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ABSTRACT

ON THE PEBBLING NUMBERS OF GRAPHS

by

Leighann Celeste Collison, B.S.

Texas State University - San Marcos

May 2005

SUPERVISING PROFESSOR: JIAN SHEN

Graph pebbling is an application which has evolved from the study of graph theory. 

The goal of pebbling m a graph is to use pebbling steps to move one pebble onto a 

designated root vertex. A pebbling step is produced by taking two pebbles from a 

vertex, moving one of them to an adjacent vertex, and throwing out the other pebble. 

The pebbling number of a graph G, denoted f(G ), is the smallest integer t such that 

for any distribution of t pebbles on the vertices of G, one pebble can be moved to any 

specified root vertex.

Within this thesis is an exploration into the origins of basic theorems and proper

ties of the pebbling function. There will be displayed a relationship between a graph’s 

pebbling number and such characteristics as diameter and number of vertices. Also, 

new improvements are made to existing upper bounds of this function for specific 

types of graphs. One such finding is for a complete graph Kn with r missing edges 

where r < | — 1 the pebbling number is equal to n which categorizes this type of 

graph as Class 0. Another result is for the Cartesian product of a clique K 2 and a 

graph G the pebbling number has the upper bound of 2f(G ) +  | — Finally we 

use the idea of a spanning tree to prove that for any graph G with n vertices and 

diameter d, there exists an upper bound f(G ) <  (2d — +  2n-1~dL2d1J which

is an improvement of the known upper bound f(G ) < (2d — l)(n  — 1) +  1.
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CHAPTER 1

INTRODUCTION

Consider a graph G with edge set E(G) and vertex set V(G) from which one of the 

vertices is designated as the root r. Also, suppose there exist n pebbles distributed 

among the vertices of G. The goal of pebbling is to use pebbling steps to move one 

pebble onto the root vertex. A pebbling step is produced by taking two pebbles 

from a vertex, moving one of them to an adjacent vertex, and throwing out the other 

pebble. If u,v <E V (G) where u and v are adjacent, then a pebbling step which moves 

in the direction from u to v is denoted [u, v\.

Given a distribution D of pebbles, if one can use pebbling steps to move a pebble 

to the root vertex, r, then D is said to be r-solvable. If D is r-solvable for all r, then 

D is said to be solvable. The pebbling number of a graph G, denoted f(G), is the 

minimum number t such that for any distribution of t pebbles is solvable. In other 

words, f (G)  is the smallest integer t such that for any distribution of t pebbles on 

the vertices of G, one pebble can be moved to any specified root vertex [1].

For the purposes of this thesis, G will always refer to a simple connected graph 

and f (G)  will denote the pebbling number of G. The number of vertices in a graph 

G will be n(G) or just n while the number of pebbles distributed among a graph G 

or among a set X  of vertices will be D(G) and D(X)  respectively. The diameter of
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a graph G may be called d.

To further understand to process of pebbling in a graph, the following figure will 

demonstrate how pebbling steps are conducted. The vertices are labeled as a, 6, c, d, 

and the root. Above each vertex is a number indicating the number of pebbles on 

that vertex.
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Figure 1: Example of Pebbling Steps

The given distribution has two pebbles on vertex a, one pebble on each of the 

remaining non-root vertices, and no pebble at the root. In the first pebbling step we 

pick up the two pebbles from a, throw one away, and move one to vertex b. After this 

step, the new distribution leaves no pebbles on a, two pebbles on 6, and one pebble 

on each of c and d. For the second pebbling step, we take the two pebbles from b, 

throw one of them away, and move one to c. There are now two pebbles on c, one 

pebble on d, and still no pebble at the root. The third pebbling step is to pick up the



two pebbles from c, throw one away, and move one to vertex d. After this step we 

have two pebbles at d and no pebbles distributed anywhere else on the graph. The 

fourth and final step is to pick up the two pebbles at d, throw one away, and move 

one to the root. After this series of pebbling steps we have successfully pebbled to 

the given root of the graph.

Within this thesis we will take a look at existing lower bounds and upper bounds 

for the pebbling number function and show how they were derived. Later we will 

improve upon the current upper bound for simple graphs. By creating a spanning 

tree and using its pebbling number as an upper bound, we prove that /(G ) < (2d — 

+2n_1_dl-2idi /  This strategy will require a proof of the upper bound for trees

as well.

We will also take a look at Class 0 graphs which have the property f(G ) =  

n(G), and we will add a new type of graph to this category. Then, we will look at 

Graham’s Conjecture for the Cartesian product of two graphs and attempt to prove 

the conjecture for a particular type of graph.
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CHAPTER 2

EXISTING UPPER AND 

LOWER BOUNDS

We may begin by looking at upper and lower bounds for the pebbling function that 

have been previously proved by others. Note that we could receive a more specific 

result if we considered a particular type of graph, but here we are concerned with 

finding bounds that will apply for all simple graphs.

Fact 2.1 [1] Let d= diam(G) and n — n(G). Then

max{n, 2d}  <  f(G ) <  (2d — l)(n  — 1) +  1

P roof. In order to prove f(G ) > n — 1, it suffices to prove that there is a 

distribution Di of n — 1 pebbles which is not solvable. Let V =  {ui, u2).... un). 

Define Di(ut) =  1 for all 1 < % < n — 1 and Di(un) =  0. Then D1 is not solvable for 

the root vertex un.

In order to prove f(G ) > 2d — 1, it suffices to prove that there is a distribution 

D2 of 2d — 1 pebbles which is not solvable. Since diam(G) =  d, there are two vertices
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u and v with distance d. Define Z)2(u) = 2d — 1 and D2(x) =  0 for all x /  v. Then 

D2 is not solvable for the root vertex u. This holds since 22h }̂,v) =  < 1-

Now, since n <  / (G )  and 2d < f(G ), then max{n, 2d} <  /(G ).

Finally, we will show /(G )  <  (2d — 1 )(n — 1) +  1. Let there be a distribution of 

(2d — l)(n  — 1) +  1 pebbles on a graph G. If there exists a vertex with 2d pebbles on 

it then we can pebble to the root, and we can show there must exist such a vertex. If 

we put (2d — 1) pebbles on each of the (n — 1) non-root vertices, then we have used 

all but one of the pebbles provided. This pebble must be placed on one of the (n — 1) 

vertices, call the vertex u, so that u now has 2d pebbles. Consider the shortest path 

from u to the root r. Since diam(G) =  d, it must be that dist(u, r) <  d. Now, we 

want to make our pebbling moves toward the root only along this path; in fact we 

can make all of our pebbling moves with the use of only these 2d pebbles. From u we 

can move 2d~l pebbles to the vertex adjacent to u which is closer to the root r. From 

there we can move 2d~2 pebbles to the next vertex. Then 2d~3 to the next vertex and 

so on. If we make pebbling steps in this manner and if dist(w, r) =  d, then we will end 

up with 2d~d =  2° =  1 pebble at the root. If dist(w, r) < d, then we could have more 

than one pebble at the root. In either case we know that we can pebble to r with this 

distribution of (2d — l)(n  — 1) +  1 pebbles. Therefore, /(G ) < (2d — l)(n  — 1) +  1. ■

In Chapter 8 we will improve upon this upper bound. We can see that it is not 

likely that a graph must contain a vertex with 2d pebbles in order to pebble to the 

root; we will show that it can be done with fewer pebbles and without the guarantee 

of a vertex containing 2d pebbles.
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CHAPTER 3

KNOWN GRAPHS AND THEIR 

PEBBLING NUMBERS

To fully understand the idea of the pebbling function and how pebbling numbers are 

assigned, we can look at some familiar graphs and their respective pebbling numbers.

First we may consider the graph of a path on d +  1 vertices which would have a 

diameter of d.

Lem m a 3.1 Let Pd+i be a path on d +  1 vertices. Then, f{Pd+ i)= 2d.

P roof. Let Pd+i be a path on d +  1 vertices u0,u i,u2, . . . ,Ud.

UQ U] U2 «;! Ud

Figure 2: Path on  d +  1 Vertices

For each 1 <  i < d. Let nt be the number of pebbles on u%. By definition, when

a pebbling step is made, two pebbles are taken from a vertex, one is moved to an

adjacent vertex, and one is discarded. Therefore in each pebbling step, a vertex can
6



contribute at most half of its pebbles to an adjacent vertex. It follows that at most 

n i/2  pebbles can be moved to the root. Now for the vertex v such that dist(r, v) =  2, 

it can move at most 712/2 pebbles to the vertex adjacent to the root, and then from 

there at most ri2/22 can be moved to the root. In general, at most nl/2t pebbles can 

be moved to the root from ut.

To show f(Pd+1 ) < 2d, we need to show that it is possible to move a pebble to 

any root for any distribution D of 2d pebbles with D(ut) =  n%

If the root is an endpoint, say uq, then by the above argument, Uq can receive 

f  +  f  +  f  +  -  +  f f >  ni+nz+ +nd =  £  =  1 pebble.

If the root is a midpoint, say Uj with 1 < 1 < d — 1, then uz is the endpoint of 

the left path of length % and is also the endpoint of the right path of length d — 1 . 

Since 2d =  2d~l +  2d~l >  2l +  2d~l, by the Pigeonhole Principle, either the left path 

Pl+i has 21 pebbles or the right path Pd-i+1 has 2d~l pebbles. Thus u% can receive a 

pebble from either the left or right path.

On the other hand, by Fact 2.1, f(Pd+i) > 2d since the diameter of Pd+i is d. 

Therefore, f(P d+1 ) =  2d. ■

7

Next we will consider the graph of a cycle on an even number of vertices, let us 

say C2k-

Theorem  3.2 [1] For k > 1, f {C 2k) =  2fc.

P roof. Let G be the cycle C2k which has diam{G) =  k. By Fact 2.1 we know 

that 2k < f(C 2k), so we must show that 2k =  f(C 2k). Let r be the root of the graph 

G and label the rest of the vertices 1,2,..., k — l,k ,k  +  l , ..., 2k — 1 starting at the root 

and moving clockwise so that k is the vertex of G with dist(A;, r ) =  k. Now, partition 

the vertices such that {1, 2,..., k — 1} =  X  and {k +  1, k +  2,..., 2k — 1} =  Y. Let



D (X ) =  x and D(Y) =  y, and without loss of generality let us assume that x >  y.

root

Figure 3: Partition of Vertices of

Case 1: Assume that vertex k contains all 2k pebbles. By Lemma 3.1 we can 

pebble to r along the path of V (X ) or the path of V(Y) since dist(k, r) =  k.

Case 2: Assume that k contains less than 2k pebbles. The number of pebbles on 

the vertex k can be expressed as 2k — x — y. Since D (X) > D(Y), we will choose to 

move pebbles along the path which utilizes the vertices of X .

Subcase 2.1: Suppose x > 2k~l. Since the distance from any of the vertices in X  

to the root r is less than k — 1, we can pebble to r given this distribution.

Subcase 2.2: Suppose x < 2k~x — 1. Since k contains 2k — x — y pebbles, we know 

we can move of them to the vertex k — 1 e  X. If we move these \_2k~*~y\
ok

pebbles to X , we would now have [—~%~v \ +  x pebbles within X. Note that

L ^ r p j  + x >  L ^ r p j  +  f
> 2̂k-x-y+2xj

>  L i  J
_  cyk- 1 

“  2 ~  Z



Thus there is now some distribution of 2k~1 pebbles m X , and since every vertex of 

X  is within a distance of k — 1 from the root r, we can pebble to r. Since 2k < / ( C ^ ) 

and f(C 2k) >  2fc, we have proved that f (C 2k)=^k for k >  1. ■
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CHAPTER 4

PEBBLING NUMBERS OF 

GRAPHS AND SUBGRAPHS

Another method for creating an upper bound for the pebbling number of a graph 

may be to look at a subgraph which has the same vertex set. A subgraph G' of G is 

called a spanning subgraph if V(G') =  V(G).

Lemma 4.1 Let G be a graph and let G' be a connected spanning subgraph of G. 

Then f(G) < f{G').

Figure 4: Example of a Graph G and a Spanning Graph G'

Proof. Let G have any distribution of f(G') pebbles. Then we can pebble to the 

root of G using only the edges of G'. Thus f (G) < f(G'). ■

10



CHAPTER 5

CLASS 0 GRAPHS

Graphs may be categorized into two groups according to their pebbling number. 

Recall from Fact 2.1 that f {G ) >  n(G). Now, graphs that are Class 0 satisfy the 

condition that f (G ) =  n(G) where n(G) is the number of vertices of the graph. Class 

1 graphs are all other graphs for which f(G ) > n(G) [1].

One example of a Class 0 graph is Kn, the complete graph on n vertices. We 

can easily show that f (K n) =  n since the root will always be adjacent to every other 

vertex in the graph, and we may assume that the root has no pebble. If any vertex 

contains at least two pebbles it would satisfy the requirement for pebbling, and we 

can prove the existence of such a vertex using the Pigeonhole Principle. Let us instead 

consider the case of a complete graph minus a particular number of edges.

Theorem  5.1 Let G be a complete graph K n with r missing edges where r < ~ — 1. 

Then f (G )= n .

P roof. By Fact 2.1, it suffices to prove that f(G ) < n. This will be done by first 

showing that G has a Class 0 subgraph.

11



12

Figure 5: Subgraph of G

We will demonstrate the existence of the spanning subgraph shown in Figure 5 by 

proving that G contains two vertices s and t with degree n — 1. This forces all other 

remaining vertices to have edges connecting to both s and t.

Now, a complete graph Kn has n(n — l ) /2  edges. Thus, G has at least —

(| — 1) =  n(n~2) +  1 edges. If a graph has at least nG~2') +  1 edges then the sum of 

the degrees of the vertices must be at least 2 (" -'v, — +  1) =  n(n — 2) +  2.

Suppose that the degree of all n vertices is less than n — 1. Then each of the n 

vertices may have degree at most n — 2. If we take the sum of the degrees of all the 

vertices at this point, we will only have n(n — 2). The sum must be increased by two. 

Now, since we cannot have any loops within our graph, we will need to add an edge 

from one of the vertices to some other vertex. This will increase the degree of each of 

those two vertices to n — 1. Thus we have shown that there must exist at least two 

vertices with degree n — 1. Thus G contains a spanning subgraph G' shown in Figure 

5.

By Fact 2.1 and Lemma 4.1, n < f(G ) < f{G')\ thus it suffices to show that 

f(G ') <  n, we will first consider the case where the root of the graph G' is one of the 

vertices with degree n — 1 (see s or t in figure 5). In this case the root has distance



one to all other vertices, so if there are two pebbles on any adjacent vertex we can 

pebble to the root. Given a distribution of n pebbles that are to be placed on n — 1 

vertices, we can easily see by the Pigeonhole Principle that at least one of the vertices 

must contain at least two pebbles. Thus, for this case we can pebble to the root with 

n pebbles.

Next, consider the case where the root is one the vertices with degree two. Let the 

degree two vertices be labeled 1, 2,..., n — 2. Without loss of generality, let n — 2 be 

the root. Let D be any distribution of n pebbles on the vertices of G'. Let D(i) — n.t 

for 1 < % <  n — 3, D(s) =  ns, D(t) =  nt, and D(n — 2) =  0. Since

K  +  E S  V )  +  (w  +  EITi3 ^ )  =  ns +  nt +  EIL“ 3 nt -  1

=  \D\ — n +  3 

=  3

By the Pigeonhole Principle either ns +  ^  2 or nt +  — 2-

Without loss of generality, let us assume that ns +  X !^ 3 — 2- Now, since each

vertex i with 1 <  i <  n — 3 can move pebbles to the vertex s, then s will 

eventually have ns +  ^  T ns +  rjGr- > 2 pebbles. Therefore one pebble

can be moved to the root vertex n — 2 from s.

For any distribution of n pebbles on the vertices of G' we can pebble to the root, 

thus f{G ') — n.

We are given the initial lower bound of n < f (G ) from Fact 2.1. Then we have 

shown that G' is a spanning subgraph of G, and proved that f(G r) < n. Now using 

Lemma 4.1 we know that f(G ) < f{G '). Therefore, f{G ) =  n where G is a complete 

graph Kn with r missing edges where r < | — 1. ■
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CHAPTER 6

CARTESIAN PRODUCTS OF 

GRAPHS

We will define the Cartesian product G\UG2 of two graphs to be a graph with a vertex 

set {{v i,v2)\vi G V{G\) andu2 G V{G2)}  and an edge set {((ui,-y2), (wi,w2))\(vi =  Wi 

and (v2,w2) G E(G2)) or (v2 =  w2 and (vi,Wi) G E (G i))} [1].

C on jecture 6.1 (Graham) For allG\ and G2, we have that f(G\OG2) <  f (G i)f(G 2).

Graham’s conjecture has been proven true for distinct situations. One of these 

situations is a clique times a graph which has a property known as the 2-pebbling 

property. A graph possesses this property if two pebbles can be moved to a root r 

given any distribution of 2f(G ) — q +  1 pebbles where q is the number of vertices 

containing a pebble [2]. We are interested in discovering if Graham’s conjecture holds 

for a clique times any given graph without consideration of the 2-pebbling property. 

As of now, we have been unable to prove that Graham’s conjecture holds for this 

case, but we have made some progress in that direction.

Let us look at the graph of K 2OG which can be thought of as two copies of the 

graph G with edges connecting their corresponding vertices.

14
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Theorem 6.2 Let K 2 be a clique and G a graph, then f (K 2OG) < 2f(G ) +  | — |.

Proof. Let f(G ) =  /  for convenience, and let X\ be one copy of the graph while 

X 2 is the other copy. We will refer to the number of pebbles distributed within Xi 

as Xi and the number in X 2 as x2 such that X\ +  x2 >  2 /  +  | — |. Without loss of 

generality assume that the root is located withm X 2.

Now, if x2 >  / ,  then we can pebble to the root just within X 2. Also, if x\ >  2 /  

then we could move two pebbles to the vertex of X\ that is adjacent to r and then we 

could pebble to the root. Thus, we will assume that x2 < f  — 1 and that xy <  2 /  — 1.

We may assume that there are not enough pebbles within X 2 to pebble to the 

root. Our remedy will be to move some pebbles from X\ to X 2. We can partition X ± 

into vertices containing an even number of pebbles and vertices containing an odd 

number of pebbles.

Figure 6: Partition of Xi and X 2
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Let yi be the number of vertices containing an odd number of pebbles. Then 

Hi < n and we can move Xl ~m pebbles into X 2 by making pebbling steps from a 

vertex in X\ to its neighbor m X 2-

After moving these pebbles from X\ into X 2, X 2 has x2 +  Xl2yi pebbles. Since 

x\ +  x2 > 2 /  +  | — x\ < 2 /  — 1, and y\ < n, we have

X2 +  =  (xi +  x2) -  y  -

2/-1 _  n 
2 2

So, X 2 has at least /  pebbles and thus we can pebble to the root within X 2. We

have proved that we can always pebble to the root if x\ +  X2 >  2 /  +  | 

f (K 2DG) <  2 /  +  |

So



CHAPTER 7

PEBBLING NUMBERS OF 

TREES

In this section we want to create an upper bound for the pebbling number of trees. 

We will first create some lemmas that will help give us leverage as we define our upper 

bound. Our ultimate goal is to use this upper bound and apply it to non-tree graphs 

as well. This idea will be explored in depth in the next section.

For a rooted tree T where the root is given, define f(T, r ) to be the minimum 

number t for every distribution of t pebbles such that one can always move one 

pebble to the root r. Note that f{T) =  m ax{/(T , r ) }  for r G V(T).

Lemma 7.1 Suppose T is a path with endpoints u and v and suppose the root r is a 

mid-vertex with dist(r,u) =  l\ and dist(r,v) =  l2. Then

f(T, r) = f (Ph+1) + /(P,1+1) -  1 = 2'1 + 2'! -  1.

17
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Figure 7: Tree T  with Two Leaves u and v

Proof. Let there be any distribution of f(Pi1+1) +  f{Pi2+1 ) — 1 pebbles on the 

vertices of T. By the Pigeonhole Principle, either the path with endpoints u and 

r has at least /(P ;1+i) or the path with endpoints v and r has at least f(Pi2+1) 

pebbles. If the former is true, one can pebble the root within the path with endpoints 

with endpoints u and r since dist(u,r) — l\. If the latter is true, one can pebble 

to the root within the path with endpoints v and r since dist(u,r) =  Z2- Thus 

f(T ,r )  < /(P i,+ i) + / ( J W i )  -  1.

To show f(T ,r ) > f(P h+1 ) +  / ( P b+i) -  2, we can position f{P h+1) -  1 pebbles

at u and f(Pi2+i) — 1 pebbles at v. Then no pebbles can be sent to the root from 

either side.

Therefore /(T , r) =  f  (Pil+i) + f  (Pi2+1 ) —1- The second part of Lemma 7.1 follows 

from Lemma 3.1. ■

Lemma 7.2: Let T be the tree defined m Lemma 7.1. Let S be a path with endpoints, 

m and n. Suppose r is the root of S with dist(r,m) =  l± +  1 and dist(r,n) = I2 — 1. 

I fh  > h, then f (T ,r ) < f{S ,r).
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Figure 8: Tree S w ith T w o Leaves m and n

P roof. By Lemma 7.1, we have f(T , r) =  2il+2 iz —1 and f(S, r ) =  2ll+1+2l2 1 —1. 

Now we will show that 2h +  2h -  1 < 2h+1 +  212” 1 -  1.

Since we have assumed that h > h, we can say

^  <2*i

2h -  ^  < 2(2h) -  2h 

2h _  2*2-1 < 2h+l -  2h 

2l1 +  2h < 2h+1 +  2l2~1 

2h +  2h -  1 < 2h+1 +  2*2“ 1 -  1

Therefore, f (T ,r ) < f(S ,r). ■

This lemma is important to proving our proposed upper bound of the pebbling 

number of trees. Since we are searching for an upper bound of the pebbling function, 

we want to consider the type of graph that would have the largest pebbling number. 

We have shown that we can always construct a spanning tree with the same diameter 

but a larger pebbling number by increasing one path and simultaneously decreasing 

another. This new graph will produce our upper bound

If we are given a tree with n vertices and diameter d, we will use this idea to 

construct the next tree.
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Figure 9: Tree T on n Vertices

Lem m a 7.3: Let T be a tree with n vertices such that there are only paths extending 

from r as in Figure 9. Suppose the distance between r to any other vertices is at most 

d, then

f(T ,r ) < (2d 1)L n — 1 
d

_l_ 2n i dlnd 1J

P roof. Let T  have t paths Pi, P2) •••, Ft from the root with lengths h,h,---,U  

respectively. Then L +  F +  ... +  L =  n — 1 and 1 < k <  d for all 1 <  i < t. For any 

distribution of f{P i1+1 ) +  f{Pi2+1 ) +  ••• +  f(Pit+i ) — t+ 1  pebbles, by the Pigeonhole 

Principle there exists an i, 1 < i < t, such that Pt has at least f(Pit+1 ) pebbles. Then 

the root r can receive a pebble within Pl. Thus

f(T , r) < f(P h+1) +  f(P l2+i) +  ... +  f(P lt+1) - t  +  1 

=  2h + 2 h +  ... +  2lt -  t +  1.

To find the maximal value of 2l1 +  2l2 +  ... +  2lt — t +  1 subject to the constraint



h +  h +  ••• +  h =  n ~  1, by Lemma 7.2 one may assume that all paths Pi, P2, P i; 

but at most one, have length d. We may have another path extending from the root 

r that has length n — 1 — d\J^\. So there are paths of length d and one path

of length n -  1 -  d [^ \  if n -  1 -  d[*=±\ > 1. Thus,

f{T , r) < 2h +  2h +  ... +  2h -  t +  1

=  E U i ( * - i )  +  i

<  [(2d -  1) L ^ J ]  +  -  l) +  l

= (2d - 1)L^J + 2n_1~dLVJ

Therefore,

f { T ,r ) < ( 2 d- l ) [ ^ \ + 2 n- 1~d̂ K  ■

Now, let us consider the case where a tree does not consist of only paths extending 

from the root. There may exist a portion of the graph that branches into two paths 

such that the parent vertex is not the root r.
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Figure 10: Tree G with a Branch



Lem m a 7.4: Let G be a tree, as m Figure 10, containing a branch such that the 

parent vertex is not r. Suppose the distance between r and any other vertex is at most

22

d. Then,

f(G ,r ) < (2d -  1)L^— +  2n“ 1̂ V J .

P roof. Let G' be the graph of G — l2. Similar to the Lemma 7.1, we see that 

the pebbling number of the entire graph G would be f (G ,r ) < f(G ',r ) +  2l2 — 1. 

G’ now has n — l2 vertices and the pebbling number can be described as f(G ', r) < 

(2d -  l ) ! "-*]-1 ] +  2n~l2~1̂ n~‘d~1 i .

Thus we can say that

f(G , r) <  (2d -  1) +  2n~'2~1~dLrî P i J +  2h -  1.

We want to show that this is less than or equal to (2d — 1) \Ĵ J  +2n~1~d'GdLJ which 

is the upper bound for a tree with no branch. This is equivalent to showing,

2k -  1 < (2d -  1 ) ( [ ^ J  -  +  2n“'1“ dl-2i LJ -  2n~l2- 1~dL l̂T:1i. (1)

First, suppose d =  l2. Then — [n | -J =  1 and n — 1 — =  n — l2 — 1 —

ggL"~d~1J gives

(2d -  1) =  (2d -  1 ) (L ^ J  -  | ” ' 12 ' |) +  2n“ 1“ diai 1i -  2n- '2 -1- dl2=iF i J.

Thus, for this case f (G ,r ) < (2d — l)).2)^] +  2n~l~d\VLd1 .̂

Next, suppose d > l2. Let r =  (n — l)m od d with 0 < r <  d — 1.

Case 1: l2 < r

Then =  and inequality (1) becomes

2h -1 < (2d -  1)0 +  2n“ 1“ di2i Li -  2n-l2-1~dLafL̂



which may be manipulated into

2*2 _|_ -  i <  2n-“1~ 42ir J .

This inequality is of the form 2“ +  2b — 1 < 2a+b where a >  1 and b >  1. We 

will show that this new inequality is true. Without loss of generality we may assume 

a <b .

2a +  2b -  1 < 2“ +  2b 

<2b + 2b 

= 2b+l 

<  2a+b.

Thus 2a +  2b — 1 <  2a+b for a >  1 and b > 1. Therefore, f(G , r) <  (2d — 1) \_rk̂ \ +  

2n~’1~dl!Ld11 for the case where ¿2 <  f.

Case 2: I2 > r +  1

Then \J^\ =  and inequality (1) becomes

2h -  1 < (2d -  1 ) 1  +  2n _ 1_d |-ItT L J -  2n _Z2_ 1_cid 23T 1 J - 1)

2*2 -  1 <  2d -  1 +  2n~1~dL2iirJ -  2n_Z2_1“ dL2iJi J+d

which may be manipulated into

2*2 _|_ 2n-*2-1-<*L2Ti J+c* < 2d +  2n^1” dL2Ti J

Note that d > l2 and d > n — I2 — 1 — J =  n — ¿2 — 1 — — 1) =

n — l2 — 1 — +  d. The above inequality is of the form 2a +  2b < 2C +  2a+b~c

where a >  1, b >  1, and c >  max{a, &}. We will show that this new inequality is true. 

Without loss of generality we may assume a <  b.
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Subcase 2.1: Suppose c =  max{a, 6}. Then a +  b — c =  mm{a, b} and thus



For this subcase, 2a +  2b < 2 C +  2a+b~c.

Subcase 2.2: Suppose c > max{a,b}.

2 a - f  2 6 <  2 max â’^  2 maxi a’6} 

___ 2max{a)̂ }+i

< 2C

< 2C +  2a+b~c

For this subcase, 2a +  2b < 2 C +  2a+6W

We have shown inequality (1) to be true for all cases. This is equivalent to proving

that

/ ( G,r)<(2d -  l)L ^ | ^ J + 2 n- i2“ 1- dLI1̂ J + 2̂  -  1 <  (2d -  1) L ^ i J+2n- 1- ^ V J .

Therefore, / (G ,r )<  (2d —1) 1 for a tree with a branch as in Figure

10.

We now know that a graph with this branch will have a pebbling number that 

is smaller than or equal to the one for a graph with no such branch. This is an 

important conclusion because it allows us to ignore the case where a tree has such a 

branch for the purpose of creating our upper bound for the pebbling function.

Theorem  7.5 For any tree T with distance between the root to any other vertex at 

most d,

f(T , r) <  (2d -  1) L V J  +  2n~1- dL21i i J.
(Jj

P roof. Using induction, the preceding lemmas allow us to make this generaliza

tion about f(T , r) for trees.



CHAPTER 8

UPPER BOUND FOR THE 

PEBBLING FUNCTION

Suppose T  is a rooted tree with the distance from the root r to any other vertex is 

at most d. We have shown that the upper bound for the pebbling function f(T , r ) is 

f(T , r ) <  (2d -  1) L ^ J  +  2n- 1- dL V J .

Now, we want to point out that this upper bound could be applied to any non-tree 

graph as well.

Theorem 8.1 For any graph G with n vertices and diameter d, / ( G)< (2d —

Proof. For any given root in G, we can perform an algorithm to find a spanning 

tree rooted at r. One such appropriate algorithm would be the Breadth-First Search. 

Within this process we would start at the root vertex r and pick up all adjacent edges. 

After this step we have reached all vertices that have distance one to the root. From 

the first distance one vertex we will pick up any edges that are adjacent to it if it will 

not create a cycle. We will repeat this process of picking up edges for all distance 

one vertices. Then from the first distance two vertex we will pick up adjacent edges

25



providing it does not create a cycle. This process will continue until all vertices of 

the graph are reached. When this is completed, the original vertex set, along with 

the edges we picked up, will be our spanning tree, denoted T.

Since G has diameter d, the distance between r and any vertex in T is at most d. 

By Lemma 4.1, f ( G ) < f{T)  and by Theorem 7.5, f (T)  < (2d- l ) [ ^ \ + 2 n- 1~d̂ K  

Therefore, we have / ( G )< (2d -  ■

Now, we will prove that this new upper bound for the pebbling function is an 

improvement over the former upper bound of (2d — l)(n  — 1) +  1. To do this we must 

show that
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(2d -  1) L^-r- J  +  2 " -1- d^ J  < (2d -  l)(n  -  1) +  1. (2)
lA)

It is important to note that since d represents the diameter of a graph and n represents 

the number of vertices of that graph, 1 < d < n — 1.

Case 1: d =  1

For this case we have

( 2 d -  1) L ^ J  +  2 n ~ 1~ d^ ^  =  (2 -  1) [ n  -  l j  +  2n_1-Ln_1J

= (2 X -  l)(n  — 1) +  1 

=(2d — l)(n  — 1) +  1.

Thus inequality (2) is true for the case d =  1.

Case 2: d >  2

First, let us look at 2n-1-dl-2ij i J. We can express n — 1 as

n — 1 =  dx +  r

meaning that n — 1 is equal to some multiple of d plus a remainder r.



Thus,

Now, since r e d ,

=  2{dx+r)- d[iS±r1

=  2(^ + r ) -4 f+51

= 2(dx+r)~dlx+̂ l

_ 2 ( d x + r ) - d [ x \ - d [ ^ \

_  2(d®+r)-cto-d[5J 

=  2r~d̂ .

And since r <  d — 1,

2r^dL5J =  2r_d(°)

=  2r.

2r < 2d_1.
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This leads us to the conclusion that

2n-i-<fLihrJ < 2d_1.

We will use this fact to show that inequality (2) is true.

(2d -  1) L ^ J  +  2n- 1~d^ 1  < (2d -  1) L ^ J  +  2d~1

< (2d- 1)1^1 + 2d- l

< ( 2 “ - l ) ( L V J  +  1 )-

Now to finish proving the inequality (2d — + 1) < (2d — l)(n — 1) + 1 we

will prove the equivalent statement that (2d — 1 ) ( +  1) ~ (2d — l)(n ~ 1) < 1.

(2d -  IKLt J + 1) -  (2“ -  l)(n -  1) = (2“ -  IJKL^J + ! ) - ( " -  1)]

=  ( 2 i - l ) I L 2 i 1 J +  l - n + l ]
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=  (2< * - i ) [ L ^ i J - n  +  2].

Since we are considering the case where d >  2, we know that < n — 2.

So,

(2d -  1 )[L ^ J  -  n +  2] <  (2d -  l)[(n - 2 ) - n  +  2]

— (2d — 1) (0)

< 1.

Thus we have shown that (2d — 1)( +1) — (2d — l)(n  — 1) < 1. This inequality

is equivalent to (2d — l)(Li?x LJ +  1) <  (2d — l)(n  — 1) +  1.

Since (2d -  1 )L ^ J  + 2n- 1- d^ J  <  (2d -  +  1) < (2d -  l)(n  -  1) +  1, we

have proved that (2d — +  2n_1_dl-2V'J < (2d — 1 )(n — 1) +  1. The two upper

bounds are the same when d =  1; however, our bound is stronger when d >2 .  ■

We have successfully improved the upper bound for the pebbling number of any 

simple graph G using the strategy of constructing a spanning tree.
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