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POSITIVE SOLUTIONS OF THE p-LAPLACIAN DYNAMIC
EQUATIONS ON TIME SCALES WITH SIGN CHANGING
NONLINEARITY

ABDULKADIR DOGAN

Communicated by Mokhtar Kirane

ABSTRACT. This article concerns the existence of positive solutions for p-
Laplacian boundary value problem on time scales. By applying fixed point
index we obtain the existence of solutions. Emphasis is put on the fact that
the nonlinear term is allowed to change sign. An example illustrates our re-
sults.

1. INTRODUCTION

The development of the theory of time scales was initiated by Stefan Hilger
in his Ph.D. thesis in 1988 [12] as a means of a unifying structure for the study
of differential equations in the continuous case and the study of finite difference
equations in the discrete case. The study of time scales has led to several important
applications, e.g., in the study of insect population models, heat transfer, neural
networks, phytoremediation of metals, wound healing, and epidemic models [5, [14]
19, [24].

In the last few years, there is much attention focused on the existence of positive
solutions for second-order boundary value problems (BVPs) on time scales [2, [6]
7, [8, 1T, 16, 17, 18, 2] 22] 23] 25], 27]. But for the existence of positive solutions
for p-Laplacian BVPs with sign changing nonlinearity on time scales [20] 28], few
works were done as far as we know.

Agarwal, Lii and O’Regan [I] studied the singular BVP

(pp(¥) +a)f(t,y) =0, 0<t<1,
y(0) =y(1) =0,
by means of the upper and lower solution method, where the nonlinearity f is

allowed to change sign.
Anderson, Avery and Henderson[3] studied the BVP

()Y +¢e(t)f(u) =0, a<t<b,
u(a) — Bo(u®(v)) =0, u®(b) =0,
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where g(z) = |2[P722, p > 1, v € (a,b), f € Cu([0,+),[0,+)), c(t) €
Cia([a, b],[0,4+00)) and K,z < By(z) < Kz for some positive constants K, K.
They proved the existence of at least one positive solution by using a fixed point
theorem of cone expansion and compression of functional type.

Ji, Feng and Ge [I3] considered the existence of multiple positive solutions to
BVP for the one-dimensional p-Laplacian equation

(dp(u' (1)) +a(t) f(t,u(t)) =0, € (0,1),
w(0) = Y au(&), u(l) =) Bu),
=1 i=1

where 0 < & <& < <&, < 1,4, 8 € [0,00) satisfy 0 < Y0 ay, Yoiy B < 1.
The nonlinear term f may change sign. By applying a fixed-point theorem for
operators in a cone, they provided sufficient conditions for the existence of multiple
positive solutions to the BVP.

In [I8], Sang, Su and Xu studied the existence of positive solutions of the fol-
lowing dynamic equations on time scales:

(6(u®)Y +a(t)f(t,u(t) =0, te[0,T],

HBO) = Y e (E), ull)= Y bu(e)

where ¢ : R — R is an increasing homeomorphism and homomorphism and ¢(0) =
0. They established several existence theorems of positive solutions for nonlinear
m-point BVP. The nonlinearity f is allowed to change sign.

Su, Li and Sun [20] investigated the following singular m-point p-Laplacian BVP
with the sign changing nonlinearity on time scales:

(op (W)Y +q(t) f(t,u(t)) =0, te (0,T)r,
Wh&um—ZMmmﬂ,

where p,(u) = [ulP2u, p > 1, 0 < & < & < -+ < &noa < p(T), q(t) €
C14((0,T),(0,400)), f € Cia((0,T) x (0,4+00), (—00, +00)). They presented some
new existence criteria for positive solutions of the problem by using the well-known
Schauder fixed point theorem and upper and lower solutions method.

Wang and Hou [26] considered the multipoint BVP

(¢p(u' (1)) + f(t,u(t)) =0, te(0,1),
n—2 n—2
¢p(u'(0)) = Zai%(u/(fi)% u(l) = Zﬁiu(fi)7

where ¢,(u) = [ulP"?u, p > 1, & € (0,1) with 0 < & <& < -+ < &2 < 1, and
a;, b; satisfy a;,b; € [0,00), 0 < Z?;lz a; <1,and 0 < Z?;lz b; < 1. Using a fixed
point theorem for operators on a cone, they provided sufficient conditions for the
existence of at least three positive solutions to the above BVP.

Motivated by works mentioned above, in this paper, we are concerned with the
existence of multiple positive solutions for p-Laplacian multipoint BVP on time
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scales
(6p (W)Y +w(t) f(t,u(t)) =0, te[0,T]r, (1.1)
—2 m—2
=Y aul), G M) = 3 bioy A (E)), (1.2)
=1 i=1

where ¢, (u) is p-Laplacian operator, i.e., ¢,(u) = |u[P~u, for p > 1 with (¢,)" 1 =
¢q and 11;4—% =1,0<& < <&pn_2 < p(T). The usual notation and terminology
for time scales as can be found in [4, [5, [9], will be used here.

We need the following hypotheses:

(H1) a;,b; € [0,+00) satisfy Z:";Q a; <1 and 0< Zm_lz by < 1;
(H2) w € Ciq([0, T]r, [0, 4+00)) with [;* w(r)VT > 0;
(H3) f:[0,T]r x [0,+00) — R is contlnuoub

We find some new results on the existence of at least two positive solutions to
the BVP (1.1) and (1.2)) by using fixed point index. The interesting point of this
article is that the nonlinear term f is allowed to change sign.

2. PRELIMINARIES

Let the Banach space £ = Ciq([0, T|r, R) with norm |[ul| = sup,eo 1y, [u(t)], and
define two cones:

P={u:ueFE,u()>0te[0,T|r},

P'={u:u € E,u is concave, nonnegative and increasing on [0, 7]t}

Lemma 2.1. If1-Y7" *a; #0 and 17221_12 b; # 0, then for h € Ciu([0, |1, R),
the BVP

(6p(u™ ()Y + h(t) =0, t € (0,T)r, (2.1)
0) = Z a;u(&i),  op(u Z bidp(u” (&) (22)

has a unique solution for which the following representation holds

ult) :/T¢q(/sh(r)V7—C)As
+1_ - Zaz/ ¢>q/ V1 —C As (2.3)

7.10"‘11

—/0 ¢q(/osh(7)v7—c)As],
1_2 [wfb £7h vr—/ h(r)V7]

Proof. Integrating (2.1)) from 0 to ¢, one gets

where

6o (™ (1)) — dp(u(0)) = — / h(r)Vr.
0
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Let C = ¢,(u®(0)), then we can write

6, (uP (1)) = — /0 W)V 4G, (2.4)
WA (1) = qsq( - /Ot h(T)VT + C). (2.5)

Integrating the dynamic equation ([2.5) from ¢ to 7', we have

w(T) — u(t) = /tT o - /O h(r)V7 + C)As.

Then we obtain
T s
u(t) = u(T) + / o0 / A(r)V7 = C)As, (2.6)
t 0
Applying the first boundary condition, one gets

u(0) = u(T) + /OT b4 ( /0 h(r)VT — C)As

m—2 m—2

=S aul&) =S a [u(T)+/T %(/Os h(T)vT—C)As],

i=1 i=1 i
ie.,

u(T) = ’"27, Zaz/ ¢q/ VT - C)As

(2.7)
—/ ¢q(/ h(T)vT—C)As].
0 0
Therefore, by (2.6)) and E, we have
t) = i \Vr—C)A
u(t) Sz, - T 12:: a; / gbq T ) s
7/ ¢q(/ h(T)VT*C)AS} +/ ¢q(/ h(T)VT*C)AS.
0 0 t 0
Applying the second boundary condition in , we have
T
60 (U (T)) = —/ h(r)Vr + C
0

:npr( bl< /51 (VT +C).

=

—_

Solving the above equation, we obtain
m=2 g
C= [ bi | h(r)Vr— / a(r)V7|.
- 2
Let uy and ug be two solutions of problem ([2.1] , (2.2). Then, using representation

(2.3), we obtain ui(t) —ug(t) =0, ¢ € [0,T]. Thus u in (2.3) is the unique solution
of (2.1) and (2.2). The proof is complete. |
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Lemma 2.2. Suppose (H1) holds, for h € C14([0,T]t, R) and h(t) > 0,t € [0,T].
Then, the unique solution u of (2.1) and (2.2) satisfies u(t) > 0, fort € [0,T]r.

Proof. Let

Since
s NN VT —
/ h( )VT + fO mTQ f() T
0 1 — Zz 1 bi
s f VTJrf’ \Ya —fTh(T)VT
= / h(T)VT —|— ( 0 Z; 5 ) 0
0 1= bi
T m— T m—
= [ wimyr- (g Ho)Vr = S50y T)VT) S bV
0 1=, 1= 320
m—2 T m— T
- [ herer- (1= S8 Jy W)V S by
0 1= 1=
s T nL 2 b
= / h(T)VT — / h(T)VT — ffn 5
0 0 1= b
T me2 b; T hr)yvr
— _/ hMr)VT — 2iz1 fffhz( ) <0,
s 1=30 b

it follows that @o(s) < 0. According to Lemma we obtain

u(O)—/OT Pol)As + Ty [mz / As/OTsms)As]

_ZZ 1 az fo QDO AS+Zz 1 aZ fg SOO A
1‘2?12“2'
i QZ[fo ®o(s AS“‘fg @o(s AS}"‘ZZ 1 alfg po(s)As
1= e
_Z =1 al fo 900( )AS

= m—2 >0
1= ai

and

m 2

) = Zaz/ pos— [ pals)ad

Z’L 1 a’lff ‘PO(S)AS_IOWPO S AS_I§7 <P0 5 AS
1- 2:1_12 a;
(1 -Xin al) fg Po(s)As — f(f po(s)As
1- 22112 @i
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- /T po(s)As - Ji o(s)s

——" e U8
& 1 *Zizl a;
If t € (0, ), we have
u(t)
T m 2 T
/t (s)As+ *Zm12“z ;az/& Po(s AS*/O po(s )AS]

=1 =1
m—2 T T
+ al/ goo(s)Asf/ cpo(s)As]
i=1 i 0
1 T m—2 T
> — wo(s)As — ai/ vo(s)As
1_21712 z{/o ofs) i=1 0 of
m—2 T T
+ al/ goo(s)Asf/ cpo(s)As]
i=1 i 0

Il
—_
|
M-
=l
£
|
£
N
N
oo
S
V2]
_|_
\
BS)
O
l>
Vo)
SN——
+

Therefore u(t) > 0, ¢t € [0, Tr. O

Lemma 2.3. If u € P’ and it satisfies (1.2), then

inf  w(t) >
ont u(t) > yllul,

2
where 1 = Zml asz llul| = maxe[o,T)r |u(t)].

Proof. Since u”Y (t) <0, it follows that u”(t) is nonincreasing. Thus, for 0 < t <
T,

u(t) — u(0) = /O WA (5)As > tud (1)
and
T
w(T) — uft) = /t WA (s)As < (T — (1)

from which we have

and so u(&;) > % ul|.
With the boundary condition u(0) = >~ 12 a;u(&;), we obtain

m—2 m—2

f i U\Gi e - .
nfu(®) Za (&) Za <[l = yallul
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This completes the proof. ([
Let
K= {u :u € E,u is nonnegative and increasing on [0, 7]r, r[nin] u(t) > 'y\|u||},
te[0,T]r

where v = 7172,

> 2 b, f w(T)VT
S 0 fy oa (S w(r)Vr + =T ) As

Z:’; 2b,;f ~w(T)VT
Iy da( J wm)Vr + =Rt ) As

Note that u is a solution of BVP (|1.1)) and (1.2} if and only if

u(t) = /T y (/0 w(r) f(r, u(r)) Vr — c) As
+1_ Zaz/ qu(/ (T))VT—c*)As

7.10"‘11

_ /OT " (/0 w(F) f (7 u(r))Vr — c) A3,

m2

Ty Z / vT/OTw(T)f(T,u(T))vT]

Z i=1

We define the operators A:P— FEand F: K — F as follows

(Au)(t) = /tT ¢q </OS w(r) f(r,u(r))VT — C> As
* 1_27" 1-Y" 2, Zal/ P (/ )f(r u(T))VT—C> As (2.9)

i ==

- /0 o /O w(e)f(ru(r)) V7~ C) A,

T2 =

where

where
- s (50 [ wnstramer— [ wiestrutm)es],
(Fu)(t) = /tT %(/OS w(r) (1, u(t)) VT — C’)As
+— zlm — [mia /T¢q(/()sw(7)f+(7,u(7))VT ~0)as
T s
—/ ®q </0 w(r)fH(r,u(r))Vr — C) As},
(2.10)
where
¢ = 1_2_”11_2[) [Z b /O& w(r) f* (7, u(r) Y - /OT w(r) f* (7, u(r)) V],



8 A. DOGAN EJDE-2018/39

fr(tu(t) = max{f(t,u(t)),0}, te[0,T]r
Lemma 2.4. The operator F' : K — K is completely continuous.

Proof. Firstly, we show that F(K) C K. for all u € K, it is easy to see that Fu
is nonnegative, concave and increasing on [0, T])r. Thus, Fu € K. Moreover, we
know that Fu satisfies (2.2)). Hence, Lemma implies

inf (Fu)(t) > F ‘ c K
b (Fu)(t) 2 | Full, forue K,

i.e., Fu € K. Therefore, we can find that F(K) C K.

Secondly, we show that F' maps bounded set into itself. Suppose that ¢ > 0
is a constant and u € K. = {u € K : |Ju|]| < ¢}. Note that the continuity of f*
guarantees that there is a L > 0 such that f*(¢t,u(t)) < ¢,(L) for t € [0,T]r.
Therefore,

[Ful| = max Fu(t)
te[0,T]r

Py alfgl ¢q(f0 )T ( u(r ))VT—C‘)AS

- 1- 22112 @
_ o 6q(Jiw() fH(ru(r) VT — C)As
1- Z?;f a;
< _ fOT ¢q( f(f w(T)er(Tv U(T))VT - é) As
- 1- 22112 a;

sz (T .
< L/OT ¢q(/sTw(T)VT+ Q_bgf 1 a,)v )As,

where ¢q(f*(,u(r))) < L. That is, FK, is uniformly bounded.
In addition, for any t1,t2 € [0,T]r, we have

Fu(n) - Futeo) = | "o, ([ st utoyor - ¢)as

‘/t ¢q(/ w(r) fH(r,u(r) V7 = C) As

2

—‘/t2¢q / (1) (r,u(r))Vr — C) A

T m—2 T
<Ll - t2|¢q</ w(r)Vr + D1 bi fsiuz’(T)VT)As
s 1= a
Therefore, by applying the Arzela-Ascoli theorem on time scales, we can find that
FK_ is relatively compact.
Finally, from the continuity of f and w(t) € Ci4([0, T]r, [0, +0)), we can find
that F' is continuous. Thus, F' is completely continuous. The proof is complete. [

The proof of our main result is based upon an application of the following fixed
point theorem in a cone.

Theorem 2.5 ([10]). Let K be a cone in a Banach space X. Let D be an open
bounded subset of X with Dg = DN K # () and D # K. Suppose that F :
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Dy — K is a completely continuous map such that u # Fu for u € ODg. Then
the following results hold.
(i) If |Fu| < ||u|| Yu € 0Dk, then ix(F,Dk) = 1.
(ii) If there exists e € K \ {0} such that uw # Fu + e Yu € 0Dk and A > 0,
then iK(F, DK> =0.
(iii) Let U be open in X such thatU C Dg. Ifix(F,Dk) =1 andix(F,Uk) =
0, then F has a fived point in Dy \ Uk.
The same result holds if ixg(F,Dr) = 0 and ix(F,Ux) = 1, where
ik (F,Dg) denotes a fized point index.

3. MAIN RESULTS
Lemma 3.1 ([15]). Let K, = {u € K : ||u| < p} and
Q, = e K: i t) < .
p={u tgggaTU() P}

Then €1, has the following properties:

(a) Q, is open relative to K;

(b) K,, CQ, CK,;
(c) u € 99, if and only if min,epo, ), u(t) = yp;
(d) Ifu € 092, then vp < u(t) < p fort € [0,T]r.

Now, for convenience, we introduce the following notation. Let

1 1 T T SR
— 7/ d)q(/ w(T)VT + = ffn 3 )As,
Av 1= a; Jo s 1*2 b;

=1

= il o [ o E RS

’L ’L

We remark that from (Hl) it follows that 0 < Ay, Ao < 400, Agy = Asy1ye =
Al’Yl < A4

Lemma 3.2. If f satisfies the conditions

f(t,u) < ¢p(A1p) and u# Fu, forue 0K,, (t,u) € [0,T]r x [0, p],
then ig (F,K,) =1
Proof. If u € 0K, then

/03 w(r)fH(r,u(r))Vr — C

:/Osw(T)f+(T,u(T))VT

L SIS W) (ru) VT — ) el ()Y
1_22121’1’

:/0 w(T)f (7, u(T)) VT

(fo )T (1, u(r) V7’+f51 ) fH(r ulr ))VT)
1=

+
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Jy w(n) () VT

1— 3057,
:/0 w(T)f+(T,u(T))VT
(o @ )V = S b w(m) () V)
-2
X fg w() S (ru(r) VT
1- 2;11%
:/0 w(T)f+(T,u(T))VT
(1 — )fo ) fH(r,u(r))Vr
- 1-577b
X fg w(n) S (ru(r) VT
1- zzszi

= [ wereum)vr = ([ @t ve

S [ w(r) f (ru(r) VT
' - z;szz )

T
—~ [ wn)t )V -

S fo w(r) fH(ru(r) VT
1=
SR fg w(T)VT}
11—

> oot [ ")+

so that

o(s) = ¢q</08 w(r) (7, u(T)) VT — C')

T S [F w(r)Vr
> —phioy( / w(r)VT + =5 an 2b )
s - i=1 7

Therefore,

|Ful| < —Zm I ZQZ/ As—/ @(S)As]

i = =1

1 T
S——= ¢(s)As
121.:12&1'/0 (#)

1 T T Zm12bf T)VT
< Ai/ / w(r)Vr + = § As
el AR —)

=p = |ull.
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This implies ||Fu|| < |lul|, v € 0K,. By Theorem (i), we have ig(F,K,) =
1. O
Lemma 3.3. If f satisfies the conditions

f(tuu) > ¢p(A27p) and u 7é Fu f07" u e 8Qp7 (t7u) € [O7T}T X h/p7 P]7
then ix (F,Q,) = 0.

Proof. Let e(t) = 1 for t € [0,T]r, then e € 9K;. We claim that u # Fu + Ae,
u € 99,, and A > 0. In fact, if not, there exist ug € 992,, and A\g > 0 such that
ug = Fug + Aoe. Then we find that

/Osw(T)fﬂT, uo(1))VT — C
s 1 &i
= w\T + T, U\ T T —_—— i w\T + T, U\ T T
= [ O GV e (X [ e ()Y
T
7/ w(T)er(T, uO(T))V'r)
0
S b 4
oty () v )
S w () fH (7, uo (1) VT
1= Y72
1 T
Tw( (1, uo(1)) VT

_Zb/ )V F(r uo(r ) Zbl Z”:’?b-

=1 ?

= /03 w(r) fH (7, uo(7)) VT +

+f ") () -

- /OS w(T) fF(7,u0(7))VT —

s Q—ZM%J& +(ruo(7) VT
= w(T) fT(r, up (7)) VT —
—A ()£ (r. w0 (7)) 1—2&3@
- b fg ) (7, uo(T))VT
1727;121)1
T s
-/ w@ﬁfWﬂUMTDVT+1/ w(r) F+ (7, uo(7) T
0 T
T 2 b, f )T (7, uo(7))VT
— w(T) (1, ug(T)) V1 — 3
| e ue)e 1_2%%i
T b, T(r,u \Ys
:—/‘MﬂﬁvmwwW>r %ZfzbOH)
T mlzb (1w VTt
:_(/ w(T) fT (1, u0(7))VT + 2 fi_znf Q(b- Sl )

S w(T)vT)

T
< _¢p(A2'7p) (/ w(T)VT + 1 Zm_z b
s — Zui=1 Y
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so that

@(s) = 94 ( /OS w(T)f (1, u0(7)) VT — C’)
b ng U)(T)VT).

1=

< Awm%(/f w(T)VT + =

From (2.10)), we have
uo(t) = Fug(t) + Aoe(t)

z/OT N =

’L 1 a’lfO <‘0 A8+Zz 1 alfg p

m—2

[Zlal/Tgo AS—AT@(S)AS}+AO

'L

11a74

= + A
1-— Z;n 12 a; 0
S a( S Ee)As + [ e(9)As) + TP a [
= m—2 + AO
1-— Zi:l a;
& ~
az
= Zizi 7{—2 + Ao
1= ai
m=2 (& T m—2p, T w(r)Vr
> ,YPAQW%(/ w(r)VT + 2= ff;_Q( ) )AS + Ao
1=>20 a s 1= bi
=P+ Ao,
which implies A\g < 0, it is a contradiction. Hence by Theorem (ii), it follows
that i (F,Q,) = 0. O

Now, we set up and verify our existence results for the BVP and .

Theorem 3.4. Suppose that one of the following conditions holds.
(C1) There exist p1,p2 and ps € (0,400) with p1 < yp2, and pe < p3 such that
(i) f(t,w) < dp(Aip1), (t,u) € [0,T]r x [0, p1;
(i) f(t,u) >0,(t,u) € [0,T)r X [yp1, p3], in addition, f(t,u) > ¢p(Aayp2),
(t,u) € [0, Tt x [yp2, p2], u # Fu,u € 08, ;
(iii) f(t,u) < ¢p(A1p3), (t,u) € [0, Tl x [0, p3].
(C2) There exist p1,p2 and ps € (0,400) with p1 < pa < yps, such that
(i) f(t,u) > ¢p(Aaypr), (t,u) € [0, T]r x [v?p1, p2;
(i) f(t,u) < ¢dp(A1p2), (t,u) € [0, Tt % [0, pa], u # Fu,u € 0K,,;
(111) f(ta u) Z 07 (ta U) S [OaT]T X h/p%pS]: m addition, f(tvu) Z ¢p(A27p3>7
(t U) [0, T]r % [vp3, p3]-
Then BVP and . has at least two positive solutions uy and us.

Proof. Suppose (C1) holds, we verify that F' has a fixed point u; either in 0K ,, or
up in Qp,\K,,. If u# Fu,u € 0K, UJK,,, by Lemmasﬁand. we have

K(F7Kp1): ) ZK(FVQPZ):()’ ZK(F7K93):1'

By Lemma (b) and p1 < vp2, we have K, C K.,,, C ©,,. From Theorem
(iii), we obtain F has a fixed point u; € Q,,\K,,. Similarly, ' has a fixed point
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us € K,,\Q,,. Obviously,

luall > pr,  min uy(t) = ui(0) = yllusl| > vp1.
te[0,T)r

Therefore, vp1 < uy(t) < po, t € [0,T]r. By (C1) (ii), we have f(¢t,u1(t)) > 0,

t € [0,T)r, ie. fH(t,ui(t)) = f(t,u1(t)). Hence, Fu; = Au;. Consequently wu;

is a fixed point of A. From uy € K,,\Q,,, p2 < p3 and Lemma (b), we have

K., CQ,, C K,,. Clearly, ||us|| > vp2. This implies

min_ us(t) = uz(0) > vlluzl| > 72p2.
te[0,T)r

So,
Y?p2 <ug(t) < ps, te€0,T]y.

Using that p; < yp2 and (C1) (ii), we obtain f(¢,us(t)) > 0, t € [0,T]r, i.e.,

Fr(t,ua(t)) = f(t,uz(t)). Therefore us is another fixed point of A. Thus, we have

verified that BVP (1.1) and has at least two positive solutions u; and us.
The proof is similar when (C2) holds. The proof is complete. (]

By a similar argument to that of Theorem [3.4] we can find the following new
results on existence of at least one positive solution of the BVP ( and

Theorem 3.5. Assume that one of the following conditions holds.

(C3) There exist p1,p2 € (0,400) with py < ypa such that
(1) f(tau) < ¢P(A1p1)7 (t’u) € [O7T]T X [0,,01],'
(11) f(tau) 2 07 (tau) € [O’T]T X [’YP17P2L n addition; f(tvu) Z (bp(AZ"YpZ);

(t,u) € [0,T]r x [yp2, pa].

(C4) There exist p1, p2 € (0,+00) with p1 < pa such that
(1) f(t’u) > ¢p(A27p1); (tau) € [OaT]T X [72;017P2];
(11) f(tau) S ¢p(A1p2)} (tau) € [OvT}T X [Oap2]

Then BVP (1.1)) and (1.2) has at least one positive solution.

4. APPLICATION

Let T = {1 - (3)™}U{3,1}, Ny denotes the set of all nonnegative integers. We
consider the following BVP on time scales

W)Y + f(t,u(t)) =0, tel0,T)r, (4.1)
2 /1 1 /1 1 1 1 /1
0=3u(z)+u(z) PO=32()+5u) w2
w0)=3ulz) +1ulz) I =3u73) +3u3 (42)
where
f(t,u)
5455 \3 5455
(u— ) % . w0t , (t,u) €[0,Tr x [04’ itz
1 . 41472 s
1 tS 812 (53601742472_ 3560515725)41472 41472 foow) € 10, Tl [45157524’51(])
_ 545 1 5 5455
= t3[ 3078 3078 ] + %88 [ 3078 ¢ 7 3078 ]’ (t,u) € [0, Tz x [1, 41472]
25 7 54550 54550
288 + mpst’ (v — §i33) ) (t,u) €0, Tt x {7555, 10],
288 + 7843t3(10 - iﬁ?g) [1+ (u—10)(20 —w)], (t,u) € [0,T]r x [10,+00).
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It is easy to see that f :[0,1] x [0,+00) — (—
p:q:27w(t)ElvT:13a1:%7a2:%7bl
follows from a direct calculation that

T T
1 by [TV 10y [T V7
(bq / vr 1f§1 2ff2 )AS
1

00, +00) is continuous. In this case
_ 1 _1 _1 .
*§b2*§7£1*§7£2*71

A 1—(a1 +CL2 1—(b1+b2)

1 _1 l
:1—(§+411)/0 (10 d 22 §(+§ ))AS:LLO’
& by [ Vb [V
Aigzl—(ai—Fag alA (bq / vr (bl—:b;) T)

€2 blf VT—Fbgf
&1 &2
+a2/0 %(/S VT T T o )

1 9 1/3 s(1-3 —3
S N

1-(3+9)1L3
TR éolé)(i(;) %))As] -
"Yl—algjﬂ—ka%f%.é_ki.% %
Let
T T
ree /ogl o /ST v YT(bT-bfbfff s
T T
o /052 ‘bq(/f v ffi YT(bebfff ) as
1/3 111 _1_1 11
:g/o (1_s+3( 13)(§j(§) 2))As
1/2 111y 41(1-1 0
AL 13>(;j(; ),
and
T T
D= /OT %(/ST . by fgi VT(bjj)rzbe VT)AS
1 111y 41(1_1
) <1”3< 13)(;,j<;) 3))As§0-
Then

N 1091 3 1091 5455
=D T 864 10 20807 1 YPT qary
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72 5455 24
1091 41472 2765
Choose p1 = 1, pa = 10, p3 = 20, it is easy to check that yp1 < p1 < yp2 < p2 < p3.

By , we obtain
T s
(Fu)(t) = / 0q / FH(ru(r)Vr — C’)As

m—2 T . N
+ ZZ ; az{zal/g. ¢q(/ f+(T,u(7-))V7—_C)AS

i=1

1_
_/ ®q /f 7,u(1))VT — )As]
:/tl< Osf+(7,u(7'))VT— AS+8/1;3(/Ostr(ﬂu(T))Vr—C‘)As

+ 3/1;2 ( 05 fH(r,u(r)Vr — C’)As

Agy =

~ 0.00868 < ! =0.025=A
~ . 40— . — 1-

- 12/01 (/O fH(ru(r)Vr — C)As + %é,

where

o 1_2‘7}” [m;b / " P () v - / Lt

1/3 1/2 1
= -2 fH(ru(r)Vr —3 fH(ru()Vr + 6/ fH(ru(r))Vr.
0 0 0
Since f(t,u) < ég, t €[0,T)r, u € [0,10], for u € K39, we have

|Ful| = max Fu(t)
te[0, T

= 8/1;3 (/OS f+(7-,u(T))VT)As + 3/1;2 (/OS f+(7-,u(T))VT>As
- 12/01 (/O f+(7,u(7))vT)As+ %é
= 8/1;3 (/OS f+(T,u(T))VT)As + 3/1;2 (/OS f+(T,u(T))VT>As

1 S 31 1/3

— 12/ (/ f+(7',u(7'))V7')As+ —[—2 fH(ru(r)Vr
0 0 6 0
1/2 1

-3 f+(T,u(T))VT+6/ f+(T,u(T))VT}

0 0
1
< Z?) < 10 = ||u]|.
This implies Fu # u, for u € K.
As a result, f satisfies the following conditions:

(i) f(t,u) < dp(Aip1) = 55, (t,u) € [0, T]r x [0,1];
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(ii) f(t,u) >0, (t,u) € [0,T]r x [2225,20]; in addition, f(t,u) > ¢,(A2vp2) =
101 * dare 4= i (b w) € [0, Tle x [355,10];
(i) f(tu) < 6p(Aips) = 5, (t,u) € [0, T x [0,20].
Therefore, (C1) of Theorem is satisfied, then problem (4.1) and (4.2)) has two
positive solutions w1, us satisfying

ur]| <10,  [Juz| > 10.
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