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LYAPUNOV FUNCTIONS FOR DICHOTOMIES IN MEAN

LUIS BARREIRA, CLAUDIA VALLS

Abstract. We consider the notion of an exponential dichotomy in mean for

a cocycle, in which the exponential behavior in the classical notion of an ex-
ponential dichotomy is replaced by an average with respect to an invariant

probability measure. We give a complete characterization of the exponential

behavior in mean in terms of Lyapunov functions, both for cocycles over maps
and flows.

1. Introduction

The notion of an exponential dichotomy is central in several parts of the the-
ory of differential equations and dynamical systems. In particular, the existence
of an exponential dichotomy causes that there are stable and unstable invariant
manifolds under sufficiently small nonlinear perturbations. Moreover, the local in-
stability of the trajectories caused by an exponential dichotomy is one of the main
mechanisms for the occurrence of stochastic behavior in the presence of a finite in-
variant measure. We refer the reader to the books [1, 7, 11] for details and further
references.

On the other hand, the existence of an exponential dichotomy is a strong require-
ment and in view of their important role it is of interest to look for more general
types of hyperbolic behavior. Here we consider the more general notion of an expo-
nential dichotomy in mean in which the exponential behavior in the classical notion
is replaced by an average with respect to an invariant probability measure.

Now we describe briefly the notion of an exponential dichotomy in mean in
the particular case when there is only contraction. Let φ be a flow preserving a
probability measure µ on a measure space Ω, and let Φ be a cocycle over φ (with
values in the set of bounded linear operators acting on a given Banach space X).
We say that Φ has an exponential contraction in mean if there exist K, a > 0 such
that ∫

Ω

‖Φ(t, ω)x(ω)‖ dµ(ω) ≤ Ke−at
∫

Ω

‖x(ω)‖ dµ(ω)

for all t ≥ 0 and all measurable functions x : Ω→ X such that∫
Ω

‖x(ω)‖ dµ(ω) <∞.
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The notion of an exponential dichotomy in mean corresponds to require that there
exist both contraction and expansion in mean (see Section 3). We refer the reader
to [2] for examples of exponential behavior in mean.

We note that the existence of an exponential dichotomy in mean (even though
weaker than the classical notion of an exponential dichotomy) is still robust under
sufficiently small linear perturbations. More precisely, given an essentially bounded
measurable function B : Ω → L(X), assume that there exists a unique cocycle Ψ
satisfying

Ψ(t, ω) = Φ(t, ω) +
∫ t

0

Φ(t, ω)Φ(τ, ω)−1B(φτ (ω))Ψ(ω, τ) dτ.

It is shown in [2] that if Φ admits an exponential dichotomy in mean (respectively, an
exponential contraction in mean) and B is sufficiently small, then Ψ also admits an
exponential dichotomy in mean (respectively, an exponential contraction in mean).
This provides further examples of exponential behavior in mean.

In this paper we study in detail the relation between the notions of an exponential
dichotomy in mean and of a strict Lyapunov function. In particular, we show that
a cocycle over a flow has an exponential dichotomy in mean if and only if it has a
strict Lyapunov function (see Theorems 3.1 and 4.1). This includes constructing
explicitly a strict Lyapunov function for any exponential dichotomy in mean, which
in the particular case of an exponential contraction in mean is given by

V (x) = − sup
{∫

Ω

‖Φ(τ, ω)x(ω)‖eaτ dµ(ω) : τ ≥ 0
}

for some appropriate constant a > 0. We also consider cocycles over a measurable
map (see Section 5).

Our work can be partly seen as a development of related approaches of Dalec’kĭı
and Krĕın [5] and Massera and Schäffer [10], that go back to Lyapunov. According
to Coppel [4], the relation between Lyapunov functions and exponential dichotomies
was first considered by Măızel’ in [9]. Among the first accounts of the theory are
the books by LaSalle and Lefschetz [8], Hahn [6] and Bhatia and Szegö [3].

2. Lyapunov functions and exponential contractions

We first introduce some basic notions. Let Ω = (Ω, µ) be a probability space. A
measurable map φ : R× Ω→ Ω is said to be a flow on Ω if:

(1) φ(0, ω) = ω for ω ∈ Ω;
(2) φ(t+ s, ω) = φ(t, φ(s, ω)) for t, s ∈ R and ω ∈ Ω.

We also consider the measurable maps φt = φ(t, ·). Now let X be a Banach space
and let L(X) be the set of all bounded linear operators acting on X. A measurable
map Φ: R× Ω→ L(X) is said to be a cocycle over a flow φ if:

(1) Φ(0, ω) = Id for ω ∈ Ω;
(2) Φ(s+ t, ω) = Φ(s, φt(ω))Φ(t, ω) for s, t ∈ R and ω ∈ Ω.

Taking s = −t we find that Φ(t, ω) is invertible for each t ∈ R and ω ∈ Ω, with
Φ(t, ω)−1 = Φ(−t, φt(ω)). One can easily verify that Φ is a cocycle over φ if and
only if one can define a flow on Ω×X by

(t, ω, x) 7→ (φt(ω),Φ(t, ω)x).
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Now assume that µ is φ-invariant (that is, µ ◦ φt = µ for every t ∈ R) and
consider the space F of all Bochner measurable functions x : Ω→ X such that∫

Ω

‖x(ω)‖ dµ(ω) <∞

identified if they are equal µ-almost everywhere. We say that a cocycle Φ has an
exponential contraction in mean if there exist K, a > 0 such that∫

Ω

‖Φ(t, ω)x(ω)‖ dµ(ω) ≤ Ke−at
∫

Ω

‖x(ω)‖ dµ(ω) (2.1)

for t ≥ 0 and x ∈ F .

Remark 2.1. In [2] we introduced the notion of a contraction in mean (for a
measure µ that need not be invariant) by requiring that∫

Ω

‖Φ(t, ω)Φ(s, ω)−1z(ω)‖ dµ(ω) ≤ Ke−a(t−s)
∫

Ω

‖z(ω)‖ dµ(ω)

for t ≥ s and z ∈ F . However, when µ is φ-invariant, we have z = x ◦ φs ∈ F for
all x ∈ F and so,∫

Ω

‖Φ(t, ω)Φ(s, ω)−1z(ω)‖ dµ(ω) =
∫

Ω

‖Φ(t− s, φs(ω))x(φs(ω))‖ dµ(ω)

=
∫

Ω

‖Φ(t− s, ω)x(ω)‖ dµ(ω)

and ∫
Ω

‖z(ω)‖ dµ(ω) =
∫

Ω

‖x(φs(ω))‖ dµ(ω) =
∫

Ω

‖x(ω)‖ dµ(ω).

This shows that for a φ-invariant measure the notion introduced in [2] can be written
as in (2.1).

Now we introduce the notion of a strict Lyapunov function in mean for a cocycle
Φ. We first define a flow Φ∗t on F by

(Φ∗tx)(ω) = Φ(t, φ−t(ω))x(φ−t(ω))

for t ∈ R and x ∈ F . We say that a function V : F → (−∞, 0] is a strict Lyapunov
function in mean for Φ if:

(1) there exists C > 0 such that

1
C

∫
Ω

‖x(ω)‖ dµ(ω) ≤ |V (x)| ≤ C
∫

Ω

‖x(ω)‖ dµ(ω) for x ∈ F ; (2.2)

(2) there exists θ ∈ (0, 1) such that

|V (Φ∗tx)| ≤ θt|V (x)| for t ≥ 0 and x ∈ F .

The following result characterizes an exponential contraction in mean in terms
of the existence of a strict Lyapunov function in mean.

Theorem 2.2. The following properties are equivalent.

(1) the cocycle Φ has an exponential contraction in mean;
(2) there exists a strict Lyapunov function in mean for Φ.
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Proof. Assume that there exists a strict Lyapunov function in mean V for Φ. Then
for t ≥ 0 and x ∈ F we have∫

Ω

‖Φ(t, ω)x(ω)‖ dµ(ω) =
∫

Ω

‖Φ(t, φ−t(ω))x(φ−t(ω))‖ dµ(ω)

≤ C|V (Φ∗tx)| ≤ Cθt|V (x)|

≤ C2θt
∫

Ω

‖x(ω)‖ dµ(ω).

This shows that Φ has an exponential contraction in mean with a = − log θ.
Now assume that Φ has an exponential contraction in mean. For x ∈ F we

define
V (x) = − sup

{∫
Ω

‖Φ(τ, ω)x(ω)‖eaτ dµ(ω) : τ ≥ 0
}
.

By (2.1) we have

|V (x)| ≤ K
∫

Ω

‖x(ω)‖ dµ(ω).

On the other hand, setting τ = 0 we obtain

|V (x)| ≥
∫

Ω

‖Φ(0, ω)x(ω)‖ dµ(ω) =
∫

Ω

‖x(ω)‖ dµ(ω),

which establishes (2.2). Moreover, since µ is φ-invariant, for t ≥ 0 we have

|V (Φ∗tx)| = sup
{∫

Ω

‖Φ(τ, ω)Φ(t, φ−t(ω))x(φ−t(ω))‖eaτ dµ(ω) : τ ≥ 0
}

= e−at sup
{∫

Ω

‖Φ(t+ τ, φ−t(ω))x(φ−t(ω))‖ea(τ+t) dµ(ω) : τ ≥ 0
}

= e−at sup
{∫

Ω

‖Φ(t+ τ, ω)x(ω)‖ea(τ+t) dµ(ω) : τ ≥ 0
}

≤ e−at sup
{∫

Ω

‖Φ(r, ω)x(ω)‖ear dµ(ω) : r ≥ 0
}

= e−at|V (x)|

and so V is a strict Lyapunov function in mean with θ = e−a. �

3. Lyapunov functions and exponential behavior

In this section we develop the theory further having in mind the general case
when a cocycle Φ exhibits both contraction and expansion. We say that a cocycle
Φ has an exponential dichotomy in mean if:

(1) there exist projections P (ω) ∈ L(X) for ω ∈ Ω satisfying

Φ(t, ω)P (ω) = P (φt(ω))Φ(t, ω) (3.1)

for t ∈ R and µ-almost every ω ∈ Ω;
(2) there exist K, a > 0 such that∫

Ω

‖Φ(t, ω)P (ω)x(ω)‖ dµ(ω) ≤ Ke−at
∫

Ω

‖x(ω)‖ dµ(ω), (3.2)∫
Ω

‖Φ(−t, ω)Q(ω)x(ω)‖ dµ(ω) ≤ Ke−at
∫

Ω

‖x(ω)‖ dµ(ω), (3.3)

for t ≥ 0 and x ∈ F , where Q(ω) = Id−P (ω).
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We define corresponding stable and unstable subspaces by

F s(ω) = ImP (ω) and Fu(ω) = ImQ(ω). (3.4)

Now we introduce the notion of a strict Lyapunov function in mean. Given a
function V : F → R, we consider the cones

Cu(V ) = {0} ∪ V −1(0,+∞) and Cs(V ) = {0} ∪ V −1(−∞, 0). (3.5)

Moreover, given a cocycle Φ, we define

Eu =
⋂
t≥0

Φ∗tCu(V ) and Es =
⋂
t≥0

Φ∗−tCs(V ).

Clearly,

Eu =
{
x ∈ F : V (Φ∗−tx) ≥ 0 for t ≥ 0

}
,

Es =
{
x ∈ F : V (Φ∗tx) ≤ 0 for t ≥ 0

}
.

We say that V is a Lyapunov function in mean for Φ if:

(1) there exist closed subspaces Du ⊂ Eu and Ds ⊂ Es such that

Du ⊕Ds = F (3.6)

with continuous projections associated to this splitting;
(2) there exists C > 0 such that

|V (x)| ≤ C
∫

Ω

‖x(ω)‖ dµ(ω) for x ∈ F ; (3.7)

(3) V (Φ∗tx) ≥ V (x) for x ∈ F and t ≥ 0.

Moreover, a Lyapunov function in mean V is said to be strict if:

(1) there exists D > 0 such that

|V (x)| ≥ 1
D

∫
Ω

‖x(ω)‖ dµ(ω) for x ∈ Eu ∪ Es; (3.8)

(2) there exists θ ∈ (0, 1) such that for t ≥ 0 we have

V (Φ∗tx) ≥ θ−tV (x) for x ∈ Eu, (3.9)

|V (Φ∗tx)| ≤ θt|V (x)| for x ∈ Es. (3.10)

We note that in the particular case when V takes values only in (−∞, 0] (and so
Es = F ), this notion of a strict Lyapunov function in mean coincides with the
corresponding notion introduced in Section 2.

Theorem 3.1. If V is a strict Lyapunov function in mean for the cocycle Φ, then:

(1) Du = Eu, Ds = Es, and for each t ∈ R we have

Φ∗tE
u = Eu and Φ∗tE

s = Es; (3.11)

(2) Φ has an exponential dichotomy in mean with projections P (ω) determined
pointwise by the direct sum Es ⊕ Eu = F , that is, with ImP (ω) = Es(ω)
and ImQ(ω) = Eu(ω) for µ-almost every ω ∈ Ω.
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Proof. By definition,

Eu ⊂ Cu(V ) and Es ⊂ Cs(V ).

Moreover, by (3.8), the function V is positive on Eu \{0} and negative on Es \{0}.
For each x ∈ Es \ {0} and t ≥ 0, it follows from (3.8) and (3.10) that

1
D

∫
Ω

‖Φ(t, φ−t(ω))x(φ−t(ω))‖t dµ(ω) ≤ |V (Φ∗tx)| ≤ θt|V (x)| (3.12)

and so

lim sup
t→+∞

1
t

log
∫

Ω

‖Φ(t, φ−t(ω))x(φ−t(ω))‖ dµ(ω) ≤ log θ < 0. (3.13)

Similarly, for each x ∈ Eu \ {0} and t ≥ 0, it follows from (3.7) and (3.9) that

C

∫
Ω

‖Φ(t, φ−t(ω))x(φ−t(ω))‖ dµ(ω) ≥ V (Φ∗tx) ≥ θ−tV (x) (3.14)

and so

lim sup
t→+∞

1
t

log
∫

Ω

‖Φ(t, φ−t(ω))x(φ−t(ω))‖ dµ(ω) ≥ − log θ > 0. (3.15)

Now let Du ⊂ Eu and Ds ⊂ Es be closed subspaces as in (3.6). If Ds 6= Es, then
there exists x ∈ Es \Ds and one can write x = y+z, with y ∈ Ds and z ∈ Du \{0}.
By (3.13) and (3.15), since z 6= 0 we have

lim sup
t→+∞

1
t

log
∫

Ω

‖Φ(t, φ−t(ω))x(φ−t(ω))‖ dµ(ω)

= max
{

lim sup
t→+∞

1
t

log
∫

Ω

‖Φ(t, φ−t(ω))y(φ−t(ω))‖ dµ(ω),

lim sup
t→+∞

1
t

log
∫

Ω

‖Φ(t, φ−t(ω))z(φ−t(ω))‖ dµ(ω)
}

= lim sup
t→+∞

1
t

log
∫

Ω

‖Φ(t, φ−t(ω))z(φ−t(ω))‖ dµ(ω) > 0

(with the convention that log 0 = −∞), which contradicts to (3.13). Therefore,
Ds = Es. One can show in a similar manner that Du = Eu.

Moreover, by condition 3 in the notion of a Lyapunov function in mean, for t ≥ 0
we have

Φ∗tCu(V ) ⊂ Cu(V ) and Φ∗−tCs(V ) ⊂ Cs(V ).
This implies that

Eu =
⋂
t≥r

Φ∗tCu(V ) and Es =
⋂
t≥r

Φ∗−tCs(V )

for each r > 0. Hence,

Φ∗−rE
u =

⋂
t≥r

Φ∗−rΦ
∗
tC

u(V ) =
⋂
t≥r

Φ∗t−rCu(V ) = Eu

and, similarly, Φ∗rE
s = Es. Since Φ∗t is invertible for each t ∈ R and r is arbitrary,

this establishes (3.11).
Now we establish the second statement in the theorem. By (3.7) and (3.12), for

x ∈ Es and t ≥ 0 we have∫
Ω

‖Φ(t, φ−t(ω))x(φ−t(ω))‖ dµ(ω) ≤ Dθt|V (x)| ≤ CDθt
∫

Ω

‖x(ω)‖ dµ(ω). (3.16)
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Moreover, it follows from (3.8) and (3.14) that∫
Ω

‖Φ(t, φ−t(ω))x(φ−t(ω))‖ dµ(ω) ≥ 1
C
θ−tV (x) ≥ 1

CD
θ−t

∫
Ω

‖x(ω)‖ dµ(ω)

for x ∈ Eu and t ≥ 0. In view of (3.11), this happens if and only if∫
Ω

‖Φ(−t, φt(ω))y(φt(ω))‖ dµ(ω) ≤ CDθt
∫

Ω

‖y(ω)‖ dµ(ω) (3.17)

for y ∈ Es and t ≥ 0. Indeed, letting

y(ω) = Φ(t, φ−t(ω))x(φ−t(ω)) = (Φ∗tx)(ω),

we obtain
x(ω) = (Φ∗−ty)(ω) = Φ(−t, φt(ω))y(φt(ω)).

By (3.16) and (3.17), for t ≥ 0 we have

‖Φ∗t |Es‖ ≤ CDθt and ‖Φ∗−t|Eu‖ ≤ CDθt.
Since the projections associated to the direct sum Du ⊕ Ds = F are continuous,
this implies that Φ has an exponential dichotomy in mean and the proof of the
theorem is complete. �

4. Construction of Lyapunov functions

In this section we construct a strict Lyapunov function in mean for any expo-
nential dichotomy in mean.

Theorem 4.1. If the cocycle Φ has an exponential dichotomy in mean, then there
exists a strict Lyapunov function in mean for Φ.

Proof. Given x ∈ F , we write x = y + z, with y(ω) ∈ F s(ω) and z(ω) ∈ Fu(ω) for
each ω ∈ Ω (see (3.4)). For x ∈ F , let

V (x) = −V s(y) + V u(z),

where

V s(y) = sup
{∫

Ω

‖Φ(r, ω)y(ω)‖ear dµ(ω) : r ≥ 0
}
,

V u(z) = sup
{∫

Ω

‖Φ(r, ω)z(ω)‖e−ar dµ(ω) : r ≤ 0
}
.

Clearly,

V s(y) ≤ K
∫

Ω

‖y(ω)‖ dµ(ω) and V u(z) ≤ K
∫

Ω

‖z(ω)‖ dµ(ω).

Therefore,

|V (x)| ≤ K
(∫

Ω

‖y(ω)‖ dµ(ω) +
∫

Ω

‖z(ω)‖ dµ(ω)
)
≤ 2K2

∫
Ω

‖x(ω)‖ dµ(ω).

which shows that property (3.7) holds.
Now observe that∫

Ω

‖Φ(r, ω)y(ω)‖ dµ(ω) =
∫

Ω

‖Φ(r, φ−r(ω))y(φ−r(ω))‖ dµ(ω)

=
∫

Ω

‖(Φ∗ry)(ω)‖ dµ(ω)
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and similarly, ∫
Ω

‖Φ(r, ω)z(ω)‖ dµ(ω) =
∫

Ω

‖(Φ∗rz)(ω)‖ dµ(ω).

Hence,

V s(y) = sup
{∫

Ω

‖(Φ∗ry)(ω)‖ear dµ(ω) : r ≥ 0
}
,

V u(z) = sup
{∫

Ω

‖(Φ∗rz)(ω)‖e−ar dµ(ω) : r ≤ 0
}
.

Therefore,

V s(Φ∗t y) = sup
{∫

Ω

‖(Φ∗t+ry)(ω)‖ear dµ(ω) : r ≥ 0
}
, (4.1)

V u(Φ∗t z) = sup
{∫

Ω

‖(Φ∗t+rz)(ω)‖e−ar dµ(ω) : r ≤ 0
}

(4.2)

for t ∈ R. Now we define projections P : F → F s and Q : F → Fu by

(Px)(ω) = P (ω)x(ω) for ω ∈ Ω

and Q = Id−P . Property (3.1) is equivalent to

PΦ∗t = Φ∗tP for t ∈ R. (4.3)

Together with (4.3), equations (4.1) and (4.2) imply that for t ≥ 0 (and in fact for
t ∈ R) we have

V (Φ∗tx) ≤ 0 for x ∈ F s,
V (Φ∗−tx) ≥ 0 for x ∈ Fu.

Therefore, F s ⊂ Eu and Fu ⊂ Eu. On the other hand, it follows from (3.2) and
(3.3) that ‖P‖ ≤ K and ‖Q‖ ≤ K. Hence, the projections P and Q are continuous,
and condition 1 in the notion of a Lyapunov function in mean holds taking Ds = F s

and Du = Fu.
Furthermore, for each t ≥ 0 it follows from (4.1) that

V s(Φ∗t y) = e−at sup
{∫

Ω

‖(Φ∗t+ry)(ω)‖ea(t+r) dµ(ω) : r ≥ 0
}

≤ e−atV s(y) ≤ V s(y)
(4.4)

and it follows from (4.2) that

V u(Φ∗t z) = eat sup
{∫

Ω

‖(Φ∗t+rz)(ω)‖e−a(t+r) dµ(ω) : r ≤ 0
}

≥ eatV u(z) ≥ V u(z).
(4.5)

Therefore,

V (Φ∗tx) = −V s(Φ∗t y) + V u(Φ∗t z)

≥ −V s(y) + V u(z) = V (x).

This establishes condition 3 in the notion of Lyapunov function in mean.
Now we show that V is in fact strict. For x ∈ Es and t ≥ 0 we have V (Φ∗tx) ≤ 0

and so it follows from (4.4) and (4.5) that

|V (Φ∗tx)| = V s(Φ∗t y)− V u(Φ∗t z)
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≤ e−atV s(y)− eatV u(z)

≤ e−at(V s(y)− V u(z)) = e−at|V (x)|.

Hence, property (3.10) holds with θ = e−a. On the other hand, for x ∈ Eu and
t ≥ 0 we have V (Φ∗tx) ≥ 0 and so it follows again from (4.4) and (4.5) that

V (Φ∗tx) = −V s(Φ∗t y) + V u(Φ∗t z)

≥ −e−atV s(y) + eatV u(z)

≥ eat(−V s(y) + V u(z)) = eatV (x).

Hence, property (3.9) also holds, with the same constant θ.
It remains to establish property (3.8). For x ∈ Es we have

|V (x)| ≥ |V (x)| − |V (Φ∗1x)|
= V s(y)− V s(Φ∗1y)− V u(z) + V u(Φ∗1z).

(4.6)

Moreover, by (4.4) and (4.5) we have

V s(y)− V s(Φ∗1y) ≥ V s(y)− e−aV s(y) = (1− e−a)V s(y)

≥ (1− e−a)
∫

Ω

‖y(ω)‖ dµ(ω)

and

−V u(z) + V u(Φ∗1z) ≥ −V u(z) + eaV u(z) = (ea − 1)V u(z)

≥ (ea − 1)
∫

Ω

‖z(ω)‖ dµ(ω).

Setting η = min{1− e−a, ea − 1}, it follows from (4.6) that

|V (x)| ≥ η
(∫

Ω

‖y(ω)‖ dµ(ω) +
∫

Ω

‖z(ω)‖ dµ(ω)
)

≥ η
∫

Ω

‖x(ω)‖ dµ(ω).
(4.7)

Now assume that x ∈ Eu. Then
V (x) ≥ V (x)− V (Φ∗−1x)

= −V s(y) + V s(Φ∗−1y) + V u(z)− V u(Φ∗−1z).

By (4.4) with y replaced by Φ∗−1y and (4.5) with z replaced by Φ∗−1z we get

−V s(y) + V s(Φ∗−1y) ≥ −V s(y) + eaV s(y) = (ea − 1)V s(y)

≥ (ea − 1)
∫

Ω

‖y(ω)‖ dµ(ω)

and

V u(z)− V u(Φ∗−1z) ≥ V u(z)− e−aV u(z) = (1− e−a)V u(z)

≥ (1− e−a)
∫

Ω

‖z(ω)‖ dµ(ω).

So, we obtain again (4.7). Thus, property (3.8) holds with D = 1/η. �

5. The case of discrete time

In this section we consider the case of discrete time and we present corresponding
notions and results to those for continuous time.
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5.1. Lyapunov functions and exponential contractions. Let (Ω, µ) be a prob-
ability space and let f : Ω → Ω be an invertible measurable map with measurable
inverse. A measurable map A : Z × Ω → L(X) is said to be a cocycle over f if
A (0, ω) = Id and

A (n+m,ω) = A (n, fm(ω))A (m,ω)
for n,m ∈ Z and ω ∈ Ω. We assume that µ is f -invariant (that is, µ(f−1A) = µ(A)
for any measurable set A ⊂ Ω). We say that a cocycle A has an exponential
contraction in mean if there exist K, a > 0 such that∫

Ω

‖A (m,ω)x(ω)‖ dµ(ω) ≤ Ke−am
∫

Ω

‖x(ω)‖ dµ(ω)

for m ∈ N0 and x ∈ F (where N0 = N ∪ {0}).
Now we introduce the notion of a strict Lyapunov function in mean for a cocy-

cle A . We first define a map T : F → F by

(Tx)(ω) = A (1, f−1(ω))x(f−1(ω))

for x ∈ F . One can easily verify that T is invertible. We say that a function
V : F → (−∞, 0] is a strict Lyapunov function in mean for A if:

(1) property (2.2) holds for some C > 0;
(2) there exists θ ∈ (0, 1) such that

|V (Tx)| ≤ θ|V (x)| for x ∈ F .

The following result is an analog of Theorem 2.2 for discrete time. We do not give
the proof since it is essentially the same as the proof of Theorem 2.2.

Theorem 5.1. The following properties are equivalent.
(1) the cocycle A has an exponential contraction in mean;
(2) there exists a strict Lyapunov function in mean for A .

5.2. Lyapunov functions and exponential behavior. In this section we con-
sider the general case when a cocycle A admits both contraction and expansion.
We say that a cocycle A has an exponential dichotomy in mean if:

(1) there exist projections P (ω) ∈ L(X) for ω ∈ Ω satisfying

A (m,ω)P (ω) = P (fm(ω))Φ(m,ω)

for m ∈ Z and µ-almost every ω ∈ Ω;
(2) there exist K, a > 0 such that∫

Ω

‖A (m,ω)P (ω)x(ω)‖ dµ(ω) ≤ Ke−am
∫

Ω

‖x(ω)‖ dµ(ω),∫
Ω

‖A (−m,ω)Q(ω)x(ω)‖ dµ(ω) ≤ Ke−am
∫

Ω

‖x(ω)‖ dµ(ω),

for m ∈ N0 and x ∈ F , where Q(ω) = Id−P (ω).
Again we define the corresponding stable and unstable subspaces by (3.4).

Now we introduce the notion of a strict Lyapunov function in mean. Given a
function V : F → R and a cocycle A , we consider the cones in (3.5) and we define

Eu =
⋂
m∈N0

TmCu(V ) and Es =
⋂
m∈N0

T−mCs(V ).

We say that V is a Lyapunov function in mean for A if:
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(1) there exist closed subspaces Du ⊂ Eu and Ds ⊂ Es satisfying (3.6) with
continuous projections associated to this splitting;

(2) property (3.7) holds for some C > 0;
(3) V (Tx) ≥ V (x) for x ∈ F .

Moreover, a Lyapunov function in mean V is said to be strict if:
(1) property (3.8) holds for some D > 0;
(2) there exists θ ∈ (0, 1) such that

V (Tx) ≥ θV (x) for x ∈ Eu,
|V (Tx)| ≤ θ|V (x)| for x ∈ Es.

Again, in the particular case when Es = F , the last notion coincides with the
corresponding notion introduced in Section 5.1. The following result is an analog
of Theorem 3.1 for discrete time. The proof is essentially the same as the proof of
Theorem 3.1.

Theorem 5.2. If V is a strict Lyapunov function in mean for the cocycle A , then:
(1) Du = Eu, Ds = Es,

TEu = Eu and TEs = Es;

(2) A has an exponential dichotomy in mean with projections P (ω) determined
pointwise by the direct sum Es ⊕ Eu = F .

Moreover, there exists a strict Lyapunov function in mean for any exponential
dichotomy in mean.

Theorem 5.3. If the cocycle A has an exponential dichotomy in mean, then there
exists a strict Lyapunov function in mean for A .

Proof. Given x ∈ F , we write x = y + z, with y(ω) ∈ F s(ω) and z(ω) ∈ Fu(ω) for
each ω ∈ Ω. For x ∈ F , let

V (x) = −V s(y) + V u(z),

where

V s(y) = sup
{∫

Ω

‖A (`, ω)y(ω)‖ea` dµ(ω) : ` ∈ N0

}
,

V u(z) = sup
{∫

Ω

‖A (−`, ω)z(ω)‖ea` dµ(ω) : ` ∈ N0

}
.

Proceeding as in the proof of Theorem 4.1 (replacing the flow Φ∗t by T and Φ(r, ω)
by A (`, ω)) we readily obtain the desired statement. �
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