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EXISTENCE OF POSITIVE SOLUTIONS FOR HIGHER ORDER
SINGULAR SUBLINEAR ELLIPTIC EQUATIONS

IMED BACHAR

ABSTRACT. We present existence result for the polyharmonic nonlinear prob-
lem
(7A)pmu:¢(7u)+¢(7u): in B
u>0, inB
(=A) ™ u(x) ,
——— =0, 0<j<p-—1,
el (1 — af)m—1 =J=P

in the sense of distributions. Here m, p are positive integers, B is the unit ball
in R"(n > 2) and the nonlinearity is a sum of a singular and sublinear terms
satisfying some appropriate conditions related to a polyharmonic Kato class

)

of functions JT(nzf -

1. INTRODUCTION

In this paper, we investigate the existence and the asymptotic behavior of posi-
tive solutions for the following iterated polyharmonic problem involving a singular
and sublinear terms:

(=A™ = (., u) +¢¥(.,u), inB
>0 inB
(=A)"™u(z)
jol=1 (1 = [a])m
in the sense of distributions. Here B is the unit ball of R™ (n > 2) and m,p are

positive integers. This research is a follow up to the work done by Shi and Yao [14],
who considered the problem

Au+k(z)u™ + =0, inD,
u>0, in D

(1.1)

=0, for0<j<p-—1,

(1.2)

where D is a bounded C1! domain in R™(n > 2), v, a are two constants in (0, 1), A
is a real parameter and k is a Holder continuous function in Q. They proved the
existence of positive solutions. Choi, Lazer and Mckenna in [§] and [11] have studied
a variety of singular boundary value problems of the type Au+p(z)u~"7, in a regular
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domain D, u = 0 on 9D, where v > 0 and p is a nonnegative function. They proved
the existence of positive solutions. This has been extended by Maagli and Zribi [13]
to the problem Au = —f(.,u) in D, uw = 0 on 0D, where f(z,.) is nonnegative and
nonincreasing on (0, 00).

On the other hand, problem with a sublinear term (., u) and a singular
term (., u) = 0, has been studied by Maagli, Toumi and Zribi in [12] for p = 1 and
by Bachar [2] for p > 1.

Thus a natural question to ask, is for more general singular and sublinear terms
combined in the nonlinearity, whether or not the problem has a solution, which
we aim to study in this paper.

Our tools are based essentially on some inequalities satisfied by the Green func-
tion 1“$,’;?n (see below) of the polyharmonic operator u +— (—A)P™u, on the
unit ball B of R" (n > 2) with boundary conditions ()7 (—A)"™ul,, = 0, for
0<i<p—1land 0<j<m-—1, where % is the outward normal derivative. Also,

we use some properties of functions belonging to the polyharmonic Kato class jéfy )n

which is defined as follows.

Definition 1.1 ([2]). A Borel measurable function ¢ in B belongs to the class j,Sfj?I

if ¢ satisfies the condition

. 5(Y) \mp(p _
fim (sup [ o () T la(w) ) =0 (13)

=0 \zeB
where §(z) = 1 — |z|, denotes the Euclidean distance between 2 and dB.
Typical examples of elements in the class \77(,5 ), are functions in L° (B), with
5> g > 2pm
2pm

or with
n

>7
7 op - m’

if 2(p— 1)m < n < 2pm

or with
se€(l,o0] fn<2(p-—1)m

or with n = 2pm; see [2]. Furthermore, if ¢(z) = (§(x))~?, then ¢ € j}n?’,ll if and
only if

A<2m, ifp=1 (see[]) or

A<2m+1, ifp>2 (see[2]).
For the rest of this paper, we refer to the potential of a nonnegative measurable
function f, defined in B by

V() = /B IO (2,9)f(y)dy.

The plan for this paper is as follows. In section 2, we collect some estimates for

the Green function F&ﬁ?n and some properties of functions belonging to the class

755 31 In section 3, we will fix r > n and we assume that the functions ¢ and

satisfy the following hypotheses:
(H1) ¢ is a nonnegative Borel measurable function on B x (0,00), continuous
and nonincreasing with respect to the second variable.
(H2) For each ¢ > 0, the function z — ¢(z, c(d(x))™)/(0(z))™ is in ,SLl)TL
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(H3) For each ¢ > 0, the function x — ¢(x, c(d(x))™) is in L"(B).
(H4) v is a nonnegative Borel measurable function on B x [0, c0), continuous with
respect to the second variable such that there exist a nontrivial nonnegative

function h € L{ _(B) and a nontrivial nonnegative function k € j},},% such
that

h(z)f(t) < P(x,t) < (6(x))"k(x)g(t), for (z,t) € B x (0,00), (1.4)

where f : [0,00) — [0, 00) is a measurable nondecreasing function satisfying

ft)

t1—1>%1+ t +oo, (1.5)
and g is a nonnegative measurable function locally bounded on [0, 00) sat-
isfying

timsup 27 < v, (50wl (1.6
t—oo t P . < ’

(H5) The function x +— (6(x))™k(x) is in L™(B).

Using a fixed point argument, we shall prove the following existence result.

Theorem 1.2. Assume (H1)-(H5). Then (1.1) has at least one positive solution
u € C*™=1(B), such that

a;(8())™ < (=A) M u(x) < Vi (0, a;(8())™)) (@) + bV ((8(.) k) (2),
for 5 €{0,...,p—1}. In particular,
a;(8(x))™ < (=A) " u(z) < ¢;(5(x)™,
where aj,b;,c; are positive constants.

Typical examples of nonlinearities satisfying (H1)—(H5) are:
p(@,t) = k(2)(8(2))™ M7,
for v > 0, and
(. t) = k(x)(8(x))"t* Log(1 + t7),
for a, B > 0 such that o + 8 < 1, where k is a nontrivial nonnegative functions in
- (RBeZ:.ently Ben Othman [5] considered when p = 1 and the functions ¢,

satisfy hypotheses similar to the ones stated above. Then she proved that has
a positive continuous solutions u satisfying
ag(8(x))™ < u(z) < Vi(e(.,a0(8(.)™))(@) + boVi((8(.)™ k) ().
Here we prove an existence result for the more general problem and ob-
tain estimates both on the solution u and their derivatives (—A)/™u, for all j €
{1,...,p—1}.
To simplify our statements, we define some convenient notations:
(i) Let B={z €R":|z| <1} and let B = {x € R" : |z| < 1}, for n > 2.
(i) B(B) denotes the set of Borel measurable functions in B, and BT (B) the
set of nonnegative ones.
(iii) C(B) is the set of continuous functions in B.
(iv) CY(B) is the set of functions having derivatives of order < j, continuous in
B (j € N).
(v) For o,y € B, [a,9]? = [z — y[2 + (1 — [2[2) (1 — [y]2).
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(vi) Let f and g be two positive functions on a set S. We call f =< g, if there is
¢ > 0 such that f(z) <cg(x), for all z € S.
We call f ~ g, if there is ¢ > 0 such that 1g(z) < f(z) < cg(x), for all
res.

(vii) For any ¢ € B(B), we put

gllmnp = igg/jg(gg)mfﬁﬁ?n(%y)q(y)ldy-

2. PROPERTIES OF THE ITERATED GREEN FUNCTION AND THE KATO CLASS

Let m > 1, p > 1 be a positive integer and I‘Sﬁ?n be the iterated Green function
of the polyharmonic operator u — (—A)P™w, on the unit ball B of R™ (n > 2) with

boundary conditions (%)j(—A)imu‘aB =0,for0<i<p—land0<j<m-—1,

where a% is the outward normal derivative.

Then for p > 2 and z,y € B,

Fgﬁ?n(os, y) = /B . /B G (@, 21)Gmn(21,22) o . Gron(2p—1,9)d21 . . . dzp_1,

(2.1)
where G, », is the Green function of the polyharmonic operator u — (—A)™u, on

B with Dirichlet boundary conditions (%)ju =0,0<j<m-—1.

Recall that Boggio in [6] gave an explicit expression for G, ,: For each z,y in
B

)
[z,y]

m—mn [ T5YI v? —1)ym—1
Gm,n(mvy) = km,n|x - y‘Q / %
1

where k,,, ,, is a positive constant.

dv,

Un—l

In this section we state some properties of Fgﬁ?n and of functions belonging to

the Kato class j,gfj 21 These properties are useful for the statements of our existence
result, and their proofs can be found in [2].

Proposition 2.1. On B2, the following estimates hold

_ (@swN™
‘z7y|n—2pm, [:E,y]z"” 3 fo'r' n > 2pm,
m 2
Fgg?n(xa y) ~ % log(1 + g;yy]‘Q ), forn=2pm (2.2)
m%, for2(p—1)m < n < 2pm.

Proposition 2.2. With the above notation,
(6(2)3(y)™ =T, (x,y),
L) (e,y) TRV (a,y),  forp>2.
P (a,y) @@L 1 (@,y). form > 2.
In particular,
T8, cI@ - cgv, gt et e c g, (2.3)

Proposition 2.3. Let q be a function in j,%p,zl. Then

The function x +— (6(x))*™q(x) is in L*(B). (2.4)

allm.np < o0
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3. EXISTENCE RESULT

We are concerned with the existence of positive solutions for the iterated poly-

harmonic nonlinear problems (|1.1)). For the proof, we need the next Lemma. For a

given nonnegative function ¢ in jm)n, we define

M, = {6 € B(B).10] < q}.
Lemma 3.1. For any nonnegative function q € j(p) the family of functions
y m
([ G o0 € M.} 3.)
B 0(2)
is uniformly bounded and equicontinuous in B and consequently it is relatively com-
pact in C(B).

Proof. Let g be a nonnegative function ¢ € Jmn (r) and L be the operator defined on
M, by

6(y) \m
20() = [ (G0)" T o) 0l
By (2.5), for each § € M, we have
0(y) \m
sup [ (5" T, (.10 < [l <
x€BJB (.’13)

Then the family L(M,) is uniformly bounded. Next, we prove the equicontinuity
of functions in L(M,) on B. Indeed, let zo € B and € > 0. By (1.3)), there exists
a > 0 such that for each z, 2’ € B(zg,a) N B, we have

|LO(z) — L9( ol

/ ‘ mn l‘ y Fgg?n(x/’y)
(6(a"))™

|(6(y))™ a(y)| dy

. / M) TR
~ JBnBe2anBe@2a) (0(2))" (0(2"))

®) (4 (P) (o
Do) Lonn 8500, )y

W) (5())™ a(y)| dy

<,
BNB¢(xg,2a)NB°(z,2a) (5(I))m (5(xl))m
Now since for y € B¢(z,2«) N B, from Proposition we have

L) (2,y) < (8(x)3(y))™

We deduce that
/ Dl (2,y) _ Tk (”
BNB(zo,2a)NB¢(z,2c) (5(1.))7% (5($/))

< /B o Bl

which tends by (2.4) to zero as a — 0.
Since for y € B¢(zo,2c) N B, the function z — (58;)"’1"(’]) (z,y) is continuous

on B(zg,a) N B, by (2.4) and by the dominated convergence theorem, we have

BNBe(z0,20)0B<(z,2a)  (0(2))™ (0(a"))m

V), 5())™ g(w)] dy

1(0(y))™ la(y)| dy — 0
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as | — 2’| — 0. This proves that the family L(M,) is equicontinuous in B. It

follows by Ascoli’s theorem, that L(M,) is relatively compact in C(B). O

The next remark will be used to obtain regularity of the solution.

Remark 3.2. Let » > n and f be a nonnegative measurable function in L"(B).
Then V,f € C*™~1(B).

Indeed, by using the regularity theory of [I] (see also [10, Theorem 5.1], and [7]
Theorem IX.32]), we obtain that V,,f € W™ (B). Furthermore, since r > n,
then one finds that V,f € C*™~1(B) (see [9, Chap. 7, p.158], or [7, Corollary
IX.15]).

Proof of Theorem[1.3. Let K be compact in B such that v := [, h(y)dy > 0 and
define ry := minyecx (§(y))™ > 0.
By (2.2) there exists a constant ¢ > 0 such that for each z,y € B,

c(8(x)5(y)™ < TE, (2, y). (32)
By (1.5) we can find a > 0 such that croyf(ary) > a.
By (H4) and (2.3)), the function k € jy(nl)n - Jgf )n; then it follows from ([2.5)) that

= [[Vo((6()™E)lloo < [IKllm,n.p < 00

Let 0 < a < %7 then using (1.6)) we can find n > 0 such that for each t > 7,
g(t) < at. Put B := supy<;<, g(t). Then we have

0<g(t)<at+pg, fort>0. (3.3)
On the other hand, using (3.2]) and (2.4]), there exists a constant ¢y > 0 such that
Vp((6(.))™k)(z) = co(d(z))™. (3.4)

From (H2), and we derive that
vi=[[Vp(e(.,a(d(.))™)lle < oo
Put b = max{, %} and let A be the convex set given by
A={u€C(B):a((x)™ < ulx) < Vp(e(.,a(d(.))™) (@) + bV,((6(.)™k)(x) } -
and T be the operator defined on A by
Tule) = [ TG w0l ) + oo ul)lds

(From (3.4), A # (). We will prove that T has a fixed point in A. Indeed, for u € A,
we have by (1.4), (3.2) and the monotonicity of f that

Tu(z) > /B IO (2, y)b(y, uly))dy

> ¢(6(a))™ /B (6())™ h(y) f(u(y))dy

V

> e(6(2))™ f(aro)ro /K h(y)dy
> a(6(x))™.
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On the other hand, using (H1), (1.4]) and (3.3]), we deduce that
Tu(z) < Vp(e(. alé(.)™)(x) +/ L) (2,9) (8(9)) ™ k(y)g (uly))dy

Vel a0 (@) + [ TG 0)(6) k) ouly) + Dy
Vol (- a(8(.))™) (@) + (v + bd) + B)Vu((6(.))"k) ()
Vo(eo(a(8(.))™) (@) + bV, ((6(.)) k) ().

Let v(x) = <p(:1c a(6(x))™/(8(x))™. Then using similar arguments as above, we

deduce that for each u € A
o(,u) < @l a(8()™) = (6(.))™v,
P, u) < g(u)(8(.)"k < b(8(.)" k.
That is, (., u)+(., ) € M utbk)(s(.))m - Now since by (H2) and (H4), the function

(v+bk)(0()™ € T 7$lp)n, we deduce from Lemma that T'(A) is relatively
compact in C(B). In partlcular for all uw € A, Tu € C(B) and so T(A) C A. Next,
let us prove the continuity of 7" in A. We consider a sequence (u;);en in A which
converges uniformly to a function u € A. Then we have

Tuj(x) — Tu(@)] < Vplle(,u;(-) — o ul))]+ 100, ui () = & ul )]l
Now, by , we have
(o us () = (o ul )+ 190, us() = ul)] < 2(1+6)(8(.)™ (v + k)

and since ¢, are continuous with respect on the second variable, we deduce by
(2.5) and the dominated convergence theorem that

(3.5)

Vo € B,Tu;(x) — Tu(x) asj— o0
Since TA is relatively compact in C'(B), we have the uniform convergence, namely
|Tu; — Tul|oc — 0 as j — oo.

Thus we have proved that T is a compact mapping from A to itself. Hence by the
Schauder fixed point theorem, there exists u € A such that

w) = [ Tt ) + (o )l (3.6)
Using (3.5), (H3) and (H5), for each y € B,
ey, u(y)) + ¥ (y,uly)) < vy, alé(y)™) +b(6(y)"k(y) € L"(B). (3.7)

So it is clear that u satisfies (in the sense of distributions) the elliptic differential
equation
(=8)""u = ¢(,u) +¢(,u), inB.

Furthermore, by (3.6 ., (3.7) and Remark -, we deduce that u € C?*™~1(B).
Therefore, using again (3.6|) and ( we obtain for j € {0,...,p— 1},

(=AY ™u(z) = /Bfgzj)(z,y)kﬂ(ym(y)) + ¥(y, u(y))]dy. (3.8)
Using similar arguments as above, we obtain for all j € {0,...,p — 1},

a;(6(2))™ < (=A)"u(@) < Voj(p(, a;(5())™) (@) + bV (6())" k) (), (3.9)
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where a;, b; are positive constants. Finally, for j € {0,...,p— 1}, from (3.9), (2.3)
and (2.5)), we have
a;j(6(z))™ < (=AY ™u(x)

m e Pl (6()™)
< (6(2)™(ll R
= (6(x))™.

So u is the required solution. O

||m,n»p7j + bj Hk”m,n,pfj)

Example 3.3. Letr > n, A < m—i—%, v >0 and o, > 0 with o + 5 < 1.
Let p1, pa be a nontrivial nonnegative Borel measurable functions on B satisfying
p1(x) < (6(2))™H+N=2 and py(z) < (5(x))™ . Then the problem

(—A)P™u = py(z)u”" + pa(a)ulog(1 +u’), in B
u>0 B

(= A)Yu(x) .
lim ~— 2 =0, for0<j<p-—1,
ol (1= [z])m—1 f J=P

has at least one positive solution, u € C**"™~Y(B), satisfying
(=AY ™u(x) ~ (5(x))™, Vje{0,...,p—1}.

Remark 3.4. If m =1 and p > 1, one can obtain similar existence result for (1.1))
on a bounded domain D C R™ (n > 2) of class C?P* with «a € (0, 1].
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