot standby", Figure 10. In this configuration

a sensor has a number duplicates at a single site. If a fault is detected on one sensor,

another sensor can be electronically "switched" to take its place. The control of the

electronic switch can be a fault detection circuit wired to the front end of the sensor.

27

Control

Figure 11. Multiply Active Redundant Configuration

Another form ofredundancy is the "voting" sensor, Figure 11. fu this case

multiple sensors are again found at a site, but all of the sensors are active and operating.

When data is collected or an action is needed the sensors all "vote" to see if all of the other

sensors come to the same agreement. This will reduce the odds that one of the sensors is

acting erratically.

Diagnostics are an important topic when designing real-time systems. The system

must be able to detect problems and alert human operators, if necessary, in order to handle

them appropriately. fu particular, the following checks can be made to assure system

safety.

(1) Analog-to-digital and digital-to-analog devices can be checked by applying

known voltage to them and in turn read back the data to verify they are working properly.

fu addition to the diagnostics, the designer must design in fail safes to the converters. This

is dependent upon the application whether it is safe to fail at the maximum value, the

28

mmimum value, or some other predetermined value.

(2) Sensors can be checked to insure they are within proper range and that the

rates of change of the values appear within normal accepted limits.

(3) Hardware options can be checked to insure they are working on powerup.

Memory tests can produce checksum values to insure ROM/RAM/EEPROM are valid.

(4) Watch dog timers can be used to check for proper operation. These devices

must periodically be reset by the running processor. If it is not reset within a specified

amount of time it would represent a failure of the sensor. In the case of a failure a

redundant unit can be electronically switched on, and a warning message sent to the

central computer to the operator that a hardware failure has been detected and

compensated.

(5) Voltage monitors may be used to continually check the voltage supplies of the

sensor. It is also preferable to design the control circuitry with power supplies

independent from the power used by the rest of the sensor. Safe outputs can then be

generated even when the rest of the sensor has lost power.

The intelligent sensor must be able to report the existence and type off ailure to the

human interface and the central system and, if necessary, shut down itself in an orderly,

fail-safe manner.

2.2.3. SUMMARY

Fault-tolerance properties of intelligent sensors need further attention. When an

29

intelligent sensor does fail a decision must be made, based on the current state of the entire

system, to determine what kind of action must result. If an intelligent sensor fails at a

critical moment during system operation far more drastic action may be taken than when

the intelligent sensor fails in a non-critical mode. In order to implement fault-tolerance in

this type of system this issue needs to be fully understood.

The implementation of fault-tolerance can add significant cost to building the

system. Such systems can be doubled, and even triply redundant, causing the cost of the

hardware to increase with each step in redundancy. Cheaper forms of fault tolerance need

to be investigated to make fault-tolerance more financial appealing.

In the design of real-time systems intelligent sensors would play a variety of critical

and non-critical roles of control. Clearly not all of these areas need utilize fault-tolerant

design methods. The failure of a non-critical sensor may be of little consequence to the

operation of the system as a whole. One problem needing much further research is the

criteria to decide which intelligent sensors will have fault-tolerance, and which will not.

30

2.3. REAL-TIME COMMUNICATIONS

The most important criterion for the selection of the communication protocol for a

real time system is that it must be deterministic in a sense that it guarantees delivery time.

The designer must be able to determine the time it takes from an instant when an initial

event occurs, the data is collected, until the final event occurs in the sequence.

ISO Layer 7

ISO Layer 6

ISO Layer 5

ISO Layer 4

ISO Layer 3

ISO Layer 2

ISO Layer 1

Transport Layer

Network Layer

Application Layer

Presentation Layer

Session Layer

Xpress

Transfer

Protocol

Data Link Layer FDDI Token Ring

Local Area Network

Physical Medium

Figure 12. The Seven-Layer ISO Standard Protocol

The common model of considering non-real-time systems is the seven layer ISO

Standard. In order to meet the criteria for high-speed real-time systems developers use

the Token Ring for the Data Link Layer, see Figure 13. The Token Ring network passes

a data packet, or token around a circular network. When a device attached to the network

31

see its address in the token it grabs it, and places another token onto the network. The

delivery time of the token in this type network can therefore be calculated, making it ideal

for time constrained operations. FDDI (Fiber Distributed Data Interface) is a well

established method of implementing token ring architecture for Token Ring. At ISO

Level 3 and 4 is the Xpress Transfer Protocol. This protocol was developed to improve

network efficiency for pulling the bits from the network at high speed. In a fiber optic

token ring network the packets have the ability to travel at the speed of light. Because of

this, the packets must be "slowed" down in order for each device to electronically capture

the network data and for the device software to interpret the information to see to which

device the packet has been addressed. XTP speeds this process by implementing the

protocol entirely in hardware to allow the networks to run at very high speeds.

One of the few protocols that is capable of deterministic behavior is that of the

Token Ring networks. The token ring network has been very well defined in the standard

IEEE Standard 802.5: Token-Passing Ring Access Method and Layer Specification.

2.3.1. PHYSICAL LAYER

The lowest level of the communication protocol refers to the medium by which the

signal is sent from one location to be received by another. The three most reliable means

of communications for real-time systems are twisted pair, coax cable, and fiber optic

cable. Each has contrasting advantages and disadvantages that must be weighed during

the selection process in every project.

Twisted pair is by far the lowest cost medium to build a network. It consists of

wires wrapped in a shield to protect it from outside electrical interference, and a tough

32

plastic coating. They are very easily installed and maintained. One of the major

disadvantages of this medium is that it is very poor at transmitting information over large

distances. Also in some production floors where there is a great amount of electrical

interference from large transformers this medium is completely unusable.

Coax cable is somewhat more difficult to install than twisted pair, and is more

expensive. But it does not suffer as much from the electrical interference problem.

Transmitting for greater distances is also an advantage.

The state of fiber optic has increased rapidly as its use has steadily increased. Its

immunity to electrical interference, tolerance of high temperature, and other extremes in

its environment, its ability to transfer enormous quantities of data, and its compactness has

made it a very attractive choice despite its high cost. Fiber optic cable that is used today

can transmit data at 3 .4 Gigabits per second.

On the physical layer, the primary logical unit of information transmitted is a

sequence of bits. The most common protocol for such transmission is RS232. This

protocol is an interface between DTE (Data Terminal Equipment) and (DCE) Data

Communications Equipment. The EIA (Electronic Industries Association) document

defines the mechanical description of this standard as a 25 pin female connector for the

DCE, and a male connector for the DTE. The twenty-five "interchange circuits" are given

in the Table 1.

33

PIN CIRCUIT NAME

1 AA Protective Ground
2 BA Transmitted Data
3 BB Received Data
4 CA Request to Send
5 CB Clear to Send
6 cc Data Set Ready
7 AB Signal Ground or Common
8 CF Received Line Signal Detect
9 Reserved for testing
10 Reserved for testing
11 Unassigned
12 SCF Secondary Received Line Signal Detect
13 SCB Secondary Clear to Send
14 SBA Secondary Transmitted Data
15 DB Transmission Signal Element Timing
16 SBB Secondary Received Data
17 DD Receiver Signal Element Timing
18 Unassigned
19 SCA Secondary Request to Send
20 CD Data Terminal Ready
21 CG Signal Quality Detector
22 CE Ring Indicator
23 CH/Cl Data Signal Element Timing
24 DA Unassigned
25

Table 1. Pin assignments for RS2322

2.3.2 DATALINKLAYER

One of the few protocols that is capable of deterministic behavior is that of the

Token Ring networks. The token ring network has been very well defined in the standard

IEEE Standard 802.5 Token-Passing Ring Access Method and La,yer Specification. It

has also been one of the most studied networks and will not be discussed here. According

34

to Kang Shin and Chao-Ju Hou the best token ring derivation for real-time application is

the token ring scheduling protocot 11

FDDI --THE FIBER DISTRIBUTED DATA INTERFACE

The FDDI Token Ring Protocol is a high performance interface that runs at 100

Mega bits per second over distances up to 200 kilometers. The fiber optic protocols are

still evolving as researchers continue to improve its speed and reliability. At AT &T's Bell

Labs scientists hope to soon accomplish speeds in the range of tens of gigabits-per­

second.17

IEEE P1394 SERIAL BUS
Bus #4 (Serial Bus)

Bus#3

Bus#2

Bus#l

illllllllllll:.

Figure 13. Example of Serial Bus Hierarchy

The High Performance Serial Bus in Figure 13 can be used as an alternative to

interconnection between intelligent sensors and other devices. This specification allows

speeds from 50 megabits per second to 100 megabits per second for distance of 25 meters.

35

The American National Standards Institute is still developing this standard, which looks

like a very promising protocol for high-speed communication applications.

FIBER CHANNEL

The Fiber Channel is a serial 1/0 channel specification that boosts data

communication to speeds from 100 Megabits per second to over 1 Gigabit per second for

distances of four to ten kilometers. This protocol can be used over fiber optics or copper

cable. Hewlett-Packard (HP) and International Business Machines (IBM) have joined to

produce a simple chip set that implements this protocol in hardware. Since its acceptance

by the American National Standards Institute (ANSI), it has been growing in popularity.

HIPPI - HIGH PERFORMANCE PARALLEL INTERFACE

The Los Alamos National Laboratories (LANL) is one of the very few research

labs that needs a network with an 800 megabit per second bandwidth. With the backing of

several industrial partners, the LANL was able to put pressure on the American National

Standards Institute (ANSI) to adopt the HIPPI as standard X3T.3/88-023. The High

Performance Parallel Interface is a point-to-point high-speed channel that can deliver 800

megabit per second on a shielded twisted pair cable at a maximum distance of 25 meters.

It is also capable of 1,600 megabits per second over two cables.

Applied Micro Circuits Corporation has introduced S2020 and S2021 chip set as

the source and destination for the HIPPI standard. The 32-bit chips use ECL chip

technology to meet all of the ANSI requirements to provide the HIPPI signaling protocol.

These chips are currently available for $195 in lots of 100.

36

2.3.3. XTP -- THE XPRESS TRANSFER PROTOCOL

The XTP protocol is being developed as a reliable, real-time, transfer protocol for

use with the next generation of high speed networks such as the FDDI. XTP is can be

implemented as part of the International Standardization Organization's (OSI) Open

System Interconnection Reference Model, where it takes over the Transpon and Network

Layer services.

The network layer and transport layer, shown in Figure 12, were designed in an era

of relatively slow and unreliable networks. At their time they supplied state of the art

characteristics such as error detection, re transmission, flow control and data re

sequencing, but they are missing many of the newer communication concepts. They do

not provide rate control, selective re transmission, or reliable multicasting. Their packets

are complex and require extensive parsing because of variable header lengths. These

protocols also require timers at both sender and receiver to implement data

acknowledgments. With all of this overhead significant amount of time is required to parse

the header, determine the message time and respond accordingly.

With the XTP protocol the processing time for incoming and outgoing messages is

guaranteed to be no greater than the transmission time. XTP also contains error,

multicasting, flow and rate control mechanisms. Due to the severe timing requirements

XTP is implemented in VLSI hardware as the PElO00 chip set14 (see Figure 14) that can

be added to existing hardware to interface to the networks. The estimated throughput of

the PElO00 chip set is 200 mega bits per second for chip clock rates of 25 Megahertz.

Since the chip set was not developed to implement only the XTP protocol, it can also be

used to accelerate the throughput of other protocols. The PElO00 is a highly parallelized

VLSI set that allows several types of data packet processing to occur at once, such as

37

buffering, processing the addresses, and performing the checksum calculation. The chip

consists of four different chips, the MAC port, Host Port, the Buffer Controller, and an

optional Control Processor.

Instruction
Memory

Network
Buffer

Memory

Non-volatile
Memory

Instructio
Memory

Control
Memory

Instruction
Memory

Figure 14. PElO00 System Overview

Flow control allows the receiver to tell the sender about the state of its receive

queue. It tells the sender the number of packets it is able to receive so that the receive

queue does not overflow. Therefore the sender can hold the packets until it knows that

the data delivered has been processed. When the sender sees that the flow control has

been increased it can then send more packets.

In situations when flow control is not enough the XTP protocol uses rate control

to restrict the size and timing of the packets the sender transmits. This problem is

independent of the flow control problem. The receiver may have adequate buffer space

38

available, but back-to-back packets may arrive faster than they can be processed.

Together these two control algorithms allow the receiver to tune transmission rates to an

acceptable level.

When errors occur in transmission XTP, like other protocols, must perform error

control to detect the errors, and correct or request re transmission of the data packet.

XTP uses two checksums that appear at the end of the data packets. The first checksum

is calculated by using the exclusive-OR operation. This represents the vertical parity of

the bits. The second checksum is the intermediate result shifted left before the XOR

operation with the next word. The checksum is computed via hardware as the data packet

arrives, therefore saving the time of re-scanning the entire packet for the computation. If

the two checksums are invalid the packet is immediately discarded. In the mean time the

sender is still sending packets. When these packets are received, they contain a sequence

tag indicating their order. If any packets are missing the receiver selectively requests

packets that were received with errors.

2.3.4. NTP -- THE NETWORK TIME PROTOCOL

One of the most important resources of a real time system is time. Events

throughout the system must be synchronized with the occurrence of other events. Data

must be cataloged and time stamped for timeliness and proper analysis.

Time is of equal importance in a system designed with intelligent sensors. Here the

problem of the distribution of time through the system has been somewhat complicated by

placing the data collection and analysis at the sensor level. Clearly all sensors must be

synchronized in order to insure time precision and chronological correctness of the

39

collected data.

The problem of time in distributed systems has been well studied. In Lamport's

paper 7 the distributed system has a master computer containing a clock, in our case the

main computer, and all other computers, the sensors in our case, would periodically check

a time stamp present in the time messages sent throughout the system. If the slave finds

the time stamp is less than that of the masters, the slave reset its clock with the value of

the time stamp message.

A well-defined practical time protocol is that of NTP (Network Time Protocol).

NTP has been used to synchronize the hosts and gateways of Internet network. NTP is

designed to distribute time information over large, heterogenous networks. It requires a

number of time keepers that deliver continuous local time based on UTC (Universal Time

Coordinates), even when leap seconds are inserted in the UTC timescale. The time

keepers must have data smoothing and de-glitching algorithms to compensate for the

delay times on the transmission paths. The time keepers must have very stable local

clocks. Finally it must operate efficiently when it's time clients are continually polling.

During its use on the Internet NTP has maintained time to within a few tens of

milliseconds 9 even when there is a failure of clocks, time servers, or networks.

2.3.5. EXTERNAL DATA REPRESENTATION

A problem that plagues heterogeneous systems is that of data representation.

Some systems use the "big-endian" representation where the most significant bytes of data

are stored first, in lower memory, and the least-significant bytes are stored last, in higher

40

memory. Others use the "little-endian" representation which reverses the order, and some

do not store them in contiguous memory. Each computer architecture may have its own

unique manner of storing its data in memory.

For programmers of heterogeneous systems this can be a very formidable task to

keep the data consistent throughout the system. If the programmer needs to establish

communication between all of the different architecture's the programmer must construct

versions of any programs that exchanges data. This is known as the n-square conversion

problem 3. Creating, testing, maintaining and managing N2 version of a program would

be a very difficult and time consuming task.

To eliminate the need for N2 versions of a single program programmers need to

write the programs in a manner that avoids data conversion for each architecture. Sun

Microsystems has devised a method, called XDR (eXtemal Data Representation)16,

which has become a standard through the industry. XDR is a set of routines written for

each architecture that converts the data being sent into a common defined representation

called the external data representation. This simplifies programming by requiring each

program to convert data from only one representation. It also simplifies network

administration because the packets sent over the network are in one format. The list of

predefined data types are listed in Table 2. The only disadvantage to this method is that

computers with similar architectures still must convert the data to be transmitted to the

external data representation, and then convert them back when received. However the

problems this solves are far more important than the computational overhead it causes.

41

Data Type

int
unsigned int
bool
enwn

hyper
unsigned hyper
float

double
opaque

string
fixed array
counted array

structure
discriminated union

void

symbolic constant
optional data

Size Description

32 bits 32-bit signed binary integer
32 bits 32-bit unsigned binary integer
32 bits Boolean value (false,0 or true,1)
arb Enwneration type with values defined by

integers(e.g.RED=l,WHITE=2,BLUE=3)
64 bits 64-bit signed binary integer
64 bits 64-bit unsigned binary integer
32 bits Single precision floating point nwnber

64 bits Double precision floating point number
arb Unconverted data (i.e., data in the sender's

native representation)
arb String of ASCII characters
arb A fixed-size array of any other data type
arb Array in which the type has a fixed upper

limit, but individual arrays may vary
up to that size

arb. A data aggregate, like C's struc
arb A data structure that allows one of several

0

arb
arb

alternative forms, like C's union or
Pascal's variant record

Used if no data is present where a data item
is optional (e.g. in a structure)

A symbolic constant and associated value
Allows zero or one occurrences of an item

Table 2. Sun Microsystems XOR Data Representation3

Each architecture would contain an XOR library that converts data being

transmitted and received. The first call to the library would be xdrmem _ create to create a

memory buffer that holds the incoming and outgoing data. If the program wanted to

transmit data the third parameter of the routine would be a XDR _ ENCODE, if the

program wanted to translate data coming in, the third parameter would be

XDR DECODE. After this routine is called the program is ready to convert the data

42

found in the buffer. The routines in Table 3 are then called in a pre-planned manner to

properly decode/encode the data.

Procedure parameters data type converted

xdr_bool xdrs, ptrbool Boolean (int in C)
xdr_bytes xdrs, ptrstr Counted byte string

strsize, maxsize
xdr_char xdrs, ptrchar Character
xdr_double xdrs, ptrdouble Double precision floating point
xdr_enum xdrs, ptrint Variable of enumerated data type

(an int in C)
xdr_float xdrs, ptrfloat Single precision floating point
xdr_int xdrs, ip 32-bit integer
xdr_long xdrs, ptrlong 64-bit integer
xdr_opaque xdr, ptrchar, count Bytes sent without conversion
xdr_pointer xdrs, ptrobj, A pointer (used in linked data

objsize, xdrobj structure like lists or trees)
xdr_short xdrs, ptrshort 16-bit integer
xdr_string xdrs, ptrstr, maxsize AC string
xdr_u_char xdrs, ptruchar Unsigned 8-bit integer
xdr_u_int xdrs, ptrint Unsigned 32-bit integer
xdr_u_long xdrs, ptrulong Unsigned 64-bit integer
xdr_u_short xdrs, ptrushort Unsigned 16-bit integer
xdr_union xdrs, ptrdiscrim, Discriminated union

ptrunion, choicefcn,
default

xdr_vector xdrs, ptrarray, size, Fixed length array
elemsize, elemproc

xdr_void -none- Not a conversion (used to denote
empty part of a data structure).

Table 3. XDR Data Conversion Library 3

2.3.6 SUMMARY

There are several problems in data communications among intelligent sensors.

When large volumes of data is exchanged the process of converting all of the data into

XDR representation will slow the communications greatly. Software data conversion may

43

not be the desired alternative.

As networks become overloading due to large data requirements the

characteristics of the network may change. In token-ring networks, there may be a limit

on the data throughput of the system. The designer must be aware of the physical limits of

the network in order to accurately predict its worst-case behavior.

As communication networks become more sophisticated more complex and

expensive hardware must be used to support the interfaces between the network and the

devices on the network. There is some trade-off point where the type and speed of the

network is outweigh by the tremendous cost of attaching large number of devices to the

network. Practical guidelines need to be established to show the trade-off between

network types, speed, number of devices, etc.

44

2.4. GLOBAL STATE AWARENESS

2.4.1. GLOBAL AND LOCAL STATE TABLES

The manner in which many distributed systems exchange information is through

state tables. Each of the intelligent sensors may contain a piece of the overall state of the

system. When required, through timing constraint, or explicit request, the intelligent

sensors can send their local state tables to the central computer for storage and analysis.

The intelligent sensor could also request new information from the central computer, so it

may make decisions based on the big picture.

STATE

rm ~ :;:;:;:;:;. 'Table:,-;::;:;;:;:;;

~
·:t'\Ta~le::(''❖=❖

Figure 15. Global Awareness Using State Tables

In the example above there are intelligent sensors each with Local State Tables.

The Local State Table can represent a small collection of measurements or a large

45

database depending upon the application. When the sensor receives a measurement from

the outside environment, it performs data fusion and stores it in the Local State Table. At

a predetermined point in time, or by request, the intelligent sensor then sends that

information to the central computer where it is received into an RX Queue (receive

queue). The RX Queue holds requests for data from all of the intelligent sensors and

information that is being written to the global data base. There is also a TX Queue

(transmit queue) that holds the requested data that is being sent to the intelligent sensor

requesting the data.

2.4.2. SCI- SCALABLE COHERENT INTERFACE

SCI is a high speed point-to-point communication protocol between nodes of a

network. A typical link is 2 bytes wide and allows for data to be transferred at speeds up

to 1 gigabyte per second at a clock rate of 250 mega hertz. The nodes are arranged in a

ring-topology. SCI uses a register insertion technique to place packets onto the ring. The

register insertion technique allows for multiple nodes to be transmitting at the same time.

SCI preemptive arbitration and queuing allows upto 256 levels of priority. This allows it

to be compatible with many of the real-time scheduling algorithms, such as the Rate

Monotonic Scheduling. This protocol is still under development and has not been fully

implemented, but it looks like another viable solution to the problems of real-time

communications.

2.4.3. SUMMARY

The primary problem is maintaining awareness of the global state is consistency of

information. This includes the database integrity and cache coherence. As new

communication forms become available the designer must be able to calculate the time

from packet transmission to packet arrival in order to insure deterministic behavior.

46

2.5 LOCAL PROPERTIES OF THE INTELLIGENT SENSORS

The properties of an intelligent sensor can vary widely from application to

application. The most simplistic form of an intelligent sensor may involve polling a

number of data ports to gather information to be used in calculations and then sending the

results periodically to the central computer.

On the other hand an intelligent sensor may be a classic example of a real-time

system with a real-time kernel, task scheduling and timing constraints. An excellent

example of this is the µCOS real-time kernel. This real-time kernel is especially designed

for building small real-time systems and the source has been released to the public.

2.5.1 THE KERNEL

The main software component of an intelligent sensor is called the kernel or

executive. It can be divided into two functional areas, task scheduling and data

communication. The kernel is the area that has gotten the greatest attention of

researchers. If an improvement of speed or efficiency is accomplished in any area of the

kernel, large increases in application execution speed can result.

The classical approach to the design of these systems is to use one or more

computers containing a number of sensors and actuators. The sensor measure changes in

the environment. The system stores the collected data for analysis or uses the data to

make a decision to trigger an event or task. The actuator is a software command to the

hardware to change the environment. This may be as simple as an electronic signal sent to

47

a port that signals a device to open a valve or to move.

2.5.2. TASK SCHEDULING

The scheduling software must determine if there is already a task executing and if

the new task has a higher priority. If a higher priority task needs to run, all of the

information concerning the current task is saved so it can resume later. This is known as

task pre-emption. As the new software task starts execution it may take other

measurements or issue a command for a physical action to occur through the use of an

actuator. When it has completed executing, the task that was pre-emptied, if any, is

allowed to resume execution.

One of the most promising methods of scheduling is the Rate Monotonic

algorithm. This algorithm refers to organizing the tasks is such a way that the tasks with

the smallest periods have the highest priorities. A plot of the task priorities versus the task

rates will then follow a monotonically ascending path.

2.5.3. TIME

Time is the mechanism used to synchronize tasks in the real-time system. It is

utilized by the real-time designer to insure the appropriate tasks are executed with proper

time bounds. It is also the principal criterion used to verify system correctness.

There are three types of timing requirements that are common to real-time

systems. The latency time is the amount of time that elapses between the triggering of an

interrupt, by an outside event, until the corresponding task is scheduled and is ready to

start executing. This is also called responsiveness. The time at which the task is ready to

48

start execution is called the minimum critical time. The maximum critical time is the time

at which the task ends execution. The amount of time between the triggering of the

interrupt, until the end of execution of the appropriate task is called the time constraint.

If the timing requirements are not met the system must be able to degrade

gracefully. This is accomplished by designing algorithms so that when the expected

conditions are not met, they are handled in a logically predictable fashion. The important

point remains that the design of the system must be able to meet the timing constraints.

Although these issues are important to real-time systems design, they will not be

covered here because they are not specific for intelligent sensors.

49

3.0. PROBLEM FORMULATION AND PROCEDURE

The purpose of this work is to establish and verify an industrial oriented design

methodology for developing real-time systems with intelligent sensors. Such

methodology should use well established design methods supported by off-the-self

software tools so designers can build and simulate systems which use intelligent sensors

for real problems.

Designing real-time systems with intelligent sensors is feasible if the designer looks

at the system in a hierarchical manner. Such an approach is emphasized in top-down

methodologies. The intelligent sensors then become objects at the bottom of this

hierarchy having the ability to exchange messages with any other nodes in the hierarchy,

on the same or different levels. This type of approach is supported by the HOODS

(Hierarchical Object Oriented Design) methodology. It uses the concept of hierarchical

objects to develop details of the system design.

In this work I am using the HOOD approach as the design concept vehicle. First

the design is produced of a real-world problem, in this case an electricity generating power

plant. The design is then verified using the industrial-level tool Teamwork/HOOD from

Cadre. A portion of the power plant design, the boiler, is then chosen for implementation

and its correctness verified using the boiler simulation provided by the Canadian National

Research Council (NRC).

50

4.0. REAL-TIME SYSTEM EXAMPLE

.................. ____ _. power out

Figure 16. Conceptual Diagram of Power Plant

This is an example of a very complex real-time system. The control of a power

plant may contain thousands of devices, that can affect the lives and well-being of millions

of people. It is highly critical that proper control be maintained.

Content
Measuring =fl:
Device

4.1. BOILER

------···:-:-:/------·
Steam Rate Measuring Device

•----•tt~mrntrn@r-
----::=::····,-.==·=:=:·::::::::-:-:-===;=--

:-----<•::··:,,_:r❖·······•·❖·•··w--- Feed Water

•--•t:_::,-'.lllt-•-
PumJ? Pump
Momtors

'~j'h==, Dump Valve

Figure 17. Boiler Configuration

The boiler itself is an object which is "controlled" by an intelligent sensor

(instrumentation system) of which the program in Appendix C is an implementation. The

51

boiler of the Steam Power Plant example is taken from the simulation created by the

Canadian National Research Council. The specifications were defined as follows:

1) The Boiler Device

The boiler device is the central holding tank for the water. Its operating

characteristic are as follows:

a. Total capacity: 130,000 pounds of water

b. Minimum amount of water for safe operation (all conditions of operation):

23,000 pounds.

c. Maximum amount of water for safe operation (all conditions of safe operation):

110,000 pounds.

d. Maximum achievable steaming rate: 700,000 pounds per hour.

e. Maximum achievable rate of increase of steaming rate: 4,200,000 pounds per

hour per hour. (independent of boiler operating point)

f. Maximum achievable rate of decrease of steaming rate: 84,000,000 pounds per

hour per hour. (independent of boiler operating point)

g. Relationship of water content requirements to boiler dynamics: the value at b.

above has been chosen such that if the boiler content is just at the value, the boiler will

not be damaged for another six seconds if feed water fails at maximum steaming rate; the

value at c. above has been chosen such that if the boiler content is just at the value, the

boiler will not be damaged if all feed pumps are operating for six seconds at full rated

capacity with the steaming rate at zero.

2) The Pump Devices

52

The pump devices are used to pump water into the boiler tank. Their

characteristics are as follows:

a. Type of operation: off/on

b. Rated water output: 275,000 pounds per hour(+ 0 %, - 5 %)

c. Running indication: motor on/off output provided

d. Start-up characteristics: 4 to 6 seconds for pump to develop enough pressure to

overcome boiler pressure, full flow then developed essentially instantaneously

e. Shutdown characteristics: instantaneous

f. Feed water Temperature: 18 (+5, -10) degrees Centigrade is reference

temperature and 5 MPa is reference pressure to be used for water weight-to-volume

convers10n.

g. Feed water Temperature Rise through Pump: Need not be considered

3. The Pump Monitor Device

The pump monitor devices are used to sense changes in the pump operations. Its

characteristics are as follows:

a. Type of output indication: water feeding / water not feeding

b. Water feeding indication set point: water flow equal to or greater than 425 imp.

gallons per minute.

c. Set point accuracy: (+ 1 %, - 2 %)

d. Water not feeding indication: water flow less then the set point specified above

e. Measurement lag time: negligible

53

4. Boiler Water Content Measuring Device

The boiler water content measuring device measured the water level inside of the

boiler. Its characteristics are as follows:

a. Nominal calibration: 2.50 units per 1000 pounds of water

b. Range of calibration constant: 1.95 to 2.88 units per 1000 pounds of water

c. Accuracy when calibrated: (+ 0.5 %, - 0.7 %)

d. Range of valid outputs: 30.00 to 360.00 units (inclusive) with output

resolution of 0.01

e. Calibration constant availability: on query to water content measuring device

f. Calibration constant variability: calibration constant does not vary (set,

recorded, and locked by instrumentation technicians)

g. Compensation for water density and water column effects: integral to the

device

h. Measurement lag time: negligible

5. The Steaming Rate Measurement Device

The steam rate measuring device measures the pressure of the steam coming from

the boiler. Its characteristics are as follows:

a. Measurement range: 0 - 850,000 pounds per hour.

b. Accuracy: + 2,000 pounds per hour., -3,000 pounds per hour (but a negative

steaming rate cannot be put out by a serviceable device)

c. Output Resolution: one unit per 500 pounds per hour

d. Measurement lag time: negligible

54

4.2 REMAINING COMPONENTS

The turbine contains several sensors to monitor its performance. The speed of the

turbine, when engaged, must be maintained at a constant 3600 RPM to ensure 60 cycle

electrical output. If the turbine varies within a preset level from this the turbine lockout is

automatically tripped. Vibration sensors placed at several points on the turbine guarantee

that the bearings are within specs. The vibration information is compared with vibration

data of the past to determine wear of the bearing. Pressure and temperature sensors

monitor the steam flowing into the turbine. Any variance in temperature and/or pressure

has an effect on the RPM of the turbine. If the RPM falters, the temperature and/or the

pressure of the incoming steam may be altered to compensate the RPM. Several safety

features allow for the steam to be rerouted or cut off when the turbine needs to be stopped

due to mechanical failure.

GENERATOR

The generator sensor system is similar to that of the turbine in many ways. The

RPM of the generator must be maintained at 3600 RPM to guarantee a 60 cycle electric

current. There are also many vibration sensors which maintain a history of vibration data

so that wear of the bearings can be computed.

CONDENSER

The condenser has a series of electrical pumps that are used to pump fresh water,

usually from a near-by lake, in order to cool the steam as it leaves the turbine. The

condensation usually takes place in a tank called the hotwell. As water fills the hotwell it

is pumped into the deaerator.

55

DEAERATOR

The deaerator is a series of tanks which remove the high levels of oxygen from the

water. Some deaerators also serve as water filters as well. There are another series of

pumps and valves that are controlled by this object that pumps the water back into the

boiler after the sensors have determined the proper levels of oxygen in the water have

been reached.

56

5.0. REAL-TIME SYSTEM DESIGN

HOOD methodology was used for the design of the real-time system. The main

elements of HOOD (Hierarchical Object Oriented Design) are objects. HOOD has six

different types of objects.

Passive Object

Environment Object

Operation Control Object

Active Object

Virtual Object

Multiple Instance
Active Object

Figure 18. HOOD Objects

A Passive Object is an object to which execution control can be transferred

immediately. This corresponds to a procedure invocation in a computer language. The

Passive Object uses a " " in the upper left hand corner of the object icon.

An Active Object has a thread of control to execute but its execution depends

upon the constraints. This corresponds to an Ada task and select and accept statements

with the constraints determining which select code is executed. Active Objects can be

identified by the "A" in the upper left hand corner of the object icon.

57

An Environmental Object is used to define an interface that is not present. This

can be an interface to a console, keyboard or ports to the outside world. The

Environmental Objects can be identified by the "E" in the upper left hand comer of the

object icon.

A Virtual Node Object is used in distributed software design to indicate software

that is designed to run on an external microprocessor. This object can be identified by the

"V" in the upper left hand comer of the object icon.

A Operation Control Object is used to manipulate the state of an object. This

object, like the passive object, has a " " in the upper left hand comer for an identifier.

HOOD, and its supporting toll, Teamwork/HOOD from Cadre, enforce quality

assurance upon the designer, by providing output (i.e. code, reports, documents) in a

standard way, by enforcing rules allowing only standard operations and naming

conventions, by checking that rules are met, and by giving the designer a list of valid

options to create an object.

The tool representation of a HOOD object is called a Hierarchy Structure Graph

(HSG). As the designer enters each HSG it must go through a list of consistency checks

before it is placed into the system database. Figure 19 is a representation of the "Check

Model" window:

58

Check Model

In addition to diagram rules, check the following rule sets:

0 Model

D General Definition

D Use Relationships

D Include Relationships

D Operation

0 Visibility

D Consistency

Report filel /cadre/reports/ ...

Figure 19. Model Check List

These model checks includes checking for inconsistencies in many different aspects

of HOOD design such as the following:

Interface Checks.

One of the checks done by HOOD is to insure the interface between the objects

are consistent. This should be done early in the development stage, for massive changes

may be required to repair errors found late in the design.

Requirement Trace and Cross-reference Reports.

Quality assurance usually has the task of ensuring that all requirements are

satisfied. HOOD allocates the requirements to each object as they are being designed to

make sure the designer takes all of the requirements into consideration. This is then

supported by a Cross-reference Report of Requirements to Objects.

59

Object completeness.

HOOD checks that each object has valid operations. An object that represents a

piece of data would therefore need a constructor to put data into it, as well as a

constructor to take data out.

Object/Operation Cross-reference Reports.

Checks are made to ensure that each provided operation is used somewhere in the

design, and that required operations are provided somewhere in the design.

Justification

When a designer makes a choice as to which objects are used to build a system

there must be some justification why these objects are selected. If a designer choose too

many active objects a system may be become too complex. HOOD performs justification

checks to ensures the system design being implemented has a logical purpose. For

example, an object may be required to be active because it handles an interrupt, or it needs

its own control flow to constrain two operations, or it is at a different priority level than

other objects.

Completeness

Checks the HOOD design has no missing parts.

Naming standards

All names are checked to ensure they are all valid Ada names.

Coding standards

Coding standards are enforced by the Ada code generator, an optional package at

60

this time.

DFD checking

Checks that each data flow diagrams is correct, and that each entity is mapped into

the HOOD design.

CORE threads

To ensure the complete mapping of core threads, (i.e. individual requirement

names) into the design.

61

5.1 THE SYSTEM OBJECT

ASER

A SYSTEM

STARTUP _MODEL
SHUTDOWN_MODEL

ASER

Figure 20. The SYSTEM Object.

The system object is normally defined at the top of the HOOD hierarchy. This

object is referred to as the root. The root is then hierarchically decomposed into others

called parent objects. The parent objects are then in tum decomposed into their child

objects and relevant environmental objects, each defined in its own HSG (Hierarchy

Structure Graph).

62

5.2. THE TURBINE OBJECT

.

TURBINE1'VIBRATION ___ DEVICE

Figure 21. The Turbine Object.

The turbine must maintain a speed of 3600 rpm as the generator is loaded. The

temperature of the steam entering the turbine must be maintained at 1005° F. Any

variation in the steam temperature or pressure may affect the RPM of the turbine. The

steam pressure is varied with the turbine throttle so that the RPM can be kept to within ±

3%. At 110% the turbine over speed trips and the turbine is automatically shutdown.

Vibration sensors are used to determine if there is a problem developing with the bearings

in the turbine.

63

5.3. THE GENERATOR OBJECT

• .. ·: .·. -::•.·.··.···.:·.<: ... ::::-::·:::-... :_:-::.·-.•:--:::::::-:_:-:-: START GENERAT01f .•.•.•.•.•

•• S'I'QP£tlNEilu:og•·•····························
... ·--·

i lli■l?i&¥1Bwill[i:hixt~ J
ASER

.. ·. ··. · .. ····.· ·.• .. ··· .. · .. · ... ··· .. · .. · · · .. ·.·.·.· ... ·.··· ... · ·.·· ·.·. ·. ··.·.

E GENERATORJ.f()WER_.c<>TJTJR$Y1c~

Figure 22. The Generator Object.

The generator maintains a constant output of 400 megawatts. It also has vibration

sensors to monitor the bearings. It is important for the generator to use power out

monitors to determine the electrical current generated is within specifications so it may be

switched into the power grid.

64

5 .4 THE CONDENSER OBJECT

A CONDENSOR····

••• :s¥Ak'.rttiNDEl'tsdR····
•••••••$'tPRJ~JtAf$p\:::::•••••

g,ff,f).ji~iJ~qqngijJtµMPJPIDfNE < >
• E. ·60WRi~s9idorseJ-Wiclt11u~Iom&cif :••·• ?••••••••••••••••••

• @l@l~P&-~~'I'l9~4~VMP2i:#wt~ r••r >•
@oNPliN:solif ij6fw1fo£JuNa£Biiv1di <

Figure 23. The Condenser Control Object.

The condenser is used to convert the steam back into water after it leaves the

turbine. The condenser has a circulating suction pump for bringing in an external water

supply, usually lake water to cool the hotwell vessel containing the steam. There is a

circulating discharge pump for removing the water. The hotwell level is monitored to

avoid to much water from collecting.

A pump empties the water from the hotwell after it reaches a specified level. This

pump operates at 300-400 psi. If the pressure gets any higher than the normal operating

pressure, a steam blow off valve is opened to remove the excess pressure.

65

5.5 THE DEAERATOR OBJECT

... ···········--··

ti~foi .. QNXGENi$ijijsqi.J:;t\facif
. ·.·. ·· .. · .. · ... ·.<·.··.·. •.. ·<· ... ·.·• ... · .. ·.· .. ·.· .. ·.· ... · .. · ... ·.·.

p~TOR.{I'lffl:f}Tfl.,l(J?l'lV't¢lf) •• ••

Figure 24. The Deaerator Control Object.

The deaerator is used to remove excess oxygen in the water returning from the

condenser. There are a number of sensors present in the deaerator, the first to measure

oxygen content. The water level is monitored by a sensor, when the level is too high the

loading of the turbine is lowered to compensate. The input condensate flow as well as the

feed water flow are both measured.

66

5.6. THE BOILER OBJECT

Figure 25. The Boiler Object.

The Boiler object is fashioned after the boiler simulator produced by NCR. The

boiler is capable of six different modes of operation depending upon the state of the

sensors and their measurements.

67

•::•:• ·.•:- .. -:•:-:•:-:•·-:.• .. ·.·•.:-:•:•: : .. ·.•. ·. :.

•SJ$1CONI§NJ.J4$~QRI.t¥l.J)E\'lOf•· >·······

Figure 26. The Boiler Startup Object

During the boiler startup operation there are a number of operations to complete.

First, after the boiler is initially powered up, it sends a signal that it is on standby. After

this signal arrives, the boiler content device is checked for normal operation. Next the

steam rate device is checked to make sure it is reading zero. If the boiler content device

sensors reading is over 60,000 pounds, the normal maximum operating level, the boiler is

too high and the dump valve is turned on and it waits until the water content has been

adjusted to 60,000 pounds. If the boiler content is below 40,000 pounds then the any one

of the water feed pumps is turned on until the water rises to 40,000 pounds. Next all of

the feed pumps are turned on for at least 30 seconds and no more than 40 seconds. The

water rate increase is then measured to ensure all of the feed pumps are working properly.

If the water rate increase does not match the assumed calculation, the pumps are then

turned on and off one at a time in order to find the faulty pump.

If the water content measuring or the steaming rate device is found to be faulty,

then the boiler will go into shutdown mode. It will also go into shutdown mode if less

than three pumps are in working order.

If all of the devices are found to be in working order, then the boiler is ready and

goes into the normal mode. If three or more feed pumps or feed pump monitors are in

68

working order the boiler goes into the degraded mode.

It is only possible to go into the system startup mode from the self test mode.

Figure 27. The Boiler Normal Object

In the normal operating mode the water level is between 65,000 and 85,000

pounds. It is maintained at this level by switching the feed pumps on and off.

If the water content measuring device fails, the boiler goes into the emergency

mode. If any other device fails, the boiler goes into the degraded mode. If the water

exceeds the limits of the safe operation of the boiler, the boiler goes into the shutdown

mode.

The normal mode can be entered from the startup mode or the degraded mode.

69

Figure 28. The Boiler Self Test Object

The self test mode first ensures that the communication links are all in proper

working order. It tests all of the hardware connected to the boiler to ensure all of the

devices are in working order. If any of the hardware fails, a message is displayed to the

operator describing the device and how it failed. Control is then given to the operator.

If all of the hardware devices passes the test the boiler enters the startup mode.

The self test mode can be entered from the shutdown mode, or by operator command

from the keyboard.

70

Figure 29. The Boiler Degraded Object

When the boiler is operating in the degraded mode, if the water content measuring

device fails, the boiler goes into the emergency mode. If all failed devices are reported

repaired, the boiler goes into the normal mode.

If the water content measuring device reports that the water level has exceeded the

limits, the boiler goes into the shutdown mode.

The degraded mode can be entered from the normal mode, emergency mode, and

the startup mode.

71

.· . ·.··· :-.-:·-.·. :: .. · .· ·-: .· -:-·-:-:.-:-

.~@NFEMT .. MJM.gl~Illl;G.:.l)ij'VIGI:{············

Figure 30. The Boiler Emergency Object

During the emergency mode, calculations are made to predict the worst possible

behavior from all system devices. Using this information it attempts to operate the boiler

within the safe limits specified in the boiler specification.

The boiler can exit the emergency mode and enter the degraded mode when the

water content measuring device becomes available. If the water level starts to exceed the

limits of safe operation, or the water content calculations are not possible, the boiler then

moves into the shutdown mode. Shutdown mode is also entered if the steam rate device

fails.

Emergency mode can be entered from the normal mode or degraded mode.

72

Figure 31. The Boiler Shutdown Object

When shutdown mode is entered a message must be displayed to inform the

operator why the boiler is being shut down. The operator can then confirm shut down and

if desired enter into the boiler self test mode.

After the shutdown mode is entered, the boiler can only go into the self test mode.

Shutdown mode can be started by any other mode.

73

5.7. SUMMARY

Using the HOOD rules as a guideline, the entire power plant real-time system was

designed and checked for consistency. From this design work several hundred pages of

Object Description Skeleton was generated for all objects in the system. In Appendix B

the ODS for the boiler object is presented.

74

6.0 IMPLEMENTATION

To design a system with intelligent sensors the designers must first break the entire

system up into smaller objects. This is done in a manner which minimizes the number of

"threads" or messages that are passed between the objects in the system. In order to

decrease the number of threads each object , or "intelligent sensor", may contain a

hierarchy of smaller objects, or "embedded sensors", within the intelligent sensor. These

embedded sensors may talk to each other through serial or parallel ports discussed earlier.

Data that is needed by the overall system can be sent by the intelligent sensor to any other

object in the network. This information can then be stored in a database at a central

location and displayed to the human operators.

In an industrial setting the objects of the system would then be split up and given

to each programming team to implement. The boiler object can then be easily coded so

that it will run on a dedicated intelligent sensor with multiple micro controllers and report

the boiler state to the other intelligent sensors and central computer.

The boiler object was chosen to implement an example of a control program for an

intelligent sensor. By using the NCR boiler simulator as the actual hardware device, an

Ada program, as shown in Appendix C, has successfully been implemented to control the

various aspects of boiler operations.

As shown in Figure 32, the program consists of a Receive task, a Transmit task, a

User Interface task, and a set of tasks collectively called the Modes tasks. Receive and

Transmit tasks communicate via the IBM PC COMl port with the boiler simulator

receiving on another PC.

75

COMl

Lines represent Ada
rendezvous

: Boiler Modes

Figure 32. Boiler Control Program.

The lines between the tasks represent messages that are exchanged between the

tasks. These messages consist of state table information. Each task has a "local state

table" that needs to be updated periodically. The receive task is considered to be the

holder of the "global state table" since it sits at the point where all of the incoming

message traffic enters the program. It is responsible for "updating" the local state table of

all of the other tasks.

The user interface task contains DOS calls to write the most current information to

the display. It also reads the keyboard and carries out the user commands.

The boiler modes packages contain all of the "modes" of the boiler. Only one of

these modes may be active at a time during execution. When the proper checks are made

a task may enter another mode by making a rendezvous with the task. The calling task

will go into a "wait" state until a task performs a rendezvous with it.

76

7 .0 CONCLUSION

In this thesis the definition of the intelligent sensor with its four functional

properties, preprocessing, fault-tolerance, communications, and global awareness, has

been presented, along with several example sensor configurations. The major components

of a real-time system using intelligent sensors have been identified and discussed.

The power plant model has been introduced as an example of the necessity of

reliable control systems. This model has been used to verify the approach taken to design

such systems. The power plant design was produced using the HOOD methodology and

verified using the Teamwork/HOOD tool. A single object from the plant model, the

boiler, was selected to implement the Ada code necessary to control the intelligent sensor.

The implementation was checked using the Canadian NRC boiler simulator.

The presented procedure shows the feasibility of intelligent sensors design in

modem real-time systems with off-the-shelf hierarchical object oriented design tools. It

has been demonstrated that the use of such procedure leads to an immediate and

successful implementation in Ada. The areas I foresee requiring future attention in

designing real-time systems with intelligent sensors are faster and more reliable

deterministic communications networks and new statistical tools for better and more

efficient prediction models.

77

REFERENCES

1. Burns, A., and Wellings, A., Real-time Systems and Their Programming Languages,
Addison-Wesley, Reading, MA. 1989.

2. Campbell, J., C Programmer's Guide to Serial Communications, Howard W. Sams &
Company, Indianapolis, Indiana, 1988.

3. Comer, D., Steven, D. L., Internetworking with TCP/IP, Volume 3, Prentice Hall,
Englewood Cliff, New Jersey, 1993.

4. Gomaa, H., Sojhvare Design Methods for Real-time Systems, Curriculum Module
Report SEI-CMU-22-1.0, Software Engineering Institute, Pittsburgh, PA, December
1989.

5. HOOD Working Group, HOOD Reference Manual, Issue 3.0, European Space
Agency, WME/89-173/JB, 1989.

6. IEEE P1596.x-02Oct92-docTBD, SCI/RT Scalable Coherent Interface For Real-Time
Applications.

7. Lamport, L., Time, Clocks and the Ordering of Events in Distributed Systems, Comm.
of the ACM, Vol 21, No. 7, pp 558-565, 1978.

8. Lee, I., King, R. B., Paul, R. P., A Predictable Real-time Kernel for Distributed
Multisensor Systems, Computer,Vol 22, No.6, pp. 78-83, June 1989.

9. Mills, D., Internet Time Synchronization: the Network Time Protocol, DARPA
Network Working Group, RFC-1129, M/A-COM Linkabit, October 1989.

10. Muntz, A., Horowitz, E., A Framework for Specification and Design of Sojh,varefor
Advanced Sensor Systems, Proceedings of the 10th Real-time Systems Symposium, Santa
Monica, CA, pp 204-213, Dec 5-7th, 1989.

11. Shin, K., and Hou, C., Analysis of Three Contention Protocols in Distributed Real­
time Systems, Proceedings of the 11th Real-time Systems Symposium, Lake Buena Vista,
Florida, pp 136-145, Dec 5-7th, 1990.

12. Stankovic, J., Misconception Abount Real-time Computing: A Serious Problem for
Next-Generation Systems, Computer, Vol 20, No. 10, pp. 10-19, October 1988.

13. Stankovic, J. Real-time Computing Systems: The Next Generation, Technical Report
TR-88-06, COINS Dept., University of Massachusetts at Amherst, January 1988.

78

14. Strayer, W. Timothy, Dempsey, Bert J., Weaver, Alfred C., XTP, The Xpress Transfer
Protocol, Addison-Wesley, Reading MA, 1992.

15. Stewart, D. B., Volpe, R.A., and Khosla, P.K., Integration of Real-time Software
Modules for Reconfigurable Sensor-Based Conn-of Systems, Proceedings of the 1992
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '92),
Raleigh, NC, pp. 139-146, July 7-10, 1992.

16. Sun Microsystems, Network Programming Guide, Part Number: 800-3850-10,
Revision A of March 1990.

17. Taylor, G., Ramblin, and Ciufo, C., Designing a High-Performance VME-to-FDDI
Controller Board, VMEbus Systems, February 1992.

18. Natarajan, S., and Zhao, W., Issues in Buiding Dynamic Real-time Systems, IEEE
Software, Vol. 9, No. 5, pp. 16-21, September 1992.

19. Ohba, R., Apps, F. R. D., Intelligent Sensor Technology, John Wiley & Sons. New
York 1992

79

Classification

Dynamic

APPENDIX A

Sensor Classification Table

Displacement,
length, volume,
location, level

Rotation

Types

Sliding resistors, spring type quantities
variable resistors, resistance strain
gauges, foil type strain gauges.
semiconductor strain gauges,
resistance thickness gauges,
electrolyte level indicators,
displacement meters using
electrolytes, movable electrode
electron tubes, capacitance type
micrometers/thickness gauges/liquid
level gauges, inductance type
micrometers/thickness gauges, liquid
level gauges (glass gauge types,
differential pressure types, floating
particle types, display types,
sounding types, ultrasonic types,
electrostatic capacitance types,
radiation types), angle
displacement detection, differential
transformers, syncro, magnesyn,
inductosyn, hall elements, radiation
thickness meters, radiation level
indicators, snow gauges, interference
rulers, ultrasound level indicators,
displacement measurement using
radar, sonar, loran or tracer,
parameter modulation in oscillation
circuits, ultrasound thickness gauges,
thermal micrometers, thermal angle
displacement meters, thermal level
indicators, pressure level indicators,
springs, nozzle flappers (air
micrometers), hydraulic spray tubes, air
pressure level indicators, Moire' fringes,
floats, glass gauges, optical levers,
microscopes, holography.

Inductance angle displacement

80

Direction

Distortion

Pressure,
force/torque,
twisting, weight

detection, rotational speed,
gyroscopes (mechanical, ring
lasers, optical fiber's)

Direction sensors (geomagnetic
detection, gas rate gyro)

Strain gauges (resistance wire,
semiconductor, optical fiber, photo
elasticity)

Manganin pressure gauges, pressure
diodes, ionization vacuum gauges,
inductance gravimeters, magnetic
modulation transformers (Hillery
effect), photo elastic elements,
vibrotrons, Pirani gauges,
seismographs, dynamometers,
springs, elastic excess weight
detectors, quartz wiring, torque
tubes, span bands, bellows,
diaphragms, capsules, Bourdon
tubes, U-tubes, incline tubes, ring
balances, Bell differential
pressure gauges, refractive pressure
gauges, tension sensors, composite
semiconductor sensors (differential
pressure, static pressure,
temperature), load cells.

Speed, acceleration Piezo elements, drift potential
accelerometers, carbon board
resistors, carbon grain resistors,
capacitance speedometers,
interference flow meters (LDV),
Mossbauer effect (detection of very
small differences in speed using
gamma-ray resonance
absorption by the atomic nucleus),
thermal anemometers, throttle
mechanisms (orifices, venturis,
nozzles), pitot tubes, viscosity flow­
meters, differential flow meters,
turbine mass flow meters, tachometer
blowers, flow meters and flow rate
meters using Coriolis force,

81

Heat/energy

Flow

Sound and vibration
spectra

Dew-point/humidity

Proximity /passage
ON/OFF

Temperature

gyroscopes, impeller mass flow
meters, Laser radar (lidar)

Rotating generators, rotating disk
speedometers, vibrometers
(Ballistocardiographs), electro­
magnetic flow meters, vortex flow
meters, flow meters using
electrolytes, ultrasound flow meters,
Doppler radar, microwave
speedometers, LDV,
Laser gyros, flow meters using
tracers, Thomas flow meters, thermal
liquid flow meters, rotameters, wet
gas meters, dry gas meters,
turbine flow meters, water meters,
weirs, fine flow rate sensors, wind
speed sensors, water-leak sensors.

Microphones, pick-ups, vibration,
noise, AE sensors

Resistance hygrometers, dew-point
meters, hair hygrometers, cloud
sensors, ceramic humidity sensors.

Metal detectors, reed switches, limit
switches

Thermocouples, optical thermometers, color
thermometers, radiation
thermometers, pyro-electric elements,
thermoelectromagnetic effect,
temperature-measuring resistors
(platinum, nickel), thermisters,
posistors, ceramistors, solution
thermometers, dielectric
thermometers, inductance
thermometers, quartz thermometers,
gas thermometers, liquid pressure
thermometers, vapor pressure
thermometers, bimetallic
thermometers, thermography,
thermoelectric sensors, thermal

82

Electromagnetic
optical quantities

Heat

Voltage, current,
frequency phase

Visual/images
(image sensors)
Light (infra-red
visible, radiation)

Magnetism

resistor heat flow meters (thermopile
types, temperature-measuring
resistor types)

Calorimeters, heat flow meters

Electron tube amplifiers,
semiconductor amplifiers
capacitance frequency meters,
magnetic amplifiers, rotating
amplifiers, optoelectronic Kerr effect
elements, electric field light emission,
LEDs, frequency modulation
circuits, voltage/frequency
conversion using integrators, vacuum
thermocouples, Moving coil/iron leaf
instruments, inductance instruments,
electrodynamic instruments, static
electric voltmeters, current balances
and other similar electrical
instruments, vibrating reed frequency
meters, electrical distortion
elements, piezo elements (reverse
voltage effect),
oscilloscopes, differential voltage
instruments

Photoelectric cells, silicon conductor
photoconductive cells, photoelectric
tubes (electric eyes),
photoelectric multipliers,
photo diodes, photo-transistors,
semiconductor radiation detectors,
ionization chambers, proportional
counter tubes, Geiger counters,
scintillators, bolometers, exposure
photometers, laser sensors (plasma,
emission spectrum analysis, Raman
spectrum, high resolution spectrum)

Hall elements, bismuth elements,
semiconductor magnetic reluctance
elements, magnetrons, thermion
beam tubes, magnetic diodes, nuclear
magnetic resonance (NMR), SQUID,
fluxmeters, (carbon constitute

83

Chemical quantities Time

Ion Sensors

Gas Sensors

meters), Faraday effect elements,
magneto-optical Kerr effect elements,
magnetic transistors

Time measurement using integrators

Glass thin-film ion sensors (pH,
hydrogen ions, sodium, potassium,
lithium, ammonia, cesium, etc.),
Solid-state membrane ion sensors

(cyanogen, chlorine, bromine,
sulfur, iodine, fluorine, silver,
copper, lead, cadmium, etc.), liquid
film ion sensors (nitric acid,
perchloric acid, chlorine, copper,
calcuim, etc.) Enzymatic ion sensors
(urea, glucose, etc.) Diaphragmatic
ion sensors (ammonia, cyanogen,
etc.), Conductivity sensors (bridge
method, electromagnetic induction
method) Various ion sensors (cyan­
Agl, Cadmium-CdS, Chlorine-AgCl,
Bromine-AgBr, Iodine-Ag!,
Flourine-LaF, Silver-AgS,
Copper-Cus, Lead-ZnS, Nitric acid­
Ni(O-Phen)+32, Perchloric acid­
FE(O-Phen)+32, Calcium-,
(R0)2P02-

Gas sensors - contact combustion
sensors (combustible gases),
semiconductor sensors (main
constituents Sn02) (combustible
gases), electro-chemical sensors
(exposed electrode types,
diaphragm electrode types) (Toxic
gases, etc., NH4, S02, CO2, HCN,
H2S, Cl2, Br2, 02), zirconia oxygen
concentration meters, oxide
semiconductor gas sensors (Redox
gases ZnO thin films, combustible
gases - Sn02), Redox gases - Oxide
thin films (Sn02, CdO, Fe203,
NiO), reducing gas - oxides (W03,
MoO, CrO, etc.) catalyst (Pt, Ir, Rh,
Pd, etc.), hydrogen gas/ hydrocarbon

84

Analytical sensors
(gas, smell,
concentration,
pH, smoke, moisture
content)

- ln2O3+Pt, reducing gas -
SnO2+Pd, hydrogen gas - WO3+Pt,
Ethanol -oxide complexes (LaNiO3
etc.), nitrogen oxide - V2O5 + Ag,
Oxygen - CoO, Ethane/ Butane etc.
ZnO + Pt, Hydrogen gas / carbon
monoxide - ZnO + Pd, reducing
gases - Sn2 + transition metals)
Ultraviolet analysis meters (dissolved
ozone, active chlorine and other such
oxidizing substances: organic
pollutants, COD: ammoniachlorine,
mercury, nitrogen dioxide, sulpher
dioxide, hydrogen sulphide, etc.)
Infra-red gas analysis meters (CO,
CO2, methane, ethane, propane,
butane, acetylene and other such
hydrocarbons, nitrix oxide, nitrogen
dioxide, hydrogen chloride,
ammonia).

Glass electrodes, hydrogen
electrodes, antimony
electrodes, Rodex potential
constituent membrane potential
constituent meters, solution
densitometers, electromagnetic
densitometers, nuclear magnetic
resonance (NMR), electron spin
resonance (ESR), voltametry.,
Polarographs, rotating viscometers,
electromotive force solid constituent
meters, saccharimeters, X-ray
characteristics (X-ray
microanalysers), radio-chemical
spectroscopy, emission spectroscopy,
fluorescence spectroscopy,
ultrasound gas constituent meters,
ultrasound liquid densito-meters,
ultrasound viscometers, time of flight
(TOF) mass spectrographs, gas
chromatographs, liquid
chromatographs, photographic
density meters, absorption
spectrometers, colorimeters,

85

Biological quantities

Sensory quantities

hydrogen sulphide meters, infra-red
spectrometers, radiation
densimeters, radiation sulphur
spectre-meters, meutron moisture
meters, microwave moisture meters,
heat condution gas constituent
meters, magnetic oxygen meters,
combusion gas constituent meters,
chlorine densitometers, floating
gravimeters, pressure densimeters,
gas constituent meters using density
differences, airpressure gravimeters,
oscillating viscometers, refractive
gas spectrometers, mass
spectometers, oxygen sensors,
viscosity sensors.

Blood pressure sensors, blood flow
sensors, electromagnetic blood flow
meters, LD blood flowmeters,
electronic clinical thermometers,
enzymatic ion sensors (urea, glucose,
etc.), biosensors, lactic acid sensors,
uric acid sensors.

Touch, sight, hearing

86

APPENDIXB

ODS (Object Description Skeleton) files generated by Cadre Teamwork/HOOD
for the classic design approach.

-- boiler_BOILER.ods

OBJECT BOILER IS ACTIVE

DESCRIPTION
--lherel--

IMPLEMENTATION_OR_SYNCHRONISATION_CONSTRAINTS
--lherel--

PROVIDED_INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
EMERGENCY _OPERATION

--lherel--

DEGRADED _OPERATION

--lherel--

SELF _TEST_OPERATION

--lherel--

NORMAL_OPERATION

--lherel--

STOP _BOILER

87

--lherel--

ST ART _BOILER

--lherel--

OPERATION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED _INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

DATAFLOWS
NONE

OBJECT _CONTROL_STRUCTURE

DESCRIPTION
--lherel--

CONSTRAINED _OPERA TIO NS
STOP _BOILER CONSTRAINED _BY (ASER
--lherel--);

IMPLEMENTED_BY

88

BOILER_SHUTDOWN_OPERA TION;

INTERNALS

OBJECTS
BOILER_STARTUP _OPERATION;
--lherel-­
BOILER_NORMAL_OPERA TION;
--lherel--
BOILER_SELFTEST _ OPERATION;
--lherel-­
BOILER_DEGRADED_OPERATION;
--lherel--
BOILER_EMERGENCY _OPERATION;
--lherel-­
BOILER_SHUTDOWN_OPERATION;
--lherel--

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE

OPERATION EMERGENCY _OPERATION
IS

DESCRIPTION
--I here I--

USED_OPERATIONS
NONE

EXCEPTIONS
NONE

IMPLEMENTED_BY BOILER_EMERGENCY _OPERATION.EMERGENCY

END_OPERATION EMERGENCY _OPERATION

OPERATION DEGRADED_OPERATION
IS

89

DESCRIPTION
--lherel--

USED_OPERATIONS
NONE

EXCEPTIONS
NONE

Th1PLEMENfED _BY BOILER_DEGRADED _OPERATION.DEGRADED

END_OPERATION DEGRADED_OPERATION

OPERATION SELF _TEST_OPERATION
IS

DESCRIPTION
--I here I--

USED_OPERATIONS
NONE

EXCEPTIONS
NONE

IMPLEMENfED_BY BOILER_SELFfEST_OPERATION.SELFfEST

END_OPERATION SELF _TEST_OPERATION

OPERATION NORMAL_OPERATION
IS

DESCRIPTION
--I here I--

USED_OPERATIONS
NONE

EXCEPTIONS
NONE

IMPLEMENfED _BY BOILER_NORMAL_OPERATION.NORMAL

END_OPERATION NORMAL_OPERATION

90

OPERATION STOP _BOILER
IS

DESCRIPTION
--lherel--

USED_OPERATIONS
NONE

EXCEPTIONS
NONE

IMPLEMENTED _BY
BOILER_SHUTDOWN_OPERATION.SHUTDOWN_BOILER

END_OPERATION STOP _BOILER

OPERATION START_BOILER
IS

DESCRIPTION
--lherel--

USED_OPERATIONS
NONE

EXCEPTIONS
NONE

IMPLEMENTED _BY BOILER_ST ARTUP _OPERATION .STARTUP _BOILER

END_OPERATION START_BOILER

END_OBJECT BOILER

91

-- boiler_BOILER_DEGRADED _ OPERA TION.ods

OBJECT BOILER_DEGRADED_OPERATION IS ACTIVE

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
DEGRADED

--lherel--

OPERATION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
DGD_CONTENT_MEASURING_DEVICE;
DGD_STEAM_RA TE_DEVICE;
DGD_DUMP _ VALVE_DEVICE;
DGD _BOILER_DEVICE;

CLASS_OBJECTS
NONE

92

TYPES
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

DATAFLOWS
NONE

OBJECT _CONTROL_STRUCTURE

DESCRIPTION
--lherel--

CONSTRAINED_ OPERA TIO NS
NONE

CODE
--lherel--

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE

OPERATION DEGRADED
IS
DESCRIPTION

--lherel--
USED_OPERATIONS

NONE
EXCEPTIONS

NONE

93

CODE
--lherel-­
EXCEPTION_HANDLER

NONE

END_OPERATION DEGRADED

END_ OBJECT BOILER_DEGRADED _OPERATION

94

-- boiler_BOILER_EMERGENCY _OPERA TION.ods

OBJECT BOILER_EMERGENCY _OPERATION IS ACTIVE

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
EMERGENCY

--lherel--

OPERATION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED _INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
EMR_CONTENT _MEASURING_DEVICE;
EMR_STEAM_RA TE_DEVICE;
EMR_DUMP _ VALVE_DEVICE;
EMR_BOILER_DEVICE;

CLASS_ OBJECTS
NONE

95

TYPES
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

DATAFLOWS
NONE

OBJECT _CONTROL_STRUCTURE

DESCRIPTION
--lherel--

CONSTRAINED_ OPERA TIO NS
NONE

CODE
--lherel--

JNTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE

OPERATION EMERGENCY
IS
DESCRIPTION

--lherel--
USED_OPERATIONS

NONE
EXCEPTIONS

NONE
CODE

96

--lherel-­
EXCEPTION_HANDLER

NONE

END_OPERATION EMERGENCY

END _OBJECT BOILER_EMERGENCY _OPERATION

97

-- hoiler_BOILER_NORMAL_ OPERATION .ods

OBJECT BOILER_NORMAL_ OPERATION IS ACTIVE

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAJNTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NORMAL

--lherel--

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED _INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NML_CONTENT _MEASURING_DEVICE;
NML_STEAM_RATE_DEVICE;
NML_BOILER_DEVICE;
NML_DUMP _ VALVE_DEVICE;

CLASS_OBJECTS
NONE

98

TYPES
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

DATAFLOWS
NONE

OBJECT_CONTROL_STRUCTURE

DESCRIPTION
--lherel--

CONSTRAINED_ OPERA TIO NS
NONE

CODE
--lherel--

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE

OPERATION NORMAL
IS
DESCRIPTION

--lherel--
USED_OPERATIONS

NONE
EXCEPTIONS

NONE

99

CODE
--lherel-­
EXCEPTION_HANDLER

NONE

END_OPERATION NORMAL

END _OBJECT BOILER_NORMAL_OPERATION

100

-- boiler_BOILER_SELFfEST _ OPERA TION.ods

OBJECT BOILER_SELFfEST _OPERATION IS ACTIVE

DESCRIPTION
--lherel--

JMPLEMENTATION_OR_SYNCHRONISATION_CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
SELFfEST

--lherel--

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
SLF _CONTENT _MEASURING_DEVICE;
SLF _STEAM_RA TE_DEVICE;
SLF _DUMP_ VAL VE_DEVICE;
SLF _BOILER_DEVICE;

CLASS_OBJECTS
NONE

101

TYPES
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

DATAFLOWS
NONE

OBJECT_ CONTROL_STRUCTURE

DESCRIPTION
--lherel--

CONSTRAINED_ OPERA TIO NS
NONE

CODE
--lherel--

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE

OPERATION SELFfEST
IS
DESCRIPTION

--lherel--
USED_OPERATIONS

NONE
EXCEPTIONS

NONE
CODE

102

--lherel-­
EXCEPTION_HANDLER

NONE

END_OPERATION SELFTEST

END_ OBJECT BOILER_SELFTEST _OPERATION

103

-- boiler_BOILER_SHUTDOWN_ OPERA TION.ods

OBJECT BOILER_SHUTDOWN_OPERA TION IS ACTIVE

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
SHUTDOWN_BOILER

--lherel--

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
SHD_DUMP _ VALVE_DEVICE;
SHD _CONTENT _MEASURING_DEVICE;
SHD _STEAM_RA TE_DEVICE;
SHD _BOILER_DEVICE;

CLASS_OBJECTS
NONE

104

TYPES
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

DATAFLOWS
NONE

OBJECT_ CONTROL_STRUCTURE

DESCRIPTION
--lherel--

CONSTRAINED_ OPERA TIO NS
SHUTDOWN_BOILER CONSTRAINED _BY (ASER
--lherel--);

CODE
--lherel--

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE

OPERATION SHUTDOWN_BOILER
IS
DESCRIPTION

--lherel--
USED_OPERATIONS

NONE
EXCEPTIONS

NONE

105

CODE
--lherel-­
EXCEPTION_HANDLER

NONE

END _OPERATION SHUTDOWN_BOILER

END_OBJECT BOILER_SHUTDOWN_OPERATION

106

-- boiler_BOILER_STARTUP _OPERATION.ods

OBJECT BOILER_ST ARTUP _OPERATION IS ACTIVE

DESCRIPTION
--lherel--

Th1PLEMENT ATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
STARTUP _BOILER

--lherel--

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
STU_DUMP _VAL VE_DEVICE;
STU_CONTENT_MEASURJNG_DEVICE;
STU _STEAM_RA TE_DEVICE;
STU _BOILER_DEVICE;

CLASS_OBJECTS
NONE

107

TYPES
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

DATAFLOWS
NONE

OBJECT_CONTROL_STRUCTURE

DESCRIPTION
--lherel--

CONSTRAINED_OPERATIONS
NONE

CODE
--lherel--

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE

OPERATION STARTUP _BOILER
IS
DESCRIPTION

--lherel--
USED_OPERATIONS

NONE
EXCEPTIONS

NONE
CODE

108

--lherel-­
EXCEPTION_HANDLER

NONE

END_OPERATION STARTUP _BOILER

END_OBJECT BOILER_STARTUP _OPERATION

109

-- boiler_DGD_BOILER_DEVICE.ods

OBJECT DGD _BOILER_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

110

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END_ OBJECT DGD _BOILER_DEVICE

111

-- boiler_DGD _ CONTENT _MEASURING_DEVICE.ods

OBJECT DGD_CONTENT_MEASURING_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

112

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END_OBJECT DGD_CONTENT_MEASURING_DEVICE

113

-- boiler_DGD _DUMP_ VAL VE_DEVICE.ods

OBJECT DGD _DUMP_ V ALVE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

114

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END _OBJECT DGD_DUMP _ VAL VE_DEVICE

115

-- boiler_DGD _STEAM_RA TE_DEVICE.ods

OBJECT DGD _STEAM_RA TE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED_INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_ OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

116

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END_OBJECT DGD_STEAM_RATE_DEVICE

117

-- boiler_EMR_BOILER_DEVICE.ods

OBJECT EMR_BOILER_DEVICE IS ENVIRON1v1ENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

118

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END_ OBJECT EMR_BOILER_DEVICE

119

-- boiler_EMR_ CONTENT _MEASURING_DEVICE.ods

OBJECT EMR_CONTENT_MEASURING_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIR.ED _INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

120

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END_OBJECT EMR_CONTENT_MEASURING_DEVICE

121

-- boiler_EMR_DUMP _VAL VE_DEVICE.ods

OBJECT EMR_DUMP _ V ALVE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_ OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

122

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END_OBJECT EMR_DUMP _ VAL VE_DEVICE

123

-- boiler_EMR_STEAM_RA TE_DEVICE.ods

OBJECT EMR_STEAM_RA TE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_ OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

124

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END_OBJECT EMR_STEAM_RATE_DEVICE

125

-- boiler_NML_BOILER_DEVICE.ods

OBJECT NML_BOILER_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERATION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

126

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END_OBJECT NML_BOILER_DEVICE

127

-- boiler_NML_DUMP _VAL VE_DEVICE.ods

OBJECT NML_DUMP _ VAL VE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

128

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END _OBJECT NML_DUMP _VAL VE_DEVICE

129

-- boiler_NML_STEAM_RA TE_DEVICE.ods

OBJECT NML_STEAM_RA TE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

130

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END_OBJECT NML_STEAM_RA TE_DEVICE

131

-- boiler_SHD _BOILER_DEVICE.ods

OBJECT SHD _BOILER_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

Th1PLEMENT A TION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERATION_SETS
NONE

EXCEPTIONS
NONE

REQU1RED _INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

132

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END_ OBJECT SHD _BOILER_DEVICE

133

-- boiler_SHD_CONTENT_MEASURING_DEVICE.ods

OBJECT SHD_CONTENT_MEASURING_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERATION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED _INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

134

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END _OBJECT SHD _CONTENT _MEASURING_DEVICE

135

-- boiler_SHD_DUMP _ VALVE_DEVICE.ods

OBJECT SHD _DUMP_ VAL VE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED _INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_ OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

136

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END _OBJECT SHD_DUMP _VAL VE_DEVICE

137

-- boiler_SHD _STEAM_RA TE_DEVICE.ods

OBJECT SHD _STEAM_RA TE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

138

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END _OBJECT SHD_STEAM_RATE_DEVICE

139

-- boiler_SLF _BOILER_DEVICE.ods

OBJECT SLF _BOILER_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

140

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END_OBJECT SLF _BOILER_DEVICE

141

-- boiler_SLF _CO1"1TENT_MEASURING_DEVICE.ods

OBJECT SLF _CONTENT_MEASURING_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUlRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

142

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END_OBJECT SLF _CONTENT_MEASURING_DEVICE

143

-- boiler_SLF _DUMP_ VAL VE_DEVICE.ods

OBJECT SLF _DUMP_ VAL VE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

144

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END _OBJECT SLF _DUMP_ VAL VE_DEVICE

145

-- boiler_SLF _STEAM_RATE_DEVICE.ods

OBJECT SLF _STEAM_RA TE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_ OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

146

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END_ OBJECT SLF _STEAM_RA TE_DEVICE

147

-- boiler_STU _BOILER_DEVICE.ods

OBJECT STU_BOILER_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

148

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END _OBJECT STU _BOILER_DEVICE

149

-- boiler_STU _ CONTENT _MEASURING _DEVICE.ods

OBJECT STU_CONTENT_MEASURING_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

150

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END _OBJECT STU_CONTENT _MEASURING_DEVICE

151

-- boiler_STU _DUMP_ VAL VE_DEVICE.ods

OBJECT STU_DUMP _ VALVE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT _OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

152

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERATION_CONTROL_STRUCTURE
NONE

END_OBJECTSTU_DUMP_VALVE_DEVICE

153

-- boiler_STU _STEAM_RA TE_DEVICE.ods

OBJECT STU_STEAM_RATE_DEVICE IS ENVIRONMENT

DESCRIPTION
--lherel--

IMPLEMENTATION_ OR_SYNCHRONISA TION_ CONSTRAINTS
--lherel--

PROVIDED _INTERFACE

TYPES
NONE

CONSTANTS
NONE

OPERATIONS
NONE

OPERA TION_SETS
NONE

EXCEPTIONS
NONE

REQUIRED_INTERFACE

OBJECTS
NONE

ENVIRONMENT_OBJECTS
NONE

CLASS_OBJECTS
NONE

TYPES
NONE

OPERATIONS
NONE

154

EXCEPTIONS
NONE

DATAFLOWS
NONE

INTERNALS

OBJECTS
NONE

DECLARATIONS
NONE

OPERATIONS
NONE

OPERA TION_CONTROL_STRUCTURE
NONE

END_ OBJECT STU _STEAM_RA TE_DEVICE

155

APPENDIXC

--***

BOILER

Tius program interfaces to the NRC's (National Research
Council) Boiler simulation. The model consists of a natural­
gas fired water tube boiler producing saturated steam through
seperators at the top of a drum. The steam flow may vary
rapidly and irregularly between zero and a maximum, following
a varying external demand.

written by: Jerry D. Cavin date: April 3rd, 1993

--***

with tty;
with text_io; -- text Input/Output package

with TX; use TX;
with RX; use RX;
with UI; use UI;
with OPERATIONAL_MODES; use OPERATIONAL_MODES;

procedure BOILER is
READY_TO_STOP, READY_TO_START: boolean:= false;

begin
text_io.put_line("Start of Boiler Control Program.");

-- start the user interface running
USER_INTERFACE.CLEAR_SCREEN;
USER_INTERF ACE.UPDATE_LABELS;

-- startup the communications
RECEIVE.ENABLE(l);
TRANSMIT.ENABLE(l);
TRANSMIT.UNTIL_READY;

while (READY_TO_STOP = false) loop
USER_INTERF ACE.CHECK_FOR_INITIA TION(READY _TO _ST ART);
ifREADY_TO_START then

STARTUP_ OPERATIONS.ENABLE;
end if;
USER_INTERFACE.CHECK_FOR_TERMINATION(READY _TO _STOP);

156

end loop;

USER_INTERFACE.DISABLE;
RECEIVE.DISABLE; -- stop receiving messages
TRANSMIT.DISABLE; -- stop transrmttmg messages
STARTUP _OPERATIONS.DISABLE;
SHUTDOWN_OPERATIONS.DISABLE;
NORMAL_OPERATIONS.DISABLE;
DEGRADED_OPERATIONS.DISABLE;
EMERGENCY _OPERATIONS.DISABLE;
SELFTEST_OPERATIONS.DISABLE;
tty .clear_screen;

text_io.new _line;
text_io.put_line("Shutting down system tasks ... ");
USER_INTERFACE.KILL;
TRANSMIT.KILL;
RECEIVE.KILL;
STARTUP _OPERATIONS.KILL;
SHUTDOWN_OPERATIONS.KILL;
NORMAL_OPERATIONS.KILL;
DEGRADED_OPERATIONS.KILL;
EMERGENCY_OPERATIONS.KILL;
SELFTEST _ OPERA TIO NS.KILL;

end; -- of BOILER program

157

OPERATIONAL MODES Package

written by: Jerry D. Cavin date: April 3rd, 1993

with iio;
with text_io;
with tty;

-- integer Input/Output package
-- text Input/Output package

-- DOS Video package
with interrupt;
with time;

-- DOS call package
-- DOS time function

with common_display _types;
use common_display _types;

-- color constants

with bit_ops;
use bit_ops;

-- bit manipulation package

with TX; use TX;
with UI; use UI;
with SYSTEM_P ARAMETERS;

package OPERATIONAL_MODES is

task STARTUP _OPERATIONS is
entry ENABLE;
entry DISABLE;

use SYSTEM_PARAMETERS;

entry UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE);
entry KILL;

end STARTUP _OPERATIONS;

task SHUTDOWN_OPERATIONS is
entry ENABLE;
entry DISABLE;
entry UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE);
entry KILL;

end SHUTDOWN_OPERATIONS;

task DEGRADED _OPERATIONS is
entry ENABLE;

158

entry DISABLE;
entry UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE);
entry KILL;

end DEGRADED_OPERATIONS;

task EMERGENCY_OPERATIONS is
entry ENABLE;
entry DISABLE;
entry UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE);
entry KILL;

end EMERGENCY_OPERATIONS;

task NORMAL_OPERATIONS is
entry ENABLE;
entry DISABLE;
entry UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE);
entry KILL;

end NORMAL_OPERATIONS;

task SELFTEST_OPERATIONS is
entry ENABLE;
entry DISABLE;
entry UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE);
entry KILL;

end SELFTEST_OPERATIONS;

end OPERA TIONAL_MODES;

package body OPERA TIONAL_MODES is

task body STARTUP _OPERATIONS is

During the boiler STARTUP _OPERATIONS there are a number of operations
-- to complete. First, after the boiler is initially powered up the boiler
-- sends a signal that it is on standby. After this signal arrives the
-- boiler content device is checked for normal operation. Next the steam
-- rate device is checked to make sure it is reading zero. If the boiler
-- content device is reading over 60,000 pounds the boiler is too high and
-- the dump valve is turned on and it waits until the water content has been
-- adjusted to 60,000 pounds. If the boiler content is below 40,000 pounds
-- then tum on any one of the water feed pumps until the water rises to

159

-- 40,000 pounds. Next all of the feed pumps are turned on for at least 30
seconds and no more than 40 seconds. The water rate increase is then
measured to ensure all of the feed pumps are working properly. If the
water rate increase does not match the assumed calculation the pumps are
then turned on and off one at a time in order to find the faulty pump.

-- ENTRIES:
-- It is only possible to go into STARTUP _OPERATIONS from the

SELFfEST_OPERATIONS.

EXITS:
-- If the water content measuring device or the steaming rate device is
-- found to be faulty then the boiler will go into SHITTDOWN_OPERATIONS.
-- It will also go into SHITTDOWN_OPERATIONS if there are less than three
-- pumps working. If all of the devices are found to be in working order
-- then the boiler is ready and goes into the NORMAL_OPERATIONS. If
-- three or more feed pumps or feed pump monitors are in working order
-- the boiler goes into the DEGRADED_OPERATIONS.

ACTIVE : boolean := false;
TASK_IS_RUNNING: boolean:= true;
LOCAL_STATE_TABLE: BOILER_STATE;

begin
while TASK_IS_RUNNING loop

select

-- when starting this task set the active flag true and

or

or

-- highlight the "SELFfEST" mode on the user interface.
accept ENABLE do
ACTIVE := true;

USER_INTERFACE.HIGHLIGHT(SELFfEST);
end ENABLE;

accept DISABLE do
ACTIVE := false;

end DISABLE;

-- kill the task by exiting the select loop
accept KILL do

TASK_IS_RUNNING := false;
end KILL;

160

or

-- update the local state table with the new global state table
accept UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE) do

LOCAL_STATE_TABLE := GLOBAL_STATE_TABLE;
end UPDATE;

else

then

then

if ACTIVE then
if (LOCAL_STATE_T ABLE.LEVEL_DEVICE /= WORKING) or

(LOCAL_STATE_TABLE.RATE_DEVICE /= WORKING) then
USER_INTERFACE.UNHIGHLIGHT(SELFTEST);
SHUTDOWN_OPERA TIONS.ENABLE;

end if;

if (LOCAL_ST ATE_T ABLE.LEVEL> MAXIMUM_ OPERA TING_LEVEL)

null;
-- *** turn on dump valve ***
-- *** wait till boiler content< 60_000 ***

end if;

if (LOCAL_STATE_TABLE.LEVEL < MINIMUM_OPERATING_LEVEL)

TRANSMIT .TURN_ ON_ALL_PUMPS;
-- *** wait till boiler content > 40_000 ***

end if;

-- *** turn on all feed pump between 30-40 seconds***
-- *** if calculated water rise= boiler content then***

NORMAL_OPERATIONS.ENABLE; -- all pumps working
-- *** else ***
-- *** find faulty pump ***
-- *** end if; ***
end if;

end select;
end loop;
text_io.put_line(" ... STARTUP _OPERATIONS Task is now terminating.");

exception
when others =>

text_io.put_line("*** Exception occured in STARTUP _OPERATIONS.");

161

end STARTUP _OPERATIONS;

task body SHUTDOWN_OPERATIONS is

When SHUTDOWN_OPERATIONS is entered a message must be displayed
-- to inform the operator why the boiler is being shut down. The
-- operator can confirm shut down and if desired enter into the boiler
-- self test mode.

-- ENTRIES:
-- SHUTDOWN_OPERATIONS can be entered from any mode.

-- EXITS:
-- After the SHUTDOWN_OPERATIONS the boiler can only go into
-- SELFTEST_OPERATIONS.

ACTIVE : boolean := false;
TASK_IS_RUNNING: boolean:= true;
LOCAL_STATE_TABLE: BOILER_STATE;

begin
while TASK_IS_RUNNING loop

select

-- when starting this task set the active flag true and
-- highlight the "SHUTDOWN" mode on the user interface.

or

or

accept ENABLE do
ACTIVE := true;
USER_INTERFACE.HIGHLIGHT(SHUTDOWN);
end ENABLE;

accept DISABLE do
ACTIVE := false;

end DISABLE;

-- kill the task by exiting the select loop
accept KILL do

TASK_IS_RUNNING := false;
end KILL;

162

or

-- update the local state table with the new global state table
accept UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE) do

LOCAL_STATE_TABLE := GLOBAL_STATE_TABLE;
end UPDATE;

else

if ACTIVE then
-- *** display reason for shutdown***
-- *** confirm shutdown or goto selftest operation***
USER_INTERFACE. UNHIGHLIGHT(SHUTDOWN);
SELFTEST_OPERATIONS.ENABLE;

end if;

end select;
end loop;
text_io.put_line(" ... SHUTDOWN_OPERATIONS Task is now terminating.");

exception
when others=>

text_io.put_line("*** Exception occured in SHUTDOWN_OPERATIONS.");
end SHUTDOWN_OPERATIONS;

task body DEGRADED_ OPERA TIO NS is

-- ENTRIES:
-- The DEGRADED_OPERATIONS can be entered from NORMAL_OPERATIONS,
-- EMERGENCY_OPERATIONS, and STARTUP _OPERATIONS.

-- EXITS:
-- When the boiler is operating in the DEGRADED_OPERATIONS if the
-- water content measuring device fails the boiler goes into
-- EMERGENCY_OPERATIONS. If all of the failed devices are reported
-- repaired the boiler goes into NORMAL_OPERATIONS. If the water content
-- measuring device reports that the water level has exceeded the limits,
-- the boiler goes into SHUTDOWN_OPERATIONS.

ACTIVE : boolean := false;
TASK_IS_RUNNING: boolean:= true;
LOCAL_STATE_TABLE: BOILER_STATE;

begin

163

while TASK_IS_RUNNING loop
select

-- when starting this task set the active flag true and
-- highlight the "DEGRADED" mode on the user interface.

accept ENABLE do
ACTIVE := true;
USER_INTERFACE.HIGHLIGHT(DEGRADED);
end ENABLE;

or

or

accept DISABLE do
ACTIVE := false;

end DISABLE;

-- kill the task by exiting the select loop
accept KILL do

or

T ASK_IS_RUNNING := false;
end KILL;

-- update the local state table with the new global state table
accept UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE) do

LOCAL_STATE_TABLE := GLOBAL_STATE_TABLE;
end UPDATE;

else

if ACTIVE and (LOCAL_STATE_TABLE.LEVEL_DEVICE /= WORKING) then
USER_INTERFACE.UNHIGHLIGHT(DEGRADED);

EMERGENCY_OPERATIONS.ENABLE;
end if;

if ACTIVE and (LOCAL_STA TE_T ABLE.LEVEL >
MAXIMUM_OPERATING_LEVEL) then

USER_INTERFACE.UNHIGHLIGHT(DEGRADED);
SHUTDOWN_OPERATIONS.ENABLE;

end if;

end select;
end loop;

164

text_io.put_line(" ... DEGRADED_OPERATIONS Task is now terminating.");

exception
when others=>

text_io.put_line("*** Exception occured in DEGRADED_OPERATIONS.");
end DEGRADED_ OPERA TIO NS;

procedure CALCULATE_WATER_LEVEL(STATE_TABLE: in out BOILER_STATE)
IS

begin
null;

end CALCULATE_ W ATER_LEVEL;

task body EMERGENCY_OPERATIONS is

During the EMERGENCY _OPERATIONS calculations are made to predict
-- the worst possible behavior from all system devices. Using this
-- information it attempts to operate the boiler within the safe limits
-- specified in the boiler specification.

-- ENTRIES:
-- EMERGENCY_OPERATIONS can be entered from the NORMAL_OPERATIONS
or
-- DEGRADED_OPERATIONS.

-- EXITS:
-- The boiler can exit EMERGENCY_OPERATIONS and enter the
-- DEGRADED_OPERATIONS when the water content measuring device becomes
-- available. If the water level start to exceed the limits of safe
-- opertion, or the water content calculations are not possible, the
-- boiler then moves into the SHUTDOWN_OPERATIONS.
SHlITDOWN_OPERA TIO NS
-- is also entered if the steam rate device fails.

ACTIVE : boolean := false;
TASK_IS_RUNNING : boolean:= true;
LOCAL_STATE_TABLE: BOILER_STATE;

begin
while TASK_IS_RUNNING loop

select

165

-- when starting this task set the active flag true and
-- highlight the "EMERGENCY" mode on the user interface.

or

or

accept ENABLE do
ACTIVE := true;
USER_INTERFACE.HIGHLIGHT(EMERGENCY);
end ENABLE;

accept DISABLE do
ACTIVE := false;

end DISABLE;

-- kill the task by exiting the select loop
accept KILL do

TASK_IS_RUNNING := false;
end KILL;

or

-- update the local state table with the new global state table
accept UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE) do

LOCAL_STATE_TABLE := GLOBAL_STATE_TABLE;
end UPDATE;

else

-- if the water content device has failed calculate the level
if ACTIVE and (LOCAL_STATE_ T ABLE.LEVEL_DEVICE /= WORKING) then

CALCULATE_ WATER_LEVEL(LOCAL_STATE_T ABLE);

-- if calculating not possible start SHUTDOWN_ OPERA TIO NS
if (LOCAL_STATE_TABLE.LEVEL = 0) then

USER_INTERFACE.UNHIGHLIGHT(EMERGENCY);
SHUTDOWN_OPERATIONS.ENABLE;

end if;
end if;

if ACTIVE and (LOCAL_STATE_TABLE.RATE_DEVICE /= WORKING) then
USER_INTERFACE.UNHIGHLIGHT(EMERGENCY);

SHUTDOWN_OPERATIONS.ENABLE;
end if;

166

end select;
end loop;
text_io.put_line(11

••• EMERGENCY _OPERATIONS Task is now terminating. 11
);

exception
when others =>

text_io.put_line(11 *** Exception occured in EMERGENCY_OPERATIONS. 11
);

end EMERGENCY_ OPERA TIO NS;

task body SELFfEST_OPERATIONS is

The SELFfEST_OPERATIONS first ensures that the communication links
are all in proper working order. It tests all of the hardware connected

-- to the boiler to ensure all of the devices are in working order. If
-- any of the hardware fails a message is displayed to the operator
-- describing the device and how it failed. Control is then given to the
-- operator.

-- ENTRIES:
-- The SELFfEST _ OPERA TIO NS can be entered from the
SHUTDOWN_OPERATIONS, or
-- by operator command from the keyboard.

-- EXITS:
-- If all of the hardware devices passes the test, the boiler enters the
-- STARTUP_OPERATIONS.

ACTIVE : boolean := false;
TASK_IS_RUNNING: boolean:= true;
LOCAL_STATE_TABLE: BOILER_STATE;

begin
while TASK_IS_RUNNING loop

select

-- when starting this task set the active flag true and
-- highlight the 11SELFfEST11 mode on the user interface.

or

accept ENABLE do
ACTIVE := true;
USER_INTERFACE.HIGHLIGHT(SELFfEST);
end ENABLE;

167

or

accept DISABLE do
ACTIVE := false;

end DISABLE;

-- kill the task by exiting the select loop
accept KILL do

TASK_IS_RUNNING := false;
end KILL;

or

-- update the local state table with the new global state table
accept UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE) do

LOCAL_STATE_TABLE := GLOBAL_STATE_TABLE;
end UPDATE;

else

if ACTIVE then
*** test the monitor***

-- *** test the keyboard ***
-- *** test the comm port ***
USER_INTERFACE. UNHIGHLIGHT(SELFfEST);

STARTUP _OPERATIONS.ENABLE;
end if;

end select;
end loop;
text_io.put_line(" ... SELFfEST_OPERATIONS Task is now terminating.");

exception
when others =>

text_io.put_line("*** Exception occured in SELFfEST_OPERATIONS.");
end SELFfEST_OPERATIONS;

task body NORMAL_OPERATIONS is

In NORMAL_OPERATIONS the water level is kept between 65,000 and
-- 85,000 pounds. It is maintained at this level by switching on and off
-- the feed pumps.

168

-- ENTRIES:
-- The NORMAL_OPERATIONS can be entered from the STARTUP _OPERATIONS
or
-- the DEGRADED_OPERATIONS.

-- EXITS:
-- If the water content measuring device fails the boiler goes into
-- EMERGENCY_OPERATIONS. If any other device fails the boiler goes into
-- DEGRADED_OPERATIONS. If the water exceeds the limits of the safe
-- operation of the boiler, the boiler goes into the SHUTDOWN_OPERATIONS.

ACTIVE, PUMPS_ARE_ON: boolean:= false;
TASK_IS_RUNNING : boolean := true;
LOCAL_STATE_TABLE: BOILER_STATE;

begin
while TASK_IS_RUNNING loop

select

-- when starting this task set the active flag true and
-- highlight the "NORMAL" mode on the user interface.

or

or

accept ENABLE do
ACTIVE := true;
USER_INTERFACE.HIGHLIGHT(NORMAL);
end ENABLE;

accept DISABLE do
ACTIVE := false;

end DISABLE;

-- update the local state table with the new global state table
accept UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE) do

LOCAL_STATE_TABLE := GLOBAL_STATE_TABLE;
end UPDATE;

or

-- kill the task by exiting the select loop
accept KILL do

T ASK_IS_RUNNING := false;
end KILL;

169

else

then

then

then

-- when not rendezvouing with other tasks execute this part
-- if the normal task is active.
if ACTIVE then

-- if the level device is not unhighlight the NORMAL mode
-- and go into the emergency mode.
if (LOCAL_STA TE_ T ABLE.LEVEL_DEVICE /= V✓ORKING) then

USER_INTERFACE.UNHIGHLIGHT(NORMAL);
EMERGENCY _OPERATIONS.ENABLE;

end if;

-- if the pumps have not already been started and the water
-- level in the boiler is below the minimum operating level
-- then turn all of the pumps on.
if (PUMPS_ARE_ON = false) and

(LOCAL_STATE_TABLE.LEVEL < MINIMUM_OPERATING_LEVEL)

PUMPS_ARE_ON := true;
TRANSMIT.TURN_ON_ALL_PUMPS;

end if;

-- if the pumps are on and the water level has risen above
-- the minimum operating level then turn all of the pumps off
if PUMPS_ARE_ON and

(LOCAL_STATE_TABLE.LEVEL > MINIMUM_OPERATING_LEVEL)

PUMPS_ARE_ON := false;
TRANSMIT.TURN_OFF _ALL_PUMPS;

end if;

if (LOCAL_STATE_TABLE.LEVEL > MAXIMUM_OPERATING_LEVEL)

USER_INTERF ACE.UNHIGHLIGHT(NORMAL);
SHUTDOWN_OPERA TIONS.ENABLE;

end if;

if (LOCAL_STATE_TABLE.RATE_DEVICE /= WORKING) then
USER_INTERFACE.UNHIGHLIGHT(NORMAL);

SHUTDOWN_OPERATIONS.ENABLE;
end if;

end if;

170

end select;
end loop;
text_io.put_line(" ... NORMAL_OPERATIONS Task is now terminating.");

exception
when others=>

text_io.put_line("*** Exception occured in NORMAL_OPERATIONS.");
end NORMAL_OPERATIONS;

end OPERATIONAL_MODES;

171

-- **

GENERIC QUEUE

This packages is to be used for generic instantiations
of simple queues of different types.

written by: Jerry D. Cavin date: March 18th, 1993

--**

genenc
MAX : positive;
type ITEM is private;

package QUEUE is
function FULL return boolean;
function EMPTY return boolean;
function GET return ITEM;
procedure PUT(JOB : in ITEM);
procedure INITIALIZE;

end QUEUE;

package body QUEUE is

type ARRAY_OF _JOBS is array(l..MAX) ofITEM;

type QUE is
record

DATA: ARRAY_OF _JOBS;
FIRST, LAST: integer range 1 .. MAX;
SIZE : integer range 0 .. MAX;

end record;

Q:QUE;

function FULL return boolean is
begin

return Q.SIZE = MAX;
end FULL;

172

function EMPTY return boolean is
begin

return Q.SIZE = 0;
end EMPTY;

procedure PUT(JOB: in ITEM) is
begin

if FULL then
raise CONSTRAINT_ERROR;

end if;
Q.DATA(Q.LAST) := JOB;
Q.LAST := Q.LAST mod MAX+ 1;
Q.SIZE := Q.SIZE + 1;

end PUT;

function GET return ITEM is
JOB: ITEM;

begin
if EMPTY then

raise CONSTRAINT_ERROR;
end if;
JOB:= Q.DATA(Q.FIRST);
Q.FIRST := Q.FIRST mod MAX+ 1;
Q.SIZE := Q.SIZE- 1;
return JOB;

end GET;

procedure INITIALIZE is
begin

Q.FIRST := 1;
Q.LAST := 1;
Q.SIZE := O;

end INITIALIZE;

end QUEUE;

173

--**

RX (RECEIVED) COMMUNICATIONS Package

written by: Jerry D. Cavin date: April 3rd, 1993

--**

with text_io;
with interrupt;
with time;

with bit_ops;
use bit_ops;

-- DOS call package
-- DOS time function

-- bit manipulation package

with SYSTEM_P ARAMETERS;
with OPERA TIONAL_MODES;

use SYSTEM_P ARAMETERS;
use OPERA TIONAL_MODES;

with UI; use UI;
with TX; use TX;

package RX is

task RECEIVE is
entry ENABLE(COMM: integer);
entry DISABLE;
entry KILL;

end RECEIVE;

end RX;

package body RX is

GLOBAL_STATE_TABLE: BOILER_STATE :=

(true,
SELFTEST,
false,
0,
WORKING,

0.0,
0,
WORKING,

-- OK_TO_TRANSMIT
--MODE

--START
-- INSTRUMENT _TIME

--COMPUTER

-- LEVEL_CAL
--LEVEL

-- LEVEL_DEVICE

174

0,
WORKING,

--RATE
-- RA TE_DEVICE

(OFF, OFF, OFF, OFF), -- PUMP
(WORKING, WORKING, WORKING, WORKING), -- PUMP _DEVICE

(NO_FLOW, NO_FLOW, NO_FLOW, NO_FLOW), -- MONITOR
(WORKING, WORKING, WORKING, WORKING)); -- MONITOR_DEVICE

procedure CLEAR_BUFFER(BUFFER: in out string) is
begin

for INDEX in BUFFER'range loop
BUFFER(INDEX) := I ';

end loop;
end CLEAR_BUFFER;

function BIT(I: integer; NUM: integer) return boolean is

begin
case NUMis

when O => return (I and 16#0001#) > O;
when 1 => return (I and 16#0002#) > 0;
when 2 => return (I and 16#0004#) > 0;
when 3 => return (I and 16#0008#) > 0;
when 4 => return (I and 16#0010#) > 0;
when 5 => return (I and 16#0020#) > 0;
when 6 => return (I and 16#0040#) > 0;
when 7 => return (I and 16#0080#) > 0;
when 8 => return (I and 16#0100#) > 0;
when 9 => return (I and 16#0200#) > 0;
when 10 => return (I and 16#0400#) > 0;
when 11 => return (I and 16#0800#) > 0;
when 12 => return (I and 16#1000#) > 0;
when 13 => return (I and 16#2000#) > 0;
when 14 => return (I and 16#4000#) > 0;
when 15 => return (I < 0);
when others => return false;

end case;

175

end BIT;

function RX_READY(COMM_PORT: integer) return boolean is

-- returns true when the serial port specified is ready to receive,
-- false, if it is not ready to receive.

REGS : interrupt.registers;
begin

REGS.AX:= 16#0300#;
REGS.DX:= COMM_PORT-1;
interrupt.vector(on=> 16#14#, register_block =>REGS);
if BIT(REGS.AX, 8) then

return true;
end if;
return false;

end RX_READY;

function RS232_READ(COMM_PORT: integer) return character is

REGS: interrupt.registers;
MASK: integer:= 16#0100#;
CHAR_MASK: integer:= 16#00ff#;
CH : character;

begin
REGS.AX := 16#0200#;
REGS.DX:= COMM_PORT-1;
interrupt.vector(on=> 16#14#, register_block => REGS);
if BIT(REGS.AX, 15) then

return'?';
end if;

MASK:= REGS.AX and CHAR_MASK;
return character'val(MASK);

end RS232_READ;

procedure RS232_INITIALIZE(COMM_PORT : integer) is

176

REGS : interrupt.registers;
begin

REGS.AX:= 16#00e3#; -- 9600 baud, no parity, 1 stop bit, 8 bits
REGS.DX:= CO:rvIM_PORT-1;
interrupt.vector(on=> 16#14#, register_block =>REGS);
USER_INTERFACE.DISPLA Y("Result Code="&integer'image(REGS.AX));

if BIT(REGS.AX, 15) then
USER_INTERFACE.DISPLAY("*** INIT: Timed Out.");

end if;

ifBIT(REGS.AX, 14) then
USER_INTERFACE.DISPLAY("*** INIT: TX Shift Register Empty.");

end if;

if BIT(REGS.AX, 13) then
USER_INTERFACE.DISPLAY("*** INIT: TX Hold Register Empty.");

end if;

ifBIT(REGS.AX, 12) then
USER_INTERF ACE.DISPLAY("*** INIT: Break Detected.");

end if;

ifBIT(REGS.AX, 11) then
USER_INTERFACE.DISPLAY("*** INIT: Framing Error.");

end if;

ifBIT(REGS.AX, 10) then
USER_INTERFACE.DISPLAY("*** INIT: Parity Error.");

end if;

if BIT(REGS .AX, 9) then
USER_INTERFACE.DISPLAY("*** INIT: Overrun Error.");

end if;

ifBIT(REGS.AX, 8) then
USER_INTERFACE.DISPLAY("*** INIT: Data Ready.");

end if;

ifBIT(REGS.AX, 7) then
USER_INTERFACE.DISPLAY("*** INIT: Receive Line Signal Detected.");

end if;

177

if BIT(REGS.AX, 6) then
USER_INTERFACE.DISPLAY("*** INIT: Ring Indicator.");

end if;

if BIT(REGS.AX, 5) then
USER_INTERFACE.DISPLAY("*** INIT: Data-Set Ready.");

end if;

if BIT(REGS.AX, 4) then
USER_INTERFACE.DISPLAY("*** INIT: Clear to Send.");

end if;

if BIT(REGS.AX, 3) then
USER_INTERFACE.DISPLAY("*** INIT: Change in Receive Line Signal

Detected.");
end if;

ifBIT(REGS.AX, 2) then
USER_INTERFACE.DISPLAY("*** INIT: Trailing Edge Ring Indicator.");

end if;

if BIT(REGS.AX, 1) then
USER_INTERFACE.DISPLAY("*** INIT: Change in Data-Set Ready Status.");

end if;

ifBIT(REGS.AX, 0) then
USER_INTERFACE.DISPLAY("*** INIT: Change in Clear-to-Send Status.");

end if;

end RS232_1NITIALIZE;

function IS_IN(IS_THIS_STRING : string;
IN_THIS_STRING: string) return boolean is

INDEX : integer;
begin

for OUTER_INDEX in IN_THIS_STRING'range loop
INDEX := OUTER_INDEX;
for INNER_LOOP in IS_THIS_STRING'range loop

exit when IS_THIS_STRING(INNER_LOOP) /=
IN_THIS_STRING(INDEX);

if INNER_LOOP = IS_THIS_STRING'length then
return true;

178

end if;
INDEX := INDEX + 1;

end loop;
end loop;
return false;

end IS_IN;

function IDENTIFY _MESSAGE(MESSAGE: in MESSAGE_BUFFER) return
MESSAGES_RECEIVED is

begin
ifIS_IN("SYNC", MESSAGE) then

return SYNC;
end if;
if IS_IN("SHUTNOW", MESSAGE) then

return SHUTNOW;
end if;
ifIS_IN("START", MESSAGE) then

return START;
end if;
if IS _IN ("BOILSTDBY", MESSAGE) then

return BOILSTDBY;
end if;
if IS_IN("TSTMSG0", MESSAGE) then

return TSTMSG0;
end if;
ifIS_IN("TSTMSGl", MESSAGE) then

return TSTMSG 1;
end if;
ifIS_IN("TSTMSG2", MESSAGE) then

return TSTMSG2;
end if;
ifIS_IN("TSTMSG3", MESSAGE) then

return TSTMSG3;
end if;
ifIS_IN("TSTMSG4", MESSAGE) then

return TSTMSG4;
end if;
ifIS_IN("TSTMSG5", MESSAGE) then

return TSTMSG5;
end if;
ifIS_IN("BOILEVADJ", MESSAGE) then

return BOILEV ADJ;
end if;

179

iflS_IN("PUMPINDON", MESSAGE) then
return PUMPINDON;

end if;
ifIS_IN("PUMPINDOFF", MESSAGE) then

return PUMPINDOFF;
end if;
ifIS_IN("WATFLOWON", MESSAGE) then

return W ATFLOWON;
end if;
ifIS_IN("WATFLOWOFF", MESSAGE) then

return W ATFLOWOFF;
end if;
ifIS_IN("LEVCONST", MESSAGE) then

return LEVCONST;
end if;
ifIS_IN("WATERLEVEL", MESSAGE) then

return W ATERLEVEL;
end if;
ifIS_IN("STEAMRATE", MESSAGE) then

return STEAMRA TE;
end if;
if IS_IN("PUMPOK", MESSAGE) then

return PUMPOK;
end if;
iflS_IN("WATFLOWOK", MESSAGE) then

return W ATFLOWOK;
end if;
if IS_IN("W ATLEVOK", MESSAGE) then

return WA TLEVOK;
end if;
if IS_IN("STMRATOK", MESSAGE) then

return STMRA TOK;
end if;
iflS_IN("PUMPUS", MESSAGE) then

return PUMP US;
end if;
iflS_IN("WATFLOWUS", MESSAGE) then

return WATFLOWUS;
end if;
ifIS_JN("WATLEVUS", MESSAGE) then

return WATLEVUS;
end if;
iflS_IN("STMRATUS", MESSAGE) then

return STMRA TUS;
end if;

180

return UNKNOWN;
end IDENTIFY _MESSAGE;

procedure STRIP(CH : character; BUFFER : in out MESSAGE_BUFFER) is
begin

for INDEX in BUFFER'range loop
if B UFFER(INDEX) = CH then

BUFFER(INDEX) := I ';
end if;

end loop;
end STRIP;

procedure FILL(FROM_INDEX, TO_INDEX: integer;
BUFFER: in out MESSAGE_BUFFER) is

begin
for INDEX in FROM_INDEX .. TO_INDEX loop

if (INDEX> 0) and (INDEX < MESSAGE_BUFFER'length) then
BUFFER(INDEX) :=I';

end if;
end loop;

end FILL;

procedure PROCESS_MESSAGE(MESSAGE : in out MESSAGE_BUFFER;
STATE_TABLE: in out BOILER_STATE) is

PUMP : integer;
begin

STRIP(ASCII.STX, MESSAGE);
STRIP(ASCII.ETX, MESSAGE);

case IDENTIFY _MESSAGE(MESSAGE) is
when SYNC=>

FILL(l, 10, MESSAGE); -- remove everything but the numbers
STATE_TABLE.INSTRUMENT_TIME := long_integer'value(MESSAGE);

181

USER_INTERFACE.DISPLA Y("Time:" &long_integer'image(ST ATE_ T ABLE.INSTRU
MENT_TIME));

when SHUTNOW => null;
when START=> STATE_TABLE.START := true;
when BOILSTDBY => null;
when TSTMSG0 => null;
when TSTMSG 1 => null;
when TSTMSG2 => null;
when TSTMSG3 => null;
when TSTMSG4 => null;
when TSTMSG5 => null;
when BOILEV ADJ => null;

when PUMPINDON =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers
PUMP := integer'value(MESSAGE);
if (PUMP>= 1) and (PUMP<= NUMBER_OF _PUMPS) then

STATE_TABLE.PUMP(PUMP) := ON;
end if;

when PUMPINDOFF =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers
PUMP := integer'value(MESSAGE);
if (PUMP>= 1) and (PUMP<= NUMBER_OF _PUMPS) then

STATE_TABLE.PUMP(PUMP) := OFF;
end if;

when WATFLOWON =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers
PUMP := integer'value(MESSAGE);
if (PUMP>= 1) and (PUMP<= NUMBER_OF _PUMPS) then

STATE_TABLE.MONITOR(PUMP) := FLOW;
end if;

when WATFLOWOFF =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers
PUMP := integer'value(MESSAGE);
if (PUMP>= 1) and (PUMP<= NUMBER_OF _PUMPS) then
STATE_TABLE.MONITOR(PUMP) := NO_FLOW;
end if;

when LEVCONST =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers

182

STATE_TABLE.LEVEL_CAL := integer'image(MESSAGE);

when W ATERLEVEL =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers

STATE_TABLE.LEVEL := integer'image(MESSAGE);

when STEAMRA TE =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers

STATE_TABLE.RATE := integer'image(MESSAGE);

when PUMPOK =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers
PUMP := integer'value(MESSAGE);
if (PUMP>= 1) and (Pl.TivIP <= NlTivIBER_OF _PUMPS) then

STATE_TABLE.PlTivIP _DEVICE(PUMP) := WORKING;
end if;

when WATFLOWOK =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers
PUMP := integer'value(MESSAGE);
if (PUMP>= 1) and (PlTivIP <= NlTivIBER_OF _PUMPS) then

STATE_TABLE.MONITOR_DEVICE(PU1v1P) := WORKING;
end if;

when WA TLEVOK =>
STATE_TABLE.LEVEL_DEVICE := WORKING;

when STMRATOK =>
STATE_TABLE.RATE_DEVICE := WORKING;

when PUMPUS =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers
PUMP := integer'value(MESSAGE);
if (PlTivIP >= 1) and (PUMP<= NlTivIBER_OF _PUMPS) then

STATE_TABLE.PUMP _DEVICE(PUMP) := REPAIR_ACK;
end if;

when WATFLOWUS =>
FILL(l, 10, MESSAGE); -- remove everything but the numbers
PUMP := integer'value(MESSAGE);
if (PUMP>= 1) and (PUMP<= NlTivIBER_OF _PUMPS) then

STATE_T ABLE.MONITOR_DEVICE(PUMP) :=
REP AIR_ACK;

end if;

183

when W ATLEVUS =>
STATE_TABLE.LEVEL_DEVICE := REPAIR_ACK;

when STMRA TUS =>
STATE_TABLE.RATE_DEVICE := REPAIR_ACK;

when others=> null;
end case;

-- clear the message buffer of any message remains
for INDEX in MESSAGE'range loop

MESSAGE(INDEX) := I ';

end loop;
end PROCESS_MESSAGE;

function TIME_ST AMP return float is

-- calculates a unique time stamp

HOURS : time.hours_range;
MINUTES : time.minutes_range;
SECONDS : time.seconds_range;
HUNDREDTHS: time.hundredths_range;
STAMP: FLOAT :=0.0;

begin
time.get(HOURS, MINUTES, SECONDS, HUNDREDTHS);
ST AMP := float(HOURS) * 3600.0;
STAMP:= STAMP+ float(MINUTES) * 60.0;
STAMP:= STAMP+ float(SECONDS);
STAMP:= STAMP+ float(HUNDREDTHS)/100.0;
return STAMP;

end TIME_ST AMP;

task body RECEIVE is
MESSAGE : MESSAGE_BUFFER;
COMM_PORT: integer:= 1;
COMMUNICATIONS_ENABLED : boolean:= false;
TASK_IS_RUNNING: boolean:= true;
START_OF _MESSAGE: float:= 0.0;
LINE : integer := O;

begin

184

LINE:= 1;
while TASK_IS_RUNNING loop

select

or

or

else

accept ENABLE(CO:MM: integer) do
LINE:= 2;
CO:MM_PORT := COMM;
RS232_INITIALIZE(COMM_PORT);
COMMUNICATIONS_ENABLED := true;
LINE:= 3;

end ENABLE;

accept KILL do
LINE :=4;
TASK_IS_RUNNING := false;

end KILL;

accept DISABLE do
LINE:= 5;
COMMUNICA TIONS_ENABLED := false;

end DISABLE;

LINE:= 6;
if COMMUNICA TIONS_ENABLED and RX_READY(COMM_PORT) then

GLOBAL_STATE_ T ABLE.OK_TO _TRANSMIT := false;
LINE:= 7;
TRANSMIT.UPDATE(GLOBAL_STATE_TABLE);
LINE:= 8;
START_OF _MESSAGE:= TIME_STAMP;
LINE:= 9;
for INDEX in l..MESSAGE_SIZE loop

exit when RX_READY(COMM_PORT) = false;
LINE:= 10;
MESSAGE(INDEX) := RS232_READ(COMM_PORT);
-- loop until we get a valid printable character, or until
-- ready becomes false
while (MESSAGE(INDEX) < ' ') and (MESSAGE(INDEX) > '~') loop

exit when RX_READY(COMM_PORT) = false;
MESSAGE(INDEX) := RS232_READ(COMM_PORT);

185

end loop;
end loop;
LINE:= 11;
USER_INTERFACE. UPDATE_RX(MESSAGE);
LINE:= 12;
PROCESS_MESSAGE(MESSAGE, GLOBAL_STATE_T ABLE);
LINE:= 13;
while (TIME_ST AMP-RECEIVE_ WINDOW < ST ART_ OF _MESSAGE) loop

null; -- delay until reception window has expired
end loop;
LINE:= 14;
GLOBAL_STATE_TABLE.OK_TO_TRANSMIT := true;

end if;

LINE:= 15;
if COMMUNICATIONS_ENABLED then

TRANSMIT.UPDATE(GLOBAL_STATE_TABLE);
STARTUP _OPERATIONS.UPDATE(GLOBAL_STATE_TABLE);
SHUTDOWN_OPERATIONS.UPDATE(GLOBAL_STATE_TABLE);
DEGRADED_OPERATIONS.UPDATE(GLOBAL_STATE_TABLE);
EMERGENCY_OPERATIONS.UPDATE(GLOBAL_STATE_TABLE);
NORMAL_OPERATIONS.UPDATE(GLOBAL_STATE_TABLE);
SELFTEST_OPERATIONS.UPDATE(GLOBAL_STATE_TABLE);

end if;
LINE:= 16;

end select;
end loop;
text_io.put_line(11

••• RECEIVE Task is now terminating. 11
);

exception
when others=>

text_io.put_line(11 **** EXCEPTION occured in RECEIVE@ Line 11 &
integer'irnage(LINE));

end RECEIVE;

end RX;

186

--***
**

SYSTEM PARAMETERS
This package contains all of the predefined system

used inthe boiler control program.
**

**

**
**

written by: Jerry D. Cavin date: April 3rd, 1993 **

--**

package SYSTEM_P ARAMETERS is

-- ************** Boiler Parameters (Superhot MKl) *****************

BOILER_TOTAL_CAPACITY : constant long_integer := 130_000; --pounds
BOILER_MAXIMUM_SAFE : constant long_integer := 110_000; -- pounds
BOILER_MINIMUM_SAFE : constant long_integer := 23_000; -- pounds
MAXIMUM_OPERATING_LEVEL : constant long_integer := 60_000; --pounds
MINIMUM_OPERATING_LEVEL : constant long_integer := 40_000; --pounds

MAXIMUM_BOILER_RATE : constant long_integer := 700_000; -- lb/hr
MAXIMUM_BOILER_INCREASE : constant long_integer := 4_200_000; -- lb/hr/hr
MAXIMUM_BOILER_DECREASE : constant long_integer := 84_000_000; --

lb/hr/hr

-- ************* Boiler Feed Pumps (Forcefeed Type 2) ****************

MAXIMUM_FEED_PUMP _OUTPUT : constant long_integer := 275_000; --lb/hr
FEED_PUMP _OUTPUT_UPPER_LIMIT: constant long_integer := 0; -- %
FEED_PUMP_OUTPUT_LOWER_LIMIT: constantlong_integer := -5; --%
FEED_PUMP _START_UP _DELAY : constant long_integer := 6; -- seconds
FEED_ WATER_TEMPERATURE : constant long_integer := 18; -- deg C
FEED_ WATER_TEMPERATURE_UPPER: constant long_integer := 23; -- deg C
FEED_ WATER_TEMPERATURE_LOWER: constant long_integer := -10; -- deg C
FEED_ W ATER_PRESSURE : constant long_integer := 5; -- mPa

-- ********** Boiler Feed Pump Monitor (Everwatch Type 5a) *************

WATER_FEED_SET_POINT : constant long_integer := 425; -- gal/min
UPPER_SET _POINT _LIMIT : constant long_integer := 1; -- %
LOWER_SET _POINT _LIMIT : constant long_integer := -2; -- %

-- ******** Boiler Content Measuring Device (Levelmet Type 4) **********

NOMINAL_CONTENT_CALIBRATION: constant float:= 2.5; --per 1000 lbs

187

MAXIMUM_CONTENT_CALIBRATION: constant float:= 2.88; --per 1000 lbs
MINIMUM_CONTENT_CALIBRATION: constant float:= 1.95; -- per 1000 lbs
CONTENT_UPPER_LIMIT : constant float:= 0.5; -- %
CONTENT_LOWER_LIMIT : constant float:= -0.7; -- %
MAXIMUM_CONTENT _READING : constant float:= 360.00; -- units
MINIMUM_CONTENT_READING : constant float:= 30.00; -- units

-- ************* Steam Rate Device (Steamapp l\.1k 2, Mod3) ************

MAXIMUM_RATE_READING : constant long_integer := 850_000; -- lbs/hr
MINIMUM_RA TE_READING : constant long_integer := 0; -- lbs/hr
RATE_UPPER_LIMIT : constant long_integer := 2_000; -- lbs/hr
RATE_LOWER_LIMIT : constant long_integer := -3_000; -- lbs/hr
RATE_OUTPUT_RESOLUTION: constant long_integer := 500; -- lbs/hr

-- ************************ System Parameters ************************

NUMBER_OF _PUMPS: constant:= 4; -- total number of pumps/monitors
RECEIVE_ WINDOW : constant := 1.250; -- # seconds allowed between

-- receiving/transmission

-- ****************** System "Type" Definitions *********************

MESSAGE_SIZE : constant := 20;
subtype MESSAGE_BUFFER is string(l..MESSAGE_SIZE);

type DEVICE is (ON, OFF);
type MONITOR is (FLOW, NO_FLOW);
type STATE is (WORKING, REPAIR_REQ, REPAIR_ACK, FAILED);

type COLLECTION_OF _PUMPS is array(l..NUMBER_OF _PUMPS) of DEVICE;
type COLLECTION_OF _MONITORS is array(l..NUMBER_OF _PUMPS) of

MONITOR;
type COLLECTION_OF _STATES is array(l..NUMBER_OF _PUMPS) of STATE;
type OPERATING_MODES is

(SELFTEST, COMPTEST, NORMAL, DEGRADED, EMERGENCY,
SHUTDOWN);

-- this is the state table record containing all information
-- needed to determine the current state of the boiler. it also
-- contains information about the current state of the communications
-- network.

type BOILER_STATE is

188

record
OK_TO_TRANSMIT : boolean;
MODE : OPERATING_MODES;
ST ART : boolean;
INSTRUMENT_TIME : long_integer;
COMPUTER : STATE:

LEVEL_ CAL : float;
LEVEL : long_integer;
LEVEL_DEVICE : ST ATE;

RA TE : long_integer;
RATE_DEVICE : STATE;

PUMP : COLLECTION_OF _PUMPS;
PUMP _DEVICE : COLLECTION_ OF _STA TES;

MONITOR : COLLECTION_OF _MONITORS;
MONITOR_DEVICE : COLLECTION_OF _STATES;

end record;

-- the following is the list of messages that can be transmitted
-- by this package.

type MESSAGES_TRANSMITTED is
(STX, -- start of message tranmission character
ETX, -- end of transmission character

SYNC,
READY,

-- syncronization message
-- ready to control boiler water content

COMPTEST, -- computer test mode
SELFTEST, -- system test and initialization
NORMAL, -- normal operation mode
DEGRADED, -- degraded operation mode
EMERGENCY, -- emergency operation mode
SHUTDOWN, -- shutdown mode

LEVELCAL, -- calibration constant query to Levelmet Type 4
BOILHIGH, -- boiler content high

PUMPlON,
PUMP20N,
PUMP30N,

-- tum on feed pump number 1
-- turn on feed pump number 2
-- tum on feed pump number 3

189

PUMP4ON,

PUMPlOFF,
PUMP2OFF,
PUMP3OFF,
PUMP4OFF,

TSlMSG0,
TSlMSGl,
TS1MSG2,
TS1MSG3,
TS1MSG4,
TS1MSG5,

COMPFAIL,

PUMPUSl,
PUMPUS2,
PUMPUS3,
PUMPUS4,

-- turn on feed pump number 4

-- tum off feed pump number 1
-- tum off feed pump number 2
-- turn off feed pump number 3
-- tum off feed pump number 4

-- test message number 0
-- test message number 1
-- test message number 2
-- test message number 3
-- test message number 4
-- test message number 5

-- computer failure

-- repair request for pump 1
-- repair request for pump 2

repair request for pump 3
-- repair request for pump 4

WA TFLOWUS 1, -- feed pump monitor 1 repair request
WATFLOWUS2, -- feed pump monitor 2 repair request
WA TFLOWUS3, -- feed pump monitor 3 repair request
WA TFLOWUS4, -- feed pump monitor 4 repair request

WATLEVUS,
SlMRATUS,

PUMPOKl,
PUMPOK2,
PUMPOK3,
PUMPOK4,

-- boiler water content measurement device repair request
-- steaming rate measurement device repair request

-- pump 1 repaired acknowledgement
-- pump 2 repaired acknowledgement
-- pump 3 repaired acknowledgement
-- pump 4 repaired acknowledgement

W ATFLOWOKl, -- feed pump monitor 1 repaired acknowledgement
WA TFLOWOK2, -- feed pump monitor 2 repaired acknowledgement
WATFLOWOK3, -- feed pump monitor 3 repaired acknowledgement
W ATFLOWOK4, -- feed pump monitor 4 repaired acknowledgement

WA TLEVOK, -- boiler content measurement device repaired ack
SlMRA TOK); -- steam rate measurement device repaired ack

190

type MESSAGES_RECEIVED is
(SYNC, -- syncronization message
SHUTNOW, -- command to shutdown boiler
ST ART, start controlling water content
BOILSTDBY, -- boiler on stand by

TS1MSG0,
TS1MSG1,
TS1MSG2,
TS1MSG3,
TS1MSG4,
TS1MSG5,

-- test message number 0
-- test message number 1
-- test message number 2

test message number 3
test message number 4
test message number 5

BOILEVADJ, -- boiler content adjusted

PUMPINDON, -- feed pump is on
PUMPINDOFF, -- feed pump is off
W ATFLOWON, -- feed pump monitor reports water flowing
WATFLOWOFF, -- feed pump monitor reports water not flowing

LEVCONST, -- calibration constant from Levelmt Type 4
W ATERLEVEL, -- water content from Levelmet type 4
STEAMRATE, -- steaming rate from Steamapp Mk 2, Mod 3

PUMPOK, -- pump is repaired
W ATFLOWOK, -- feedpump monitor repaired

W ATLEVOK, -- boiler water content measuring device repaired
STl\1RA TOK, -- steaming rate measurement device repaired

PUMPUS, -- pump repair request acknowledgement
W ATFLOWUS, -- feed pump monitor repair request acknowledge

W ATLEVUS, -- boiler content measurement device repair request ack
S1MRATUS, -- steam rate measurement device repair request ack

UNKNOWN); -- message could not be identified

end SYSTEM_P ARAMETERS;

package body SYSTEM_P ARAMETERS is
end SYSTEM_P ARAMETERS;

191

--**

TX (TRANSMIT) COMMUNICATIONS Package

written by: Jerry D. Cavin date: April 3rd, 1993

--**

with text_io;
with interrupt;
with time;

-- DOS call package
-- DOS time function

with bit_ops;
use bit_ops;

-- bit manipulation package

with UI; use UI;
with SYSTEM_P ARAMETERS; use SYSTEM_P ARAMETERS;

package TX is
task TRANSMIT is

entry UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE);
entry UNTIL_READY;
entry LEVEL_CAL;
entry BOILER_HIGH;
entry PUMP _OK(PUMP: integer);
entry MONITOR_OK(MONITOR : integer);
entry TURN_ON_PUMP(PUMP : integer);
entry TURN_ON_ALL_PUMPS;
entry TURN_OFF _PUMP(PUMP: integer);
entry TURN_OFF _ALL_PUMPS;
entry WATER_CONTENT_OK;
entry RATE_OK;
entry CHECK_LEVEL;
entry CHECK_RA TE;
entry CHECK_PUMP(PUMP: integer);
entry PUMP _STATUS(PUMP: integer);
entry STATUS_OF _ALL_PUMPS;
entry KILL;
entry ENABLE(COMM : integer);
entry DISABLE;
entry CLEAR_TRANSMIT _QUEUE;

end TRANSMIT;
end TX;

192

package body TX is

MAX_SIZE : constant := 100;

type TRANSMIT _JOBS is (

TX_ALL_PUMPS_ ON, TX_ALL_PUMPS_ OFF, TX_ALL_PUMP _STAT,

TX_PUMPlON, TX_PUMP2ON, TX_PUMP3ON, TX_PUMP4ON,
TX_PUMPlOFF, TX_PUMP2OFF, TX_PUMP3OFF, TX_PUMP4OFF,
TX_PUMPlOK, TX_PUMP2OK, TX_PUMP3OK, TX_PUMP4OK,
TX_PUMPlSTAT, TX_PUMP2STAT, TX_PUMP3STAT,

TX_PUMP4STAT,

TX_MONITORlOK, TX_MONITOR2OK, TX_MONITOR3OK,
TX_MONITOR4OK,

TX_MONITORlSTAT, TX_MONITOR2STAT, TX_MONITOR3STAT,
TX_MONITOR4STAT,

TX_BOILER_HIGH, TX_UNTIL_READY, TX_LEVEL_CAL,

TX_LEVEL_OK,
TX_WATLEVOK,

);

TX_RATEOK, NO_JOB,
TX_LEVELCAL

type ARRAY_OF _JOBS is array(l..MAX_SIZE) ofTRANSMIT_JOBS;
type QUEUE is

record
DATA: ARRAY_OF_JOBS;
FIRST, LAST: integer range 1 .. MAX_SIZE;
SIZE : integer range O .. MAX_SIZE;

end record;

COMM_PORT : integer := 1;
SYNC_COUNT : long_integer := O;

function FULL(Q: QUEUE) return boolean is
begin

return Q.SIZE = MAX_SIZE;
end FULL;

193

function EMPTY(Q: QUEUE) return boolean is
begin

return Q.SIZE = 0;
end EMPTY;

procedure ADD(Q : in out QUEUE; JOB : in TRANSMIT _JOBS) is
begin

if FULL(Q) then
-- **** DISPLAY TRANSMIT QUEUE IS FULL ***
return;

end if;
Q.DATA(Q.LAST) := JOB;
Q.LAST := Q.LAST mod MAX_SIZE + 1;
Q.SIZE := Q.SIZE + 1;

end ADD;

procedure FIRST(Q: in out QUEUE; JOB: out TRANSMIT_JOBS) is
begin

if EMPTY (Q) then
JOB := NO_JOB;
return;

end if;
JOB:= Q.DATA(Q.FIRST);
Q.FIRST := Q.FIRST mod MAX_SIZE + 1;
Q.SIZE := Q.SIZE - 1;

end FIRST;

procedure INIDALIZE(Q : in out QUEUE) is
begin

Q.FIRST := 1;
Q.LAST := 1;
Q.SIZE := O;

end INITIALIZE;

function LENGTH(STR : string) return integer is

194

begin
return STR'length;

end LENGTH;

procedure CLEAR_BUFFER(BUFFER: in out string) is
begin

for INDEX in BUFFER'range loop
BUFFER(INDEX) := ' ';

end loop;
end CLEAR_BUFFER;

function BIT(I: integer; NUM: integer) return boolean is

begin
caseNUMis

when 0 => return (I and 16#0001#) > 0;
when 1 => return (I and 16#0002#) > 0;
when 2 => return (I and 16#0004#) > 0;
when 3 => return (I and 16#0008#) > 0;
when 4 => return (I and 16#0010#) > 0;
when 5 => return (I and 16#0020#) > 0;
when 6 => return (I and 16#0040#) > 0;
when 7 => return (I and 16#0080#) > 0;
when 8 => return (I and 16#0100#) > 0;
when 9 => return (I and 16#0200#) > 0;
when 10 => return (I and 16#0400#) > 0;
when 11 => return (I and 16#0800#) > 0;
when 12 => return (I and 16#1000#) > 0;
when 13 => return (I and 16#2000#) > 0;
when 14 => return (I and 16#4000#) > 0;
when 15 => return (I< 0);
when others => return false;

end case;
end BIT;

195

function TX_READY(COMM_PORT: integer) return boolean is

-- returns true when the serial port specified is ready to transmit,
-- false, if it is not ready to transmit.

REGS : interrupt.registers;
begin

REGS.AX:= 16#0300#;
REGS.DX:= COMM_PORT-1;
interrupt.vector(on=> 16#14#, register_block =>REGS);
if BIT(REGS.AX, 4) then

return true;
end if;
return false;

end TX_READY;

function RS232_ WRITE(COMM_PORT : integer; CH: character) return integer is

REGS : interrupt.registers;
begin

REGS.AX:= 16#0100# or character'pos(CH);
REGS.DX:= COMM_PORT-1;
interrupt.vector(on=> 16#14#, register_block =>REGS);
return REGS.AX;

end RS232_ WRITE;

procedure WRITE_MESSAGE(COMM_PORT : integer; MESSAGE : string) is

RESULT_CODE: integer;
ERROR_CODE: string(l..5) := ti ti

begin
USER_INTERFACE.UPDATE_TX(MESSAGE);

for INDEX in MESSAGE'range loop
RESULT_CODE := RS232_WRITE(COMM_PORT, MESSAGE(INDEX));

196

ifBIT(RESULT_CODE, 15) then
USER_INTERFACE.DISPLA Y("*** WRITE FAILED:" &

integer'image(RESULT_CODE));
return;

end if;
end loop;

end WRITE_MESSAGE;

procedure SEND(COMM_PORT : integer; MESSAGE :
MESSAGES_TRANSMITTED) is

SYNC_MESSAGE : string(l..20) := "SYNC "
SYNC_LENGTH : integer:= LENGTH(long_integer'image(SYNC_COUNT));

begin
case MESSAGE is

");

");

");

");

");

");

when SYNC => -- syncronization message
-- the sync count (0-9999999999) in tail of message
SYNC_MESSAGE(20-SYNC_LENGTH+ 1 .. 20) :=

long_integer'image(SYNC _ COUNT);
WRITE_MESSAGE(COMM_PORT, SYNC_MESSAGE);

SYNC_COUNT := SYNC_COUNT + 1;

when READY => WRITE_MESSAGE(COMM_PORT, "READY ");
when COMPTEST => WRITE_MESSAGE(COMM_PORT, "COMPTEST

when SELFfEST => WRITE_MESSAGE(COMM_PORT, "SYSTEST ");
when NORMAL => WRITE_MESSAGE(COMM_PORT, "NORMALOPS

when DEGRADED => WRITE_MESSAGE(COMM_PORT, "DEGRADED

when EMERGENCY => WRITE_MESSAGE(COMM_PORT, "EMERGENCY

when SHUTDOWN => WRITE_MESSAGE(COMM_PORT, "SHUTDOWN

when LEVELCAL => WRITE_MESSAGE(COMM_PORT, "LEVELCAL

when BOILHIGH => WRITE_MESSAGE(COMM_PORT, "BOILHIGH ");

when PUMPlON => WRITE_MESSAGE(COMM_PORT, "PUMPON
1 ");

when PUMP2ON => WRITE_MESSAGE(COMM_PORT, "PUMPON

197

2");
when PUMP3ON => WRITE_MESSAGE(COMM_PORT, "PUMPON

3");
when PUMP4ON => WRITE_MESSAGE(COMM_PORT, "PUMPON

4");

when PUMPlOFF => WRITE_MESSAGE(COMM_PORT, "PUMPOFF
1 ");

when PUMP2OFF => WRITE_MESSAGE(COMM_PORT, "PUMPOFF
2");

when PUMP3OFF => WRITE_MESSAGE(COMM_PORT, "PUMPOFF
3");

when PUMP4OFF => WRITE_MESSAGE(COMM_PORT, "PUMPOFF
4");

when TSTMSG0 => WRITE_MESSAGE(COMM_PORT, "TSTMSG0 ");
when TSTMSGl => WRITE_MESSAGE(COMM_PORT, "TSTMSGl ");
when TSTMSG2 => WRITE_MESSAGE(COMM_PORT, "TSTMSG2 ");
when TSTMSG3 => WRITE_MESSAGE(COMM_PORT, "TSTMSG3 ");
when TSTMSG4 => WRITE_MESSAGE(COMM_PORT, "TSTMSG4 ");
when TSTMSG5 => WRITE_MESSAGE(COMM_PORT, "TSTMSG5 ");

when COMPFAIL => WRITE_MESSAGE(COMM_PORT, "COMPFAIL
");

when PUMPUS 1 => WRITE_MESSAGE(COMM_PORT, "PUMPUS 1 ");
when PUMPUS2 => WRITE_MESSAGE(COMM_PORT, "PUMPUS 2");
when PUMPUS3 => WRITE_MESSAGE(COMM_PORT, "PUMPUS 3 ");
when PUMPUS4 => WRITE_MESSAGE(COMM_PORT, "PUMPUS 4");

when WATFLOWUSl => WRITE_MESSAGE(COMM_PORT, "WATFLOWUS
1 ");

when WATFLOWUS2=> WRITE_MESSAGE(COMM_PORT, "WATFLOWUS
2");

when WATFLOWUS3 => WRITE_MESSAGE(COMM_PORT, "WATFLOWUS
3");

when WATFLOWUS4 => WRITE_MESSAGE(COMM_PORT, "WATFLOWUS
4");

");

when WATLEVUS => WRITE_MESSAGE(COMM_PORT, "WATLEVUS

when STMRATUS => WRITE_MESSAGE(COMM_PORT, "STMRATUS

when PUMPOKl => WRITE_MESSAGE(COMM_PORT, "PUMPOK

198

1 ");

when PUMPOK2 => WRITE_MESSAGE(COMM_PORT, "PUMPOK
2");

when PUMPOK3 => WRlTE_MESSAGE(COMM_PORT, "PUMPOK
3");

when PUMPOK4 => WRITE_MESSAGE(COMM_PORT, "PUMPOK
4");

when WATFLOWOKl => WRlTE_MESSAGE(COMM_PORT, "WATFLOWOK
1 ");

when W ATFLOWOK2 => WRlTE_MESSAGE(COMM_PORT, "W ATFLOWOK
2");

when WATFLOWOK3 => WRlTE_MESSAGE(COMM_PORT, "WATFLOWOK
3");

when WATFLOWOK4 => WRITE_MESSAGE(COMM_PORT, "WATFLOWOK
4");

");
when WATLEVOK => WRITE_MESSAGE(COMM_PORT, "WATLEVOK

when STMRATOK => WRITE_MESSAGE(COMM_PORT, "STMRATOK
");

when STX
whenETX

end case;
end SEND;

=> WRITE_MESSAGE(COMM_PORT, ""&ASCII.STX);
=> WRITE_MESSAGE(COMM_PORT, ""&ASCII.ETX);

procedure EXECUTE_JOB(Q: in out QUEUE; STATE_TABLE: BOILER_STATE) is
JOB: TRANSMIT_JOBS;

begin
if EMPTY (Q) then

return;
end if;
FIRST(Q, JOB); -- get the first job in the queue

-- if the job is a "Transmit Until Ready" and a ready signal has
-- not been received, then put it back into the queue.
if (JOB= TX_UNTIL_READY) and (STATE_TABLE.START = false) then

ADD(Q, TX_UNTIL_READY);
elsif (JOB = TX_ UNTIL_READY) then

USER_INTERFACE.DISPLAY("STANDBY received from Boiler.");
end if;

199

if (JOB = TX_BOILER_HIGH) and
((STATE_TABLE.MODE /= SELFTEST) or
(STATE_TABLE.LEVEL < MAXIMUM_OPERATING_LEVEL)) then
return; -- no need to send boiler high message

end if;

-- the transmission "header"
SEND(COMM_PORT, STX);
SEND(COMM_PORT, ETX);
SEND(COMM_PORT, TSTMSG0);
SEND(COMM_PORT, TSTMSGl);
SEND(COMM_PORT, TSTMSG2);
case STATE_TABLE.MODE is

when COMPTEST => SEND(COMM_PORT, COMPTEST);
when SELFTEST => SEND(COMM_PORT, SELFTEST);
when NORMAL=> SEND(COMM_PORT, NORMAL);
when DEGRADED=> SEND(COMM_PORT, DEGRADED);
when EMERGENCY=> SEND(COMM_PORT, EMERGENCY);
when SHUTDOWN=> SEND(COMM_PORT, SHUTDOWN);
when others => null;

end case;

case JOB is
when TX_ALL_PUMPS_ ON=>

SEND(COMM_PORT, PUMPION); SEND(COMM_PORT, PUMP2ON);
SEND(COMM_PORT, PUMP3ON); SEND(COMM_PORT, PUMP4ON);

when TX_ALL_PUMPS_ OFF =>
SEND(COMM_PORT, PUMPlOFF); SEND(COMM_PORT, PUMP2OFF);
SEND(COMM_PORT, PUMP3OFF); SEND(COMM_PORT, PUMP4OFF);

when TX_ALL_PUMP _STAT =>
SEND(COMM_PORT, PUMPUSl); SEND(COMM_PORT, PUMPUS2);
SEND(COMM_PORT, PUMPUS3); SEND(COMM_PORT, PUMPUS4);

when TX_PUMPlON => SEND(COMM_PORT, PUMPlON);
when TX_PUMP2ON => SEND(COMM_PORT, PUMP2ON);
when TX_PUMP3ON => SEND(COMM_PORT, PUMP3ON);
when TX_PUMP4ON => SEND(COMM_PORT, PUMP4ON);
when TX_PUMPlOFF => SEND(COMM_PORT, PUMPlOFF);
when TX_PUMP2OFF => SEND(COMM_PORT, PUMP2OFF);
when TX_PUMP3OFF => SEND(COMM_PORT, PUMP3OFF);
when TX_PUMP4OFF => SEND(COMM_PORT, PUMP4OFF);
when TX_PUMPlOK => SEND(COMM_PORT, PUMPOKl);
when TX_PUMP2OK => SEND(COMM_PORT, PUMPOK2);
when TX_PUMP3OK => SEND(COMM_PORT, PUMPOK3);
when TX_PUMP4OK => SEND(COMM_PORT, PUMPOK4);
when TX_PUMPlSTAT => SEND(COMM_PORT, PUMPUSl);

200

when TX_PUMP2STAT => SEND(COMM_PORT, PUMPUS2);
when TX_PUMP3STAT => SEND(COMM_PORT, PUMPUS3);
when TX_PUMP4STAT => SEND(COMM_PORT, PUMPUS4);
when TX_MONITORlOK => SEND(COMM_PORT, WATFLOWOKl);
when TX_MONITOR2OK => SEND(COMM_PORT, WATFLOWOK2);
when TX_MONITOR3OK => SEND(COMM_PORT, WATFLOWOK3);
when TX_MONITOR4OK => SEND(COMM_PORT, WATFLOWOK4);
when TX_MONITORlSTAT => null;
when TX_MONITOR2STAT => null;
when TX_MONITOR3STAT => null;
when TX_MONITOR4STAT => null;
when TX_UNTIL_READY => SEND(COMM_PORT, READY);
when TX_LEVEL_CAL => null;
when TX_RATEOK => SEND(COMM_PORT, STMRATOK);
when TX_LEVEL_OK => SEND(COMM_PORT, WATLEVOK);
when TX_BOILER_IDGH => SEND(COMM_PORT, BOILIDGH);
when others => null;

end case;

-- the transmission "trailer"
SEND(COMM_PORT, TSTMSG3);
SEND(COMM_PORT, TSTMSG4);
SEND(COMM_PORT, ETX);

end EXECUTE_JOB;

task body TRANSMIT is
MESSAGE : MESSAGE_BUFFER;
TRANSMIT_QUEUE: QUEUE;
LOCAL_STATE_TABLE: BOILER_STATE;
TASK_IS_RUNNING: boolean:= true;
ACTIVE : boolean := false;

begin
while TASK_IS_RUNNING loop

select

accept TURN_ON_PUMP(PUMP: integer) do
case PUMP is

when 1 => ADD(TRANSMIT_QUEUE, TX_PUMPlON);
when 2 => ADD(TRANSMIT_QUEUE, TX_PUMP2ON);
when 3 => ADD(TRANSMIT _QUEUE, TX_PUMP3ON);

when 4 => ADD(TRANSMIT _QUEUE, TX_PUMP4ON);
when others => null;

end case;

201

or

or

end TURN_ON_PUMP;

accept TURN_ON_ALL_PUMPS do
ADD(TRANSMIT_QUEUE, TX_ALL_PUMPS_ON);

end TURN_ON_ALL_PUMPS;

-- define the comm port to be used and start to transmit message
-- as they arrive in the que

or

or

accept ENABLE(COMM: integer) do
ACTIVE := true;
COMM_PORT := COMM;
INffiALIZE(TRANSMIT _QUEUE);
end ENABLE;

accept DISABLE do
INITIALIZE(TRANSMIT _QUEUE);

ACTIVE := false;
end DISABLE;

accept CLEAR_TRANSMIT_QUEUE do
INITIALIZE(TRANSMIT_QUEUE);

end CLEAR_TRANSMIT _QUEUE;

or

accept TURN_OFF _PUMP(PUMP: integer) do

or

case PUMP is
when 1 => ADD(TRANSMIT _QUEUE, TX_PUMPl OFF);
when 2 => ADD(TRANSMIT_QUEUE, TX_PUMP2OFF);
when 3 => ADD(TRANSMIT_QUEUE, TX_PUMP3OFF);

when 4 => ADD(TRANSMIT_QUEUE, TX_PUMP4OFF);
when others => null;

end case;
end TURN_OFF _PUMP;

202

or

accept TURN_ OFF _ALL_PUMPS do
ADD(TRANSMIT_QUEUE, TX_ALL_PUMPS_OFF);

end TURN_OFF _ALL_PUMPS;

-- This message is sent when the program is ready to work and
-- is repeated every tranmission until a valid start signal is
-- received.

accept UNTIL_READY do
ADD(TRANSMIT _QUEUE, TX_ UNTIL_READY);

end UNTIL_READY;

or

-- This message is sent until acknowledged, to indicate that the
-- program has detected a problem with a pump

accept PUMP _STATUS(PUMP: integer) do
case PUMP is

when 1 => ADD(TRANSMIT_QUEUE, TX_PUMPlSTAT);
when 2 => ADD(TRANSMIT_QUEUE, TX_PUMP2STAT);
when 3 => ADD(TRANSMIT_QUEUE, TX_PUMP3STAT);

when4 => ADD(TRANSMIT_QUEUE, TX_PUMP4STAT);
when others => null;

end case;
end PUMP _STATUS;

or

accept STATUS_OF _ALL_PUMPS do
ADD(TRANSMIT _QUEUE, TX_ALL_PUMP _STAT);

end STATUS_OF _ALL_PUMPS;

or

-- This message are sent as acknowledgements, each time that the
-- instrumentation system has sent a message reporting that a
-- particular device has been repaired.

accept PUMP _OK(PUMP: integer) do

203

case PUMP is
when 1 =>ADD(TRANSMIT_QUEUE, TX_PUMPlOK);
when 2 => ADD(TRANSMIT _ QUEUE, TX_PUMP2OK);
when 3 => ADD(TRANSMIT_QUEUE, TX_PUMP3OK);

when 4 => ADD(TRANSMIT_QUEUE, TX_PUMP4OK);
when others=> null;

end case;
end PUMP _OK;

or

accept MONITOR_OK(MONITOR : integer) do
case MONITOR is

when 1 => ADD(TRANSMIT_QUEUE, TX_MONITORIOK);
when 2 => ADD(TRANSMIT_QUEUE, TX_MONITOR2OK);
when 3 => ADD(TRANSMIT _ QUEUE, TX_MONITOR3OK);

when 4 => ADD(TRANSMIT_QUEUE, TX_MONITOR4OK);
when others => null;

end case;
end MONITOR_ OK;

or

accept WATER_CONTENT_OK do
ADD(TRANSMIT _QUEUE, TX_ W ATLEVOK);

end WATER_CONTENT_OK;

or

accept RATE_OK do
ADD(TRANSMIT_QUEUE, TX_RATEOK);

end RA TE_ OK;

or

-- This message may be sent by the program at any time.

accept LEVEL_CAL do
ADD(TRANSMIT_QUEUE, TX_LEVELCAL);

end LEVEL_ CAL;

or

accept UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE) do

204

LOCAL_STATE_TABLE := GLOBAL_STATE_TABLE;
end UPDATE;

or

-- The message may only be sent in the system test and initialization
-- mode, and only when the specified boiler water level is too high.

accept BOILER_HIGH do
ADD(TRANSMIT _QUEUE, TX_BOILER_HIGH);

end BOILER_HIGH;

or

else

accept KILL do
TASK_IS_RUNNING := false;

end KILL;

if ACTIVE then -- and LOCAL_STATE_TABLE.OK_TO_TRANSMIT then
EXECUTE_JOB(TRANSMIT_QUEUE, LOCAL_STATE_TABLE);
end if;

end select;

end loop;
text_io.put_line(11

••• TRANSMIT Task is now terminating. 11
);

exception
when others =>

text_io.put_line(11 **** Exception occured in TRANSMIT.");
end TRANSMIT;

end TX;

205

USER INTERFACE Package
The User Interface packages displays fields to the CRT as

well as accepts input for the keyboard and set the appropriate
boolean variables.

written by: Jerry D. Cavin date: April 3rd, 1993

--**

with fio;
with iio;

-- float input/output package
-- integer Input/Output package

with text_io;
with tty;

-- text Input/Output package
-- DOS Video package

with interrupt;
with time;

-- DOS call package
-- DOS time function

with box; use box; -- DOS routine to draw boxes

with QUEUE; -- the GENERIC Queue

with common_display _types; -- color constants
use common_display _types;

with SYSTEM_P ARAMETERS; use SYSTEM_P ARAMETERS;

package UI is

task USER_INTERF ACE is
entry CLEAR_SCREEN;
entry UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE);
entry HIGHLIGHT(MODE: OPERATING_MODES);
entry UNHIGHLIGHT(MODE: OPERATING_MODES);
entry UPDATE_LABELS;
entry UPDATE_INSTRUMENT_TIME;
entry UPDATE_LEVEL;
entry UPDATE_LEVEL_CAL;
entry UPDATE_LEVEL_DEVICE;
entry UPDATE_RA TE;
entry UPDATE_RA TE_DEVICE;
entry UPDATE_PUMP(N: integer);
entry UPDATE_PUMP _DEVICE(N: integer);
entry UPDATE_MONITOR(N: integer);
entry UPDATE_MONITOR_DEVICE(N: integer);
entry CHECK_FOR_TERMINATION(READY_TO_TERMINATE: in out boolean

206

);
entry CHECK_FOR_INITIATION(READY_TO_INITIATE: in out boolean);
entry KILL;
entry DISPLAY(TEXT: string);
entry UPDATE_TX(MESSAGE: string);
entry UPDATE_RX(MESSAGE : string);
entry DISABLE;

end USER_INTERFACE;
end ill;

package body ill is

: constant boolean:= true; BLINK_ON
BLINK_OFF
NO_ECHO
DIRECT
CLEAR

: constant boolean := false;
: constant boolean := true;

: constant boolean := true;
: constant boolean := true;

BLANK_LINE : string(l..65) := (1..65 => ' ');
NEW _LINE, LINEl, LINE2, LINE3: string(l..65) := (1..65 =>' ');

LOCAL_STATE_T ABLE: BOILER_STATE;

TX_MESSAGE, RX_MESSAGE : MESSAGE_BUFFER;

-- these are the list of the background chores for the user
-- interface

type ill_JOBS is (
DISPLAY _LABELS, CLEAR_SCREEN,

UNHIGHLIGHT_SELFTEST, UNHIGHLIGHT_COMPTEST,
UNHIGHLIGHT_NORMAL,

UNHIGHLIGHT _DEGRADED, UNHIGHLIGHT_EMERGENCY,
UNHIGHLIGHT_SHUTDOWN,

HIGHLIGHT _SELFTEST, HIGHLIGHT _COMPTEST,
HIGHLIGHT_NORMAL,

HIGHLIGHT _DEGRADED, HIGHLIGHT _EMERGENCY,
HIGHLIGHT_SHUTDOWN,

DISPLAY _TIME, DISPLAY _LEVEL, DISPLAY _LEVEL_CAL,
DISPLAY _LEVEL_DEVICE, DISPLAY _RA TE, DISPLAY _RA TE_DEVICE,

207

DISPLAY _PUMPl, DISPLAY _PUMP2, DISPLAY _PUMP3,
DISPLAY _PUMP4,

DISPLAY _PUMPl_DEVICE, DISPLAY _PUMP2_DEVICE,
DISPLAY _PUMP3_DEVICE, DISPLAY _PUMP4_DEVICE,

DISPLAY _MONITOR!, DISPLAY _MONITOR2, DISPLAY _MONITOR3,
DISPLAY _MONITOR4,

DISPLAY _MONITORl_DEVICE, DISPLAY _MONITOR2_DEVICE,
DISPLAY _MONITOR3_DEVICE, DISPLAY _MONITOR4_DEVICE,

DISPLAY_TEXT, DISPLAY_RX, DISPLAY_TX);

-- this is the queue where the background chores a.re kept

package UI_QUEUE is new QUEUE(lO0, UI_JOBS);

function MIN(X,Y: integer) return integer is
begin

ifX < Ythen
returnX;

end if;
return Y;

end MIN;

procedure CLEAR_BUFFER(BUFFER: in out string) is

begin
BUFFER(l..BUFFER'length) := (l..BUFFER'length =>' ');

end CLEAR_BUFFER;

procedure COPY _BUFFER(SOURCE : in string;T ARGET : in out string) is
begin

CLEAR_BUFFER(T AR GET);
TARGET(l..MIN(SOURCE'length, TARGET'length)) := SOURCE;

end COPY _BUFFER;

208

procedure DISPLAY _PUMP(PUMP : integer) is
COLUMN: array(l..NUMBER_OF _PUMPS) of integer:= (16, 30, 44, 58);

begin
ifLOCAL_STATE_TABLE.PUMP(PUMP) = ON then

tty.put(7, COLUMN(PUMP), "ON ", GREEN, BLACK, BLINK_OFF);
else

tty.put(7, COLUMN(PUMP), "OFF ", RED, BLACK, BLINK_OFF);
end if;

end DISPLAY _PUMP;

procedure DISPLAY _MONITOR(MONITOR : integer) is
COLUMN: array(l..NUMBER_OF _PUMPS) of integer:= (16, 30, 44, 58);

begin
if LOCAL_STATE_ T ABLE.MONITOR(MONITOR) = FLOW then

tty.put(8, COLUMN(MONITOR), "FLOW ON ", GREEN, BLACK,
BLINK_ OFF);

else
tty.put(8, COLUMN(MONITOR), "FLOW OFF ", RED, BLACK, BLINK_OFF);

end if;
end DISPLAY _MONITOR;

procedure DISPLAY _PUMP _DEVICE(DEVICE : integer) is
COLUMN: array(l..NUMBER_OF _PUMPS) of integer:= (16, 30, 44, 58);

begin
if LOCAL_STATE_TABLE.PUMP _DEVICE(DEVICE) = WORKING then

tty.put(10, COLUMN(DEVICE), "SERVICEABLE ", GREEN, BLACK,
BLINK_ OFF);

elsifLOCAL_STATE_TABLE.PUMP _DEVICE(DEVICE) = REPAIR_REQ then
tty.put(10, COLUMN(DEVICE), "UNVERIFIED ", RED, BLACK, BLINK_ON);

elsif LOCAL_STATE_T ABLE.PUMP _DEVICE(DEVICE) = REP AIR_ACK then
tty.put(10, COLUMN(DEVICE), "UNSERVICEABLE", RED, BLACK,

BLINK_ON);
else

tty.put(10, COLUMN(DEVICE), "?????????????", RED, BLACK, BLINK_ON);
end if;

end DISPLAY _PUMP _DEVICE;

procedure DISPLAY _MONITOR_DEVICE(DEVICE : integer) is

209

COLUMN: array(l..NUMBER_OF _PUMPS) of integer:= (16, 30, 44, 58);
begin

if LOCAL_STATE_ TABLE.MONITOR_DEVICE(DEVICE) = WORKING then
tty.put(11, COLUMN(DEVICE), "SERVICEABLE ", GREEN, BLACK,

BLINK_OFF);
elsif LOCAL_ST ATE_ T ABLE.MONITOR_DEVICE(DEVICE) = REP AIR_REQ then

tty.put(11, COLUMN(DEVICE), "UNVERIFIED ", RED, BLACK, BLINK_ON);
elsif LOCAL_STATE_T ABLE.MONITOR_DEVICE(DEVICE) = REP AIR_ACK then

tty.put(11, COLUMN(DEVICE), "UNSERVICEABLE", RED, BLACK,
BLINK_ON);

else
tty.put(11, COLUMN(DEVICE), "?????????????", RED, BLACK, BLINK_ON);

end if;
end DISPLAY _MONITOR_DEVICE;

procedure DISPLAY _NEW _TEXT(TEXT : string) is
begin

LINEl := LINE2; LINE2 := LINE3;
COPY _BUFFER(TEXT, LINE3);
LINE3(1..MIN(LINE3'length, TEXT'length)) := TEXT;
tty.put(20, 4, LINEl, YELLOW, BLACK);
tty.put(21, 4, LINE2, YELLOW, BLACK);
tty.put(22, 4, LINE3, YELLOW, BLACK);

end DISPLAY _NEW_ TEXT;

procedure PROCESS_JOBS(STATE_TABLE: in out BOILER_STATE) is
begin

if UI_QUEUE.EMPTY then
return;

end if;

case UI_QUEUE.GET is
when DISPLAY _LABELS =>

tty.put(2, 25, "Boiler Control Program Vl.0",
LIGHT_BLUE, BLACK, BLINK_OFF);

tty.put(4, 5, "SELFfEST", GREEN, BLACK, BLINK_OFF);
tty.put(4, 18, "COMPTEST", GREEN, BLACK, BLINK_OFF);
tty.put(4, 33, "NORMAL", GREEN, BLACK, BLINK_OFF);
tty.put(4, 43, "DEGRADED", GREEN, BLACK, BLINK_OFF);
tty.put(4, 55, "EMERGENCY", GREEN, BLACK, BLINK_OFF);
tty.put(4, 67, "SHUTDOWN", GREEN, BLACK, BLINK_OFF);

210

box.draw(1, 1, 24, 79, box.double_top, (LIGHT_BLUE,BLACK,false));
tty.put(24, 3, "B", BLUE, WHITE);
tty.put(24, 4, "START", WHITE, BLUE);
tty.put(24,10, "X", BLUE, WHITE);
tty.put(24,11, "EXIT", WHITE, BLUE);
box.draw(6, 3, 12, 15, single_top, (GREEN,BLACK,false));
box.draw(6, 3, 12, 29, single_top, (GREEN,BLACK,false));
box.draw(6, 3, 12, 43, single_top, (GREEN,BLACK,false));
box.draw(6, 3, 12, 57, single_top, (GREEN,BLACK,false));
box.draw(6, 3, 9, 71, single_top, (GREEN,BLACK,false));
box.draw(6, 3, 12, 71, single_top, (GREEN,BLACK,false));

box.draw(19, 3, 23, 76, single_top, (RED,BLACK,false));
tty.put(19, 38, "STDIO", BLACK, RED);

tty.put(7, 9, "PUMP", YELLOW, BLACK);
tty.put(8, 6, "MONITOR", YELLOW, BLACK);
tty.put(lO, 9, "PUMP", YELLOW, BLACK);
tty.put(ll, 6, "MONITOR", YELLOW, BLACK);

tty.put(14, 10, "Rate State", YELLOW, BLACK);
tty.put(15, 10, "Rate Status", YELLOW, BLACK);
tty.put(14, 41, "Level State", YELLOW, BLACK);
tty.put(15, 41, "Level Status", YELLOW, BLACK);

tty.put(17, 6, "TX[", YELLOW, BLACK, BLINK_OFF);
tty.put(17, 31, "]", YELLOW, BLACK, BLINK_OFF);
tty.put(17, 41, "RX[", YELLOW, BLACK, BLINK_OFF);
tty.put(17, 66, "]", YELLOW, BLACK, BLINK_OFF);

-- instrwnent time
tty.put(2, 60,

long_integer'image(LOCAL_ST ATE_T ABLE.INSTRUMENT _TIME),
GREEN, BLACK, BLINK_OFF);

and

then

-- boiler water level
if (LOCAL_STATE_TABLE.LEVEL >= MINIMUM_OPERATING_LEVEL)

(LOCAL_STATE_TABLE.LEVEL <= MAXIMUM_OPERATING_LEVEL)

tty.put(14, 56, long_integer'image(LOCAL_STATE_TABLE.LEVEL),
GREEN, BLACK, BLINK_OFF);

else
tty.put(14, 56, long_integer'image(LOCAL_STATE_TABLE.LEVEL),

BLACK, RED, BLINK_ON);

211

end if;

for PUMP in 1 .. NUMBER_ OF _PUMPS loop
DISPLAY _PUMP(PUMP);
DISPLAY _PUMP _DEVICE(PUMP);
DISPLAY _MONITOR(PUMP);
DISPLAY _MONITOR_DEVICE(PUMP);

end loop;

-- steam rate measurement
if (LOCAL_STATE_TABLE.RATE >= MINIMUM_RATE_READING) and

(LOCAL_STATE_TABLE.RATE <= MAXIMUM_RATE_READING) then
tty.put(14, 56, long_integer'irnage(LOCAL_STATE_TABLE.RATE),

GREEN, BLACK, BLINK_OFF);
else

tty.put(14, 56, long_integer'irnage(LOCAL_STATE_TABLE.RATE),
BLACK, RED, BLINK_ON);

end if;

when CLEAR_SCREEN =>
tty .clear_screen;

when UNHIGHLIGHT_SELFTEST =>
tty.put(4, 5, "SELFTEST", GREEN, WHITE, BLINK_OFF);

when UNHIGHLIGHT_COMPTEST =>
tty.put(4, 18, "COMPTEST", GREEN, WHITE, BLINK_OFF);

when UNHIGHLIGHT _NORMAL=>
tty.put(4, 33, "NORMAL", GREEN, WHITE, BLINK_OFF);

when UNHIGHLIGHT _DEGRADED =>
tty.put(4, 43, "DEGRADED", GREEN, WHITE, BLINK_OFF);

when UNHIGHLIGHT_EMERGENCY =>
tty.put(4, 55, "EMERGENCY", GREEN, WHITE, BLINK_OFF);

when UNHIGHLIGHT _SHUTDOWN=>
tty.put(4, 67, "SHUTDOWN", GREEN, WHITE, BLINK_OFF);

when HIGHLIGHT _SELFTEST =>
tty.put(4, 5, "SELFTEST", WHITE, GREEN, BLINK_ON);

when HIGHLIGHT_ COMPTEST =>
tty.put(4, 18, "COMPTEST", WHITE, GREEN, BLINK_ON);

212

when HIGHLIGHT _NORMAL=>
tty.put(4, 33, "NORMAL", WHITE, GREEN, BLINK_ON);

when HIGHLIGHT _DEGRADED =>
tty.put(4, 43, "DEGRADED", WHITE, GREEN, BLINK_ON);

when HIGHLIGHT_EMERGENCY =>
tty.put(4, 55, "EMERGENCY", WHITE, GREEN, BLINK_ON);

when HIGHLIGHT _SHUTDOWN=>
tty.put(4, 67, "SHUTDOWN", WHITE, GREEN, BLINK_ON);

when DISPLAY _TIME=>
tty.put(2, 60,

long_integer'image(LOCAL_STATE_TABLE.INSTRUMENT_TIME),
GREEN, BLACK, BLINK_OFF);

when DISPLAY _LEVEL =>
if (LOCAL_STATE_TABLE.LEVEL >= MINIMUM_OPERATING_LEVEL)

and
(LOCAL_STATE_T ABLE.LEVEL<= MAXIMUM_OPERATING_LEVEL)

then
tty.put(14, 56, long_integer'image(LOCAL_STATE_TABLE.LEVEL),

GREEN, BLACK, BLINK_OFF);
else

tty.put(14, 56, long_integer'image(LOCAL_STATE_TABLE.LEVEL),
BLACK, RED, BLINK_ON);

end if;

when DISPLAY _LEVEL_CAL => null;

when DISPLAY _LEVEL_DEVICE => null;

when DISPLAY _RA TE=> null;
if (LOCAL_STATE_TABLE.RATE >= MINIMUM_RATE_READING) and

(LOCAL_STATE_TABLE.RATE <= MAXIMUM_RATE_READING) then
tty.put(14, 56, long_integer'image(LOCAL_STATE_TABLE.RATE),

GREEN, BLACK, BLINK_OFF);
else

tty.put(14, 56, long_integer'image(LOCAL_STATE_TABLE.RATE),
BLACK, RED, BLINK_ON);

end if;

when DISPLAY _RA TE_DEVICE => null;

213

when DISPLAY _PUMPl => DISPLAY _PUMP(l);
when DISPLAY _PUMP2 => DISPLAY _PUMP(2);
when DISPLAY _PUMP3 => DISPLAY _PUMP(3);
when DISPLAY _PUMP4 => DISPLAY _PUMP(4);
when DISPLAY _PUMPl_DEVICE => DISPLAY _PUMP _DEVICE(l);
when DISPLAY _PUMP2_DEVICE => DISPLAY _PUMP _DEVICE(2);
when DISPLAY _PUMP3 _DEVICE => DISPLAY _PUMP _DEVICE(3);
when DISPLAY _PUMP4_DEVICE => DISPLAY _PUMP _DEVICE(4);
when DISPLAY _MONITORl => DISPLAY _MONITOR(!);
when DISPLAY _MONITOR2 => DISPLAY _MONITOR(2);
when DISPLAY _MONITOR3 => DISPLAY _MONITOR(3);
when DISPLAY _MONITOR4 => DISPLAY _MONITOR(4);
when DISPLAY _MONITORl_DEVICE => DISPLAY _MONITOR_DEVICE(l);
when DISPLAY _MONITOR2_DEVICE => DISPLAY _MONITOR_DEVICE(2);
when DISPLAY_MONITOR3_DEVICE => DISPLAY_MONITOR_DEVICE(3);
when DISPLAY_MONITOR4_DEVICE => DISPLAY_MONITOR_DEVICE(4);

when DISPLAY _TEXT=> DISPLAY _NEW _TEXT(NEW _LINE);

when DISPLAY _RX=>
tty.put(! 7, 46, II It);
tty.put(17, 46, RX_MESSAGE, RED, BLACK, BLINK_OFF);

when DISPLAY _TX=>
tty.put(! 7, 10, II II);

tty.put(17, 10, TX_MESSAGE, RED, BLACK, BLINK_OFF);

when others => null;

end case;
end PROCESS_JOBS;

task body USER_INTERF ACE is
USER_REQUESTS_TERMINATION: boolean:= false;
USER_REQUESTS_INITIA TION : boolean := false;
TASK_IS_RUNNING: boolean:= true;
ACTIVE : boolean := true;
CMD : character;

begin
UI_ QUEUE.INITIALIZE;
while TASK_IS_RUNNING loop

select

214

or

or

accept UPDATE(GLOBAL_STATE_TABLE: BOILER_STATE) do
LOCAL_STATE_TABLE := GLOBAL_STATE_TABLE;

end UPDATE;

accept DISABLE do
ACTIVE := false;

end DISABLE;

-- find out if the user has entered the command to tenninate
-- boiler control program
accept CHECK_FOR_TERMINATION(READY_TO_TERMINATE: in out

boolean) do

or

do

or

or

or

READY_TO_TERMINATE := USER_REQUESTS_TERMINATION;
end CHECK_FOR_TERMINA TION;

-- find out if the user has entered the command to start
-- boiler control program
accept CHECK_FOR_INITIATION(READY_TO_INITIATE: in out boolean)

READY_ TO _INITIATE := USER_REQUESTS_INITIA TION;
end CHECK_FOR_INITIATION;

-- put all of the labels and boxes on the screen
accept UPDATE_LABELS do

UI_QUEUE.PUT(DISPLAY _LABELS);
end UPDATE_LABELS;

accept CLEAR_SCREEN do
UI_QUEUE.PUT(CLEAR_SCREEN);

end CLEAR_SCREEN;

accept UNHIGHLIGHT(MODE: OPERATING_MODES) do

215

case MODE is
when SELFfEST => UI_ QUEUE.PUT(UNHIGHLIGHT _SELFfEST);
when COMPTEST => UI_QUEUE.PUT(UNHIGHLIGHT _COMPTEST);
when NORMAL=> UI_QUEUE.PUT(UNHIGHLIGHT _NORMAL);
when DEGRADED=> UI_QUEUE.PUT(UNHIGHLIGHT_DEGRADED);
when EMERGENCY=>

UI_QUEUE.PUT(UNHIGHLIGHT_EMERGENCY);

or

or

or

or

when SHUTDOWN=> UI_QUEUE.PUT(UNHIGHLIGHT_SHUTDOWN);
end case;

end UNHIGHLIGHT;

accept HIGHLIGHT(MODE: OPERATING_MODES) do
case MODE is

when SELFfEST => UI_QUEUE.PUT(HIGHLIGHT_SELFfEST);
when COMPTEST => UI_ QUEUE.PUT(HIGHLIGHT _ COMPTEST);
when NORMAL=> UI_QUEUE.PUT(HIGHLIGHT_NORMAL);
when DEGRADED => UI_ QUEUE.PUT(HIGHLIGHT _DEGRADED);
when EMERGENCY=> UI_QUEUE.PUT(HIGHLIGHT_EMERGENCY);
when SHUTDOWN=> UI_QUEUE.PUT(HIGHLIGHT_SHUTDOWN);

end case;
end HIGHLIGHT;

-- if the level is between the normal operating parameters
-- then display it in non-blinking form, if it is outside
-- of normal parameters then make it blink.
accept UPDA TE_LEVEL do

UI_QUEUE.PUT(DISPLAY _LEVEL);
end UPDATE_LEVEL;

accept UPDATE_LEVEL_CAL do
UI_QUEUE.PUT(DISPLA Y _LEVEL_CAL);

end UPDATE_LEVEL_CAL;

accept UPDA TE_LEVEL_DEVICE do
UI_QUEUE.PUT(DISPLAY _LEVEL_DEVICE);

end UPDATE_LEVEL_DEVICE;

216

or

or

or

or

or

accept UPDATE_RA TE do
UI_ QUEUE.PUT(DISPLA Y _RATE);

end UPDA TE_RA TE;

accept UPDATE_RATE_DEVICE do
UI_ QUEUE.PUT(DISPLA Y _RATE_DEVICE);

end UPDATE_RATE_DEVICE;

accept UPDATE_PUMP(N: integer) do
case N is

when 1 => UI_QUEUE.PUT(DISPLAY_PUMPl);
when 2 => UI_QUEUE.PUT(DISPLAY _PUMP2);
when 3 => UI_QUEUE.PUT(DISPLAY _PUMP3);
when4 => UI_QUEUE.PUT(DISPLAY_PUMP4);
when others => null;

end case;
end UPDA TE_PUMP;

accept UPDATE_PUMP _DEVICE(N: integer) do
case N is

when 1 => UI_QUEUE.PUT(DISPLAY _PUMPl_DEVICE);
when 2 => UI_QUEUE.PUT(DISPLAY _PUMP2_DEVICE);
when 3 => UI_QUEUE.PUT(DISPLAY_PUMP3_DEVICE);
when 4 => UI_QUEUE.PUT(DISPLAY _PUMP4_DEVICE);
when others => null;

end case;
end UPDATE_PUMP _DEVICE;

accept UPDATE_MONITOR(N : integer) do
case N is

when 1 => UI_QUEUE.PUT(DISPLAY_MONITORl);
when 2 => UI_QUEUE.PUT(DISPLA Y _MONITOR2);
when 3 => UI_QUEUE.PUT(DISPLAY _MONITOR3);
when4 => UI_QUEUE.PUT(DISPLAY_MONITOR4);
when others => null;

217

or

or

or

or

or

end case;
end UPDATE_MONITOR;

accept UPDATE_MONITOR_DEVICE(N: integer) do
case N is

when 1 => UI_QUEUE.PUT(DISPLA Y _MONITORl_DEVICE);
when 2 => UI_QUEUE.PUT(DISPLA Y _MONITOR2_DEVICE);
when 3 => UI_QUEUE.PUT(DISPLA Y _MONITOR3_DEVICE);
when 4 => UI_QUEUE.PUT(DISPLA Y _MONITOR4_DEVICE);
when others => null;

end case;
end UPDATE_MONITOR_DEVICE;

accept DISPLAY (TEXT : string) do
COPY _BUFFER(TEXT, NEW _LINE);
UI_QUEUE.PUT(DISPLAY _TEXT);

end DISPLAY;

accept UPDATE_RX(MESSAGE: string) do
COPY _BUFFER(MESSAGE, RX_MESSAGE);
UI_QUEUE.PUT(DISPLA Y _RX);

end UPDATE_RX;

accept UPDATE_TX(MESSAGE: string) do
COPY _BUFFER(MESSAGE, TX_MESSAGE);
UI_QUEUE.PUT(DISPLAY _TX);

end UPDATE_TX;

accept KILL do
TASK_IS_RUNNING := false;

end KILL;

else -- check for keyboard input here

if ACTIVE then

218

if tty .char_ready then
CMD := tty.get(NO_ECHO, DIRECT, false);
case CMD is

when 'x'l'X' =>
USER_REQUESTS_TERMINATION := true;
DISPLAY _NEW _TEXT("User requests termination.");

when 'b'l'B' =>
USER_REQUESTS_INITIA TION := true;
DISPLAY _NEW _TEXT("User request initiation.");

when others => null;
end case;

end if;

PROCESS_JOBS(LOCAL_STATE_TABLE);
end if;

end select;

end loop;

exception
when others => return;

end USER_INTERFACE;

end UI;

219

	Cavin_Jerry_1993_002
	Cavin_Jerry_1993_003
	Cavin_Jerry_1993_004
	Cavin_Jerry_1993_005
	Cavin_Jerry_1993_006
	Cavin_Jerry_1993_007
	Cavin_Jerry_1993_008
	Cavin_Jerry_1993_009
	Cavin_Jerry_1993_010
	Cavin_Jerry_1993_011
	Cavin_Jerry_1993_012
	Cavin_Jerry_1993_013
	Cavin_Jerry_1993_014
	Cavin_Jerry_1993_015
	Cavin_Jerry_1993_016
	Cavin_Jerry_1993_017
	Cavin_Jerry_1993_018
	Cavin_Jerry_1993_019
	Cavin_Jerry_1993_020
	Cavin_Jerry_1993_021
	Cavin_Jerry_1993_022
	Cavin_Jerry_1993_023
	Cavin_Jerry_1993_024
	Cavin_Jerry_1993_025
	Cavin_Jerry_1993_026
	Cavin_Jerry_1993_027
	Cavin_Jerry_1993_028
	Cavin_Jerry_1993_029
	Cavin_Jerry_1993_030
	Cavin_Jerry_1993_031
	Cavin_Jerry_1993_032
	Cavin_Jerry_1993_033
	Cavin_Jerry_1993_034
	Cavin_Jerry_1993_035
	Cavin_Jerry_1993_036
	Cavin_Jerry_1993_037
	Cavin_Jerry_1993_038
	Cavin_Jerry_1993_039
	Cavin_Jerry_1993_040
	Cavin_Jerry_1993_041
	Cavin_Jerry_1993_042
	Cavin_Jerry_1993_043
	Cavin_Jerry_1993_044
	Cavin_Jerry_1993_045
	Cavin_Jerry_1993_046
	Cavin_Jerry_1993_047
	Cavin_Jerry_1993_048
	Cavin_Jerry_1993_049
	Cavin_Jerry_1993_050
	Cavin_Jerry_1993_051
	Cavin_Jerry_1993_052
	Cavin_Jerry_1993_053
	Cavin_Jerry_1993_054
	Cavin_Jerry_1993_055
	Cavin_Jerry_1993_056
	Cavin_Jerry_1993_057
	Cavin_Jerry_1993_058
	Cavin_Jerry_1993_059
	Cavin_Jerry_1993_060
	Cavin_Jerry_1993_061
	Cavin_Jerry_1993_062
	Cavin_Jerry_1993_063
	Cavin_Jerry_1993_064
	Cavin_Jerry_1993_065
	Cavin_Jerry_1993_066
	Cavin_Jerry_1993_067
	Cavin_Jerry_1993_068
	Cavin_Jerry_1993_069
	Cavin_Jerry_1993_070
	Cavin_Jerry_1993_071
	Cavin_Jerry_1993_072
	Cavin_Jerry_1993_073
	Cavin_Jerry_1993_074
	Cavin_Jerry_1993_075
	Cavin_Jerry_1993_076
	Cavin_Jerry_1993_077
	Cavin_Jerry_1993_078
	Cavin_Jerry_1993_079
	Cavin_Jerry_1993_080
	Cavin_Jerry_1993_081
	Cavin_Jerry_1993_082
	Cavin_Jerry_1993_083
	Cavin_Jerry_1993_084
	Cavin_Jerry_1993_085
	Cavin_Jerry_1993_086
	Cavin_Jerry_1993_087
	Cavin_Jerry_1993_088
	Cavin_Jerry_1993_089
	Cavin_Jerry_1993_090
	Cavin_Jerry_1993_091
	Cavin_Jerry_1993_092
	Cavin_Jerry_1993_093
	Cavin_Jerry_1993_094
	Cavin_Jerry_1993_095
	Cavin_Jerry_1993_096
	Cavin_Jerry_1993_097
	Cavin_Jerry_1993_098
	Cavin_Jerry_1993_099
	Cavin_Jerry_1993_100
	Cavin_Jerry_1993_101
	Cavin_Jerry_1993_102
	Cavin_Jerry_1993_103
	Cavin_Jerry_1993_104
	Cavin_Jerry_1993_105
	Cavin_Jerry_1993_106
	Cavin_Jerry_1993_107
	Cavin_Jerry_1993_108
	Cavin_Jerry_1993_109
	Cavin_Jerry_1993_110
	Cavin_Jerry_1993_111
	Cavin_Jerry_1993_112
	Cavin_Jerry_1993_113
	Cavin_Jerry_1993_114
	Cavin_Jerry_1993_115
	Cavin_Jerry_1993_116
	Cavin_Jerry_1993_117
	Cavin_Jerry_1993_118
	Cavin_Jerry_1993_119
	Cavin_Jerry_1993_120
	Cavin_Jerry_1993_121
	Cavin_Jerry_1993_122
	Cavin_Jerry_1993_123
	Cavin_Jerry_1993_124
	Cavin_Jerry_1993_125
	Cavin_Jerry_1993_126
	Cavin_Jerry_1993_127
	Cavin_Jerry_1993_128
	Cavin_Jerry_1993_129
	Cavin_Jerry_1993_130
	Cavin_Jerry_1993_131
	Cavin_Jerry_1993_132
	Cavin_Jerry_1993_133
	Cavin_Jerry_1993_134
	Cavin_Jerry_1993_135
	Cavin_Jerry_1993_136
	Cavin_Jerry_1993_137
	Cavin_Jerry_1993_138
	Cavin_Jerry_1993_139
	Cavin_Jerry_1993_140
	Cavin_Jerry_1993_141
	Cavin_Jerry_1993_142
	Cavin_Jerry_1993_143
	Cavin_Jerry_1993_144
	Cavin_Jerry_1993_145
	Cavin_Jerry_1993_146
	Cavin_Jerry_1993_147
	Cavin_Jerry_1993_148
	Cavin_Jerry_1993_149
	Cavin_Jerry_1993_150
	Cavin_Jerry_1993_151
	Cavin_Jerry_1993_152
	Cavin_Jerry_1993_153
	Cavin_Jerry_1993_154
	Cavin_Jerry_1993_155
	Cavin_Jerry_1993_156
	Cavin_Jerry_1993_157
	Cavin_Jerry_1993_158
	Cavin_Jerry_1993_159
	Cavin_Jerry_1993_160
	Cavin_Jerry_1993_161
	Cavin_Jerry_1993_162
	Cavin_Jerry_1993_163
	Cavin_Jerry_1993_164
	Cavin_Jerry_1993_165
	Cavin_Jerry_1993_166
	Cavin_Jerry_1993_167
	Cavin_Jerry_1993_168
	Cavin_Jerry_1993_169
	Cavin_Jerry_1993_170
	Cavin_Jerry_1993_171
	Cavin_Jerry_1993_172
	Cavin_Jerry_1993_173
	Cavin_Jerry_1993_174
	Cavin_Jerry_1993_175
	Cavin_Jerry_1993_176
	Cavin_Jerry_1993_177
	Cavin_Jerry_1993_178
	Cavin_Jerry_1993_179
	Cavin_Jerry_1993_180
	Cavin_Jerry_1993_181
	Cavin_Jerry_1993_182
	Cavin_Jerry_1993_183
	Cavin_Jerry_1993_184
	Cavin_Jerry_1993_185
	Cavin_Jerry_1993_186
	Cavin_Jerry_1993_187
	Cavin_Jerry_1993_188
	Cavin_Jerry_1993_189
	Cavin_Jerry_1993_190
	Cavin_Jerry_1993_191
	Cavin_Jerry_1993_192
	Cavin_Jerry_1993_193
	Cavin_Jerry_1993_194
	Cavin_Jerry_1993_195
	Cavin_Jerry_1993_196
	Cavin_Jerry_1993_197
	Cavin_Jerry_1993_198
	Cavin_Jerry_1993_199
	Cavin_Jerry_1993_200
	Cavin_Jerry_1993_201
	Cavin_Jerry_1993_202
	Cavin_Jerry_1993_203
	Cavin_Jerry_1993_204
	Cavin_Jerry_1993_205
	Cavin_Jerry_1993_206
	Cavin_Jerry_1993_207
	Cavin_Jerry_1993_208
	Cavin_Jerry_1993_209
	Cavin_Jerry_1993_210
	Cavin_Jerry_1993_211
	Cavin_Jerry_1993_212
	Cavin_Jerry_1993_213
	Cavin_Jerry_1993_214
	Cavin_Jerry_1993_215
	Cavin_Jerry_1993_216
	Cavin_Jerry_1993_217
	Cavin_Jerry_1993_218
	Cavin_Jerry_1993_219

