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ON A GENERALIZED REFLECTION LAW FOR FUNCTIONS

SATISFYING THE HELMHOLTZ EQUATION

DAWIT ABERRA

Abstract. We investigate a generalized point to point reflection law for the
solutions of the Helmholtz equation in two independent variables, obtaining
results that include some previously known results of Khavinson and Shapiro
as special cases. As a consequence, we obtain partial negative answers to
the “point to compact set reflection” conjecture suggested by Garabedian and
others.

1. Introduction

According to a result of H. Lewi [7], if u is a function of two variables and satisfies
a partial differential equation with the Laplacian in the principal part in a domain
D adjacent to the real axis R and u|R = 0, then u extends to a mirror image D

′ of
D with respect to R. However, with regard to point to point “reflection laws”, the
situation for operators slightly different from the Laplacian (or the wave operator)
is drastically different. The following theorem is due to Khavinson and Shapiro,
[6] (see also [5], and compare with Study’s interpretation of the Schwarz reflection
principle).

Theorem 1.1. Let γ = {(s, t) | t = g(s)}, with g′(s) 6= 0, be a non-singular real
analytic curve in R2. If for two points P and Q sufficiently close to γ (but off γ)
there exist a constant c = c(P,Q) such that the “Schwarz reflection law”

u(P ) + c u(Q) = 0(1.1)

holds ∀u, u|γ = 0 and satisfying the “Helmholtz equation”

∂2u

∂s∂t
+ λ2u = 0,(1.2)

where λ > 0, then c = 1, P and Q must be symmetric with respect to γ and γ must
be a straight line.

By using Study’s change of variables z = X + iY, w = X − iY that reduces the
“real” Helmholtz operator4+λ2 to the complex hyperbolic operator 4 ∂2

∂z∂w
+λ2, a

similar conclusion as in Theorem 1.1 holds ∀u, u|γ = 0 and satisfying4u+λ2u = 0.
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Suppose Γ is a non-singular real analytic hypersurface defined in some domain
Ω ⊆ Rn, and L is a partial differential operator in Rn. Theorem 1.1 above can be
considered as a partial answer to the first of the following two general problems:
(1) For which pair of points P 6= Q in Ω \ Γ is it true that there is a constant

c = c(P,Q) such that

u(P ) + cu(Q) = 0(1.3)

for all solutions of Lu = 0 in Ω, vanishing on Γ ? We say the pair P,Q has the
(point to point) reflection property (with respect to Ω,Γ and L) if there is such a
constant c.
(2) (In general when the point to point reflection property fails ): Does a “point

to compact set reflection” hold, i.e., given a point P0, is there a compact set K =
K(P0,Γ, L) ⊆ Ω (on the “other side ” of Γ) and a measure (or distribution) T =
T (P0,Γ, L) supported on K such that

u(P0) = 〈T, u〉 for all solutions of Lu = 0 vanishing on Γ ?

Problems of type (1) have been studied by several researchers ([7], [3], [6], [2],
[1]; see also references there). This problem was the theme of the paper [2] in the
special case L = ∆ (the Laplace operator) and is completely settled there for any
dimension n ≥ 3. There, it was shown that such pairs of points are very rare in Rn

when n is even (and > 3), and that the reflection property never holds when n is
odd (and ≥ 3), unless Γ is a sphere or a hyperplane, in contrast to the case n = 2
and the classical Schwarz reflection principle. When L is the Helmholtz operator
and n = 2, no pair of points have the reflection property unless Γ is a line (this
is Theorem 1.1 above, which is an implicit result in [6] ). The case of the real
Helmholtz operator for n = 3 was studied in [1], a striking result there (among
others) being, in contrast to the n = 2 case, there are hypersurfaces Γ other than
hyperplanes and pairs of points where the reflection property holds.
So far, no result related to the “point to compact set reflection” problem was

published, although it was conjectured by Garabedian, and later by the authors
of the papers [6] and [2], that it is likely to get positive results in the instances of
failure of the point to point reflection property. An explicit calculation supporting
this conjecture for the (real) Helmholtz operator in two dimensions has been done
in [9] (or see their rather widely available book, [10]). More precisely, if Ω is a
domain in R2 divided by a non-singular real analytic curve γ into two parts, a
formula which gives the value at a point P0 ∈ Ω \ γ of a function u satisfying the
(real) Helmholtz equation near γ and vanishing on γ is given in terms of an integral
involving u and its first order derivatives, evaluated along a path joining γ to the
point symmetric to P0 with respect to γ.
Our main result in this paper is Theorem 3.1, which says that under the same

hypothesis as in Theorem 1.1, if the “Schwarz reflection law” given by (1.1) is
replaced by the weaker hypothesis,

u(P ) =
∑
|α|≤N

cαD
αu(Q) ,(1.4)

where N , cα (|α| ≤ N) are constants depending only on P and Q, then the conclu-
sion of the theorem remains the same. In other words, this means that the reflection
property in the case of the two dimensional Helmholtz operator, which was known
to fail for the “Schwarz reflection law” given by (1.1) (when γ is not a line), also
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fails even when this law is replaced by the weaker hypothesis given by (1.4), which
we may refer to as the “generalized (Schwarz) reflection law”. This entails similar
failures in the case of the two dimensional “real” Helmholtz operator (when Γ is
not a line) and in the case of the three dimensional Laplace operator when Γ is a
non-planar cylinder, see Corollaries 3.3 (i), 3.5 (i). All these results generalize pre-
viously known results in [6]. As a consequence, related partial negative answers to
the ‘point to compact set reflection’ conjecture mentioned above are obtained, i.e.,
in the case of the two dimensional (real) Helmholtz operator (when γ is not a line)
and in the case of the three dimensional Laplace operator (when Γ is a non-planar
cylinder), there is no point to point reflection in the sense of problem (2) mentioned
above, see Corollaries 3.2, 3.3 (ii) and 3.5 (ii).

2. Preliminaries

If

L =
∂2

∂s∂t
+ a(s, t)

∂

∂s
+ b(s, t)

∂

∂t
+ c(s, t)

is a hyperbolic differential operator, where a, b and c are entire functions of two
variables, its adjoint is defined by

L?u =
∂2u

∂s∂t
−
∂

∂s
(au)−

∂

∂t
(bu) + cu.

The Riemann function RL := R(s, t;x, y) at a point (x, y) for the operator L is
defined as the solution of the following Cauchy-Goursat problem

L?R = 0 near (x, y) ,

R(x, t;x, y) = exp

∫ t
y

a(x, τ) dτ ,

R(s, y;x, y) = exp

∫ s
x

b(τ, y) dτ .

If we define r(s) = R(s, y;x, y) and s(t) = R(x, t;x, y), it is easy to see that rs−br =
0 on {t = y}, st − as = 0 on {s = x} and R(x, y;x; y) = 1. Moreover, it is known
that R(s, t;x, y) is an entire function of all four variables and if L is the Helmholtz
operator, then

R(s, t;x, y) = J0(2λ
√
(s− x)(t − y) ) ,

where J0 is the zero Bessel function. For these and other properties of the Riemann
function, we refer to [4]. Let γ be as in Theorem 1.1, P = P (x, y) be a point
sufficiently close to γ. Let

AP = (g
−1(y), y), BP = (x, g(x))

U = aRu+ 12Rut −
1
2Rtu

V = bRu+ 12Rus −
1
2Rsu .

By a straightforward calculation, we have

0 = R(Lu)− u(L?R)

= Us + Vt .
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If G denotes the region bounded by segments PA,PB and the arc AB, applying
Green’s theorem we obtain ∮

∂G

Udt− V ds = 0 .

Simplifying this using the properties of the Riemann function and using the fact
that u|γ = 0, we obtain the following formula of Riemann:

u(P ) =
1

2

∫ BP
AP

R(
∂u

∂s
ds−

∂u

∂t
dt).(2.1)

3. Main results

Theorem 3.1. Suppose

u(P ) =
∑
|α|≤N

cαD
αu(Q)(3.1)

∀u, u|γ = 0 and satisfying the Helmholtz equation (1.2), where P and Q (P 6= Q)
are points in R2 sufficiently close to γ (but off γ), cα = cα(P,Q) and N = N(P,Q)
is an integer. Then, cα = 0 ∀α 6= 0, c0 = −1, P and Q must be symmetric with
respect to γ and γ must be a straight line.

Proof. Since uxy = −λ2u, there is no loss of generality in assuming that there are
no mixed derivatives involved in the hypothesis (3.1). So let

u(P ) =

N∑
n=0

cn(D
n
xu)(Q) +

N∑
n=1

dn(D
n
yu)(Q) ,(3.2)

where cn, dn (0 ≤ n ≤ N) are constants that depend only on P and Q. If P and Q
are sufficiently close to γ, all the solutions of the Cauchy problem

∂2u

∂s∂t
+ λ2u = 0 ,

∂αu|γ = ∂
α((t− g(s))p(s, t))|γ , |α| ≤ 1 ,

(3.3)

with p(s, t) being a polynomial, are real analytic in a fixed neighbourhood contain-
ing P and Q. For u satisfying the Cauchy data in (3.3) we have,

(
∂u

∂s
ds−

∂u

∂t
dt)|γ = −2pg

′(s)|γ .

Using this, (2.1) reduces to

u(P ) = −

∫ BP
AP

R(s, t;P )g′pds ,(3.4)

where p(s, t) is a polynomial. Differentiating (3.4) n-times with respect to x, we
obtain the following expression for the n-th derivative of u at the point P :

(Dnxu)(P ) =−

∫ BP
AP

(DnxR)(s, t;P )g
′pds

−
n−1∑
k=0

Dkx((D
n−1−k
x R)(BP ;P )g

′(x)p(BP )).

(3.5)



EJDE–1999/20 ON A GENERALIZED REFLECTION LAW 5

Denote the sum in the right hand side of (3.5) by vn (n = 1, 2, . . . , N) and note
that we can write,

N∑
n=1

cnvn =
∑

|α|≤N−1

Mα (D
αp)(BP ) ,(3.6)

with

M(n−1,0) = cnR(BP ;P )g
′(x) +

N∑
j=n+1

cjK
j
n−1, 1 ≤ n ≤ N ,(3.7)

where M(n−1,0) denotes the coefficient Mα that appears in the right hand side of

(3.6) for α = (n − 1, 0) (1 ≤ n ≤ N) and Kjn−1, whose exact values we need not
compute, depend on (DxR)(BP ;P ), g

′(x) and their derivatives. Similarly, we have

(Dnyu)(P ) =−

∫ BP
AP

(DnyR)(s, t;P )g
′pds

+

n−1∑
k=0

Dky((D
n−1−k
y R)(AP ;P )p(AP )).

(3.8)

Again, note that if we denote the sum in the right hand side of (3.8) by wn
(1 ≤ n ≤ N), we have

N∑
n=1

dnwn =
∑

|α|≤N−1

Nα (D
αp)(AP ) ,(3.9)

with

N(0,n−1) = dnR(AP ;P ) +

N∑
j=n+1

djL
j
n−1, 1 ≤ n ≤ N ,(3.10)

where N(0,n−1) and L
j
n−1 are similarly defined. Replacing P by Q in the differen-

tiation formulae (3.5) and (3.8), and using (3.6) and (3.9) in the hypothesis (3.2)
we obtain

∫ BP
AP

R(s, t;P )g′pds−
N∑
n=0

cn

∫ BQ
AQ

(DnxR)(s, t;Q)g
′p ds

−
N∑
n=1

dn

∫ BQ
AQ

(DnyR)(s, t;Q)g
′p ds

=

N∑
n=1

cnvn −
N∑
n=1

dnwn

=
∑

|α|≤N−1

Mα (D
αp)(BQ)−

∑
|α|≤N−1

Nα (D
αp)(AQ),

(3.11)



6 DAWIT ABERRA EJDE–1999/20

for all polynomials p(s, t). Hence,

∫ BP
AP

R(s, t;P )g′pds =

∫ BQ
AQ

R?(s, t;Q)g′pds

+
∑

|α|≤N−1

Mα(D
αp)(BQ)−

∑
|α|≤N−1

Nα(D
αp)(AQ),

(3.12)

where

R?(s, t;Q) =
N∑
n=0

cn(D
n
xR)(s, t;Q) +

N∑
n=1

dn(D
n
yR)(s, t;Q) ,

for all polynomials p(s, t).
Suppose AP < AQ (with respect to an obvious order on γ induced by parametriza-

tion). Without loss of generality, assume AQ ≤ BP ≤ BQ. Let T be a point on γ
such that AP < T < AQ. Using that J0 > 0 near the origin and g

′ 6= 0, choose
sequence of polynomials p(s, t) such that

|

∫ T
AP

Rg′p ds| ≥ η ,

where η is a pre-assigned positive number, while for each α, 0 ≤ |α| ≤ N − 1,
|Dαp(s, t)| can be made arbitrarily small in (T,BQ]. Using this in (3.12), we get
a contradiction. Therefore, we must have AQ ≤ AP . Similarly, BP ≤ BQ. Hence,
(3.11) can be written as

∫ BQ
AQ

{R(s, t;P )χ[AP ,BP ] −
N∑
n=0

cn(D
n
xR)(s, t;Q)−

N∑
n=1

dn(D
n
yR)(s, t;Q)}g

′pds

=
∑

|α|≤N−1

Mα(D
αp)(BQ)−

∑
|α|≤N−1

Nα(D
αp)(AQ) ,

(3.13)

for all polynomials p(s, t).
Let AQ = (a, a

′) and BQ = (b, b
′). Consider the sequence of polynomials,

pk(s, t) =

(
s− a

b− a

)k
, k ≥ N .

Observe that for each k, (Djspk)(AQ) = 0, (D
j
spk)(BQ) = 1 ( where D

j
s denotes

the j-th derivative with respect to s, 0 ≤ j ≤ N − 1), |pk(s, t)| < 1 in (AQ, BQ)
and that |pk(s, t)| → 0 a.e. on [AQ, BQ], as k → ∞. Moreover, since for each
k, pk(s, t) does not depend on t (the second variable), all the derivatives of the
polynomials pk with respect to t are zero. Using this sequence of polynomials and
applying Lebesgue Dominated Convergence Theorem, we find that the integral in
the left hand side of (3.13) goes to zero, as k → ∞. The right hand side of (3.13)
reduces to

N−1∑
n=0

M(n,0)

(b− a)n
k!

(k − n)!
=: q(k) ,

where q(x) is a polynomial (of degree ≤ N − 1). Since the left hand side of (3.13)
goes to zero as k →∞, all coefficients of q must be zero. This immediately implies
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that M(N−1,0) = 0 and a simple argument using induction shows that

M(n,0) = 0 ∀n (0 ≤ n ≤ N − 1).(3.14)

Similarly, replacing g′(s)ds by dt and choosing another sequence of polynomials

( pk(s, t) =

(
t− b′

a′ − b′

)k
, k ≥ N )

a similar argument gives

N(0,n) = 0 ∀n (0 ≤ n ≤ N − 1).(3.15)

Using (3.7), (3.14) (respectively, (3.10), (3.15) ), the assumption g′ 6= 0 and the
induction we get that ci = 0 ∀i, 1 ≤ i ≤ N and di = 0 ∀i , 1 ≤ i ≤ N . Hence,
u(P ) = c0u(Q). The required result now follows from Theorem 1.1.

According to the theorem by L. Schwartz [8, page 165], if T is a distribution
supported at the point Q, then we can find unique constants N , cα ( |α| ≤ N) such
that

T =
∑
|α|≤N

cαD
αδQ ,

where δQ denotes the point evaluation at Q.
Using this and Theorem 3.1, we obtain the following partial negative answer to

the point to compact set reflection conjecture.

Corollary 3.2. Let P 6= Q be points in R2 that are sufficiently close to γ, where
γ is a non-singular real analytic curve which is not a straight line. Then, there is
no distribution T supported at Q such that u(P ) = 〈T, u〉 ∀u, u|γ = 0 and satisfying
(1.2).

By using Study’s change of variables z = X + iY, w = X − iY that reduces the
“real” Helmholtz’s operator4+λ2 to the complex hyperbolic operator 4 ∂2

∂z∂w
+λ2,

and applying similar arguments we obtain

Corollary 3.3. Let P 6= Q be points in R2that are sufficiently close to γ (but off
γ), γ being a non-singular real analytic curve in R2.
(i) If

u(P ) =
∑
|α|≤N

cαD
αu(Q)

for all u vanishing on γ and satisfying the real Helmholtz’s equation

4u+ λ2u = 0 ,(3.16)

where cα = cα(P,Q) and N = N(P,Q) is an integer, then cα = 0 ∀α 6= 0, c0 = −1,
P and Q must be symmetric with respect to γ and γ must be a straight line.
(ii) If γ is not a straight line, then there is no distribution T supported at Q such

that u(P ) = 〈T, u〉 ∀u, u|γ = 0 and satisfying (3.16).

Remark 3.4. For the operator L = ∂2

∂s∂t , the Riemann function is identically
equal to 1. Hence, equations (3.4)-(3.10) are still valid for this case, with R ≡ 1
throughout. Hence, arguing as in the proof of Theorem 3.1, we obtain that (i) If

u(P ) =
∑
|α|≤N

cαD
αu(Q)
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for all solutions of Lu = 0 vanishing on γ, where P and Q are two points in R2

that are sufficiently close to γ, cα = cα(P,Q) and N = N(P,Q) is an integer, then
cα = 0 ∀ α 6= 0, c0 = −1 and P and Q must be symmetric with respect to γ.
(ii) If ∑

|α|≤N

cαD
αu(Q) = 0(3.17)

for all solutions of Lu = 0 vanishing on γ, where no mixed derivatives are involved
in (3.17), cα = cα(Q) and N = N(Q) is an integer, then cα = 0 ∀α, |α| ≤ N .
Similar conclusions hold for L = 4.

As it was mentioned in the introduction of this paper, similar to the case of
the two dimensional (real) Helmholtz operator (and when γ is not a straight line),
there is no point to point reflection for harmonic functions in R3 with the Schwarz
reflection law, unless the hypersurface under consideration is a hyperplane or a
sphere. When the hypersurface is a cylinder, applying our results and using the
ideas in the proof of Corollary 3.3 in [6], we obtain the following, which in particular
includes that corollary as a special case:

Corollary 3.5. Let P 6= Q be points in R3 that are sufficiently close to Γ (but off
Γ), where

Γ = {(x1, x2, x3)|(x1, x2, 0) ∈ γ, γ being a non-singular real analytic curve}

is a cylinder in R3 with base γ.
(i) If

u(P ) =
∑
|α|≤N

cαD
αu(Q)(3.18)

for all functions u harmonic near Γ and vanishing on Γ, where cα = cα(P,Q) and
N = N(P,Q) is an integer, then P and Q must be symmetric with respect to Γ and
Γ must be a plane.
(ii) If Γ is not a plane, then there is no distribution T supported at Q such that

u(P ) = 〈T, u〉

for all u harmonic near Γ and vanishing on Γ.

Proof. (i) Let P = (xP1 , x
P
2 , x

P
3 ), Q = (x

Q
1 , x

Q
2 , x

Q
3 ), P

0 = (xP1 , x
P
2 ), Q

0 = (xQ1 , x
Q
2 ).

Let u(x1, x2, x3) = v(x1, x2), where v is harmonic near γ and vanishing on γ.
Then, u is harmonic near Γ and vanishes on Γ. Using (3.18), we obtain,

v(P 0) =
∑
|α|≤N

cαD
αv(Q0),

for all v harmonic near γ and vanishing on γ. By Remark 3.4, we obtain that cα =
0 ∀α 6= 0, c0 = −1 and P 0 and Q0 must be symmetric with respect to γ. Hence,
(3.18) reduces to

u(P ) = −u(Q) +
∑
|α|≤N

cα(D
αux3)(Q) ,(3.19)

for all u harmonic near Γ and vanishing on Γ. (Note that from now on, N and the
indices of the constants cα are in general different from those in (3.18)). Next, let
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u(x1, x2, x3) = (x3 − x
Q
3 )v(x1, x2), where v is harmonic near γ and vanishing on γ.

Then, u is harmonic near Γ and vanishes on Γ. Using (3.19), we obtain that

(xP3 − x
Q
3 )v(P

0) =
∑
|α|≤N

cαD
αv(Q0),

for all v harmonic near γ and vanishing on γ. By Remark 3.4, we find that

cα = 0 ∀α 6= 0, c0 = −(x
P
3 − x

Q
3 ).

Thus, we can write (3.19) (hence, (3.18) ) as

u(P ) = −u(Q)− (xP3 − x
Q
3 )ux3(Q),(3.20)

for all u harmonic near Γ and vanishing on Γ.
Finally, let

u(x1, x2, x3) = v(x1, x2)e
λx3 ,

where,

4(x1,x2)v + λ
2v = 0, v|γ = 0 and λ > 0 .(3.21)

Then, u is harmonic near Γ and vanishes on Γ. Using (3.20), we find that

v(P 0) = −e−λ(x
P
3 −x

Q
3 )(1 + λ(xP3 − x

Q
3 ))v(Q

0) ,

for all v satisfying (3.21). Applying Corollary 3.3 (or Theorem 1.1 ), we obtain that

(1 + λ(xP3 − x
Q
3 ))e

−λ(xP3 −x
Q
3 ) = 1 ∀λ > 0 ,(3.22)

and that γ must be a straight line. Hence, Γ must be a plane. Moreover, from

(3.22), we must have xP3 = x
Q
3 . Hence, since we can assume x

P
3 = x

Q
3 = 0, we

conclude that P and Q must be symmetric with respect to Γ.
(ii) Follows from (i) and the theorem of L. Schwartz (see the remark preceding

Corollary 3.2 ).
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