

GPU EXECUTION TRACING AND COMPRESSION

by

Sahar Azimi Moghaddam, B.S.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

May 2017

Committee Members:

Martin Burtscher, Chair

Apan Qasem

Ziliang Zong

COPYRIGHT

by

Sahar Azimi Moghaddam

2017

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Sahar Azimi Moghaddam, authorize duplication

of this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

To my father, a strong and gentle soul who taught me to believe in hard work and

has been my inspiration throughout my life. To my mother, who taught me to trust in

Allah, myself and my dreams. I could not have done this without your faith, support and

constant encouragement. To my mentor, this could not have been possible without you.

Thank you for all of your support. To my beloved husband, who has been so supportive

along the way. I cannot thank you enough.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Martin Burtscher, without whose help and

support this work would never have been possible. I am grateful for his patience and

guidance on each and every step of the journey. I learned a great deal during our

individual and group sessions. I would like to thank Dr. Qasem and Dr. Zong for agreeing

to serve on my committee. I am particularly grateful to those who teach and share their

knowledge broadly.

I would like to thank Texas State University, and in particular the ECL lab

established by Dr. Burtscher, which I am proud to be a member of.

This project is supported by the National Science Foundation under award

#1438963 and by hardware donations from NVIDA Corporation.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. ix

ABSTRACT .. x

CHAPTER

1. INTRODUCTION .. 1

1.1 Large Size Traces .. 1
1.2 Contributions... 3
1.3 Results ... 3

1.4 Outline... 3

2. BACKGROUND .. 4

2.1 Tracing Definition and Applications .. 4
2.1.1 Tracing techniques ... 4

2.2 Compression ... 5

2.2.1 Gzip .. 6
2.2.2 Bzip2 .. 7

3. RELATED WORK ... 8

3.1 Tracing tools ... 8

3.2 GPU-Compression Tools .. 9

4. DESIGN AND IMPLEMENTATION ... 10

4.1 GPU Parallelism.. 10
4.2 Data Collection ... 12
4.3 Compression ... 14

4.4 Decompression .. 17

vii

5. EVALUATION... 18

5.1 Fractal ... 18

5.2 Maximal Independent Sets (MIS) ... 19
5.3 N-Body .. 20
5.4 LonestarGPU benchmark .. 20

5.4.1 DMR .. 20

5.4.2 MST ... 21
5.5 Experimental Methodology and Configuration 22

6. RESULTS ... 24

6.1 Overhead ... 24
6.2 Relative runtimes of ECL-Tracer with and without compression 26
6.3 Compression Ratios .. 28

6.4 Compression speed ... 29
6.5 Results for Tesla K40.. 30

7. CONCLUSION ... 35

7.1 Summary ... 35
7.2 Future Work .. 35

APPENDIX SECTION ... 35

BIBLIOGRAPHY ... 37

viii

LIST OF FIGURES

Figure Page

1. General information flow through the compression components 15

2. Diagram showing the application of CUT in the chain of compression components .. 16

3. Fractal image from Mandelbrot Set .. 19

4. Delaunay Mesh Refinement .. 21

5. ECL-Tracer overhead relative to using no tracing tool .. 25

6. Runtimes of ECL-Tracer with and without compression ... 27

7. Overhead of compression when using ECL-Tracer .. 27

8. Compression ratio for ECL-Tracer ... 28

9. Compression ratios for ECL-Tracer compared to Bzip2 and Gzip............................... 29

10. Runtime of Bzip2 and Gzip relative to runtime of ECL-Tracer 30

11. ECL-Tracer overhead relative to using no tracing tool on K40.................................. 31

12. ECL-Tracer runtimes with and without compression on K40 32

13. Compression overhead when using ECL-Tracer on K40 ... 32

14. Compression ratios of ECL-Tracer on K40 .. 33

15. Compression ratios for ECL-Tracer compared to Bzip2 and Gzip on K40 34

16. Runtime of Bzip2 and Gzip relative to runtime of ECL-Tracer on K40 34

ix

LIST OF ABBREVIATIONS

Abbreviation Description

GPU Graphics Processing Unit

MIS Maximal Independent Set

DMR Delaunay Mesh Refinement

MST Minimum Spanning Tree

fr Fractal

nb N-Body

x

ABSTRACT

Program tracing is widely used for debugging and performance optimization.

Whenever a program is traced, the overhead in terms of extra runtime and in terms of

storage for the generated trace information are a concern. These concerns are greatly

exacerbated on GPUs due to the large amount of parallelism. In fact, GPUs provide such

massive parallelism that conventional tracing approaches either fail or only manage to

trace very few events per thread. Hence, we need not only a low-overhead but also a

space-efficient approach to make detailed tracing possible on GPUs. To the best of my

knowledge, none of the existing GPU tracing tools support both. Thus, in this thesis, I

developed an execution tracing tool for GPUs called ECL-Tracer that is light-weight and

immediately compresses the generated trace data before they are stored.

1

1. INTRODUCTION

Due to their high computational power, low cost, and energy efficiency, GPUs are

increasingly used in various disciplines such as simulations, solving complex problems,

climate modeling, drug discoveries, data analysis, etc. Unfortunately, writing and tuning

programs for GPUs is more difficult than for CPUs. Tracing tools have the potential to

play an important role in the development of high-performance GPU codes, but no

whole-program tracing tools exist so far. The main reason is the massive parallelism of

GPUs, which can simultaneously hold up to almost 50,000 threads. Tracing just a single

event per thread thus produces up to 50,000 events that need to be recorded. As a

consequence, I/O bandwidth quickly becomes a bottleneck when writing such immense

amounts of trace data to disk or even just to memory. To make the tracing of a large

number of events per thread and per second possible, the trace data must be compressed

right away and quickly before it is stored.

1.1 Large Size Traces

Although tracing events helps us detect problems, growing trace-file sizes

complicate the analysis and management of data in large-scale systems. In this section,

some factors that contribute to large traces are explained.

• Number of threads: This factor represents the number of threads captured for

tracing. Collecting trace data from a larger number of threads results in

correspondingly larger trace files.

2

• Number of event parameters: This factor represents the parameters recorded as

part of an event. The most typical parameters include a thread identifier, a time

stamp, memory transfer information, device specific information, and a type

identifier [1]. In my thesis, I pass the function call location as the event parameter.

• Granularity: The granularity of detail recorded depends on the granularity at

which the events are traced. In my project, events are recorded wherever the user

places a call to the ECL-Tracer in the source code. I placed such a call at every

control-flow decision point in the code.

• Problem size: This factor is the input size given to the program to be traced.

Depending on the program, larger inputs may need more operations to be

processed, which leads to generate larger traces [1].

Large traces prevent us from tracing for a long time as either the memory is filled

soon or the amount of data to be transferred will become an issue. These problems will

become worse in the future due to the rapid increase in use of accelerator-based devices.

Equally important, within the next few years, we will witness a considerable rise in the

amount of data to be processed by these applications, hence we need more memory and

space to store the traces.

To overcome the problems mentioned above, we need a tracing tool and trace-

compression mechanism to reduce the generated trace file size as the need for such a tool

is greater than ever before.

3

1.2 Contributions

This thesis makes the following contributions:

1. A light-weight, portable GPU tracing tool called ECL-Tracer

2. This tool provides efficiency in time and space.

3. This tool incorporates a novel, incremental compression algorithm that

compresses the traces at runtime and before writing them to memory.

1.3 Results

The ECL-Tracer works well for most parallel programs with an overhead of 1.03

to 5.27. It compresses data by up to a factor of 385 and is faster than standard

compression algorithms such as Bzip2. Moreover, the ECL-Tracer is portable and works

on different GPU architectures.

1.4 Outline

In this thesis, Chapter 2 gives a brief overview of the background of tracing and

data compression. In Chapter 3, prior work is explained. I introduce the ECL-Tracer tool

and describe the design and implementation of the tool in Chapter 4. Chapter 5 begins

with the methodology and the configuration on which the experiments were conducted

and evaluated. Results are discussed in Chapter 6. Finally, Chapter 7 presents the

summary and future work.

4

2. BACKGROUND

 In this chapter I explain a brief background on tracing, the common techniques for

implementing it, and data compression techniques.

2.1 Tracing Definition and Applications

To put it simply, when we go through a program and check the values of different

variables and record the output, we are tracing the program. In software engineering,

information about a program execution is collected and recorded with the help of logging

technique. This method is generally called tracing.

A trace program is usually referred to as a utility program that captures the

sequence of executing events in another program [1]. A tracing routine provides a

chronological record of the execution of a computer program [1]. The tracing is often

performed to find out what a program exactly executes and where the origins of problems

are [2]. Moreover, event tracing is a powerful method for performance analysis [3]. In

particular, in parallel programs we can monitor how threads interact while

communicating and study the effect of concurrent activities on the performance of each

other.

2.1.1 Tracing techniques

Tracing techniques are different based on their application and the data they

capture. However, one of the common tracing techniques in software programming that I

used in ECL-Tracer is called instrumentation, which is explained as following.

5

Instrumentation

The Instrumentation technique is implemented by means of adding trace code

instructions to the main application. This technique allows us to track the execution of

specific sections in a code [4]. In other words, it can receive and collect informative data

and write it to the specified target such as the screen output or a file stored on the disk.

One popular way of instrumentation is to record the information obtained from function

calls, i.e. the location of the function in the source code.

2.2 Compression

In general, the process of reducing the size of a given data file is called data

compression. This is useful because it reduces the resources required to store and transmit

data. The original data can be reproduced by inverting the compression (decompression).

Two approaches exist for compression: lossy and lossless. In lossless data compression,

no information is lost because it exploits statistical redundancy to reduce bits. Lossy

method, however, eliminates some detail or less-important data to reduce the data file

size [5].

As mentioned above, trace data helps us study the behavior of a program. Hence,

we need the trace data to be highly accurate. Accordingly, a good tracing compression

algorithm is the one that not only compresses data but also guarantees the accuracy of

reproduced data after decompression. For this reason, lossy algorithms are not suitable

choices as they cannot perfectly reconstruct the original data.

6

There are several compression techniques used in compression algorithms. One of

them is called table-based compression model. In this technique, a table is generated

dynamically from the earlier data from the input. Table entries are substituted for

repeated strings of data. LZ77, which is one of the most popular lossless compression

algorithms, uses this model. Probabilistic models are also used in compression. In these

models, data is compressed based on a prediction obtained by partial matching.

2.2.1 Gzip

Gzip is a utility designed for file compression and decompression. The software

was basically created to be a replacement for the compress program and compresses

much better than the replaced software [6]. Gzip algorithm is based on the combination

of LZ77 and Huffman coding [7] and provides lossless data compression [8].

Given an input, the LZ77 algorithm looks for the repeated strings in the input data

and replaces the second occurrence of the string with a reference to the previous string.

This reference is formed by a pair of values: the jump, which is the distance from the

previous string, and the length of the string. Gzip emits the strings that does not repeat in

the input. The Huffman algorithm is then used by Gzip to compress the matching lengths

and matching distances. Huffman coding is based on the variable-length coding

method. In this method, the more frequent characters are assigned shorter codes [9].

7

2.2.2 Bzip2

Bzip2 is an open-source and high-quality data compressor that uses a stack of

several compression techniques. It starts with Run-length encoding (RLE) [10] and

produces blocks of size between 100 and 900 KB. RLE replaces repeating data by a count

and one copy of the repeated element. Then it uses Burrows–Wheeler transform [11] to

convert frequently occurring character sequences into strings of identical letters. It then

applies move-to-front transform [12] and Huffman coding [7]. Bzip2 is more efficient

than Gzip but tends to be considerably slower [13].

8

3. RELATED WORK

To the best of my knowledge, all tracing tools for GPU programs do not compress

their output. Moreover, there are compression algorithms for GPUs but not specifically

for tracing. As a result, I discuss the prior work in two separate sections.

3.1 Tracing tools

Tracing tools for GPUs are being utilized for performance analysis [14] [15],

tracing memory addresses [16], etc. As described elsewhere [17], the first GPU tracing

tools, including AMD’s CodeXL [18] and Nvidia’s Nsight [19], were proprietary tools.

Third-party tools that provide similar functionality, such as TAU [20] and VampirTrace

[21], typically also support for MPI. For GPUs, these tools primarily provide a visual

representation of API calls, memory transfers, and kernel execution. A recent article

describes a system-wide unified CPU and GPU tracing tool (CLUST) for OpenCL

applications [22]. They added an extension to the LTTng tracing tool that enables

programmers to gain a better global view of OpenCL applications by using GPU tracing

along with CPU tracing. MPTrace is a debugging tool for GPUs that is based on in-line

tracing [23]. Another debugging tool for race condition detection [24] employs an

optimal strategy to record just the minimum number of shared-memory references

required to exactly replay the execution. None of these tools directly compresses the

generated trace data.

9

3.2 GPU-Compression Tools

Several compression algorithms for GPUs have been proposed, including a

parallel implementation of bzip2-like lossless compression [25]. Compression using this

algorithm is slower than bzip2 but decompression is faster. Another compression

algorithm for GPUs is CULZZSS-Bit [26], which exploits bit parallelism. Yet another

algorithm is based on statistical and dictionary approaches to arrive at a general-purpose

compression algorithm for GPUs [27]. Some compression algorithms for GPUs target

floating-point data [28] [29]. However, none of these algorithms were designed

specifically for compressing trace data. Regarding GPU trace compression, Goel et al.

applied online stream compression to create a compact execution collector for shared-

memory parallel programs and showed that their technique outperforms Gzip [30].

However, they do not compress the trace data immediately but first store it in

uncompressed format. There are several trace compression algorithms for (serial) CPU

execution, including a hardware-based approach for trace compression and on-the-fly

trace decompression [31]. VPC3 [32] is a program trace-compression algorithm that

makes use of value predictors to compress traces more efficiently. There are also

approaches for both instruction and data address traces [33]. Unfortunately, none of these

algorithms can be readily parallelized, making them unsuitable for GPUs.

10

4. DESIGN AND IMPLEMENTATION

In this thesis, I devised an efficient tracing tool for massively parallel programs

running on GPUs. The tool does not incur much overhead so as not to slow down the

execution to an unacceptable level. Moreover, it does not produce too much data per

traced event so that a large number of events can be recorded. The basic strategy for

tracing is to provide a simple interface to the programmer that allows the marking of all

points in the program that should be traced, i.e., a trace event is recorded whenever a

thread reaches one of these points during execution. I studied such traces from a suite of

GPU programs and determined simple yet effective compression algorithms for the

resulting type of data. Eventually, I implemented the best such compression algorithm

directly in the tracing tool.

This chapter describes how ECL-Tracer was designed and developed to

efficiently trace and compress the traced data for a massively parallel program.

4.1 GPU Parallelism

CUDA Architecture exposes GPU parallelism for general-purpose computing. On

modern GPUs, CUDA provides software programmers with three granularities, warp,

block, and grid.

The first level, which is called warp, is formed by grouping 32 contiguous threads

together to work in lockstep. That is, threads within a warp must follow the same

execution path, i.e. threads either execute the same instruction on different data in the

same cycle (active threads) or they are disabled (inactive threads). In other words, threads

11

cannot diverge. Nonetheless, branch or thread divergence is inevitable if some threads in

a warp do not fit into the criterion for an instruction. In this case, they jump to different

instruction and become inactive. Inactive threads must wait while the hardware runs the

active threads so that they can re-converge again. Thread divergence could result in

reduction of parallelism and eventually performance loss in massively parallel

applications that suffers from excessive divergent codes. Data can be exchanged between

threads within a warp without an explicit synchronization.

The second level is larger than warp and is represented by thread blocks. In fact, a

thread block is divided into warps. In current GPUs, block allocation limits allow up to

1024 threads per block. The programmer is responsible to choose the size of a thread

block.

Grids that are third level of parallelism in current GPUs can hold up to two billion

blocks. Like for thread blocks, the grid size is determined by the programmer. GPUs

allow cross-block communications only through the global memory which is a shared L2

cache and because L2 cache has limited capacity (few words per thread) it is not able to

provide fast communication between thousands of running threads by a GPU, therefore

communication between blocks are slower than within-block communications.

One method to obtain data from lower levels of parallelism such as warps is using

CUDA warp-vote functions. Generally, warp vote functions take a predicate (normally an

integer) from each thread in the warp and compare those values with zero. The result of

the comparisons is combined across the active threads of the warp and broadcasted a

single return value to each participating thread. One of the warp vote functions that I used

in this thesis is ballot function. This function returns an integer whose Nth bit is set only

12

if the result of the comparison for the Nth thread in the warp is non-zero and the Nth

thread is active [34].

4.2 Data Collection

As mentioned in section 2.2, I used instrumentation technique to trace the events.

This was implemented by instrumenting function calls anywhere in the code that we

needed to obtain information about. In fact, by calling each of the instrumented functions

we are passing parameters and record information about that specific location in the code.

GPUs use threads for executing the codes, thus our functions are called by each thread

reaching the function. But here are two big problems with GPUs. First of all, GPUs do

not run a few threads, but around 50,000 of them run simultaneously. This will instantly

create a huge amount of data that needs to be handled. Second of all, data collection can

be more complicated by the fact that GPUs do warp based execution (cf. Section 4.1),

which causes thread divergence. To handle these problems, I decided to take the warp as

the main unit and use warp voting functions to collect data. Below I will explain how

ECL-Tracer collect data from running warps.

For each running warp, ECL-Tracer records the location of the called function in

the code and the number of active and inactive threads in the warp. At first, all the trace

function calls must be assigned a unique ID and added to the source code wherever data

needs to be collected such as locations , , and in the pseudocode on the next

page.

1 2 3

13

void traceLoc(unsigned char location) {

 // warp voting function

 int bmp = __ballot(location);

 // CUT: converting bmp to sequences of bytes

 for (int i = 0; i < 4; i++) {

 b = bmp & 0xFF;

 // passing bytes to next compression component

 LZ(b);

 bmp >>= 8;

 }

}

void myKernel(int nodes) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 int a[nodes];

 traceLoc(1);

 if (index < nodes) {

 traceLoc(2);

 for (int i = 0; i < (nodes / 2); i++) {

 traceLoc(3);

 a[index] += i;

 }

 }

}

Then in the initialization step, the ECL-Tracer creates a counter for each running

warp to keep track of the number of times a trace event is generated by a warp. Whenever

a function is called, the ID associated with the function along with a bitmap of active

threads in the warp are obtained, converted to a sequence of bytes , and passed to

the compression phase on-the-fly . For instance, the trace function to be revoked from

location will be assigned number 1. When warp zero calls traceLoc (1), “1” will be

4 5

6

1

2

1

3

4

5

6

14

passed to the function as an argument. The trace function also records the bitmap of

active threads using the value returned from __ballot() function. This value is a 32-bit

integer in which each bit position represents a thread. If a warp in location calls

traceLoc(2) and the warp vote function returns 15, it means that only warps zero to 3 are

active and executing the traceLoc(2). This value first will be converted to a sequence of

bytes and then passed to next compression component .

4.3 Compression

Since a large number of threads execute the trace functions, the recorded data tend

to be very large, thus transferring and writing them to the secondary storage soon will be

an I/O and storage bottlenecks. Hence, I decided to design a simple yet effective

compression algorithm.

One approach is to compress the trace data after it completely generated.

However, it is not an efficient way as it still needs a huge amount of storage for the

complete trace. To overcome this problem, I took a better approach which is to

incrementally compress the trace data as they are being generated. Implementing this

approach required a compression algorithm that not only maintains a good compression

ratio, but also does not incur much overhead on the system to not to slow down the

execution to an unacceptable level.

To find a fulfilling algorithm I used a tool called CRUSHER [29] which is a tool

that automatically generates high-performance lossless compression algorithms by

2

5 6

15

chaining components. This tool could be limited to only synthesize GPU-friendly

compression algorithms.

CRUSHER was run on my previously generated traces from different parallel programs.

Based on what CRUSHER reported, a chain of three components called CUT, LZ, and

RLE would be a good compression algorithm. CUT is simply a type cast that converts a

block of words into a block of bytes. LZ and RLE take sequence of values as input and

output transformed sequences. In general, the output of one component is the input for

the next component and the output of RLE will be the compressed trace. Figure1

illustrates the data flow through the compression components.

Figure 1. General information flow through the compression components

The fact that first component in our compression chain is CUT simplifies the

implementation as it indicates that byte granularity suffices for our values. To implement

the CUT, all the trace data of more than one byte size must be interpreted to a sequence

of bytes. For example, the bitmap of active threads is a 32-bit integer which is four bytes

long and must be fed to LZ component as a sequence of four bytes but the function IDs

can be directly fed into LZ as they are one byte long. The output of LZ is fed into the

RLE component which its output is stored into global arrays, Figure2. The final traces,

16

then are read from global arrays and written out. The decompression phase is done in a

reverse direction from RLE up to CUT.

Figure 2. Diagram showing the application of CUT in the chain of compression

components

A variant of the LZ77 algorithm [35] is implemented by LZan component. It

incorporates tradeoffs that make it more efficient than other LZ77 versions on floating-

point data and operates as follows. To identify the most recent prior occurrence of the

current value in the trace location 1, a hash table is used. Afterward the n values

immediately before location l is checked to see whether it matches the n values just

before the current location. If they do not, the current trace value is released and the

component advances to the next trace value. If the n values match, the component counts

how many values following the current value match the values following location l. The

length of the matching substring is emitted and the component advances by that many

values. Smaller values of n yield more matches, which have the potential to improve

compression, but also result in a higher chance of zero-length substrings, which hurt

compression. The best algorithm reported by CRUSHER showed n = 2. Therefore, I

chose LZa2 for ECL-Tracer.

The RLE component proceeds as follows. It emits a sequence of non-repeating

bytes and counts how many of them there are. Then it counts how many times the last

17

emitted byte repeats. It records both counts in a byte. The first count gets the lower four

bits and the second count the upper four bits. Because there are only four bits available,

the maximum count is 15. As a consequence, it always stops counting and moves on

when a count of 15 is reached so that the count doesn't go higher. I used an 18-element

buffer size for RLE which is filled with trace data. The reason to choose 18 elements is,

at the worst case the input sequence consists of 16 non-repeating values which all will be

emitted by RLE thus the output will be 17 elements including a counter and 16 non-

repeating values. This buffer is then copied to global arrays when either the buffer is full

or it reaches a non-repeating value after a sequence of repeating values whichever it

reaches first. From the perspective of memory consumption, the buffer takes only 18

bytes to allocate per warp, which is a reasonable amount when running many warps.

4.4 Decompression

In order to process the generated compressed trace, I needed a program to read in

the compressed data so I created a decompression program. The decompressor follows

the compression steps in reverse order to reproduce the original trace data.

18

5. EVALUATION

To evaluate and measure the performance, ECL-Tracer was tested on some

LonestarGPU benchmarks as well as several algorithms with different levels of

irregularity in behavior. Regular programs operate on array- and matrix-based data

structures and have relatively predictable control flow and largely independent

computations. In contrast, irregular programs build, traverse and update dynamic data

structure such as trees, graphs, etc. Unlike regular programs, irregular codes have

complex control flow, which is dependent on the input values and changes dynamically.

Irregular programs are important as many important scientific programs such as data

clustering, simulations, etc. are irregular. The following subsections explain regular and

irregular parallel programs on which ECL-Tracer was examined.

5.1 Fractal

This code computes a fractal from the Mandelbrot Set. The Mandelbrot Set is the

set of complex numbers C for which the sequence zn+1 = zn
2 + c; (z0 = 0) is bounded and

does not diverge when iterated from z0 = 0. It is called fractal because the set shows

repeating patterns at every scale. The fractal code I used, based on a given maximum,

calculates the number of iterations needed until |zk| ≥ 5, where k is the number of

iterations and specifies the pixel color. The real and imaginary values of C is determined

by the scaled x/y coordinates of each pixel. Figure 3 illustrates the picture drawn by the

program. Fractals are mostly regular programs.

19

Figure 3. Fractal image from Mandelbrot Set

5.2 Maximal Independent Sets (MIS)

In a graph, a set of vertices S is called independent if no two vertices in the set are

adjacent. This set is maximal if it is impossible to add another vertex to the set and still

stay independent. A maximum independent set is a maximal independent set that has the

largest set of vertices amongst maximal independent sets. Maximum independent sets are

not unique. In this thesis, I used a parallel implementation of the MIS algorithm that is

built based on Luby algorithm. MIS is an irregular program.

20

5.3 N-Body

In general, N-body simulation system consists of bodies where n represents the

number of bodies. Bodies interact via pair-wise forces. N-body can be widely used as

many systems can be modeled based on it such as star/galaxy clusters or particles in

electric or magnetic forces. The N-body algorithm I used, gets the number of bodies and

the number of time steps as inputs. In each time step, it calculates the force between

bodies and updates body positions and velocities based on the calculated force. N-body

falls into the category of regular programs.

5.4 LonestarGPU benchmark

In this thesis, I am using the LonestarGPU (version 2.0) [36] to generate and

evaluate traces. LonestarGPU, which is created by ISS group at University of Texas at

Austin in collaboration with Texas State University, is a collection of CUDA

implementations of several widely-used real-world irregular applications. I chose the

DMR (Delaunay Mesh Refinement) [37] and MST (Minimal Spanning Tree) [38]

applications from this benchmark.

5.4.1 DMR

The DMR algorithm takes as input an unrefined triangulation of a set of points in

a plane (Figure 4 (a)) [39]. The triangles that do not meet the defined criterion (angles in

the mesh should not be less than 30 degrees) are called “bad” triangles (black triangles).

All bad triangles are initially placed on a worklist. The refinement procedure that is

21

repeated in each step works as follows: 1) a bad triangle is picked from the worklist, 2) a

number of triangles surrounding the bad triangle called a cavity are collected (gray

triangles in Figure 4 (b)) and the cavity is retriangulated. If the retriangulation generates

new bad triangles, these are added to the worklist and processed again until all bad

triangles have been removed from the mesh. A mesh can be formed based on a graph in

which the nodes and edges represent triangles and triangle adjacencies, respectively. I use

a parallel implementation of the algorithm for this thesis.

Figure 4. Delaunay Mesh Refinement

5.4.2 MST

In an edge-weighted, undirected graph in which all the vertices are connected

together, a Minimum Spanning Tree (MST) is defined as the subset of the edges without

any cycles and with the minimum possible total edge weight such that the edges still

connect all the vertices [40]. A parallel implementation of this algorithm is used in this

thesis.

22

5.5 Experimental Methodology and Configuration

The ECL-Tracer was developed and tested on Linux platforms. I evaluated all the

programs on the ECL-Tracer and measured the runtime of the codes with and without

using the ECL-Tracer. The collected runtime includes the time for running the kernel,

copying the compressed trace data to the CPU and writing the data to disk.

The results are presented for two GPUs: a GeForce GTX Titan X and a Tesla

K40. The Titan X is based on the Maxwell architecture with compute capability 5.2. It

has 3072 processing elements, which are distributed over 24 multiprocessors and support

the total of 49,152 threads. In terms of memory, each multiprocessor has 96 KB of shared

memory as well as 48 KB of L1 cache. In addition, a 2 MB L2 cache and 12 GB of global

memory are shared by all the multiprocessors. The default clock frequency of the

processing elements and the GDDR5 global memory are 1.1 GHz and 3.5 GHz,

respectively.

The Tesla K40 is based on the Kepler architecture with compute capability 3.5.

The K40 comprises 2880 processing elements distributed over 15 multiprocessors that

can hold up to 30,720 threads. It has 64 KB of cache that is split between the shared

memory and the L1 data cache. All 15 multiprocessors share a 1.5 MB L2 cache as well

as 12 GB of global memory.

Both GPUs are plugged into 16x PCIe 3.0 slots in the same system, which has

dual 10-core Xeon E5-2687W v3 CPUs running at 3.1 GHz. The host operating system is

CentOS 6.7 and memory size is 128 GB.

For all the applications except DMR, traces were generated on both GPUs. All

codes were compiled with nvcc V8.0.61. The traces were compressed using my

23

compression algorithm on-the-fly (cf. Chapter 4). For comparison, I compressed the

decompressed traced with Bzip2 and Gzip. Trace data were collected from experiments

when running ECL-Tracer using different inputs. Table 1 lists all the inputs.

Table 1. Input Data used for Tracing.

Program Name Input

Fractal

Width Depth

2048 1024

2048 2048

2048 4096

N-Body

Bodies Time steps

50000 10

60000 10

MIS

 Nodes Edges

USA-road-d.NY.egr 264346 730100

amazon0312.egr 400727 4699738

internet.egr 124651 387240

DMR

 Nodes Triangles

250k.2_15 275000 524998

r1M_12 1000003 2000001

MST
 Nodes Edges

rmat12 4096 59320

24

6. RESULTS

This chapter shows the results of the experiments conducted for this thesis. The

inputs were chosen from the regular and irregular programs described in Chapter 5. I

investigate the overhead incurred by ECL-Tracer and the runtime of ECL-Tracer with

and without compression. Then I present the comparison between the compression ratio

obtained by ECL-Tracer and the compression ratio from the standard compression

algorithms Bzip2 and Gzip running on Titan X. Finally, the results of conducting the

experiments on the K40 are presented.

6.1 Overhead

In this subsection, I look into the overhead incurred by ECL-Tracer when tracing

different applications and compressing traces on-the-fly. To obtain the overhead, I

divided the runtime of the instrumented program by the original runtime of the program

given the same input. Figure 5 illustrates the results in logarithmic scale. The inputs are

listed along the x-axis, and the runtimes in seconds are represented on the y-axis.

Numbers above 1.0 indicate a slowdown due to the tracing.

The results clearly show the low overhead of ECL-Tracer on most programs,

which is below 5.5 in most cases. In particular, for irregular programs such as MIS and

DMR the overhead is below 2.6, meaning that these programs run less than three times as

long with tracing than they do without tracing. This demonstrates that my tracing tool

does not incur an unreasonable amount of overhead on these complex programs.

25

Figure 5. ECL-Tracer overhead relative to using no tracing tool

This is significant because the runtime of irregular programs is highly dependent

on the input. The overhead of Fractal and N-Body, however, is relatively higher than that

of other programs. This is probably because regular programs utilize the GPU hardware

more effectively. Adding irregular compression code to a regular application therefore

incurs a higher relative overhead than adding such code to an irregular application.

Despite the fact that the overhead of the applications mentioned above is higher than for

other applications, the resulting compression ratio is considerable as we will see.

1.14 1.15 1.10

14.92

2.59
1.96

5.26 5.22 5.34

60.16 64.47

1

10

100

O
ve

rh
e

ad

26

6.2 Relative runtimes of ECL-Tracer with and without compression

This part analyzes the overhead of the compression technique used in the ECL-

Tracer. Figure 6 show the comparison between the runtime of the ECL-Tracer with and

without compression.

As shown in the figure, compressing trace data results in a runtime reduction

compared to the non-compressing tracing time for the irregular programs. Significantly,

the DMR runtimes decreased from 2.6s to 0.5s for the smaller input (dmr_250k.2) and

from 3.8s to 1.1s for the larger input (dmr_r1m). Interestingly enough, both runtimes are

roughly the same for USA-road-d.NY. Regular programs (Fractal and N-body), however,

represent an increase when compressing the trace data.

My main take-away observation is that compression increases the runtime quite a

bit on the regular programs but decreases it a little to a lot on the irregular programs

(except on MST, which has a very short runtime). On the regular codes, the compression

incurs more overhead than the savings due to having to write less data. On the irregular

codes, the relative compression overhead is not that high (see above) and lower than the

saving due to writing less data.

The overhead of the compression is illustrated in Figure 7. The results are

computed by dividing the runtime of ECL-Tracer with compression by the runtime

without compression. Numbers above 1.0 indicate that the non-compressing version of

the code works faster. Interestingly enough, compression overheads below 1.0 are present

for most irregular programs. Moreover, two MIS inputs and DMR run faster with trace

compression, which, as mentioned earlier, is the result of writing and copying less data to

disk.

27

Figure 6. Runtimes of ECL-Tracer with and without compression

Figure 7. Overhead of compression when using ECL-Tracer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
u

n
ti

m
e

 (
s)

Tracing without compression Tracing with compression

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

28

6.3 Compression Ratios

Compression ratios achieved by the compression algorithm implemented in ECL-

Tracer is outlined in Figure 8. As expected, regular programs such as Fractal and N-Body

yield higher compression ratios than irregular programs. The reason is simply because

regular codes generate longer sequences of repeating numbers, which compress better.

Figure 8. Compression ratio for ECL-Tracer

Figure 9 compares the compression ratio of ECL-Tracer to Bzip2 and Gzip for all

the tested applications. It can be seen from Figure 9 that ECL-Tracer’s compression ratio

is reasonably close to Bzip2 and Gzip on most irregular programs. On average, Bzip2

compresses better than ECL-Tracer by only a factor of 2.9 and Gzip does so by factor of

3.2 on traces from irregular codes. I believe that this is a satisfactory tradeoff between

overhead and compression ratio.

1

10

100

C
o

m
p

re
ss

io
n

 r
at

io

29

Figure 9. Compression ratios for ECL-Tracer compared to Bzip2 and Gzip

6.4 Compression speed

To compare the runtime of ECL-Tracer with two general purpose compressors, I

ran the Gzip and Bzip2 on the same trace data. Figure 10 presents the runtimes of Bzip2

and Gzip relative to the runtime of ECL-Tracer. Values above 1.0 mean that ECL-Tracer

runs faster than the other two tools.

 The most remarkable result to emerge from the data is that Bzip2 is slower than

ECL-Tracer in most cases but compresses better. Specifically, for regular applications

like Fractal and N-Body, ECL-Tracer outperforms Bzip2 by a factor of 3.4 on average.

This is surprising because the ECL-Tracer running time includes the entire execution

time of program. The reason is that Gzip and Bzip2 are serial programs running on the

CPU whereas ECL-Tracer runs in parallel as each warp in the application compresses its

own trace while other warps perform their compression at the same time.

1

10

100

1,000

10,000

100,000

1,000,000

C
o

m
p

re
ss

io
n

 R
at

io

Tracer CR Bzip2 CR Gzip CR

30

Figure 10. Runtime of Bzip2 and Gzip relative to runtime of ECL-Tracer

6.5 Results for Tesla K40

The ECL-Tracer also works on older generation of GPUs such as Tesla K40. In

this subsection, I will present the result of all the experiments except DMR running on

K40. DMR did not run on the K40, even without the tracing code. We observed that

programs executing single-precision operations such as N-Body run slower than

programs that perform the computation on double values (Fractal) on K40. The reason is

Titan X by design performs better on float numbers.

I illustrate the overhead of using ECL-Tracer relative to normal execution of the

applications using no tracing tool in Figure 11. As presented in the figure, the overhead

on regular codes is higher. As mentioned earlier (cf. Subsection 6.1), this is probably

because regular programs utilize the GPU hardware more effectively. Adding irregular

compression code to a regular application incurs a higher relative overhead than adding

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

R
e

la
ti

ve
 R

u
n

ti
m

e

Bzip2 Gzip

31

such code to an already irregular application. Although the overhead on regular codes is

higher than on irregular programs, the resulting compression ratio is better as we will see.

Figure 11. ECL-Tracer overhead relative to using no tracing tool on K40

The running time of ECL-Tracer with and without compression turned on is

shown in Figure 12. As can be seen runtimes (except for MST) are significantly higher

with compression on K40.

Figure 13 represents the compression overhead incurred by ECL-Tracer on K40.

Values were computed by dividing the runtime of ECL-Tracer with compression by the

runtime without compression. Numbers above 1.0 indicate that the non-compressing

version of the code runs faster.

0

20

40

60

80

100

120

O
ve

rh
ea

d

32

Figure 12. ECL-Tracer runtimes with and without compression on K40

Figure 13. Compression overhead when using ECL-Tracer on K40

0

1

2

3

4

5

6

7

8

R
u

n
ti

m
e

(s
)

Tracing without compression Tracing with compression

0

5

10

15

20

25

30

O
ve

rh
ea

d

33

The figure 14 presents the compression ratio of ECL-Tracer running on K40. The

results show that the ECL-Tracer compresses the trace data from regular code (Fractal

and Nbody) better than the irregular codes. The reason could be the larger number of

repeating numbers generated by regular codes.

Figure 14. Compression ratios of ECL-Tracer on K40

Figure 15 compares the compression ratios of ECL-Tracer on K40 with the

compression ratios achieved from compressing the decompressed files by Bzip2 and

Gzip. We can see that ECL-Tracer compresses close to Bzip2 and Gzip on all the

irregular codes. On average, Bzip2 compresses better than ECL-Tracer by only a factor

of 2.74 and Gzip does so by a factor of 2.93 on irregular codes.

1

10

100

1000

C
o

m
p

re
ss

io
n

 R
at

io

34

Figure 15. Compression ratios for ECL-Tracer compared to Bzip2 and Gzip on K40

Figure 16 compares the ECL-Tracer runtimes on K40 with Bzip2 and Gzip.

Similar to Titan X (cf. Section 6.3, Figure 9), for most regular codes we see ECL-Tracer

performs faster than Bzip2 but slower than Gzip. There is a trade-off between the running

time and compression ratios in most regular code.

Figure 16. Runtime of Bzip2 and Gzip relative to runtime of ECL-Tracer on K40

1

10

100

1,000

10,000

100,000

1,000,000

C
o

m
p

re
ss

io
n

 R
at

io

Tracer CR Bzip2 CR Gzip CR

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
ru

n
ti

m
e

Bzip2 Gzip

35

7. CONCLUSION

7.1 Summary

This thesis presents an efficient tracing tool for massively parallel programs

running on GPUs. As far as I am aware, the ECL-Tracer is the first GPU tracing tool

capable of compressing the trace data on the fly before writing it to disk. This tool is a

clear improvement on GPU execution tracing, and I believe that my approach would lend

itself well for use by researchers and programmers to aid to increase the performance of

their programs. The findings of this thesis imply that the ECL-Tracer has low overhead

and is efficient in terms of time and space for most parallel programs.

7.2 Future Work

ECL-Tracer works properly on all tested CUDA programs. Nevertheless, it can

easily be made even more capable to further help programmers and researchers. For

example, one could add support to record additional information, which might help

identify and analyze performance weaknesses or bugs faster. To expand this study, one

could investigate other compression algorithms to possibly improve the compression

ratio. Testing the ECL-Tracer on additional programs, different architectures, and even

multi-GPU programs are also opportunities for future work.

APPENDIX SECTION

36

This section lists all the raw data for all the experiments.

INPUT Decompressed file ECL-Tracer Bzip2 Gzip

fr_2048_1024 25511720 4043071 649107 536875

fr_2048_2048 26239135 4254701 652150 540871

fr_2048_4096 26457160 4317234 652126 541131

mis_amazon0312 4505129 2428465 902288 861001

mis_internet 773332 505281 184126 182843

mis_USA-road-d.NY 1400371 986743 360214 345481

nb_50000_2 784648909 2040629 2122 1100663

nb_60000_2 1129532409 2929635 2456 1577121

mst_rmat12 410575 233156 78016 67085

dmr_250k.2_15 6046059 3822143 1451921 1244914

dmr_r1M_12 2658209 1160153 345236 319085

Table A.1 File sizes (in Bytes) of traces generated on Titan X

INPUT Decompressed file Tracer Bzip2 Gzip

fr_2048_1024 25541245 4046217 649198 536850

fr_2048_2048 26269295 4254895 652013 540869

fr_2048_4096 23019120 3677657 564250 476242

mis_amazon0312 4445099 2393580 892260 847995

mis_internet 770667 503341 182949 182447

mis_USA-road-d.NY 1399181 986043 360215 345368

mst_rmat12 364625 218161 77929 66848

nb_50000_2 784648909 2040629 2122 1100663

nb_60000_2 1129532409 2929635 2456 1577121

Table A.2 File sizes (in Bytes) of traces generated on K40

37

BIBLIOGRAPHY

[1] "http://www.thefreedictionary.com/trace+program," Farlex clipart collection, 2003-

2008. [Online].

[2] "https://www-927.ibm.com/ibm/cas/hspc/student/tutorials/tracing.html," IBM.

[Online].

[3] F. Wolf, F. Freitag, B. Mohr, M. Shirley and B. Wylie, "Large Event Traces in

Parallel Performance Analysis," in 8th workshop on Parallel Systems and

Algorithms, Frankfort, Germany, 2006.

[4] W. contributors, "Instrumentation (computer programming)," Wikipedia, 2015.

[Online].

[5] "https://en.wikipedia.org/wiki/Data_compression#cite_note-mahdi53-2,"

Wikipedia. [Online].

[6] "https://en.wikipedia.org/wiki/Gzip," wikipedia. [Online].

[7] "https://en.wikipedia.org/wiki/Huffman_coding," Wikipeia. [Online].

[8] R. Fraile, "http://blog.servergrove.com/2014/04/14/gzip-compression-works/," 14 4

2014. [Online].

[9] "http://www.gzip.org/algorithm.txt," [Online].

[10] "https://en.wikipedia.org/wiki/Run-length_encoding," Wikipedia. [Online].

[11] "https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform,"

Wikipedia. [Online].

38

[12] "https://en.wikipedia.org/wiki/Move-to-front_transform," Wikipedia. [Online].

[13] "https://en.wikipedia.org/wiki/Bzip2," wikipedia. [Online].

[14] J. Caubet, J. Gimenez, J. Labarta, L. DeRose and J. Vetter, "A dynamic tracing

mecha-nism for performance analysis of OpenMP applications," Berlin, Heidelberg,

Springer Berlin Heidelberg, 2001, pp. 53-67.

[15] T. E. Anderson and E. D. Lazowska, "Quartz: a tool for tuning parallel program

performance," in Measurement and modeling of computer systems, Boulder,

Colorado, 1990.

[16] L. Mallens, "A framework for data-access strategies in GPGPU programs,"

Eindhoven University of Technology, Eindhoven, 2013.

[17] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, "GPU

Computing," Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, 2008.

[18] "http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/," [Online].

[19] "http://www.nvidia.com/object/nsight.html," [Online].

[20] S. S. Shende and A. Malony, "THE TAU PARALLEL PERFORMANCE

SYSTEM," The International Journal of High Performance Computing

Applications, vol. 20, no. 2, pp. 287-311, 2006.

[21] A. Knüpfer, H. Brunst, . J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S.

Müller and W. E. Nagel, "The Vampir Performance Analysis Tool-Set," pp. 139-

155, 2008.

39

[22] D. Couturier and M. R. Dagenais, "LTTng CLUST: A System-Wide Unified CPU

and GPU Tracing Tool for OpenCL Applications," Advances in So ware

Engineering, 2015.

[23] S. J. Eggers, D. R. Keppel, E. J. Koldinger and H. M. Levy, "Techniques for

efficient inline tracing on a shared-memory multiprocessor," in conference on

Measurement and modeling of computer systems, Boulder, Colorado, 1990.

[24] R. H. B. Netzer, "Optimal tracing and replay for debugging shared-memory parallel

programs," in workshop on Parallel and distributed debugging, San Diego,

California, 1993.

[25] R. A. Patel, Y. Zhang, J. Mak, A. Davidson and J. D. Owens, "Parallel Lossless

Data Compression on the GPU," in Innovative Parallel Computing (InPar), 2012,

2012.

[26] A. Ozsoy, "Culzss-bit: A bit-vector algorithm for lossless data compression on

gpgpus," in International Workshop on Data Intensive Scalable Computing

Systems, 2014.

[27] M. Chłopkowski and R. Walkowiak, "A general purpose lossless data compression

method for GPU," Journal of Parallel and Distributed Computing, vol. 75, pp. 40-

52, 2015.

[28] M. A. O'Neil and M. Burtscher, "Floating-point data compression at 75 Gb/s on a

GPU," in GPGPU-4 Proceedings of the Fourth Workshop on General Purpose

Processing on Graphics Processing Units, Newport Beach, California, 2011.

40

[29] A. Yang, H. Mukka, F. Hesaaraki and M. Burtscher, "MPC: A Massively Parallel

Compres-sion Algorithm for Scientific Data," in Cluster Computing (CLUSTER),

2015 IEEE International Conference on, 2015.

[30] A. Goel, A. Roychoudhury and T. Mitra, "Compactly representing parallel program

executions," in PPoPP '03 Proceedings of the ninth ACM SIGPLAN symposium on

Principles and practice of parallel programming, San Diego, California, 2003.

[31] C.-F. Kao and I.-J. Huang, "A Cache-Based Approach for Program Address Trace

Compression".

[32] M. Burtscher, "VPC3: a fast and effective trace-compression algorithm," in

SIGMETRICS '04/Performance '04 Proceedings of the joint international

conference on Measurement and modeling of computer systems, New York, 2004.

[33] A. Milenkovic and M. Milenkovic, "Stream-Based Trace Compression," IEEE

Computer Architecture Letters, vol. 2, no. 1, pp. 4-4, 2006.

[34] "http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#axzz4UzzuLA7b," NVIDIA. [Online].

[35] "https://en.wikipedia.org/wiki/LZ77_and_LZ78," 7 December 2016. [Online].

[36] U. o. T. A. Austin, "http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu," 2014.

[Online].

[37] L. P. Chew, "Guaranteed-quality mesh generation for curved," SCG, 1993.

[38] D. Eppstein, "Spanning Trees and Spanners," Handbook of Computational

Geometry, p. 425–461, 1999.

41

[39] M. Kulkarni, M. Burtscher, C. Caşcaval and K. Pingali, "Lonestar: A Suite of

Parallel Irregular Programs".

[40] "https://en.wikipedia.org/wiki/Minimum_spanning_tree," Wikipedia, 1 March

2017. [Online].

[41] "https://msdn.microsoft.com/en-us/library/aa983649(VS.71).aspx," Microsoft.

[Online].

[42] "http://www.gzip.org/," 2003. [Online].

