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LOCAL W 1,p-REGULARITY ESTIMATES FOR WEAK
SOLUTIONS OF PARABOLIC EQUATIONS WITH SINGULAR

DIVERGENCE-FREE DRIFTS
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Abstract. We study weighted Sobolev regularity of weak solutions of non-
homogeneous parabolic equations with singular divergence-free drifts. Assum-

ing that the drifts satisfy some mild regularity conditions, we establish local

weighted Lp-estimates for the gradients of weak solutions. Our results improve
the classical one to the borderline case by replacing the L∞-assumption on so-

lutions by solutions in the John-Nirenberg BMO space. The results are also

generalized to parabolic equations in divergence form with small oscillation
elliptic symmetric coefficients and therefore improve many known results.

1. Introduction and statement of main results

We study local weighted Lp-estimates for the gradients of weak solutions of
parabolic equations with low regularity of the divergence-free drifts. A typical
example is the parabolic equation

ut −∆u− b · ∇u = 0, Rn × (0,∞), (1.1)

where the drift b : Rn × (0,∞) → Rn is of divergence-free, i.e. div(b(·, t)) = 0
in the sense of distribution for a.e. t. Due to its relevance in many applications
such as in fluid dynamics, and biology, the equation (1.1) has been investigated by
many mathematicians (for example [15, 16, 28, 34]). Local boundedness, Harnack’s
inequality, and Hölder’s regularity are established in [15, 24, 28, 32, 34] with possible
singular drifts. Many other classical results with regular drifts can be found in
[14, 17, 18, 19]. Hölder’s regularity for the fractional Laplace type equations of the
form (1.1) are extensively studied recently (see [7, 13, 29]).

Unlike the mentioned work, this note investigates the Sobolev regularity of weak
solutions of (1.1) in weighted spaces. Our goal is to establish local weighted es-
timates of Calderón-Zygmund type for weak solutions of (1.1) with some mild
requirements on the regularity of the drifts b. We study the following parabolic
equation that is more general than (1.1):

ut − div[a(x, t)∇u]− b · ∇u = div(F ), (1.2)
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where a = (aij)ni,j=1 is a given symmetric n × n matrix of bounded measurable
functions, and F, b are given vector fields with div(b) = 0 in distribution sense. The
exact required regularity conditions of a, b, F will be specified.

To state our results, we introduce some notation. For each r > 0, and z0 =
(x0, t0) ∈ Rn × R, we denote Q(z0) the parabolic cylinder in Rn+1

Qr(z)) = Br(x0)× Γr(t0),

where

Γr(t0) = (t0 − r2, t0 + r2), Br(x0) = {x ∈ Rn : ‖x− x0‖ < r}.

When z0 = (0, 0), we also write

Qr = Qr(0, 0), for 0 < r <∞.

As we are interested in the local regularity, we reduce our study to the equation

ut − div[a(x, t)∇u]− b · ∇u = div(F ), in Q2, (1.3)

for given a : Q2 :→ Rn×n, b, F : Q2 → Rn, and

div(b(·, t)) = 0, in the sense of distribution in B2 for a.e. t ∈ Γ2. (1.4)

For the coefficient matrix a, we assume that

a = (aki)nk,i=1 : Q2 → Rn×n is symmetric, measurable,

and there exists Λ such that Λ−1|ξ|2 ≤ 〈a(x, t)ξ, ξ〉 ≤ Λ|ξ|2

for a.e. (x, t) ∈ Q2 and all ξ ∈ Rn.
(1.5)

We also require that the matrix a have a small oscillation. Therefore, we need the
following definition.

Definition 1.1. Let a : Q2 → Rn×n be a measurable matrix valued function. We
define

[a]BMO(Q1) = sup
0<ρ≤1

sup
(y,s)∈Q1

1
|Qρ(y, s)|

∫
Qρ(y,s)

|a(x, t)− āBρ(y)(t)|2 dx dt,

where āU (t) = −
∫
U
a(x, t) dx is the average of a in the set U ⊂ B2.

For the regularity of the vector field b, we need the following function space,
which was introduced in [20, 25].

Definition 1.2. For x0 ∈ Rn and r > 0, a locally square integrable function
f defined in a neighborhood of Br(x0) is said to be in V1,2(Br(x0)) if there is
k ∈ [0,∞) such that∫

Br(x0)

|f(x)|2ϕ(x)2dx ≤ k
∫
Br(x0)

|∇ϕ(x)|2dx, ∀ϕ ∈ C∞0 (Br(x0)). (1.6)

We denote

‖f‖2V1,2(Br(x0)) = inf{k ∈ [0,∞) such that (1.6) holds}.

In this article, the numbers s, s′ ∈ (1,∞), α, and λ are fixed and satisfy

1
s′

+
1
s

= 1, −(n+ 2) ≤ λ ≤ s′, α = λ(s− 1). (1.7)
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We also denote Lp(Q,ω) the weighted Lebesgue space with weight ω:

Lp(Q,ω) =
{
f : Q→ R : ‖f‖Lp(Q,ω) :=

(∫
Q

|f(x, t)|pω(x, t) dx dt
)1/p

<∞
}
,

for 1 < p <∞. At this moment, we refer the readers to Section 2 for the definition of
weak solutions of (1.3), the definition of MuckenhouptAq weights, and the definition
of fractional Hardy-Littlewood maximal functions Mα. Our main result is the
following theorem on local weighted W 1,p-regularity estimates for weak solutions
of (1.3).

Theorem 1.3. Let Λ,M0 be positive numbers, p ∈ (2,∞), and ω ∈ Ap/2. Let
s, s′, λ, α be as in (1.7). Then, there exists δ = δ(Λ,M0, s, λ, [ω]Ap/2 , p, n) > 0
sufficiently small such that the following holds: Suppose that a satisfies (1.5), F ∈
L2(Q2), and b ∈ L∞(Γ2,V1,2(B2)) such that (1.4) holds, and

[a]BMO(Q1) < δ, ‖b‖L∞(Γ2,V1,2(B2)) ≤M0.

Then for every weak solution u of (1.3), the following estimate holds∫
Q1

|∇u|pω(z)dz ≤ C
[
‖F‖pLp(Q2,ω) + [u]ps′,λ,Q1

∥∥Mα,Q2(|b|s)2/s
∥∥p/2
Lp/2(Q2,ω)

+ ω(Q1)‖∇u‖pL2(Q2)

]
,

(1.8)

as long as its right hand side is finite. Here, [u]s′,λ,Q1 is the parabolic semi-
Campanato’s norm of u on Q1,

[u]s′,λ,Q1 = sup
0<ρ<1,z∈Q1

[
ρ−λ−

∫
Qρ(z)

|u(x, t)− ūQρ(z)|s
′
dx dt

]1/s′
,

and C > 0 is a constant depending only on Λ,M0, s, λ, p, n and [ω]Ap/2 .

We now point out a few remarks regarding Theorem 1.3. Firstly, observe that
the standard Calderón-Zygmund theory can be applied directly to (1.3) to obtain

‖∇u‖Lp(Q1) ≤ C
[
‖u‖L∞(Q2)‖b‖Lp(Q2) + . . .

]
,

as long as u ∈ L∞(Q2). Theorem 1.3 improves this Calderón-Zygmund estimate
theory for the equation (1.3) to the borderline case, replacing the assumption u ∈
L∞(Q2) by u ∈ BMO(Q1). Indeed, if we take λ = 0 (and then α = 0), then the
estimate (1.8) reduces to

‖∇u‖Lp(Q1,ω) ≤ C
[
‖u‖BMO(Q1)‖b‖Lp(Q2,ω) + . . .

]
. (1.9)

Secondly, the weighted W 1,p-regularity estimates are useful in some applications.
For example, in [2, 3], the weighted W 1,p-regularity estimates are key ingredients
for proving the existence and uniqueness of very weak solutions of some classes of
elliptic equations. Moreover, with some specific choice of ω, the weighted estimate
(1.8) is known to produce the regularity estimates for ∇u in Morrey spaces, see for
example [1, 4, 10, 21]. Lastly, when α > 0, because Mα ≤ Iα, the Riesz potential
of order α, we observe that the fractional Hardy-Littlewood maximal function of
order α of b, i.e. Mα(|b|s)2/s, is more regular than b. This fact enables the estimate
(1.8) to be useful in some applications. To see this, we just simply consider the
stationary case (i.e. u is time independent), n ≥ 3 and s = 2. Assume, for example,
that b ∈ Ln,∞(B2) ⊂ V1,2(B2), where Ln,∞ is the weak Ln-space, and assume also
that F is regular enough. Then, it is proved in [28, 34] that u is Hölder. Therefore,
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[u]2,λ,B1 < ∞ with some λ > 0. From this, and (1.7), we see that α > 0, and we
then can find some small constant ε0 > 0 such that

‖Mα,B2(|b|)‖Lp(B2) ≤ C‖b‖Ln,∞(B2) <∞, for all p < n+ ε0.

Therefore, (1.8) gives the estimate of ‖∇u‖Lp(B1) with some p ∈ [2, n + ε0). This
estimate with p > n is useful in [12] to prove the regularity, and uniqueness of very
weak W 1,q-solution of the stationary equation of (1.3), with 1 < q < 2. Details of
this discussion and its application can be also found in [26].

We use perturbation approach introduced in [6] to prove Theorem 1.3. Our ap-
proach is also influenced by [5, 11, 21, 23, 27, 33]. To implement the approach,
we introduce the function B(x, t) =

(
[u]s′,λ,Q1 |b(x, t)|

)s in (5.1), which is invariant
under the standard dilation, and translation. This function also captures the can-
cellation due to the divergence-free of the vector field b, which is the main reason
so that the estimate (1.9) holds in the borderline case. The results on the dou-
bling property and reverse Hölder’s inequality for the Muckenhoupt weights due
to Coifman, and Fefferman in [8] are also used frequently to derive the weighted
estimates.

We conclude the section by introducing the organization of the paper. Section
2 gives definitions, notations, and some preliminaries results needed in the paper.
Some simple energy estimates for weak solutions of (1.3) is given in Section 3. The
main step in the perturbation technique, the approximation estimates, is carried
out in Section 4. Section 5.1 is about the proof of Theorem 1.3.

2. Definitions of weak solutions, and preliminaries on weighted
inequalities

2.1. Definitions of weak solutions. For each z0 = (x0, t0) ∈ Rn×R, and for any
parabolic cylinder QR(z0), we denote ∂pQR(z0) the parabolic boundary of QR(z0),
i.e.

∂pQR(z0) = (BR(x0)× {t0 −R2}) ∪ (∂BR(x0)× [t0 −R2, t0 +R2]).

The following standard definitions of weak solutions are also recalled.

Definition 2.1. Let Qr be a parabolic cube. For every f ∈ L2(Qr), F, b ∈ L2(Qr)n,
we say that u is a weak solution of

ut − div[a∇u]− b · ∇u = div(F ) + f, in Qr,

if u ∈ L2(Γr, H1(Br)), ut ∈ L2(Γr, H−1(Br)), and∫
Γr

〈ut, ϕ〉H−1(Br),H1
0 (Br))dt+

∫
Qr

[
〈a∇u,∇ϕ〉 − b · ∇uϕ

]
dx dt

=
∫
Qr

[fϕ− 〈F,∇ϕ〉] dx dt,

for all ϕ ∈ {φ ∈ C∞(Qr) : φ = 0 on ∂pQr}.

The following definition of weak solution is also needed.

Definition 2.2. Let Qr be a parabolic cube. For every f ∈ L2(Qr), F, b ∈ L2(Qr)n,
and for g ∈ L2(Γr, H1(Br)), we say that u is a weak solution of

ut − div[a∇u]− b · ∇u = div(F ) + f, in Qr,

u = g, on ∂pQr,
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if u is a weak solution of

ut − div[a∇u]− b · ∇u = div(F ) + f, in Qr,

in the sense of Definition 2.1 and u− g ∈ {φ ∈ L2(Γr, H1(Br) : φ = 0 on ∂pQr}.

2.2. Munckenhoupt weights and Hardy-Littlewood maximal functions.
For each 1 ≤ q <∞, a non-negative, locally integrable function µ : Rn+1 → [0,∞)
is said to be in the class of parabolic Aq of Muckenhoupt weights if

[µ]Aq := sup
r>0,z∈Rn+1

(
−
∫
Qr(z)

µ(x, t) dx dt
)(
−
∫
Qr(z)

µ(x, t)
1

1−q dx dt
)q−1

<∞,

if q > 1, and

[µ]A1 := sup
r>0,z∈Rn+1

(
−
∫
Qr(z)

µ(x, t) dx dt
)
‖µ−1‖L∞(Qr(z)) <∞ if q = 1.

It is well known that the class of Ap-weights satisfies the reverse Hölder’s inequality
and the doubling properties, see for example [8, 9, 30]. In particular, a measure with
an Ap-weight density is, in some sense, comparable with the Lebesgue measure.

Lemma 2.3 ([8]). For 1 < q <∞, the following two statements hold
(i) If µ ∈ Aq, then for every parabolic cube Q ⊂ Rn+1 and every measurable

set E ⊂ Q, µ(Q) ≤ [µ]Aq (
|Q|
|E| )

qµ(E);
(ii) If µ ∈ Aq, then there is C = C([µ]Aq , n) and β = β([µ]Aq , n) > 0 such

that µ(E) ≤ C( |E||Q| )
βµ(Q), for every parabolic cube Q ⊂ Rn+1 and every

measurable set E ⊂ Q.

Let us also recall the definition of the parabolic fractional Hardy-Littlewood
maximal operators which will be needed later.

Definition 2.4. Let α ∈ R, the parabolic Hardy-Littlewood fractional maximal
function of order α of a locally integrable function f on Rn+1 is defined by

(Mαf)(x, t) = sup
ρ>0

ρα−
∫
Qρ(x,t)

|f(y, s)| dy ds.

If f is defined in a region U ⊂ Rn × R, then we denote

Mα,Uf =Mα(χUf).

Moreover, when α = 0, we write

Mf =M0f, MUf =M0,Uf.

The following boundedness of the Hardy-Littlewood maximal operator is due to
Muckenhout [22]. For the proof of this lemma can be found in [9, 30].

Lemma 2.5. Assume that µ ∈ Aq for some 1 < q < ∞. Then, the following
statements hold:

(i) Strong (q, q): There exists a constant C = C([µ]Aq , n, q) such that

‖M‖Lq(Rn+1,µ)→Lq(Rn+1,µ) ≤ C.
(ii) Weak (1, 1): There exists a constant C = C(n) such that for any λ > 0, we

have ∣∣{(x, t) ∈ Rn+1 :M(f) > λ
}∣∣ ≤ C

λ

∫
Rn+1

|f(x, t)| dx dt.
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2.3. Some useful measure theory lemmas. We collect some results needed in
the paper. Our first lemma is the standard result in in measure theory.

Lemma 2.6. Assume that g ≥ 0 is a measurable function in a bounded subset
U ⊂ Rn+1. Let θ > 0 and $ > 1 be given constants. If µ is a weight in L1

loc(Rn+1),
then for any 1 ≤ p <∞

g ∈ Lp(U, µ)⇔ S :=
∑
j≥1

$pjµ({x ∈ U : g(x) > θ$j}) <∞.

Moreover, there exists a constant C > 0 such that

C−1S ≤ ‖g‖pLp(U,µ) ≤ C(µ(U) + S),

where C depends only on θ,$ and p.

The following lemma is commonly used, and it is a consequence of the Vitali’s
covering lemma; its proof can be found in [21, Lemma 3.8].

Lemma 2.7. Let µ be an Aq weight for some q ∈ (1,∞) be a fixed number. Assume
that E ⊂ K ⊂ Q1 are measurable sets for which there exists ε, ρ0 ∈ (0, 1/4) such
that

(i) µ(E) < εµ(Q1(z)) for all z ∈ Q1, and
(ii) for all z ∈ Q1 and ρ ∈ (0, ρ0], if µ(E ∩ Qρ(z)) ≥ εµ(Qρ(z)), then Qρ(z) ∩

Q1 ⊂ K.
Then with ε1 = ε(20)(n+2)q[µ]2Aq , the following estimate holds

µ(E) ≤ ε1 µ(K).

3. Caccioppoli’s type estimates

Suppose that a satisfies (1.5), and b ∈ L∞(Γ2,V1,2(B2))n∩L2(Q2)n with div(b) =
0. In this section, let u be a weak solution of

ut − div[a(x, t)∇u]− b(x, t) · ∇u = div(F ), in Q2.

Also, let v be the weak solution of

vt − div[āB7/4(t)∇v] = 0, Q7/4,

v = u, ∂pQ7/4.

The meanings for weak solutions of these equations are given in Definition 2.1 and
Definition 2.2, respectively. We will derive some fundamental estimates for u and
v.

Lemma 3.1. Let w = u− v, then there exists a constant C depending on only Λ, n
such that

sup
t∈Γ7/4

∫
B7/4

w2(x, t)dx+
∫
Q7/4

|∇w|2 dx dt

≤ C
[(
‖b‖2L∞(Γ2,V1,2(B2)) + 1

)∫
Q7/4

|∇u|2 dx dt+
∫
Q7/4

|F |2 dx dt
]
.

Proof. Note that w is a weak solution of

wt − div[āB7/4(t)∇w + (a− āB7/4(t))∇u]− b · ∇u = div(F ), in Q7/4,

w = 0, on ∂pQ7/4.
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Multiplying this equation by w, and using the integration by parts in x, we see that

1
2
d

dt

∫
B7/4

w2(x, t)dx+
∫
B7/4

〈āB7/4(t)∇w,∇w〉dx

= −
∫
B7/4

〈(a− āB7/4(t))∇u,∇w〉dx+
∫
B7/4

[b · ∇u]wdx−
∫
B7/4

F · ∇wdx.

Then, by integrating this equality in time and using the ellipticity condition (1.5),
we obtain

1
2

sup
Γ7/4

∫
B7/4

w2dx+ Λ−1

∫
Q7/4

|∇w|2 dx dt

≤
∫
Q7/4

|〈(a− āB7/4(t))∇u,∇w〉| dx dt+
∫
Q7/4

|b · ∇uw| dx dt

+
∫
Q7/4

[
|F · ∇w|

]
dx dt.

(3.1)

We now estimate term by term the right-hand side of (3.1). From Hölder’s inequal-
ity, and the Young’s inequality, and the fact that w = 0 on ∂pQ7/4, the second term
in the right hand side of (3.1) can be estimated as∫

Q7/4

|b||w||∇u| dx dt

≤
{∫

Q7/4

|b|2w2 dx dt
}1/2{∫

Q7/4

|∇u|2 dx dt
}1/2

≤ ‖b‖L∞(Γ2,V1,2(B2))

{∫
Q7/4

|∇w|2 dx dt
}1/2{∫

Q7/4

|∇u|2 dx dt
}1/2

≤ Λ−1

6

∫
Q7/4

|∇w|2 dx dt+ C(Λ)‖b‖2L∞(Γ2,V1,2(B2))

∫
Q7/4

|∇u|2 dx dt.

(3.2)

On the other hand, by the boundedness of a in (1.5), and the Hölder’s inequality,
we conclude that∫
Q7/4

|〈(a− āB7/4)∇u,∇w〉| dx dt ≤ C(Λ)
∫
Q7/4

|∇u|2 dx dt+ Λ−1

6

∫
Q7/4

|∇w|2 dx dt,

and ∫
Q7/4

|F · ∇w| dx dt ≤ C(Λ)
∫
Q7/4

|F |2 dx dt+
Λ−1

6

∫
Q7/4

|∇w|2 dx dt.

Collecting all of the estimates, from (3.1) we obtain

1
2

sup
Γ7/4

∫
B7/4

w2(x, t)dx+ Λ−1

∫
Q7/4

|∇w|2 dx dt

≤ Λ−1

2

∫
Q7/4

|∇w|2 dx dt+ C
([
‖b‖2L∞(Γ2,V1,2(B2)) + 1

] ∫
Q7/4

|∇u|2 dx dt

+
∫
Q7/4

|F |2dx
)
.
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Therefore,

sup
t∈Γ7/4

∫
B7/4

w2(x, t)dx+
∫
Q7/4

|∇w|2 dx dt

≤ C(Λ)
([
‖b‖2L∞(Γ2,V1,2(B2)) + 1

] ∫
Q7/4

|∇u|2 dx dt+
∫
Q7/4

|F |2 dx dt
)
.

The proof is complete. �

The following version of local energy estimate for w = u− v is also needed.

Lemma 3.2. There exists a constant C = C0 depending only on Λ, n such that for
w = u − v, and for every smooth, non-negative cut-off function ϕ ∈ C∞0 (Qr) with
0 < r ≤ 7/4, it holds

sup
t∈Γr

∫
Br

w2ϕ2dx+
∫
Qr

|∇w|2ϕ2 dx dt

≤ C0

{[
‖b‖2L∞(Γ2,V1,2(B2)) + 1

] ∫
Qr

w2
[
ϕ2 + |∂tϕ|2 + |∇ϕ|2] dx dt+

∫
Qr

|F |2ϕ2 dx dt

+ ‖∇vϕ‖L∞(Q7/4)‖b‖L∞(Γ2,V(B2))‖∇ϕ‖L2(Q7/4)

{∫
Qr

|w|2ϕ2 dx dt
}1/2

+ ‖|∇v|ϕ‖2L∞(Qr)

∫
Qr

|a− āB7/4(t)|2 dx dt
}
.

Proof. We write Q = Qr, B = Br, and Γ = Γr. Note that w is a weak solution of

wt − div[a∇w + (a− āB7/4)∇v]− b · ∇w − b · ∇v = div(F ), in Q7/4.

By using wϕ2 as a test function of the equation of w, we obtain

1
2
d

dt

∫
B

w2(x, t)ϕ2(x, t)dx+
∫
B

〈a∇w,∇w〉ϕ2dx

= −
∫
B

〈a∇w,∇(ϕ2)〉wdx−
∫
B

〈(a− āB7/4(t))∇v, ϕ2∇w + 2wϕ∇ϕ〉dx

+
∫
B

[b · ∇w]wϕ2dx+
∫
B

[b · ∇v]wϕ2dx

−
∫
B

〈F,∇(wϕ2)〉+
∫
B

w2ϕϕtdx.

(3.3)

Note again that the second term in the left hand side of (3.3) can be estimated
using (1.5) as ∫

Q

〈a∇w,∇w〉ϕ2 dx dt ≥ Λ−1

∫
Q

|∇w|2ϕ2 dx dt.

Also, from the integration by parts in x, and div(b) = 0, we also have∫
B

[b · ∇w]wϕ2dx =
1
2

∫
B

[b · ∇(w2)]ϕ2dx = −
∫
B

[b · ∇ϕ]ϕw2dx.
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Hence, (3.3) implies

1
2
d

dt

∫
B

w2(x, t)ϕ2(x, t)dx+ Λ−1

∫
B

|∇w|2ϕ2dx

≤
∫
B

|〈a∇w,∇(ϕ2)〉w|dx+
∫
B

|〈(a− āB7/4(t))∇v, ϕ2∇w + 2wϕ∇ϕ〉|dx

+
∫
B

|[b · ∇ϕ]w2ϕ|dx+
∫
B

|[b · ∇v]wϕ2|dx

+
∫
B

[
|〈F,∇(wϕ2)〉|+ 2w2|ϕϕt|

]
dx.

By integrating this inequality in time, and using the L∞-bound of a from (1.5), we
infer that

1
2

sup
t∈Γr

∫
B

w2(x, t)ϕ2(x, t)dx+ Λ−1

∫
Q

|∇w|2ϕ2 dx dt

≤ 2
∫
Q

|∇w||∇ϕ||ϕw| dx dt

+
∫
Q

|a− āB7/4 ||∇v|
[
ϕ2|∇w|+ 2|w|ϕ||∇ϕ|

]
dx dt

+
∫
Q

|b||∇ϕ|w2ϕdx dt+
∫
Q

|b||∇v||w|ϕ2 dx dt

+
∫
Q

[
|〈F,∇(wϕ2)〉|+ 2w2|ϕϕt|

]
dx dt.

(3.4)

We now pay particular attention to the terms in the right hand side of (3.4) in-
volving b, as other terms can be estimated exactly as in Lemma 3.1. By using the
Hölder’s inequality and Young’s inequality, we see that∫

Q

w2ϕ|b||∇ϕ| dx dt

≤
{∫

Q

|b|2w2ϕ2
}1/2{∫

Q

w2|∇ϕ|2 dx dt
}1/2

≤ ‖b‖L∞(Γ7/4 V1,2(B7/4))

{∫
Q

|∇(wϕ)|2 dx dt
}1/2{∫

Q

w2|∇ϕ|2 dx dt
}1/2

≤ ε
∫
Q

|∇w|2ϕ2 dx dt+ C(ε)‖b‖2L∞(Γ7/4 V1,2(B7/4))

∫
Q

w2|∇ϕ|2 dx dt,

for any arbitrary ε > 0. Similarly, we obtain∫
Q

|b||∇v||w|ϕ2 dx dt

≤ ‖∇vϕ‖L∞(Q)

{∫
Q

|b|2ϕ2 dx dt
}1/2{∫

Q

|w|2ϕ2 dx dt
}1/2

≤ ‖∇vϕ‖L∞(Q)‖b‖L∞(Γ7/4,V1,2(B7/4))‖∇ϕ‖L2(Q7/4)

{∫
Q

|w|2ϕ2 dx dt
}1/2

.

The other terms can be estimated similarly. Then, collecting all the estimates and
choose ε sufficiently small, we obtain the desired result. �
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4. Approximation estimates

We apply the “freezing coefficient” technique to establish the regularity estimates
for weak solutions of (1.3). To do this, we approximate the weak solution u of the
equation

ut − div[a∇u]− b · ∇u = div(F ) in Q2, (4.1)

by the weak solution v of the equation

vt − div[āB7/4(t)∇v] = 0, in Q7/4,

v = u, on ∂pQ7/4
(4.2)

Again, the meanings for weak solutions of equations (4.1)-(4.2) are given in Defi-
nition 2.1 and Definition 2.2, respectively. We essentially follow the method in our
recent work [11, 23], which in turn is influenced by [5, 6, 27, 33]. We first begin with
the standard result on the regularity of weak solution of the constant coefficient
equation (4.2).

Lemma 4.1. There exists a constant C depending only on the ellipticity constant
Λ and n such that if v is a weak solution of

vt − div[āB7/4(t)∇v] = 0 in Q7/4,

then

‖∇v‖L∞(Q 3
2

) ≤ C
(
−
∫
Q7/4

|∇v(x, t)|2 dx dt
)1/2

.

Our next lemma confirms that we can approximate in L2(Q7/4) the solution u
of (4.1) by the solution v of (4.2) if the coefficients and the data are sufficiently
close to each others.

Lemma 4.2. Let M0,Λ > 0 and s > 1, be fixed. Then, for every ε > 0, there exists
δ > 0 depending on only ε,Λ, n,M0, s such that the following statement holds: For
every a, b, F such that if (1.5) holds, ‖b‖L∞(Γ2,V1,2(B2)) ≤M0, , and{

−
∫
Q7/4

|a− āB7/4(t)|2 dx dt
}1/2

+
{
−
∫
Q2

|F |2 dx dt
}1/2

+
{
−
∫
Q2

|b|s dx dt
}1/s{

−
∫
Q2

|û|s
′
dx dt

}1/s′

≤ δ
(4.3)

with û = u− ūQ2 , then every weak solution u of (4.1) with

−
∫
Q2

|∇u|2 dx dt ≤ 1,

the weak solution v of (4.2) satisfies

−
∫
Q7/4

|u− v|2 dx dt ≤ ε, −
∫
Q7/4

|∇v|2 dx dt ≤ C(Λ,M0, n).

Proof. Note that once the existence of v is proved, it follows from Lemma 3.1 and
the assumption (4.3) that∫

Q7/4

|∇w|2 dx dt ≤ C[M0 + 1], where w = u− v.



EJDE-2017/75 EQUATIONS WITH DIVERGENCE-FREE DRIFTS 11

From this, and using (4.3), we infer that

−
∫
Q7/4

|∇v|2 dx dt ≤ −
∫
Q7/4

|∇w|2 dx dt+−
∫
Q7/4

|∇u|2 dx dt ≤ C(Λ,M0, n).

Therefore, we only need to prove the existence of δ. We use the contradiction argu-
ment as this method works well for nonlinear equations, and non-smooth domains.
Assume that there exist M0,Λ > 0, s, s′, λ, and ε0 > 0 be as in the assumption such
that for every k ∈ N, there are Fk, ak, bk, such that{

−
∫
Q7/4

|ak − āk,B7/4(t)|2 dx dt
}1/2

+
{
−
∫
Q2

|Fk|2 dx dt
}1/2

+
{
−
∫
Q2

|bk|s dx dt
}1/s{

−
∫
Q2

|ûk|s
′
dx dt

}1/s′

≤ 1
k
, for ûk = uk − ūk,Q2

(4.4)

and a weak solution uk of

∂tuk − div[ak∇uk]− bk · ∇uk = div(Fk), Q2, (4.5)

satisfying

−
∫
Q2

|∇uk|2 dx dt ≤ 1, (4.6)

but for the weak solution vk of

∂tvk − div[āk,B7/4(t)∇vk] = 0, in Q7/4,

vk = uk, on ∂pQ7/4,
(4.7)

we have

−
∫
Q7/4

|uk − vk|2 dx dt ≥ ε0. (4.8)

Since āk,B7/4(t) is a bounded sequence in L∞(Γ7/4,Rn×n), we can also assume that
there is ā(t) in L∞(Γ7/4,Rn×n)) such that āk,B7/4 ⇀ ā weakly-* in L∞(Γ7/4; Rn×n).
This means that for each vector ξ ∈ Rn, and for all function φ ∈ L1(Γ7/4), we have∫

Γ7/4

〈ā(t)ξ, ξ〉φ(t)dt = lim
k→∞

∫
Γ7/4

〈āk,B7/4(t)ξ, ξ〉φ(t)dt. (4.9)

Also, for each k ∈ N, let wk = uk − vk, we see that wk is a weak solution of

∂twk − div[āk,B7/4∇wk + (ak − āk,B7/4)∇uk]− bk · ∇uk
= div[Fk], Q7/4,

wk = 0, ∂pQ7/4.

(4.10)

From (4.4), and (4.6), we can apply Lemma 3.1 to yield

sup
Γ7/4

∫
B7/4

|wk|2dx+
∫
Q7/4

|∇wk|2 dx dt ≤ C, ∀k ∈ N. (4.11)

This estimate, together with (4.4), (4.6), and the PDE in (4.10), we conclude that
{wk}k is a bounded sequence in E(Q7/4), where

E(Q7/4) = {g ∈ L2(Γ7/4, H
1(B7/4)) : gt ∈ L2(Γ7/4, H

−1(B7/4), g = 0 on ∂pQ7/4}.
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By the Aubin-Lions theorem that the imbedding E(Q7/4) ↪→ C(Γ7/4, L
2(B7/4)) is

continuous and E(Q7/4) ↪→ L2(Q7/4)) is compact, see for example [31]. Then, by
passing through a subsequence, we can assume that there is w ∈ E(Q7/4) such that

wk → w strongly in L2(Q7/4), ∇wk ⇀ ∇w weakly in L2(Q7/4),

∂twk ⇀ ∂tw weakly-* in L2(Γ7/4;H−1(B7/4)),
wk → w a.e. in Q7/4.

(4.12)

From (4.8) and (4.12), it follows that

−
∫
Q7/4

w2 dx dt ≥ ε0. (4.13)

Moreover, from the boundary condition wk = 0 on ∂pQ7/4, and (4.12), we also
conclude that, in the trace sense,

w = 0, ∂pQ7/4. (4.14)

We claim that w is a weak solution of
wt − div[ā(t)∇w] = 0, Q7/4,

w = 0, ∂pQ7/4
(4.15)

From this, and by the uniqueness of the weak solution of this equation, we infer
that w = 0 and this contradicts to (4.13). Thus, it remains to prove that w is a
weak solution of (4.15). To prove this, we pass the limit as k → ∞ of (4.10). By
(4.14), we only need to find the limits as k → ∞ for each term in the weak form
of the equation (4.10). Let us fix a test function ϕ ∈ C∞(Q7/4) with ϕ = 0 on
∂pQ7/4. Then, it is easy to see from (4.4), and (4.6) that

lim
k→∞

∫
Q7/4

Fk · ∇ϕdx dt = 0, lim
k→∞

∫
Q7/4

〈(ak − āk,B7/4(t))∇uk,∇ϕ〉 dx dt = 0.

Further more, from (4.12), we also find that

lim
k→∞

∫
Γ7/4

〈∂twk, ϕ〉H−1(B7/4),H1
0 (B7/4)dt =

∫
Γ7/4

〈∂tw,ϕ〉H−1(B7/4),H1(B7/4)dt.

For the term involving bk, since div(bk) = 0, we can use the integration by parts in
x to write∫

Q7/4

[bk · ∇uk]ϕdx dt = −
∫
Q7/4

[
b · ∇ϕ

]
ûk dx dt, ûk = uk − ūk,Q2 .

Then, by Hölder’s inequality and (4.6), see that∣∣∣ ∫
Q7/4

[bk · ∇uk]ϕdx dt
∣∣∣ ≤ ‖∇ϕ‖L∞(Q7/4)

{∫
Q2

|bk|s dx dt
}1/s{∫

Q2

|ûk|s
′
dx dt

}1/s′

≤
|Q7/4|
k1/2

‖∇ϕ‖L∞(Q7/4) → 0, as k →∞.

Finally, since āk,B7/4 and ā are independent on x, by integrating by parts in x, we
have∫

Q7/4

[
〈āk,B7/4(t)∇wk,∇ϕ〉 − 〈ā(t)∇w,∇ϕ〉

]
dx dt
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= −
n∑

i,j=1

∫
Q7/4

[
wkā

ij
k,B7/4

(t)∂xixjϕ− wāij(t)∂xixjϕ
]
dx dt

= −
n∑

i,j=1

∫
Q7/4

{
āijk,B7/4

(t)∂xixjϕ
[
wk − w

]
+ w∂xixjϕ

[
āijk,B7/4

(t)− āij(t)
]}

dx dt

Hence, it follows from (4.9) and (4.12) that

lim
k→∞

∫
Q7/4

[
〈āk,B7/4(t)∇wk, ϕ〉 − 〈ā(t)∇w,∇ϕ〉

]
dx dt = 0.

Collecting the resutls, we obtain∫
Γ7/4

〈wt, ϕ〉H−1(B7/4),H1
0 (B7/4)dt+

∫
Q7/4

〈ā(t)∇w,∇ϕ〉 dx dt = 0,

for all ϕ ∈ C∞(Q7/4) : ϕ = 0 on ∂pQ7/4. Thus, w is a weak solution of (4.15). The
proof is then complete. �

Lemma 4.3. Let M0, s > 0, and Λ > 0 be fixed. Then, for every ε > 0, there exists
δ > 0 depending on n,M0,Λ, s, and ε such that the following statement holds true:
For every a, b, F such that if (1.5) holds, ‖b‖L∞(Γ2,V1,2(B2)) ≤M0, and{

−
∫
Q7/4

|a− āB7/4(t)|2 dx dt
}1/2

+
{
−
∫
Q2

|F |2 dx dt
}1/2

+
{
−
∫
Q2

|b|s dx dt
}1/s{

−
∫
Q2

|û|s
′
dx dt

}1/s′

≤ δ

then, for every weak solution u of (4.1) with −
∫
Q2
|∇u|2 dx dt ≤ 1, the weak solution

v of (4.2) satisfies

−
∫
Q3/2

|∇u−∇v|2 dx dt ≤ ε.

Moreover, there is C = C(Λ,M0, n) such that

‖∇v‖L∞(Q 3
2

) ≤ C(n,Λ,M0). (4.16)

Proof. Let µ > 0 to be determined. By Lemma 4.2, there exists δ1 > 0 such that if
‖b‖L∞(Γ2,V1,2(B2)) ≤M0, and{

−
∫
Q7/4

|a− āB7/4(t)|2 dx dt
}1/2

+
{
−
∫
Q2

|F |2 dx dt
}1/2

+
{
−
∫
Q2

|b|s dx dt
}1/s{

−
∫
Q2

|û|s
′
dx dt

}1/s′

≤ δ1,

then
−
∫
Q7/4

|u− v|2 dx dt ≤ µ, −
∫
Q7/4

|∇v|2 dx dt ≤ C(Λ,M0). (4.17)

where u is a weak solution of (4.1), and v is a weak solution of (4.2) and

−
∫
Q2

|∇u|2 dx dt ≤ 1.

From (4.17) and Lemma 4.1, we con conclude that

‖∇v‖L∞(Q 3
2

) ≤ C(n,Λ,M0).
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Note that without loss of generality, we can assume that δ1 ≤ µ. Therefore, applying
Lemma 3.2, we obtain

−
∫
Q3/2

|∇u−∇v|2 dx dt ≤ C(Λ,M0, n)µ1/2.

Therefore, if we choose µ such that µ1/2 = ε/C(Λ,M0, n), the proof is complete. �

We in fact need a localized version of Lemma 4.3. For each r > 0 and z0 =
(x0, t0) ∈ Q1, we approximate a weak solution of the equation

ut − div[a∇u]− b · ∇u = div(F ), in Q2r(z0), (4.18)

by the weak solution of
vt − div[āB7r/4(x0)(t)∇v] = 0, in Q7r/4(z0),

v = u, on ∂pQ7r/4(z0).
(4.19)

We then have the following lemma, which is the main result of the section.

Lemma 4.4. Let Λ > 0, s > 1, and M0 > 0 be fixed. Then, for any ε > 0, there
exists δ > 0 depending only on ε, Λ,M0, s and n such that the following statement
holds true: For every z0 ∈ Q1, 0 < r ≤ 1, and for every a, b, F such that (1.5) holds
for a, and{

−
∫
Q7r/4(z0)

|a− āB7r/4(x0)|2 dx dt
}1/2

+
{
−
∫
Q2r(z0)

|F |2 dx dt
}1/2

+
{
−
∫
Q2r(z0)

|u− ūQ2r(z0)|s
′
}1/s′{

−
∫
Q2r(z0)

|b|s dx dt
}1/s

≤ δ
(4.20)

then for every weak solution u of (4.1) with

−
∫
Q2r(z0)

|∇u|2 dx dt ≤ 1, (4.21)

the weak solution v of (4.19) satisfies

−
∫
Q3r/2(z0)

|∇u−∇v|2 dx dt ≤ ε, and ‖∇v‖L∞(Q3r/2(z0)) ≤ C(Λ,M0, n). (4.22)

Proof. Given any ε > 0, let δ = δ(ε,Λ,M0, s, n) > 0 be defined as in Lemma 4.3.
We now show that Lemma 4.4 holds with this δ. Let u, v satisfy the conditions in
of Lemma 4.4. Without loss of generality, we can assume that z0 = (0, 0). Let us
define

u′(x, t) =
u(rx, r2t)

r
, v′(x, t) =

v(rx, r2t)
r

, a′(x, t) = a(rx, r2t).

Also, let us denote

F ′(x, t) = F (rx, r2t), b′(x, t) = rb(rx, r2t).

Then u′ is a weak solution of

u′t − div[a′∇u′]− b′ · ∇u′ = div(F ′) in Q2

and v′ is a weak solution of

v′t = div[ā′B7/4(t)∇v′] in Q7/4,

v′ = u′ on ∂pQ7/4.
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We now check that the conditions in Lemma 4.3 hold with a′, b′, u′, F ′ and v′. A
simple calculation shows

‖b′‖L∞(Γ2,V1,2(B2)) = ‖b‖L∞(Γ2r,V1,2(B2r)) ≤M0,

−
∫
Q7/4

[
|a′ − a′B3 |2 dx dt = −

∫
Q7r/4

|a− āB7r/4 |
2 dx dt,

−
∫
Q2

|F ′|2 dx dt = −
∫
Q2r

|F |2 dx dt.

Also,

−
∫
Q2

|∇u′|2 dx dt = −
∫
Q2r

|∇u|2 dx dt ≤ 1,{
−
∫
Q2

|u′ − ū′Q2
|s
′
}1/s′{

−
∫
Q2

|b′|s dx dt
}1/s

=
{
−
∫
Q2r

|u− ūQ2r |s
′
}1/s′{

−
∫
Q2r

|b|s dx dt
}1/s

.

Therefore, if (4.20) and (4.21) hold, then all conditions in Lemma 4.3 are met.
Hence, we have

−
∫
Q3/2

|∇u′(x, t)−∇v′(x, t)|2 dx dt ≤ ε, and ‖v′‖L∞(Q3/2) ≤ C(Λ, n).

Integrating by substitution, we obtain

−
∫
Q3r/2

|∇u(x, t)−∇v(x, t)|2 dx dt ≤ ε, and ‖∇v‖L∞(Q3r/2) ≤ C(Λ, n).

The proof is complete. �

5. Weighted density estimates and weighted W 1,p-regularity
estimates

5.1. Weighted density estimates. We will derive the estimate of ‖∇u‖Lp(Q1,ω)

for solution u of (4.1) by estimating the distribution functions of the maximal
function of |∇u|2. Our first lemma gives a density estimate for the distribution of
MQ2(|∇u|2), where the maximal operator MQ2 is defined in Definition 2.4. From
now let us fixe s, s′ ∈ (1,∞), α > 0 and λ satisfying (1.7). If u is a weak solution
of (4.1), we define

B(x, t) =
(
[u]s′,λ,Q1 |b(x, t)|

)s
, (5.1)

where [u]s′,λ,Q1 is the parabolic semi-Campanato’s norm of u on Q1,

[u]s′,λ,Q1 = sup
0<ρ<1,z∈Q1

[
ρ−λ−

∫
Qρ(z)

|u(x, t)− ūQρ(z)|s
′
dx dt

]1/s′
.

Lemma 5.1. Let Λ > 0, M0 > 0 be fixed, and ω ∈ Aq for some 1 < q < ∞.
Let s, λ, α be as in (1.7). Then, there exists a constant N > 1 depending only on
Λ,M0, s, λ and n such that for every ε > 0, we find δ = δ(ε,M0,Λ, s, λ, [ω]Aq , n) > 0
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such that the following statement holds: Suppose that (1.5) holds for the matrix a,
div(b) = 0, and |F |, |b| ∈ L2(Q2).

sup
0<ρ≤1

sup
(y,s)∈Q1

−
∫
Qρ(y,s)

|a(x, t)− āBρ(y)(t)|2 dx dt ≤ δ,

‖b‖L∞(Γ2,V1,2(B2)) ≤M0,

(5.2)

and for a weak solution u of (4.1) and for every z = (y, τ) ∈ Q1, and 0 < r ≤ 1/2
if the set

Qr(z) ∩Q1 ∩
{
Q2 : MQ2(|∇u|2) ≤ 1

}
∩ {Q2 :MQ2(|F |2) +Mα,Q2(B)2/s ≤ δ},

is non-empty, then

ω
(
{Q1 : MQ2(|∇u|2) > N} ∩Qr(z)

)
≤ εω

(
|Qr(z)

)
.

Proof. Let η > 0 depending only on ε,Λ,M0, s, [ω]Aq and λ to be determined. Then,
let δ = δ(η,Λ,M0, s, n) be the number defined in Lemma 4.4. We prove our lemma
with this choice of δ. By the condition on the non-empty intersection, there exists
a point z0 = (x0, t0) ∈ Qr(z) ∩Q1 such that

MQ2(|∇u|2)(z0) ≤ 1, MQ2(|F |2)(z0) +Mα,Q2(B)(z0)2/s ≤ δ. (5.3)

Notice that with r ∈ (0, 1/2), Q2r(z) ⊂ Q2. Since Q2r(z) ⊂ Q3r(z0)∩Q2, it follows
from (5.3) that

−
∫
Q2r(z)

|∇u|2 dx dt ≤ |Q3r(z0)|
|Q2r(y, s)|

1
|Q3r(z0)|

∫
Q3r(z0)∩Q2

|∇u|2 dx dt ≤
(3

2

)n+2

.

Similarly,{
−
∫
Q2r(z)

|u− ūQ2r(z)|s
′
dx dt

}2/s′{
−
∫
Q2r(z)

|b|s dx dt
}2/s

=
{

(2r)−λ−
∫
Q2r(z)

|u− ūQ2r(z)|s
′
dx dt

}2/s′{
(2r)α−

∫
Q2r(z)

|b|s dx dt
}2/s

≤ [u]2s′,λ,Q1

{
(2r)α

|Q3r(z0)|
|Q2r(z)|

−
∫
Q3r(z0)∩Q2

|b|s dx dt
}2/s

≤
(
3/2
)2(n+2−α)/s

{
(3r)α−

∫
Q3r(z0)∩Q2

|B|s dx dt
}2/s

≤
(
3/2
)2(n+2−α)/sMα,Q2(B)2/s

≤
(
3/2
)2(n+2−α)/s

δ,

where we have used (1.7) in our second step in the above estimate. Also we have

−
∫
Q3r(z)

|F |2 dx dt ≤ |Q3r(z0)|
|Q2r(z)|

1
|Q3r(z0)|

∫
Q3r(z0)∩Q2

|F |2 dx dt ≤
(3

3

)n+2

δ.

From assumption (5.2), and since Q7r/4(z) ⊂ Q2, we have

−
∫
Q7r/4(z)

|a(x, t)− āB7r/4(y)(t)|2 dx dt ≤ δ,

‖b‖L∞(Γ2r(τ),V1,2(B2r(y))) ≤ ‖b‖L∞(Γ2,V1,2(B2)) ≤M0.
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These estimates allow us to use Lemma 4.4 with a suitable scaling to obtain

−
∫
Q3r/2(z)

|∇u−∇v|2 dx dt ≤ κη, ‖∇v‖L∞(Q3r/2(z)) ≤ C0 := κC(Λ,M0, n). (5.4)

where
κ = max

{
(3/2)n+2,

(
3/2
)2(n+2−α)/s

}
,

and v is the unique weak solution of

vt = ∇ · [āB7r/4(y)(t)∇v] in Q7r/4(z),

v = u on ∂pQ7r/4(z)

We claim that (5.3), and (5.4) yield{
Qr(z) :MQ3r/2(z)(|∇u−∇v|2) ≤ C0

}
⊂
{
Qr(z) : MQ2(|∇u|2) ≤ N

}
(5.5)

with N = max {4C0, 5n+2}. Indeed, let (x, t) be a point in the set on the left hand
side of (5.5), and consider Qρ(x, t). If ρ ≤ r/2, then Qρ(x, t) ⊂ Q 3r

2
(z) ⊂ Q2 and

hence
1

|Qρ(x, t)|

∫
Qρ(x,t)∩Q2

|∇u|2 dx dt

≤ 2
|Qρ(x, t)|

[ ∫
Qρ(x,t)∩Q2

|∇u−∇v|2 dx dt+
∫
Qρ(x,t)∩Q2

|∇v|2 dx dt
]

≤ 2MQ3r/2(z)(|∇u−∇v|2)(x, t) + 2‖∇v‖2L∞(Q 3r
2

(z)) ≤ 4C0(Λ,M0, n).

On the other hand if ρ > r/2, then Qρ(x, t) ⊂ Q5ρ(z0). This and the first inequality
in (5.3) imply

1
|Qρ(x, t)|

∫
Qρ(x,t)∩Q2

|∇u|2 dx dt ≤ 5n+2

|Q5ρ(x0, t0)|

∫
Q5ρ(z0)∩Q2

|∇u|2 dx dt ≤ 5n+2.

Therefore, MQ2(|∇u|2)(x, t) ≤ N and the claim (5.5) is proved. Note that (5.5) is
equivalent to

E :=
{
Qr(z) :MQ2(|∇u|2) > N

}
⊂
{
Qr(z) :MQ3r/2(z)(|∇u−∇v|2) > C0

}
.

From this it follows the weak type 1−1 estimate of the Hardy-Littlewood maximal
function, and from (5.4) that∣∣E∣∣ ≤ ∣∣{Qr(z) : MQ3r/2(z)(|∇u−∇v|2) > C0

}∣∣
≤
C(n)|Q3r/2(z)|

C0
−
∫
Q3r/2(z)

|∇u−∇v|2 dx dt ≤ C ′η|Qr(z)|,

where C ′ > 0 depends only on Λ,M0, s, α, and n. Then, from Lemma 2.3, there is
β = β([ω]Aq , n) > 0 such that

ω(E) ≤ C([ω]Aq , n)
( |E|
|Qr(z)|

)β
ω(Qr(z)) ≤ C∗ηβω(Qr(z)),

where C∗ > 0 is a constant depending only on Λ,M0, s, α, [ω]Aq and n. By choosing

η =
(
ε/C∗

)1/β , we obtain the desired result. �
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Lemma 5.2. Let Λ > 0,M0 > 0 be fixed and ω ∈ Aq with some 1 < q < ∞. Let
s, λ, α be as in (1.7). There exists a constant N > 1 depending only on Λ,M0, s, λ
and n such that for any ε > 0, we can find δ = δ(ε,Λ,M0, s, λ, [ω]Aq , n) > 0 such
that if (1.5) holds for the matrix a, div(b) = 0, and |F |, |b| ∈ L2(Q2).

sup
0<ρ≤1

sup
(y,s)∈Q1

−
∫
Qρ(y,s)

|a(x, t)− āBρ(y)(t)|2 dx dt ≤ δ, ‖b‖L∞(Γ2,V1,2(B2)) ≤M0,

and a weak solution u of (4.1) satisfying

ω
(
{Q1 :MQ2(|∇u|2) > N}

∣∣ ≤ εω(Q1(z)
)
, ∀z ∈ Q1.

Then

ω
(
{Q1 :MQ2(|∇u|2) > N}

)
≤ ε1

{
ω
(
{Q1 :MQ2(|∇u|2) > 1}

)
+ ω

(
{Q1 : MQ2(|F |2) +Mα,Q2(B)2/s > δ}

)}
,

where ε1 is defined in Lemma 2.7.

Proof. In view of Lemma 5.1, we can apply Lemma 2.7, for

E = {Q1 :MQ2(|∇u|2) > N},

K = {Q1 :MQ2(|∇u|2) > 1} ∪ {Q1 :MQ2(|F |2) +Mα,Q2(B)2/s > δ}
to obtain the desired estimate. �

Lemma 5.3. Let Λ > 0,M0 > 0 be fixed and ω ∈ Aq with some 1 < q < ∞. Let
s, λ, α be as in (1.7). There exists a constant N > 1 depending only on Λ,M0, s, λ
and n such that for any ε > 0, we can find δ = δ(ε,Λ,M0, s, λ, [ω]Aq , n) > 0 such
that if (1.5) holds for the matrix a, div(b) = 0, and |F |, |b| ∈ L2(Q2).

sup
0<ρ≤1

sup
(y,s)∈Q1

−
∫
Qρ(y,s)

|a(x, t)− āBρ(y)(t)|2 dx dt ≤ δ, ‖b‖L∞(Γ2,V1,2(B2)) ≤M0,

and a weak solution u of (4.1) satisfying

ω
(
{Q1 :MQ2(|∇u|2) > N}

∣∣ ≤ εω(Q1(z)
)
, ∀z ∈ Q1.

Then for every k = 1, 2, . . . ,

ω
(
{Q1 :MQ2(|∇u|2) > Nk}

)
≤ εk1ω

(
{Q1 :MQ2(|∇u|2) > 1}

)
+

k∑
i=1

εi1ω
(
{Q1 :MQ2(|F |2) +Mα,Q2(B)2/s > δNk−i}

)
,

(5.6)

where ε1 is defined in Lemma 2.7.

Proof. Let N, δ be defined as in Lemma 5.2 and we prove (5.6) holds with these
N, δ by using induction on k. If k = 1, then (5.6) holds because of Lemma 5.2.
Assume now that (5.6) holds with some m ∈ N, and we prove that it holds with for
k = m+ 1. For given u, b satisfying the assumptions of the lemma, we define

u′ = u/
√
N, F ′ = F/

√
N, B′ = [u′]s′,λ,Q1 |b|s.

Observe that u′ is a weak solution of

∂tu
′ − div[a(x, t)∇u′]− b(x, t)∇u′ = div[F ], in Q2.
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Moreover, for every z ∈ Q1, it is easy to see that

ω
(
Q1 :MQ2(|∇u′|2) > N

)
= ω

(
Q1 :MQ2(|∇u|2) > N2

)
≤ ω

(
Q1 :MQ2(|∇u|2) > N

)
≤ ε|Q1(z)|.

Therefore, we can apply the induction hypothesis for u′, F ′, B′ to obtain

ω
(
{Q1 :MQ2(|∇u′|2) > Nm}

)
≤ εk1ω

(
{Q1 :MQ2(|∇u′|2) > 1}

)
+

m∑
i=1

εi1ω
(
{Q1 : MQ2(|F ′|2) +Mα,Q2(B′)2/s > δNk−i}

)
.

By changing back to u, F,B and using the Lemma 5.2 again, we see that (5.6) holds
with k = m+ 1. The proof is complete. �

5.2. Proof of Theorem 1.3. The proof is quite standard once Lemma 5.3 is
established; we give it here for completeness. Let N = N(Λ,M0, s, λ, n) > 1 be as
in Lemma 5.3, and let q = p/2, and ε1 = (20)nq[ω]2Aqε. Choose ε sufficiently small
depending only on Λ,M0, s, λ, p, n and [ω]Aq such that

Npε1 < 1/2.

With this choice of ε, let δ be as in Lemma 5.3 depending on Λ,M0, s, λ, p, n and
[ω]Aq . We first prove Theorem 1.3 with the additional assumption that

ω
({
Q1 :MQ2(|∇u|2) > N

})
≤ εω(Q1(z)), ∀z ∈ Q1. (5.7)

Assume that (5.7) holds, and let us denote

S =
∞∑
k=1

Nkqω
({
Q1 :MQ2(|∇u|2) > N

})
.

By Lemma 5.3, we see that

S ≤
∞∑
k=1

Nkq
[ k∑
i=1

εi1ω
({
Q1 :MQ2(|F |2) +Mα,Q2(B)2/s > δNk−i})]

+
∞∑
k=1

Nkqεk1ω
({
Q1 :MQ1(|∇u|2) ≥ 1

})
.

Then, applying the Fubini’s theorem, and Lemma 2.6, we obtain

S ≤
∞∑
j=1

(Nqε1)j
[ ∞∑
k=j

Nq(k−j)ω
({
Q1 :MQ2(|F |2) +Mα,Q2(B)2/s > δNk−j})]

+
∞∑
k=1

Nkqεk1ω
({
Q1 :MQ1(|∇u|2) ≥ 1

})
≤ C

(
‖MQ2(|F |2)‖qLq(Q1,ω) + ‖Mα,Q2(B)2/s‖qLq(Q1,ω) + ω(Q1)

) ∞∑
k=1

(Nqε1)k.

Then, by our choice of ε, and Lemma 2.5, we obtain

S ≤ C
[
‖F‖pLp(Q2,ω) + ‖Mα,Q2(B)2/s‖p/2

Lp/2(Q2,ω)
+ ω(Q1)

]
.
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By Lemma 2.6, it follows that

‖∇u‖pLp(Q1,ω) ≤ C(S + ω(Q1))

≤ C
[
‖F‖pLp(Q2,ω) + ‖Mα,Q2(B)2/s‖p/2

Lp/2(Q2,ω)
+ ω(Q1)

]
.

(5.8)

Hence, we have proved (5.8) under the additional assumption (5.7). To remove
(5.7), let us define

u′ = u/κ, F ′ = F/κ, B′ =
(
[u′]s′,λ,Q1 |b|

)s
,

for some constant κ > 0 to be determined. Observe that u′ is a weak solution of

∂tu
′ − div[a∇u′]− b · ∇u′ = div(F ), in Q2.

Let us define
E := {Q1 :MQ2(|∇u′|2) > N

}
⊂ Q2.

Then, from Lemma 2.3 it follows that for every z ∈ Q1,

ω
(
E
)

ω(Q1(z))
=

ω
(
E
)

ω(Q2)
ω(Q2)
ω(Q1(z))

≤ [ω]Aq
ω
(
E
)

ω(Q2)

( |Q2|
|Q1(z)|

)q
= C([ω]Aq , n, q)

ω
(
E
)

ω(Q2)
.

Then, using Lemma 2.3 again, we can find β = β([ω]Aq , n) > 0 such that

ω
(
E
)

ω(Q1(z))
≤ C([ω]Aq , q, n)

( |E|
|Q2|

)β
.

On the other hand, by the weak type (1,1) estimate, Lemma 2.5, we see that∣∣E∣∣ =
∣∣{Q1 :MQ2(|∇u|2) > Nκ2

}∣∣ ≤ C(n)
Nκ2

∫
Q2

|∇u|2 dx dt =
C|Q2|
κ2

∥∥ |∇u|∥∥2

L2(Q2)
.

Hence, combining the last two estimates, we can see

ω
(
E
)

ω(Q1(z))
≤ C∗([ω]q, q, n)

(‖∇u‖L2(Q2)

κ

)2β

, ∀z ∈ Q1.

Then, by taking
κ = ‖∇u‖L2(Q2) (C∗/ε)

1/(2β)
, (5.9)

we obtain

ω(E) = ω
({
Q1 :MQ2(|∇u′|2) > N

})
≤ εω(Q1(z)), ∀z ∈ Q1.

This means that (5.7) holds for u′. Hence, it follows from (5.8) that

‖∇u′‖Lp(Q1,ω) ≤ C
[
‖F ′‖Lp(Q2,ω) + ‖Mα,Q2(B′)2/s‖1/2

Lp/2(Q2,ω)
+ ω(Q1)1/p

]
.

This and (5.9) imply

‖∇u‖Lp(Q1,ω)

≤ C
[
‖F‖Lp(Q2,ω) + ‖Mα,Q2(B)2/s‖1/2

Lp/2(Q1,ω)
+ ω(Q1)1/p‖∇u‖L2(Q2)

]
= C

[
‖F‖Lp(Q2,ω) + [u]s′,λ,Q1‖Mα,Q2(|b|s)2/s‖1/2

Lp/2(Q2,ω)
+ ω(Q1)1/p‖∇u‖L2(Q2)

]
.

The proof is complete.

Acknowledgements. This work was partly supported by the Simons Foundation,
grant number # 354889. The author would like to thank the anonymous referee
for many valuable comments and suggestions.



EJDE-2017/75 EQUATIONS WITH DIVERGENCE-FREE DRIFTS 21

References

[1] D. R. Adams; Morrey spaces, Lecture Notes in Applied and Numerical Harmonic Analysis.
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