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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A
SUPER-LINEAR THREE-POINT BOUNDARY-VALUE PROBLEM

BRUCE CALVERT, CHAITAN P. GUPTA

ABSTRACT. In previous papers, degree theory for nonlinear operators has been
used to study a class of three-point boundary-value problems for second order
ordinary differential equations having a super-linear term, and existence of a
sequence of solutions has been shown. In this paper, we forgo the previous
approach for the shooting method, which gives a drastically simpler existence
theory, with less assumptions, and easy calculation of solutions. We even
obtain uniqueness in the simplest case.

1. INTRODUCTION

In the papers [2, 3, [7, 8, @] the authors use degree theory to give existence of a
sequence of solutions to a super-linear boundary value problem. More specifically,
in [8,[9] they give existence of solutions to

2"+ g(x) = plt, z,2") (L1)
2(0) =0, w(n) = Ba(1) (1.2)

Here n € (0,1), making this a three point boundary value problem. The function
g is assumed to be super-linear, that is, it satisfies g(z)/x — oo as |z| — oo, and
8 = 1. In [I] the case 8 # 1 is argued along similar lines. In this paper, we
obtain existence of solutions to , for § # 1 via the intermediate value
theorem, i.e. the shooting method, giving a drastically simpler existence theory,
with less assumptions. Calculation of solutions numerically may be carried out by
the shooting method. The shooting method is used theoretically in [5, 111 [13], and
elsewhere.

Uniqueness is studied by Kwong in [I3], which recovers results such as Moroney’s
theorem, giving uniqueness of a positive solution of a boundary-value problem in-
volving a superlinear function. This builds on Kolodner’s paper [I1], which gave the
exact number of solutions of a rotating string problem, given the angular velocity.
Similarly, in [4], the boundary value problem

2" + Azt — az” = sin(t)
z(0) =x(w) =0
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was shown to have exactly 2k solutions if 0 < a < 1 and k? < X < (k + 1)
and Dinca and Sanchez [5] pose the question of whether this uniqueness result can
be obtained by elementary methods. Our uniqueness result, giving uniqueness of
solutions to and in case p = 0, is elementary and presumably new. Our
approach does not readily lend itself to the case of nonzero p, and this gives an
open question.

There has been much recent work on 3-point boundary value problems, and
much of it has concentrated on positive solutions, as in [6] [10 12 [I5]. He and Ge
[6] give the existence of three positive solutions to the B.V.P. , , but the
condition of our uniqueness theorem and their conditions (D2), (D3) cannot
hold at the same time. Thus their work cannot be used to show that Theorem E.1]
may not hold for all k.

Similarly Infante and Webb [10, Th 4.2] cannot be used because their conditions
(S1) and (S2) are incompatible with (4.2)).

Ma [I5] shows that one can get existence of positive solutions to the B.V.P. (1.1)),
, assuming g(z)/x — 0 as * — 0, and p = 0, which does show that one can
obtain existence theorems like our Theorem [3.1] for small k. Infante and Webb [10]
show that one need not have positive coefficients in an m-point boundary value
problem, and in this work we can indeed take (8 to be negative.

Capietto and Dambrosio [2] consider the case of asymmetric g(z), superlinear for
positive z, and give an extensive review of superlinear boundary value problems.

2. ASSUMPTIONS AND PRELIMINARIES

A background on o.d.e.s involving functions satisfying Caratheodory’s conditions
is given in Chapter 18 of [14].
Assumption A: - Assume that g : R — R is a continuous super-linear function,
that is, it satisfies @ — 00 as |z| — oo. Let p:[0,1] x R? — R be a function
satisfying Caratheodory’s conditions, i.e. for every (x,y) € R?, p(t, z,y) is Lebesgue
measurable in ¢, and for a.e. t € [0,1], p(¢,z,y) is continuous in (z,y). Suppose
there exists an My : [0,1] x [0,00) — [0,00) such that (a) for each s € [0,0),
M (-, s) is integrable on [0,1], (b) for each ¢t € [0, 1], M(t,-) is increasing on [0, 00)
with s71 fol M (t,s)dt — 0 as s — oo, and (c) for all t € [0,1], and (z,y) € R?,

p(t, 2, y)| < My (¢, max(|z], [y]))-
We need the next result, proved in [I] as Lemma 2.

Lemma 2.1. Let g, p, and M, satisfy Assumption A. Suppose that @ > 1 for
x # 0. Suppose that (x(t),y(t)) is an absolutely continuous solution for the initial
value problem

a'(t) = y(t), (2.1)

y'(t) +g(z(t)) = p(t,x(t),y(t)), forae tel0,1], (2.2)
2(0) =0, (2.3)

0)=a (2.4)

<
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Forxz € R, let G(x fo s)ds. Lete > 0 be given. Then for a > 0, large enough,
we have

ly(®)] < a(l +¢)

2G(x(t)) < a?(1 +¢), (2.6)
for every t € [0,1]. Moreover,
%(yz(t) +2G(x(1)))] < 2|y (@) My (¢, max(|z(8)], [y(@)])), (2.7)

fort € 0,1] a.e.

We note that if we assume g continuous and g(x)/x > 1 then the function
fo s)ds is defined for € R and is such that G is strictly increasing on

[0 oo) and is strlctly decreasing on (—o00,0]. Also, G(z) > 0 for x € ]R, x # 0 and
G(0) = 0. We denote the inverse of the function G restricted to [0, 00) G‘[o , by

G;l and the inverse of the function G| _ w001 by GZ". We now need a new version

of [I, Lemma 3], in which (2.8]) and (2.9) replace (13) and (14) of [I].

Lemma 2.2. Let € > 0 be given and g, p, My be as in Lemma [2.1. Then there
ea:ists an A > 0 such that if (x(t),y(t)) is a solution for the initial value problem

1), 2), 2.3), (2.4) and to € (0,1] is such that x(to) > 0, y(to) = 0; then

_ o?

¢ 1<2(1+€)>_ (to) < 6T (1+9) 2.9
if la| > A. Similarly, if x(to) <0, y(to) = 0; then

2 2

G:I(Q(la+ ) < #lto) < G2 (G (1+e) (2.9)

if |a] > A. Also,
2
min V270 70 = 3 win{67 (). 5

Proof. We observe that the right inequality in (2.8]) follows immediately from ([2.6)).
Accordingly, it suffices to show that

Oé2

< 1+ 9G(n). (2.10)
to prove that (2.8]) holds. Let us choose A > 0, such that for |a| > A, both (2.5)
and 1} hold with « replaced by |a|. With h(t) := \/y2(t) + 2G(z(t)), we get, by

integrating (2.7) from 0 to ¢ and using (2.5]),
t
R2(t) — a® + 2|a(1 + 5)/ M (s,max(|z(s)], |y(s)]))ds > 0.
0

We now take an 1 > 0 such that 2e;(1 + €)? < min{ Tres 2}, Next, we use the

assumption s~! fo M (t,s)dt — 0 as s — oo, from Assumption A, to choose an
A > 0 so that for a > A the inequalities ., ([2-6) hold for s € [O 1]. When for
s € [0,1]

max{la(s), ly(s)]} > 5 minfG5 (%), 5) (2.11)
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we have, with M (z) := fol M; (t, x)dt,
M (max{|z(s)|, [y(s)[}) < exmax{|z(s)], [y(s)]}-

For @ > A, we get on using the inequalities (2.5)), (2.6), (2.12)) and the assumption
@21f0rx#0,th&t

M (max{[z(s)], [y(s)|}) <e1a(l +2), (2.12)
and hence, using (2.11), we get
RE(t) > (1 — 221 (1 4 ¢)?), (2.13)

provide . olds for all s € |0,¢]. Since we chose €1 > 0 such that 2e1(1+¢)* <
ided (2.11) holds for all 0,t]. Si h 0 such that 2e; (14¢)?

min{y;, 5}, we see that
2

y2(H) +2G((0) = 5
provided holds for all s € [0,t]. Accordingly, either y?(t) > %2 or |z(t)| >
G;l(%z) and hence
1,0«
max{|z(t)], [y(®)]} 2 min{G (=), 5}, (2.14)

provided holds for all s € [0,¢]. We observe that ( holds near s = 0 since
y(0) = . Let us next assume that holds for all s € [0, ¢], for some ¢ € (0, 1].
If0 <t <1, it follows from that there exists a t; > ¢ such that holds
for all s € [0,¢1]. Accordingly, it follows that holds for all s € [0, 1]. Finally,
if y(t9) = 0, we see from and the assumption that 2e1(1+¢)* < min{ 15, 31

that )
T < (L+e)G(x(to).

and ([2.10) holds. This completes the proof that (2.8)) holds. A similar proof works
to prove that (2.9 holds. O

Definition 2.3. For u(t) = (z(t),y(t)) € C*([0,1],R*\{(0,0)}) we define

st - | L4

as the angle traversed clockwise from u(0) to u(1).

dt,

We need a variant of [7, Lemma 4.3] and of [0, Lemma 3] to show that the angle
p1(2,y) — oo, for solutions (x,y) to (2.1)-(2-2), when minseo,1) [|(z (), y(t))[] — oc.

We use the following assumption:

Assumption B: Let g : R — R be continuous and super-linear. Let p : [0,1] x
RxR — R be a function satisfying Caratheodory’s conditions. Suppose that there
exists a u € (0,1], 8>0,0 <~ € L'[0,1], and M : R? — R, with ?\4(3(3)‘73 — 0 as
||(z,y)|| — oo, such that for a.e. t € [0,1], and (z,y) € R?,

sign(z)p(t, z,y) < (1 — p)sign(z)g(x) + Bly| + () Ma(z,y). (2.15)
The inequality (2.15]) corresponds to inequality (4.3) in [1], i.e.,
Ip(t, z,y)| < (1= p)lg(x)] + Bly[ +, (2.16)
where v € R.

We shall provide the slight modifications needed in the proof of Lemma 4.3 of
[8], and Lemma 3 of [9] to cater for the difference between (2.15)) and (2.16]).
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Lemma 2.4. Suppose g and p satisfy Assumption B. Then for all N > 0 there
exists an R > 0 such that for all absolutely continuous solutions (x(t),y(t)) for the

system (2.1)), with minge(o,1) ||(z(2), y(t))|| > R, we have cpl(m y) > N.
Proof. Since ¢1(u) = — fol r(f)gzgngZQ(t) ) 3¢, we see using that
—x(t)y'(t) +y(t)2'(t) = y*(t) +2()g(x(t)) — x(t)p (t,$(t),y(t))~

Let us set . (3)9/(5) (2)2'(s)
B z(s)y'(s) —y
o) -00) = [
so that
iy 2By () —y()2' (1)
0= T
_ YA +a()g(x(t) — z(t)p(t, 2(t), y(t))
z?(t) + y*(t) '

Let N > 0 be given. Since g is super-linear, we have for K > 0 (to be chosen later)
there is an M = M (K) such that if || > M then u@ > K. Hence
g(z) K M 2

P+
€T

for all z # 0, and pxg(z) > Ka? — KM? for all z € R. Hence,
y* +xg(x) — 2(t)p(t, 2, y)
> y* +ag(r) — (1 - prg(x) — Blzlyl — y(0)]z|Ma(z, y)

2
g(ﬂx2 I %) —y(t)|x|Ma(z,y)

> K

>y? + Ka? — KM? —

y2 52 2

25+(K 5 —)a® = KM? — y(t)|z|Ma(z,y)
y2 k 22 2

=5 +3 57 — KM= —y(t)|z| Mz (2, y),

where k = 2(K — %) Then,

o) =Y °(t) + ﬂ?(t)g(l“((t))) - 562((15))2?@, z(t),y(t))
|t bt - KM — ()| Ma(a,y)
- w?(t) + y2(t
Sh@ehy? 1 A(OMa(y)
T2 atty? Vi @yl
()| > MVKVk. We can then write
L 20Mafey)

cos? 0+ k~'sin?20) — — —
( =T T @l

/0(0) do
o(1) cos?f+ k-t sin? 6’

rather than estimating the integral [, 0(( ) 9.

~—

assuming miny ||(z(t),

Yy
—0'(t) >

N |

Next we estimate




6 B. CALVERT, C. P. GUPTA EJDE-2005/19

Since m < k we get
0'(t) k yO)Ma(x, )k _ k
_ LAY (OLLCN ) LYY
cos20 + k—lsin?6 — 2 [(z,p)l  — 2 "0

assuming Y209 < L yhich holds if miny [|(z(), y(t))[| > &(k), say. Note

Il (z9)l
/5 do B / ke sec? 0d0
o cos20+k-1sin?0 Jo k-+tan®6

_/°° kdu
o 0 k+u2

*—k an”! oy
= (b
 Vin
=

Since cos?§ + k~'sin?@ has period 7, given an interval (a,b) we write b —a =
(n — f)w, where n is an integer and f € [0,1). Then

/b do - /"” do
o 0820 +k-1sin?0 ~ Jo cos20+ k—1sin?0
Vkr

<2n——
2

— V(P24 p)

<VED—a+m).

In particular, we get

_/9(1) d0 VE6(0) — 8(1) + 7).
0

5 <
(0) cos?f+ k~1sin”0

Next we change the variable of integration from 6 to ¢ to get

\/E(gol(x,y) + ﬂ-) > _/ 9’(t>dt

o cos2f(t) + k—1sin®0(¢)

Uk
2/0 (5—\/E—7(t))dt
k 1
hvi [

This gives
k 1
Wl(xay)z\g—l—/v—w, ifk>1,
0
1
=N, ifk:4(N+1+/ y+m)? > 1.
0
Since
2
k:2(K757)7

2
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we choose K = 2(N + 1+ fol v+ )%+ 6—; Finally choosing

R = max(MVK Vk,&(k)),

we see that o1 (z,y) = N if mingego.q [[(@(0), y(0) | = R. O

3. EXISTENCE OF SOLUTIONS

To fix ideas we study the case 8 > 1, as in [IJ.

Theorem 3.1. Letn € (0,1) and B > 1 be given. Let g and p satisfy Assumptions
A and B. Then, for each k sufficiently large, there are (at least) two solutions

u(t) = (x(t),y(t)) of

(3.1)
(3.2)
z(0) =0 (3.3)
z(n) = Bx(1) (3.4)
with p1(u) € (5 +km, 5 +(k+1)m), one with 2'(0) > 0 and the other with x'(0) < 0.

We may, when thinking of calculating these solutions, say that we have one
sequence x,, of solutions to (1.1, (1.2) with «/,(0) — oo and another sequence z,
of solutions to ([1.1)), (1.2) with z/,(0) — —oo, with the angles they traverse as
above.

We break the proof of the theorem into two parts. We first prove existence of the
solution x when p is smooth enough, and then we see that we can approximate p by
a sequence of smooth p,, giving solutions x,, and then then take limits to obtain
existence when p is not smooth. A sufficiently smooth p will satisfy the following
Caratheodory-Lipschitz condition.

Definition 3.2. [I4] Let U be open in R", and let [a,b] be an interval of real
numbers. Let F : [a,b] x U — R™ be given. We say F satisfies a Caratheodory-
Lipschitz condition if for all x, t — F(t,z) is Lebesgue measurable, and for any
(to,x0) € D, there are real valued integrable functions m and L, such that
[E(t,z) — F(t,y)ll < L@)||z -yl (3.5)
IE(t, x)|| < m(t) (3.6)
for all  and y in some neighbourhood of zy, and ¢ a.e. in some neighbourhood of
to.
We need the following definition.

Definition 3.3. For a € Rlet (z, y) be a solution of (2.1)), (2.2)), (2.3)) and (2.4]), and
let n € (0,1) and 3 > 1 be as in Theorem [3.1] We define a function H : (0,00) — R

by H(«) = fz(1) — z(n), for a € (0, 00).
Remark 3.4. Since the function ¢ : R — R in Theorem [3.1] is assumed to be

super-linear, we see that there exists an M > 0 such that 9(@) > 1 for |z| > M.

Let us, now, define a function g : R — R by ’
g(x), forx > M
N Lly)x for0<z<M
for —M <zx<0

g(x) = g(:]\]4\4)x7
g(x), for x < —M.
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It then follows that @ > 1for all z # 0 and g — g is a bounded function on
R. Also, p + g — g satisfies the same conditions as p in Theorem Accordingly,
we shall assume in the following that the function ¢ in Theorem [3.1] is such that
92) > 1 for all & # 0, by replacing g by g and p by p + g — g, if necessary.

x

Proof of Theorem: Smooth case. Here we assume, in addition to Assumption A,
that p is Caratheodory-Lipschitz on [0,1] x R?, g is locally Lipschitz, and for all
nonzero z, g(x)/xz > 1.

We first see from Lemma|2.4)and the last claim in Lemma[2.2] that ¢1 (z,y) — oo,
as y(0) — oo. Accordingly, for every positive integer k, sufficiently large, there
exists an hy € R such that if (z,y) is a solution of

a =y
y/ = *g(LE) +p(t,:€,y)
oo (3.7)
y(0) = hy,

then ¢1(x,y) = m/2+kr. There may be more than one value for hg, so we let h7¥"
and h};*** be the smallest and largest such numbers.

Then for the function H, defined in Definition we claim H(hg) > 0, if k is
even. Since, now, pi(x,y) = 7/2 + km and k is even, we see that z(1) > 0 and
y(1) = 0, from the definition of p;(x,y) (see Definition [2.3). Suppose, now, z is
maximised at n* € (0,1]. We then get from of Lemma 2.2 that z(n) < z(n*) <
GH(% (1 +6)) and fa(1) > G (k). since 2(1) > 0 and y(1) = 0.

Now,

H(hy) = Ba(1) — z(n)

h2 2
> -1 k a1
1 N 1 R 1 i
=(B-1G} (m) +GY (2(1 +€)) -Gy (?(1 +¢€)).
We may assume that 0 < € < 1, and let us set
h2
_ -1 k
and
h2
t+0= Gjrl(?k(l +€)).
Then
hi; hi;
G(t) = 20+0) and G(t+5):7(1+e).
Next, we see that
> K — = — = > .
hie > 5 (1+e) 50+ G(t+9)— G(¢) /t g(s)ds > 16, (3.10)

in view of our assumption % > 1 for all  # 0. It then follows from |i ,
|i the assumption 0 < € < 1 and the fact that G;l is an increasing function
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that
2 2
%) - % >0
G (F)
if € > 0 is chosen sufficiently small. Hence H(hy) > 0. Similarly, H(ht) < 0 when
k is odd.

Now H is continuous, indeed the map (0,a) — (z(1),z(n)) is locally Lipschitz
by [14].

By the intermediate value theorem, there is an a € (h3}*”, hg}j_ﬁl) and a solution
(z,y) of 2), 22), :3), such that H(a) = 0. We claim o1 (z,y) € (7/2 +
2km,m/2 4+ (2k + 1)m). Suppose pi1(x,y) < 7/2 + 2kw. Then by the intermediate
value theorem there is an hop > «, contradicting o« > hog. This concludes the proof
of Theorem 3.7 in the smooth case. (]

H(hi) = (1) — z(n) = (8 - )G

The next Lemma is needed in the proof for the non-smooth case. Writing (z,y) =
u, we mollify the function p(¢,u) with respect to the second variable u.

Lemma 3.5. Suppose p : [0,1] x R? — R satisfies (a) the Caratheodory-Lipschitz
conditions, and M : [0,1] x [0,00) — [0,00) satisfies:

(b) for allt €[0,1], Mi(t,-) is increasing on [0,00),

(¢c) for all s € [0,00), Mi(-,s) is integrable on [0, 1], and

(d) st fol M (t,s)dt — 0 as s — oc.
Suppose that for all t and u,

(e) |p(t,w)| < Mi(t, [[uflsc)-
Let p € C§°(R?) have support in {u € R? : |ullx <1}, ¢ >0, [ =1. Let e >0
be given. Let p(t,u) = [ p(t,u—ev)p(v)dv, and let M(t,s) = My(t,s+¢€). Then
the pair of functions p* and M1¢ satisfy conditions (a) through (e).

Proof. To show p° satisfies (a), we first let u be given, and claim t — pc(¢,u) is
Lebesgue measurable. That is,

t— e*Q/p(t,x)go(¥)dac1dacg

is measurable. For a.e. t € [0,1] , p(t,z) is continuous in x, and so the integral is
a Riemann integral. Accordingly,

u—x . u
e [ pltx)o(™doados = Jim, > otxe
xer(n

— X

);

€

where {P(n)} is a sequence of partitions of [0,1] x [0,1]. Each of these sums is
a measurable function of ¢ since p satisfies the Caratheodory conditions, Lebesgue
measure is complete, and the Lebesgue measurable functions form a vector space.
The limit of a sequence of measurable functions is measurable, and so we have
proved the claim.

To show p® satisfies (a), let (t9, up) € D be given. We claim there are real valued
integrable functions m and L, such that

Ip°(t, ) — p(t, w)|| < L(t)[[u — w| (3.11)
[p(¢, w)|| < m(t) (3.12)
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for all u and w in some neighbourhood of ugy, and for a.e. ¢ in some neighbourhood

of g, i.e. (3.5 and (3.6 hold. Now

ﬁwm—ﬁwwm<eQAmpwmw(

where N(e) stands for {x : |[x —u|| < e} U{z: ||x —w]| < €e}. Note N(¢) C {x:
IIx|l < max(||u]l,||v]]) + €). By (b), with K(¢) the Lipschitz constant of ¢,

u—X W —X

) — @(f”d%d%

RHS < ¢° My (¢, max([[ul], [v]]) + €) K (¢)|[u — w|[dz1d,
N(e)

< 2¢7 My (t, max(|[ul], [ v[]) + €) K () ]|u — wl|.

Since M; is increasing, (b) shows that (3.11) holds for all u and w in any given
bounded set, and all ¢ € [0, 1].

For (3.12)), we check ||pc(¢,0)] is integrable, and this and (3.11]) gives (3.12).
(0= [ plt.~ev)piav]

é/mw%wwmw
<

<[ e by (@)
lloll<1
= M1 (t, 6).
To show (b) for M;© we note that s — M (t, s+ ¢€) is increasing on [0, 00). To show
(c) for M, we note that for all s, t — M; (¢, s + €) is integrable on [0, 1]. To show

(d) for M;° we note that s~! fol M (t,s + €)dt — 0 as s — oo. To show (e) for
p(t,0) and M;® we note that

|ﬁmuns/mmu—wwme
S/Mwwwﬂwww

< [ M (e fuletv)av
= M, ).
O

Proof of Theorem: Non-smooth case. Given g, we will, by adding a term to g and
subtracting it from p, assume that g(z)/x > 1 for all z # 0. For € > 0, we take ¢°
which is locally Lipschitz and such that ¢g¢(x) — g(z) uniformly on bounded sets,
and ¢g¢(x)/z > 1 for all = # 0.

For each large integer k, and € > 0, we let (z,y.) be a solution of to
with g¢ and p© replacing g and p, satisfying ¢1(zc, yc) € (5 4k, 5+ (k+1)7), with
9¢(0) > 0. Now we can check the (z,y.) are uniformly bounded, and we can check
they are equi-continuous, since their derivatives are uniformly bounded. By the
Arzela-Ascoli Theorem, there is a sequence €(n) — 0 with (z¢(,), Ye(n)) converging
to (x,y), say, in C([0,1]; R?). Now for all ¢ € [0, 1],

(iw®@$Q+AY#ﬂﬂwﬂﬁﬁw$MMW)ﬁ (3.13)



EJDE-2005/19 EXISTENCE AND UNIQUENESS OF SOLUTIONS 11

We use the dominated convergence theorem to let n — oo with € = €(n).
(a) We claim p(s, ze(s),y(s)) converges to p(s, z(s),y(s)) for s a.e. in [0, 1]. Take
s so that p(s,u) is continuous in u. Then we note

/R2 (8, Ze(n) (8) = €(n)v1, Ye(n) (5) — €(n)v2)p(v1, va)dvrdvy — p(s, 2(s), y(s)),

proving the claim.

(b) We note g™ (s, z(,)(s)) converges to g(z(s)) for any s.

(¢) We claim pe(")(s,xg(n)(s),ye(n)(s)) < M(s,K) for some K > 0. Just take
K> SUPse(0,1] SUPp, max(|:1:€(n) (5)|’ |y6(n) (5) ) + maxy E(TL)

(d) We note there is K such that for all n and z, [g") (z.(n)(s))| < K.

The dominated convergence theorem is applicable by (a) — (d). Hence

() o= (o) / (Cotaton s matoron) @19

Hence the o.d.e. (3.1) and holds for (z,y). The boundary conditions
and hold for (z,y), since they held for the approximations (z., y.).

We note that ©1(2c(n), Yen)) — w1(,y), noting that for all n, (2¢n), Ye(n)) are
outside some neighbourhood of (0,0). Hence @1 (x,y) € [§ +kn, 5 4 (k+1)n], since
01(Te(n)s Ye(n)) € (5 +km, 5 4 (k+1)m). Because of the boundary condition ,
e1(z,y) # 5 + kx for all large k. This ends the proof of the theorem. |

4. UNIQUENESS

We proved in Theorem that the equations (3.1), (3.2), (3.3), (3.4) have at

least one solution (z,z’) with ¢1(z,2") € (5 +kn, 5 + (k + 1) ) and 2’(0) > 0. In
this section we shall show that the equations (3.1| ., ., ) have exactly
one solution (z,z’) with ¢y (z,2") € (5 +km, 5 + (K + )7 ) and ( ) > 0, when
p = 0, g is like the function z — |x\ssgn(x), for some s > 1, and (3, n satisfy
a suitable inequality. The arguments can be easily modified to prove that the

equations (3.1), (3.2)), (3.3), (3.4) have exactly one solution (x,x’) with o1 (x,z’) €
(5 +kn, 5 4+ (k4 1)7), and 2/(0) < 0. In Remarkwe give a result for § < 1.

Theorem 4.1. Let g : R — R be a continuously differentiable function. Suppose
that there exist pg > 0, p1 > 0, and an s > 1 such that for all x € R,

polz|® < g(z) sgn(x) < palz/*, (4.1)
and there exists a h > 0 such that
;Jl(f})l is increasing on (0,00) and (—o00,0). (4.2)

Let B> 1 and n € (0,1) be such that

4 2
201+ 4,
6° > +4+2 (4.3)

Then, for k (an integer) sufficiently large, the solution of the system of equations

'(t) = y(b), (4.4)
y'(t) = —g(x(t), (4.5)
2(0) = 0, (4.6)
x(n) = pr(1), (4.7)
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with o1(x,2") € (§ +kn, 5 + (k+ 1)), and 2'(0) > 0, is unique.

Remark 4.2. The existence of a solution for the system of equations (4.4)), (4.5)),
(4.6), (4.7) is obtained using Theorem [3.1

Proof of Theorem [/ Let (z4(t), ya(t)) be the solution of the equations (4.4)), (4.5)
with 2(0) = 0, y(0) = a. Recalling G(z) = [; g(t)dt, we see, from (4.4)), (4.5) with
(#,y) = (a(t),ya(t)), that
2 2
Y o *
G(z) o T 9 = G(v) = G(="),
where v = Gjrl (a?/2) and —v* = G~*(a?/2). Note that both v and v* are positive.
In the following, we shall use v to parametrise the solution, giving (z,y) =
(a(t),ya(t)) = (x(t,7),y(t,7)). We define v by setting v = v when ¢1(2,y) =
% +km. This corresponds to a = hy (see equation (3.7)). We next consider Sz (1, )
and x(n,v) for v € (Vk,Yk+1)- Now, from Theorem we see for k sufficiently
large that there exists a vo € (Y, Yk+1) such that 8x(1,v) = 2(n,7). To show
uniqueness of ~yq it suffices to show that
Ox Ox
—(1 — . 4.8
W@v( 770)|>|87(77a70)\ (4.8)
Let us define @(t,v) by setting
t .1 /
- 2'(8)y(s) —y'(s)x(s
) = [ FO =),
o #3(s)+y(s)

b

where (z,y) = (z(t,7),y(t,7)). Now, we define a function t(p,~) by

t=1p,7) <= ¢ =2a(t) (4.9)
We note that £(g, ) is the time taken for the solution (z(t,7),y(t,7)) to traverse
the angle . For ¢t = 1, we then have

1=1(¢(1,7),7),
from (4.9). Next we use the implicit function theorem to get

o By o, 0%
aw(lﬁ) = —% = —afy(ﬁﬂ(lﬁ)ﬁ)a(lﬁ)- (4.10)

Let us define Z(p,v) as follows: since traversing the angle ¢ clockwise along the
curve G(x) + % = G(v) from (0, @) brings us to a point (x,y), we define
Z(p,7) = .
Note
2(P(1,7),7) = =(1,7).
;From the chain rule,

ox, . O _ 0% _ Y

a(lﬁ) = %(80(177),7) + %(50(1’7)’7)877(1’7)' (4.11)
Similarly, we get

Oz 07, 0F 0z

87(77,7) = 87(%?(77,7),7) + %(80(77,7),7)%(7777)- (4.12)
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We express t(p, ) in terms of n, the number of times the solution (z, y) goes around
the origin, and the time taken to traverse the angle 2w. Let

t(p,7) = nle, Mtp(y) +tole,7), (4.13)

where tp is the time for a full revolution or the time taken to traverse the angle
27, and tg € [0,tp). Note

Z(@(?v):v) sy — oo

(@(L7),7)
We differentiate (i, ~) with respect to v in when @(1,+) is not a multiple
of 27 to get
g—i(ap,v) = na;f + 8(;;2 (4.14)
Next, define
Py 1= @(n,7) and @1 := (1, 7).
We evaluate at two points.

ot ot ot
%(9017’70) = ”(@1,’70)875(%,’)’0) + 67;2(901,70) (4.15)
ot ot ot
87(%’70) = n(son,vo)afj(%mo) + Tﬁ(wn,%). (4.16)

Now, by [I, Lemma 4] we see that

8 Ot
%z <0, for all .
a,ya(p(%v)_O, or all (¢,7)

Also, notice that g—g(o, ) = 0 for all 7. So we get

8tQ Otp
> —= > — .
0> o (©,7%) > oy (70)

Now, to prove (4.8) we compute the ratio of (4.12) to (4.11f). This gives
N . o5
L) @077+ E(@,7):7) 5

ox T~ T~ .
Using (4.10)) we then get

at 8%
oy ot

oz T~ T~ ~
oy (1Y) GE(@(1,7),7) — SE(B(L,7), 1) 85 (B(1,7),7)
We note that

(4.17)

ow, . 0F _ 0%
E(tﬂ) = %@P(tﬁ)ﬂ)a*

: (t,7) for all (¢,7).
Hence, (4.17)) becomes
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Now, by (4.15)) and (4.16) we get
)  NUM

- = , (4.18)
2:(17g) DENOM
where
0T , ox Otp O0to
NUM = — - — -— — 4.19
37(90(77,70),70) 5z U1 70)[1(@n, 70) 7 (70) + 0 (en,70)],  (4.19)
and
0T , _ ox Otp Oto
DENOM = —(p(1 ——(1 -— — . (4.20
87(<p( 170),%) = 5, (1,70 [n(¢1,70) o (70) + o (1,70)]. (4.20)
Next, we need to show that the first term in (4.20) is small compared to the
second term. To do this we need the following lemma. O

Lemma 4.3. Suppose that the assumptions and of Theorem hold.
Then 5
122 (1, 70)
—
n(@lﬁ@ﬂ%(%ﬂ' 92(1,70)|

as o — 00, (note that vy depends on k and as k — 0o, y9 — 00).

0, (4.21)

Proof. For better readability we break the proof into a sequence of items.
Item 1:- We show that

oz xg(7y) xg(y)

7P T @ T 2CH) @) 9l + o (4.22)
9y _ y9(7) _y9(v)
7P = @ T 2G0) —Ca)  wa@) + i (4.23)

We first note that as we hold ¢ constant, we hold y/x constant i.e.

2(G(y) = G(x))

T

is constant, which in turn implies that

v x?
Hence,
(900 ~ 9() 51 )2 20 57 (G(0) = Giw) =0,
i.e.
or 9 9
87[9(56)3? +22(G(y) — G(x))] = 279(7),
and so holds. Also, since we hold ¢ constant, y/x is constant and we get
% _yoz
oy xoy’

giving (4.23)).

Item 2:- There exists a constant Ko = Ko (s, po,p1) such that

ox
|(97’}/| < KO(&POaPl),
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for all (¢, 7). We first claim that for all x € R,

zg(z) — 2G(x) > 0
Indeed, both for > 0 and for x < 0,

6to) = [ gt < [0 gy = 200,

T

since % is increasing. Hence the claim. Next, we claim that for all x,
p1|z|s+1 p0|x‘s+1
— >G(x) > ————. 4.24
s+l 2 0@ 2= 7 (4.24)

We see from (4.1)) that for z > 0,

; DPox
G > t5dt = .
@2 [ ot ="

s+1

Similarly, we get for z < 0,
p0‘$|s+l
G
(@) 2=~

The proof of the left half of the inequality in (4.24) is similar. ;From (4.22)) we
have

0z B zg(7)
67(%7)— 9(x )+2(G( ) — G(z))

Mg , by ([EZ4), (4.25)

P17 (s +1)
< max(7,y )W

Next, we see from (4.24]) that there exists a constant K, depending on pg, p1, and
s such that

7" <Ky and v <Ky (4.26)
Using (4.26)) in (4.25)) the proof of Item 2 is immediate.
Item 3:- There exists a constant Ky = K (s, po,p1) > 0 such that
Ox +1
87( A0l = Kime” (4.27)

for all 49. Since g(x)/z is increasing, we have G(x)/z is increasing by [I, Lemma
3]. So

g ()
G(5) < —=
=
Hence, assuming z(1,70) > 0, so that z(1,79) < %, we have

B
>(1- %)Gwo)
> ( 1 )po’Y
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by (4.24). Taking square roots, we get (4.27)), proving Item 3.
Item 4:- Let tp be the time taken to go from (0, ) to (v,0). Also let t1, be the

time taken to go from (0, —a) to (—v*,0). We shall show that
dir _ / 29(7)(g(x) — 2¢'(2))
dy  Jo (zg(x) +y2)?
We note that since

(z® + y*)dy. (4.28)

r =Y,
y =—g(x),
we have
924y = =y —wa' _ z9(x) +y?
ot 22 1 42 22 1y
Accordingly,

™

B g2 42
tr(v) = / — ozl

o zg(x)+y?
Using Leibnitz’s rule, (4.22)) and (4.23)), we get

dtr _ [* 1 .90 vg(n)

= G T P b W £
— (g2 2 (za (2 " zg(7) yg(7)

(z” +y7)[(zg' () + g( ))7wg(x)+y2 +297xg(x)+y2}dsﬁ

/; 2029(7) + 20%9(7) — 225 (g (2) + 9(2))zg(7) + 2579 ()]

=, (29(@) 1 922 dp
7 29(7)(zg(x) + 2) — (zg'(x) + g(2))zg(7) — 2y3g(7) 224
- (w(0) + 2 SRR

which gives (4.28]).
Item 5:- We change variables from ¢ to u to calculate (4.28). We parametrise the
curve

y?
L +Gl@) =G,
in the first quadrant, by setting
Y= \/Msinu
z = G;Y(G(7)cos® u).
So, with v kept fixed,

% = /2G(7y) cosu
g(m)Z—z = —2G(y) cosusin u,
ie.
dr  2G(y)cosusinu
du gl '
Now,

dy dx dy
2 20y _ ax a4y
(@ +y )du Yau ~ “du
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Hence,

2 cos? usi
(z% + y%i—i =— (ZG(’Y))Q(C;)S usine 2/2G(7) cos u.

Therefore,

dtr % 2g(7)(zg'(z) — g(x)) [(2G(7))? cos® usinu . cosul du
dry ’/O (zg(z) +y?)3 g9(z) Fre0) ]Cz4’29)

noting that as ¢ varies from 0 to 7/2, u also varies from 0 to 7/2.

In the next items we estimate the various terms in .
Item 6:- There exist constants K3 > 0 and K4 > 0 depending on pg, p1, and s
(but not wu, ) such that

z < Ksy(cosu)™1, 4.30
2
x > Kyy(cosu)sH 4.31)
Indeed,
s+1 s+1
p817+ 1 cos?u > G(v) cos’ u = G(x) > psli T

The inequality given by the two outside terms above gives (4.30). We obtain
similarly.
Item 7:- There exists a constant K5 > 0 depending on po, p1, and s (but not ~)
such that

g(x) +y* < K5yt (4.32)
Indeed,
2
2g(z) < pra ™t < B(s + 1)G(@) < B (s + 1)G(y) < Byt
Do bo Do
s+1

y? = 2G(v)sin®u < 2py T sin? u,

S

and (4.32)) follows.

Item 8:- There exists a constant K > 0 depending on pg, p1, and s (but not «)
such that

zg' (z) — g(z) > Kez°. (4.33)

We see from 1| that 51(432 is increasing, which implies log ;fl(ﬂ is increasing,

which implies & (log gfﬂ) > 0, which implies gg/% — Lth
£33,

> 0, which implies
xg'(z) — g(x) > hg(x) > kpox®, thereby proving

3 .
Item 9:- We find a lower bound for 2¢() 2&0)52 LERE +24/2G(7y) cos u, using ((4.24)),
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(4.30) and (4.31). Indeed,

(2G(7))? cos? usinu

2G(y) cosu
g(x) )
poy T P
>2\f07(:os2usmu+K cosu) T[22 45 cosu
= s+ )ipe leosu) =T 2T
3 3(sz+1)
2 s+1
> 22 P07y -— cos? usinu 4+ Kyy(cosu) =1, /2 PO 8 cosu
(s+1)2p1K§fy (cosu)=+1 s+1
> Ky s B [(cosu) T sinu + (cosu)%]
Item 10:- Now we use our estimates to find a lower bound for (4.29).
dtp
dy
™ 3
7 2g9(y)(zg'(x) — g(x)) [(2G(7))* cos® usinu
= +x\/2G('y)cosu]du
/ (zg(x) +y)° g(@)
K )=+ g(7) (K s st
= COS;(S,},@H() ) (Kot )K 772 [(cos u) 77 sinu + (cosw) 7 |du
/ K4y(cos u) 7T poy® Ko (Kavy(cos u) 77)°
(K5yst1)3

X K7'yT [(cos u)% sinu + (cosu)ﬁ]du
s+1

> Kgy™ 7.

We note in a similar way that

> K ) ,

dy = 97
and hence

dt s

£ Ko™ 5

dy

Next, to complete the proof of the lemma we use the various estimates obtained

above, in (4.21]).
|%§(<Pla'70)| Ky, Kn

s+l sti

<
n(@l”yo)'%(%)"|%(1’70)| n(¢1,7%)% > Yo n(1,7%)

as g — 00. ([l
ly(n,70)] :
Next, we find an upper bound for (o) Using 1|
Lemma 4.4. Suppose g is continuous, super-linear and £ is increasing on (0, 00)
and decreasing on (—00,0). Suppose (w holds. Then there ezists a By < B such
that
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Proof. We have z(1,v) = w giving

"0 0
—0 <21, 10
3 (L,y0) < 3
where 7§ > 0 is defined by G(—+3) = G(v). Suppose z(n,70) > %(’ Then
2(,70) = x(1,70), giving |y(1,70)| < [y(1,70)], and (4.34) holds for any 5o € [, 3).
4.34

Similarly, if 2(n,v9) < —%07 then holds. Hence we assume that

Y0 Yo
- S z{1, Yo S R
p (m:70) p
giving
7 70

This implies if (1,70) > 0, that

(1,70 > ¢2<G<%> O

Similarly, if 2(1,79) < 0, then

ly(1,70)| > \/2<G<70> — G-y,

Since |y(n,70)| < v/2G(70), holds if
573 > G(70)
n? = Gly) - G(3)
i.e.
(53— 1)G(0) = BG(g). (4.35)

*

62

and also
(B2 —n*)G(70) > FRG(~
We claim that for all z € R and § > 1,
G(62) > 62G(2). (4.37)
Suppose s > 0. Then 9(55:) > g;). For z > 0,

oz z z
G(dz) :/ g(t)dt:/ g(55)5d5252/ g(s)ds,
0 0 0
proving the claim. Similarly the claim can be proved for z < 0.
In put z = 23, and § = B%, giving G(y0) > 54(}'(%) and G(vo) >
BAG(~7 ) Hence, and hold if

10y, (4.36)

2

(0-% D5t > 1. (4.38)
0
Taking Gy = (1 —€)0, (4.38) holds if
(2, [
2 l—¢ l1—¢
Bz ==+ L (4.39)

and (4.39) holds for some € > 0 by (4.3]). O
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Pmof of Theorem continued. We divide NUM from (4.19) and DENOM from

(20 by %2(1,790)n(p1,70) % (70) to define

NEWNUM = 52 NUM and
92 (1,70)n(¢1,70) BE (70)
DENOM

NEWDENOM =

55(1,90)n(e1,70) B2 (0)

Now, NEWDENOM — —1 as 7y — oo since the first summand converges to zero
by Lemma [£.3] and the second summand is

t
TQ(%, Y0)

T+ (@1,70)(%13 (70)

);

which converges to —1 since
%)
52 (#1,70)
7&13 <1
(70)

and n(p1,v) — oo. Now,

%(‘P(U Y0)5%0)

NEWNUM = -

ac (L, 70)n(1,70)9 7( o)

5 m,70)[(en,70) B (0) + G2 (#4,70)]

3%(1 Yo)n (1 ’Yo)atp(%) ’
and we set
22 (3(m,70),70)
. oy
MO o (1,70) 22 (70)

NEWNU M — %(nﬁo)[n(%%)ﬁ(%) + 52 (¢4, 70)]

@(17%) (01,70) Z£ (70)

Item 2 of Lemma shows that \ (@(n,7),7)|] < Ky, and hence Lemma
applies to show that NEWNUM1 converges to zero as 79 — o0o. We rewrite
NEWNUM?2 as

z ot
%(77770) n((pna'YO) 873(()07]7’70) )

92 (1,70) n($1,7%)  ne1,70) %%3(%) .

Hence, we get from Lemma [4.3] that

Go (n(ens0) | 55 (m0)
INEW NUM2| < 7( + o D_
n n(@lv’YO) ’I’L(g{)l,’yo) Dy (’yo)

n(@n:70)

nprye) — 1 and

Since
’ %ﬁiQ(soTH’YO)
(801770) g (’Yo)

as g — 00, we have \%\ <1 for 7o sufficiently large. Hence, 1) holds
and the proof of the theorem is complete. O

|0
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Remark 4.5. Given n € (0,1), and 8 € (0, 1), satisfying
n

B < )
\/0.5 +4/0.25 + n?

the solution of - satisfying ¢, (z,2") € (5 + k7, § + (k4 1)7) exists and
is unique, if k is large. Note we have replaced 1 by n in Definition to give
o = - [ WO U0,
m o 22 +y3(t)
The inequality follows from by replacing n and § by their inverses. The
change of variable 7 = 1!t leads to this, using the fact that Theorem holds for
n > 1 too.

(4.40)
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