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SOME METRIC-SINGULAR PROPERTIES OF THE GRAPH OF
SOLUTIONS OF THE ONE-DIMENSIONAL P-LAPLACIAN

MERVAN PAŠIĆ & VESNA ŽUPANOVIĆ

Abstract. We study the asymptotic behaviour of ε-neighbourhood of the

graph of a type of rapidly oscillating continuous functions. Next, we estate
necessary and sufficient conditions for rapid oscillations of solutions of the main
equation. This enables us to verify some new singular properties of bounded
continuous solutions of a class of nonlinear p-Laplacian by calculating lower
and upper bounds for the Minkowski content and the s-dimensional density of
the graph of each solution and its derivative.

1. Introduction

Let −∞ < a < b < ∞. Let y be a real function defined on [a, b] and let y′ denote
the derivative of y in the classical sense. The main subjects of the paper are the
graph G(y) of a function y and its ε− neighbourhood Gε(y), that is

G(y) = {(t, y(t)) : a ≤ t ≤ b}
Gε(y) = {(t1, t2) ∈ R2 : d((t1, t2), G(y)) ≤ ε}.

Here ε > 0 and d((t1, t2), G(y)) denotes the distance between (t1, t2) and G(y).
In the author’s paper [9] for arbitrarily given s ∈ (1, 2) it is constructed a class of

Caratheodory functions f(t, η, ξ) such that the graph G(y) of each smooth enough
solution y of the main equation

−(|y′|p−2y′)′ = f(t, y, y′) in (a, b),

y(a) = y(b) = 0,

y ∈ W 1,p
loc ((a, b]) ∩ C([a, b]),

(1.1)

satisfies

dimM G(y) = s and dimM G(y′) > 1,

dimMloc(G(y); a) = s and dimMloc(G(y); t) = 1 for each t ∈ (a, b].
(1.2)

2000 Mathematics Subject Classification. 35J60, 34B15, 28A75.
Key words and phrases. Nonlinear p-Laplacian, bounded solutions, qualitative properties,

graph, singularity, Minkowski content, s-dimensional density.
c©2004 Texas State University - San Marcos.

Submitted October 28, 2003. Published April 19, 2004.

1
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Here dimM G(y) denotes the upper Minkowski-Bouligand (box-counting) dimen-
sion of the graph G(y) and dimMloc(G(y); t) denotes the locally upper Minkowski-
Bouligand dimension of G(y) at a point t ∈ [a, b], defined by

dimM G(y) = lim sup
ε→0

(
2− log |Gε(y)|

log ε

)
,

dimMloc(G(y); t) = lim sup
ε→0

dimM (G(y) ∩Bε(t, y(t))).

Here |Gε(y)| denotes the Lebesgue measure of Gε(y) and Bε(t1, t2) denotes a ball
in R2 centered at the point (t1, t2) with radius ε > 0.

The orders of growth for the asymptotic behaviour of |Gε(y)| and |Gε(y′)| are
given in (1.2). That is, when ε ≈ 0 we have

|Gε(y)| ≈ ε2−s and |Gε(y′)| ≈ ε2−q for some q > 1, (1.3)

where y is any smooth enough solution of (1.1). In particular from (1.2) we also
have

y /∈ W 1,p(a, b) and length(G(y)) = length(G(y′)) = ∞,

y ∈ W 1,p(a + ε, b) and length(G(y|[a+ε,b])) < ∞ for any ε > 0.
(1.4)

In the present paper, we derive some new singular properties of the graphs G(y)
and G(y′), improving (1.2), (1.3) and (1.4). In this purpose, we need an equivalent
way to define box-counting dimension

dimM G(y) = inf{τ ≥ 0 : Mτ (G(y)) = 0} = sup{τ ≥ 0 : Mτ (G(y)) = ∞}, (1.5)

where Mτ (G(y)) denotes the τ -dimensional upper Minkowski content of the graph
G(y) defined by

Mτ (G(y)) = lim sup
ε→0

(2ε)τ−2|Gε(y)|.

According to (1.2) and (1.5) we may conclude that

Mτ (G(y)) = 0 for all τ > s and Mτ (G(y)) = ∞ for all τ < s.

Thus, the following three cases are possible
(i) Ms(G(y)) = 0
(ii) Ms(G(y)) = ∞
(iii) 0 < Ms(G(y)) < ∞.

In Section 2 and Section 5, for arbitrarily given s ∈ (1, 2) and under related as-
sumptions on the nonlinearity f(t, η, ξ) as in [9], we will prove that each solution y
of (1.1) satisfies 0 < Ms(G(y)) < ∞. That is, the graph G(y) can be called as an
s-set in respect to Minkowski content. Moreover, we find lower and upper bounds
for Ms(G(y)) such that

0 <
1
27

(b− a)s ≤ Ms(G(y)) ≤ ms(b− a)s < ∞, (1.6)

where the positive constant ms only depends on s. It is interesting in (1.6) that the
s-dimensional ”length” of G(y) depends on the s− power of the length of interval
[a, b], which improves length(G(y)) = ∞ appearing in (1.4). Furthermore, we will
give the existence of an ε0 > 0 such that

0 <
1
26

(b− a)sε2−s ≤ |Gε(y)| for each ε ∈ (0, ε0), (1.7)
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where y is any solution of (1.1). This statement gives us a lower bound for asymp-
totic behaviour of |Gε(y)| as ε ≈ 0. It is more precise than corresponding one in
(1.3).

As the second, for arbitrarily given s ∈ (1, 2) and under the same assumptions
on the nonlinearity f(t, η, ξ) as in getting of (1.6)–(1.7), we will prove in Section 3
that each smooth enough solution y of (1.1) satisfies

0 <
1
24

(b− a)s/2 ≤ M1+s/2(G(y′)). (1.8)

Because of (1.5), the inequality (1.8) improves corresponding result from (1.2),
where dimM G(y′) > 1. Here, we have shown that dimM G(y′) ≥ 1 + s/2. Further-
more, we will show the existence of an ε0 > 0 such that

0 <

√
2

24
(b− a)s/2ε1−s/2 ≤ |Gε(y′)| for each ε ∈ (0, ε0). (1.9)

It gives us a lower bound for the asymptotic behaviour of |Gε(y′)| as ε ≈ 0.
Next, by means of (1.4) we have that the graph G(y) of each solution y of (1.1)

is high concentrated (in some sense) at the boundary point t = a. How much
of the graph G(y) is concentrated near t = a in the sense of Minkowski content,
we will consider in Section 6. In this purpose, we define the s-dimensional upper
(Minkowski) density of G(y) at a point t ∈ [a, b] as follows

Ds(G(y); t) = lim sup
r→0

Ms(G(y) ∩Br(t, y(t)))
(2r)s

.

Let us remark that by means of y ∈ W 1,p(a + ε, b), where ε > 0, it is clear that

Ds(G(y); t) = 0 for any t ∈ (a, b] and s ∈ (1, 2).

In Section 6, for arbitrarily given s ∈ (1, 2) and under the same assumptions on the
nonlinearity f(t, η, ξ) as in getting of (1.6)–(1.7), we will find a constant ds such
that each solution y of (1.1) satisfies

0 < ds ≤ Ds(G(y); t = a). (1.10)

Moreover, we will prove that

ds(2r)s ≤ Ms(G(y) ∩Br(a, y(a))) for each r ∈ (0, b− a), (1.11)

where y is any smooth enough solution of (1.1). This inequality complete the
statement (1.6).

To derive the statements (1.6)–(1.9), in Section 2, Section 3 and Section 5, we
consider some metric properties of two types of rapid oscillations of real continu-
ous functions: the first one is a kind of oscillations where the function is rapidly
jumping over given obstacles, and the second one is a kind of oscillations where
the convex and concave properties of the function are rapidly changing. In Section
4, some necessary conditions on the nonlinearity f(t, η, ξ) will be given such that
each solution of (1.1) is rapidly oscillating. These conditions on f(t, η, ξ) will be
very close to corresponding sufficient conditions used in Section 2. In appendix of
the paper, we will give some technical results which play an important role in the
proofs of the main results.
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Further Remarks. A. It seems there is no known article dealing with this kind
of problems. But, in the proofs of the main results we use some methods recently
introduced in the author’s paper [9].
B. The existence result for the equation (1.1) where the Caratheodory function
f(t, η, ξ) satisfies the assumptions as in the paper, was considered in the appendix
of [9]. It was based on some known results about the existence of continuous
solutions for the equations with singular nonlinearity, explored via the sub- and
super-solutions technique. See O’Regan’s book [8, Chapter 14].
C. Even the Minkowski content Ms is not a measure in the axiomatic sense, see
for instance [3] and [7], the main results of the paper give some additional informa-
tions about the singular-metric boundary behaviour of the graph of any sufficiently
smooth bounded solutions of the equation (1.1).
D. To make a comparison between singularity and regularity of bounded solutions,
we refer to [12] and references therein, where regularity of solutions of quasilinear
elliptic equations associated with p-Laplacian are studied.
E. About the properties and calculations of fractal dimensions and Minkowski con-
tent of several types of sets in Rn, we refer to [1, 2, 3, 5, 7, 11, 14, 15].
F. Our main results can be generalized to the case of nonlinear variational in-
equalities and quasilinear elliptic systems associated with the one-dimensional p-
Laplacian. See [10].

2. Rapid oscillations and lower bounds for |Gε(y)| and Ms(G(y))

For a function y : [a, b] → R let us introduce a type of very rapid oscillations of
y near the boundary point t = a. A classical example for such type of oscillations
is the function y(t) = tα cos 1/tβ near t = 0, where 0 < α < β.

Definition 2.1. Let ak be a decreasing sequence of real numbers from interval
(a, b) satisfying

ak ↘ a and there is an ε0 > 0 such that for each ε ∈ (0, ε0)

there is a k(ε) ∈ N such that aj−1 − aj ≤ ε/2 for each j ≥ k(ε).
(2.1)

Let θ and ω be two measurable and bounded functions, both defined on [a, b], such
that θ(t) ≤ ω(t) for each t ∈ [a, b]. We say that a function y defined on [a, b] is
(θ, ω, ak)-rapidly oscillating if there is a sequence σk ∈ (ak, ak−1), k > 1 such that

y(σ2k) ≥ ess sup
(a2k,a2k−1)

ω and y(σ2k+1) ≤ ess inf
(a2k+1,a2k)

θ, k ≥ 1. (2.2)

For the record, the number k(ε) could be called as the index of ε− density of a
sequence ak. It is interesting to show how to calculate the number k(ε) for a given
sequence ak which satisfies (2.1).

Example 2.2. Let ak be a sequence of real numbers from interval (a, b) given by

ak = a +
b− a

2
(
1
k

)1/β , k ≥ 1 and 0 < β < ∞. (2.3)

Such a type of the sequence ak is appearing in oscillations of the function y(t) =
tα sin 1/tβ near t = 0, where a = 0, b = 1 and 0 < α < β. One can take for k(ε) to
be any natural number which satisfies

2(
βε

b− a
)−

β
β+1 ≤ k(ε) for each ε ∈ (0, ε0) and for any ε0 > 0. (2.4)
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Indeed, using an elementary inequality( 1
j − 1

)1/β −
(1
j

)1/β ≤ 21+1/β

β

(1
j

)1+1/β
,

where β > 0 and j ≥ 2, it is easy to show that the sequence ak defined in (2.3)
satisfies the statement (2.1) in respect to k(ε) determined in (2.4).

Now, we consider the following lemma which is a modification of [9, Lemma 2.1,
p. 271]. It gives us an elementary and useful metric property of the (θ, ω, ak)-
rapidly oscillating functions.

Lemma 2.3. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (2.1). Let θ(t) and ω(t) be two measurable and bounded real functions on
[a, b], θ(t) ≤ ω(t), t ∈ [a, b], such that

ess inf
(a2k+2,a2k+1)

θ ≥ ess inf
(a2k+1,a2k)

θ, ess sup
(a2k+1,a2k)

ω ≤ ess sup
(a2k,a2k−1)

ω, k ≥ 1. (2.5)

Let y be (θ, ω, ak)-rapidly oscillating function on [a, b] and let y ∈ C((a, b]). Then
we have

|Gε(y)| ≥
∫ ak(ε)

a

(ω(t)− θ(t))dt for each ε ∈ (0, ε0), (2.6)

where k(ε) and ε0 are appearing in (2.1).

Let us remark that the condition (2.5) can be easy verified if, for instance, θ is
decreasing and ω is increasing on [a, b].

Proof of Lemma 2.3. Let ε be a fixed real number such that ε ∈ (0, ε0), where ε0

is from (2.1). We use the notation

A(ε, θ, ω) = {(t, y) ∈ R2 : t ∈ (a, ak(ε)], y ∈ [θ(t), ω(t)]},
B2k = [a2k, a2k−1]× [ ess inf

(a2k−1,a2k−2)
θ, ess sup

(a2k,a2k−1)

ω],

B2k+1 = [a2k+1, a2k]× [ ess inf
(a2k+1,a2k)

θ, ess sup
(a2k,a2k−1)

ω].

Let y be a (θ, ω, ak)-rapidly oscillating function on [a, b] such that y ∈ C((a, b]). By
Definition 2.1, it implies the existence of a sequence σk ∈ (ak, ak−1) such that

y(σ2k) ≥ ess sup
(a2k,a2k−1)

ω and y(σ2k+1) ≤ ess inf
(a2k+1,a2k)

θ, k ≥ 1. (2.7)

Let k be a fixed natural number such that k ≥ k(ε)+1. Let (t0, y0) be an arbitrarily
given point of Bk. Let us remark that from (2.7) we get:

if (t0, y0) ∈ B2j then y(σ2j−1) ≤ y0 ≤ y(σ2j),

if (t0, y0) ∈ B2j+1 then y(σ2j+1) ≤ y0 ≤ y(σ2j), j ≥ 1.

In particular, it implies that{
(t, y0) : t ∈ (σk, σk−1)

}
∩G(y|[σk,σk−1]) 6= ∅,

where G(y|[σk,σk−1]) denotes the graph of the function y|[σk,σk−1] (here y|I denotes
the function-restriction of y on interval I). Hence, there is a point s ∈ (σk, σk−1)
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such that (s, y0) ∈ G(y|[σk,σk−1]). Now, by the help of (2.1) we get

d((t0, y0), G(y|[σk,σk−1])) ≤ d((t0, y0), (s, y0)) ≤ d((ak, y0), (σk−1, y0))
= σk−1 − ak ≤ ak−2 − ak

= ak−1 − ak + ak−2 − ak−1 ≤
ε

2
+

ε

2
= ε.

Thus, we have proved that

Bk ⊆ Gε(y|[σk,σk−1]) for any k ≥ k(ε) + 1 and ε ∈ (0, ε0), (2.8)

where Gε(y|[σk,σk−1]) denotes the ε-neighbourhood of the graph G(y|[σk,σk−1]). Let
us remark that from (2.5) we may easy conclude that

A(ε, θ, ω) ⊆ ∪∞k=k(ε)+1Bk, (2.9)

where ε ∈ (0, ε0). According to (2.8) and (2.9) we obtain:

A(ε, θ, ω) ⊆ ∪∞k=k(ε)+1Gε(y|[σk,σk−1]) ⊆ Gε

(
∪∞k=k(ε)+1y|[σk,σk−1]

)
⊆ Gε(y),

where ε ∈ (0, ε0). Taking the Lebesgue measure on the both sides in the previous
statement, it proves the inequality (2.6). �

How to calculate the right hand side in (2.6) it is shown in the following example.

Example 2.4. Let y be a real continuous function on [a, b] and let y be (θ, ω, ak)-
rapidly oscillating, where θ, ω and ak are given by:

ak = a +
b− a

2
(
1
k

)1/β , k ≥ 1,

θ(t) = −(t− a)α and ω(t) = (t− a)α, t ∈ [a, b],
where α and β satisfy 0 < α < β < ∞.

(2.10)

We can take for k(ε) to be any number that satisfies

c0

(1
ε

) β
β+1 ≤ k(ε) ≤ 2c0

(1
ε

) β
β+1 for each ε ∈ (0, ε0),

where c0 = 2
(b− a

β

) β
β+1 and ε0 =

b− a

β
.

(2.11)

It is clear that (2.11) implies (2.4) and so the main conclusion of Example 2.2 is
still valid. That is, the sequence ak given in (2.10) satisfies the condition (2.1),
where k(ε) and ε0 are taken to be as in (2.11).

In contrast to (2.4), where ε0 is an arbitrary positive number, we need in (2.11)
an ε0 = (b− a)/β. This condition on ε0 is essentialy to ensure that k(ε) ∈ N for all
ε ∈ (0, ε0).

Next, since θ(t) = −(t − a)α and ω(t) = (t − a)α are decreasing and increasing
on [a, b], respectively, it is clear that θ and ω satisfy the condition (2.5).

Thus, the (θ, ω, ak) defined by (2.10) satisfies the hypotheses of Lemma 2.3.
Hence, the inequality (2.6) can be applied to our situation here. It gives us

|Gε(y)| ≥
∫ ak(ε)

a

(ω(t)− θ(t))dt = 2
∫ ak(ε)

a

(t− a)αdt

=
2

α + 1
(ak(ε) − a)α+1 =

2−α(b− a)α+1

α + 1
(

1
k(ε)

)
α+1

β for each ε ∈ (0, ε0).
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From the right inequality in (2.11) we have in particular

1
k(ε)

≥ 1
4
(

β

b− a
)

β
β+1 ε

β
β+1 for each ε ∈ (0, ε0 =

b− a

β
).

These inequalities give us

|Gε(y)| ≥ cε
α+1
β+1 for each ε ∈ (0, ε0),

where

ε0 =
b− a

β
and c =

2−α

α + 1
(
1
4
)

α+1
β β

α+1
β+1 (b− a)

(α+1)β
β+1 .

To derive a lower bound for Ms(G(y)) where y is any solution of (1.1) we need to
impose on the function f(t, η, ξ) some sufficient conditions such that each solution
of (1.1) is (θ, ω, ak)-rapidly oscillating. It is the subject of the following lemma
which is a modification of [9, Lemma 4.1, p. 280] and [9, Lemma 4.2, p. 281].

Lemma 2.5. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (2.1). Let θ̃0 and ω̃0 be two arbitrarily given real numbers, and let θ(t) and
ω(t) be two measurable and bounded real functions on [a, b], θ(t) ≤ ω(t), t ∈ [a, b],
which satisfy (2.5) and

θ̃0 ≤ ess inf
(a,b)

θ < ess inf
(a2k+1,a2k)

θ , ess sup
(a2k,a2k−1)

ω < ess sup
(a,b)

ω ≤ ω̃0, k ≥ 1. (2.12)

Let the sets Jk be defined by

J2k = (θ̃0, ess sup
(a2k,a2k−1)

ω) and J2k+1 = ( ess inf
(a2k+1,a2k)

θ, ω̃0), k ≥ 1.

Next, let for each k ≥ 1 the Caratheodory function f(t, η, ξ) satisfy

f(t, η, ξ) ≥ 0, t ∈ (a2k, a2k−1), η ∈ J2k, ξ ∈ R, (2.13)∫
A2k

ess inf
(η,ξ)∈J2k×R

f(t, η, ξ)dt >
c(p)

(a2k−1 − a2k)p−1

(ω̃0 − θ̃0)p

(ω̃0 − ess sup(a2k,a2k−1)
ω)

, (2.14)

f(t, η, ξ) ≤ 0, t ∈ (a2k+1, a2k), η ∈ J2k+1, ξ ∈ R, (2.15)∫
A2k+1

ess sup
(η,ξ)∈J2k+1×R

f(t, η, ξ)dt < − c(p)
(a2k − a2k+1)p−1

(ω̃0 − θ̃0)p

(ess inf(a2k+1,a2k) θ − θ̃0)
,

(2.16)

where c(p) = 2[4(p− 1)]p−1 and Ak is a family of sets

Ak = [ak +
1
4
(ak−1 − ak), ak−1 −

1
4
(ak−1 − ak)], k ≥ 1.

Then each solution y of the equation (1.1) such that

θ̃0 ≤ y(t) ≤ ω̃0, t ∈ (a, b) (2.17)

is (θ, ω, ak)-rapidly oscillating on [a, b].

The proof of this lemma will be sketched in Appendix of this paper. It is worth
to mention that the condition (2.17) will be easy achieved in Theorem 2.7 below.
An example for such a class of Caratheodory functions f(t, η, ξ) which satisfies the
hypotheses (2.13)–(2.16) is given as follows.
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Example 2.6. To simplify the notation, let θ̃0, ω̃0, θ2k+1, and ω2k be defined as
follows:

θ̃0 = ess inf
(a,b)

θ and ω̃0 = ess sup
(a,b)

ω,

θ2k+1 = ess inf
(a2k+1,a2k)

θ and ω2k = ess sup
(a2k,a2k−1)

ω.

Let g = g(t, η, ξ) be a Caratheodory function defined by

g =
πc(p)(ω̃0 − θ̃0)p

sin π
4

∞∑
k=1

[ (η − ω̃0)−

(ω̃0 − ω2k)2
sin( π

a2k−1−a2k
(t− a2k))

(a2k−1 − a2k)p
K[a2k,a2k−1](t)

− (η − θ̃0)+

(θ2k+1 − θ̃0)2
sin( π

a2k−a2k+1
(t− a2k+1))

(a2k − a2k+1)p
K[a2k+1,a2k](t)

]
,

where c(p) is appearing in (2.14) and (2.16), and where KA(t) denotes, as usual,
the characteristic function of a set A. Also, η− = max{0,−η} and η+ = max{0, η}.

Even KA(t) is not continuous in t, it is not dificult to check that g(t, η, ξ) is
continuous in all its variables. Next, for any fixed k ∈ N, it is clear that

(η − ω̃0)− sin(
π

a2k−1 − a2k
(t− a2k)) ≥ 0 for any t ∈ [a2k, a2k−1], η ∈ J2k,

(η − ω̃0)−

ω̃0 − ω2k
≥ 1 for any η ∈ J2k, where J2k = (θ̃0, ω2k).

Hence, for any k ∈ N, t ∈ [a2k, a2k−1], η ∈ J2k, and ξ ∈ R we have

g(t, η, ξ) =
πc(p)(ω̃0 − θ̃0)p

sin π
4

(η − ω̃0)−

(ω̃0 − ω2k)2
sin( π

a2k−1−a2k
(t− a2k))

(a2k−1 − a2k)p
≥ 0,

ess inf
(η,ξ)∈J2k×R

g(t, η, ξ) ≥ πc(p)
(sin π

4 )
(ω̃0 − θ̃0)p

(ω̃0 − ω2k)

sin( π
a2k−1−a2k

(t− a2k))

(a2k−1 − a2k)p
.

From the first equality, it follows that g(t, η, ξ) satisfies (2.13). Also, integrating
the second inequality over the set

[a2k +
1
4
(a2k−1 − a2k), a2k−1 −

1
4
(a2k−1 − a2k)],

it immediately shows that g(t, η, ξ) satisfies (2.14) too. On the same way the dual
hypotheses (2.15) and (2.16) can be verified. Thus, the function f(t, η, ξ) = g(t, η, ξ)
satisfies the assumptions of Lemma 2.5.

Now, we are able to formulate the first main result of the paper.

Theorem 2.7. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (2.1). Let θ(t) and ω(t) be two measurable and bounded real functions on
[a, b], θ(t) ≤ ω(t), t ∈ [a, b], which satisfy (2.5), (2.12) and

ess inf
(a,b)

θ < 0 < ess sup
(a,b)

ω. (2.18)

Next, let for each k ≥ 1 the Caratheodory function f(t, η, ξ) satisfy (2.13)–(2.16),
and

f(t, η, ξ) < 0, t ∈ (a, b), η > ω̃0 and ξ ∈ R,

f(t, η, ξ) > 0, t ∈ (a, b), η < θ̃0 and ξ ∈ R,
(2.19)
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where θ̃0 and ω̃0 are two arbitrarily given real numbers satisfying (2.12). Then for
any s ∈ (1, 2) and for each solution y of (1.1) there holds true

|Gε(y)| ≥
∫ ak(ε)

a

(ω(t)− θ(t))dt for each ε ∈ (0, ε0),

Ms(G(y)) ≥ 2s−2 lim sup
ε→0

εs−2

∫ ak(ε)

a

(ω(t)− θ(t))dt,

(2.20)

where ε0 is appearing in (2.1).

Proof. Let y be a solution of the equation (1.1). Because of [9, Lemma 3.2, p. 279],
from (2.12), (2.18) and (2.19) we get θ̃0 ≤ y(t) ≤ ω̃0 for each t ∈ [a, b]. Therefore
the assumptions of Lemma 2.5 are satisfied and so y is (θ, ω, ak)-rapidly oscillating
function on [a, b]. Now, by means of Lemma 2.3 and the definition of Ms(G(y)),
the desired statement (2.20) easy follows. �

The following result is the main consequence of (2.20). We can derive also lower
bounds appearing in (1.6) and (1.7).

Corollary 2.8. For arbitrarily given real number s ∈ (1, 2), let ak, θ and ω be
given by

ak = a +
b− a

2
(
1
k

)1/β , k ≥ 1,

θ(t) = −(t− a) and ω(t) = t− a, t ∈ (a, b),

where β satisfies 1 < β < ∞ and 2β
β+1 = s.

(2.21)

Let the Caratheodory function f(t, η, ξ) satisfy (2.13)–(2.16), and (2.19) in respect
to such given (θ, ω, ak), where θ̃0 and ω̃0 are two arbitrarily given real numbers
satisfying (2.12). Then each solution y of the equation (1.1) satisfies

|Gε(y)| ≥ 1
26

(b− a)sε2−s for each ε ∈ (0, ε0 =
b− a

β
),

Ms(G(y)) ≥ 1
27

(b− a)s.

(2.22)

Proof. First, we know, by Example 2.4, that the sequence ak defined in (2.21)
satisfies the condition (2.1) in respect to k(ε) determined by (2.11). Next, since
θ(t) = −(t − a) is decreasing and ω(t) = t − a is increasing, it is clear that the
functions θ and ω defined in (2.21) satisfy the conditions (2.5), (2.12) and (2.18).

Thus, the hypotheses of Theorem 2.7 are satisfied and so the statement (2.20)
may be used here. Putting given data from (2.21) into (2.20) we can calculate

|Gε(y)| ≥
∫ ak(ε)

a

2(t− a)dt =
(b− a

2
)2( 1

k(ε)
)2/β

. (2.23)

Since β > 1 and 2β/(β +1) = s, by the help of the right inequality in (2.11) we get(b− a

2
)2( 1

k(ε)
)2/β ≥ (b− a)2

4
(1
4
)2/β β

2
β+1

(b− a)
2

β+1
ε

2
β+1 ≥ 1

26
(b− a)sε2−s.

Putting this inequality into (2.23) we have proved (2.22). �

At the end of this section we give an example for such a class of Caratheodory
functions f(t, η, ξ) that satisfies the assumptions of Theorem 2.7.
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Example 2.9. Let h1(t) and h2(t) be two measurable functions on (a, b) such that
h1(t) > 0 and h2(t) > 0. Let f(t, η, ξ) be a function defined by

f(t, η, ξ) = −h1(t)(η − ess sup
(a,b)

ω)+ + h2(t)(η − ess inf
(a,b)

θ)− + g(t, η, ξ),

where the function g(t, η, ξ) is constructed in Example 2.6 above. Since g(t, η, ξ)
satisfies the assumptions of Lemma 2.5, it is clear that such given f(t, η, ξ) satisfies
the assumptions of Theorem 2.7.

3. Lower bounds for |Gε(y′)| and Ms(G(y′))

We proceed with some observations from the previous section but they are
pointed to the derivative y′ of any smooth enough real function y. It is started
with a relation between the (θ, ω, ak)−rapid oscillations of a function y and the
asymptotic behaviour of |Gε(y′)| as ε ≈ 0.

Lemma 3.1. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (2.1). Let θ(t) and ω(t) be two measurable and bounded real functions
on [a, b], θ(t) ≤ ω(t), t ∈ [a, b], which satisfy (2.5). Next, let y be (θ, ω, ak)-rapidly
oscillating on [a, b] and let y ∈ C((a, b]) ∩ C1(a, b) . Then we have

|Gε(y′)| ≥
∞∑

k=k(ε/2)

( ess sup
(a2k,a2k−1)

ω − ess inf
(a2k+1,a2k)

θ) for each ε ∈ (0, ε0), (3.1)

where k(ε) and ε0 are defined in (2.1).

Proof. Let y be a (θ, ω, ak)-rapidly oscillating function on [a, b]. By means of Defi-
nition 2.1, there is a sequence σk ∈ (ak, ak−1), k > 1 such that

y(σ2k) ≥ ess sup
(a2k,a2k−1)

ω and y(σ2k+1) ≤ ess inf
(a2k+1,a2k)

θ, k ≥ 1. (3.2)

Let k(ε) and ε0 be taken from (2.1). So, we have that aj−1 − aj ≤ ε/4 for each
j ≥ k( ε

2 ). Hence, the sequence σk also satisfies

σk ↘ a and σj−1 − σj ≤ ε/2 for each j ≥ k( ε
2 ) and ε ∈ (0, ε0). (3.3)

Applying Lagrange’s mean value theorem on (σk, σk−1) we get a sequence sk ∈
(σk, σk−1), k > 1 such that

y′(s2k+1) =
y(σ2k)− y(σ2k+1)

σ2k − σ2k+1
and y′(s2k) =

y(σ2k−1)− y(σ2k)
σ2k−1 − σ2k

. (3.4)

Let us use the following notation

z(t) = y′(t), t ∈ (a, b),

δ2k+1 =
ess sup(a2k,a2k−1)

ω − ess inf(a2k+1,a2k) θ

σ2k − σ2k+1
,

δ2k =
ess inf(a2k−1,a2k−2) θ − ess sup(a2k,a2k−1)

ω

σ2k−1 − σ2k
.

Hence, from (2.5), (3.2), and (3.4) follows

z(s2k+1) ≥ δ2k+1 ≥ 0 and z(s2k) ≤ δ2k ≤ 0, k ≥ 1, (3.5)

where sk ∈ (σk, σk−1). To prove (3.1) we need a modification of Lemma 2.3. �
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Lemma 3.2 (A version of Lemma 2.3). Let σk be a decreasing sequence of real
numbers from interval (a, b) satisfying (3.3), where k(ε) and ε0 are taken from
(2.1). Let δk be a sequence of real numbers such that δ2k+1 ≥ 0 and δ2k ≤ 0,
k ≥ 1. Let z(t) be a continuous function in (a, b] such that there is a sequence
sk ∈ (σk, σk−1) satisfying (3.5). Then there holds

|Gε(z)| ≥
∞∑

k=k(ε/2)

δ2k+1(σ2k − σ2k+1) for each ε ∈ (0, ε0). (3.6)

To prove (3.6), we suggest reader to use the same argumentation from the proof
of Lemma 2.3 to prove that B2k+1 ⊆ Gε(z|[σ2k+1,σ2k]) for each k ≥ k(ε) + 1 and
ε ∈ (0, ε0), where B2k+1 = [σ2k+1, σ2k]× [0, δ2k+1].

Using the above notation for δk and z(t), from (3.6) follows

|Gε(y′)| ≥
∞∑

k=k(ε/2)

(ess sup(a2k,a2k−1)
ω − ess inf(a2k+1,a2k) θ)

σ2k − σ2k+1
(σ2k − σ2k+1)

=
∞∑

k=k(ε/2)

( ess sup
(a2k,a2k−1)

ω − ess inf
(a2k+1,a2k)

θ).

Thus, Lemma 3.1 is verified.
Next, we consider an easy example for the calculation of the right hand side in

(3.1).

Example 3.3. Let y be a real function smooth enough in (a, b) and let y be
(θ, ω, ak)-rapidly oscillating, where the data θ, ω and ak are given in (2.10) above.
Regarding to Example 2.4, we know such given θ, ω and ak satisfies the condition
(2.1) and (2.5), where k(ε) and ε0 are given in (2.11). Hence, we may calculate the
right hand side in (3.1) for such function y. First, we have

ess sup
(a2k,a2k−1)

ω − ess inf
(a2k+1,a2k)

θ = ω(a2k−1)− θ(a2k)

= (
b− a

2
)α

[( 1
2k − 1

)α/β +
( 1
2k

)a/β]
≥ (b− a)α

2α−1

(
1
2k

)α/β

.

(3.7)

In particular, from (2.11) we have

1
k(ε/2)

≥ 1
4
( β

2(b− a)
) β

β+1 ε
β

β+1 for each ε ∈ (0, ε0 =
b− a

β
). (3.8)

According to (3.7) and (3.8), from (3.1) follows

|Gε(y′)| ≥
∞∑

k=k(ε/2)

(b− a)α

2α−1

( 1
2k

)α/β

≥ (b− a)α

2α−1

( 1
2k(ε/2)

)α/β

≥ (b− a)α

2α−1

1
8α/β

( β

2(b− a)
) α

β+1 ε
α

β+1 ,

that is |Gε(y′)| ≥ cεα/(β+1) for each ε ∈ (0, ε0), where

ε0 =
b− a

β
and c =

(b− a)
αβ

β+1

2α−18α/β

(β

2
) α

β+1 .

The main result of this section is the following.
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Theorem 3.4. Let the hypotheses of Theorem 2.7 be still valid, that is: let the
sequence ak satisfy (2.1), let the functions θ(t) and ω(t), θ(t) ≤ ω(t), t ∈ [a, b],
satisfy (2.5), (2.12) and (2.18), and let the function f(t, η, ξ) satisfy the assumptions
(2.13)–(2.16) and (2.19). Then each solution y of (1.1) such that y ∈ C1(a, b)
satisfies

|Gε(y′)| ≥ h(ε) for each ε ∈ (0, ε0),

Ms(G(y′)) ≥ 2s−2 lim sup
ε→0

εs−2h(ε) for any s ∈ (1, 2), (3.9)

where ε0 is appearing in (2.1) and

h(ε) =
∞∑

k=k(ε/2)

( ess sup
(a2k,a2k−1)

ω − ess inf
(a2k+1,a2k)

θ).

Proof. As a consequence of the assumptions (2.13)–(2.16) and (2.18)–(2.19) we
may use Lemma 2.5. Hence, each solution y of (1.1) is (θ, ω, ak)-rapidly oscillating
and so we may use Lemma 3.1 too. It gives us the inequality (3.1) from which
immediately follows (3.9). �

Now, we are able to prove the inequalities (1.8) and (1.9).

Corollary 3.5. Let the hypotheses of Corollary 2.8 be still valid, that is: for ar-
bitrarily given real number s ∈ (1, 2), let ak, θ and ω be given by (2.21), and let
the function f(t, η, ξ) satisfies (2.13)–(2.16), and (2.19) in respect to such given
(θ, ω, ak). Then each solution y of (1.1) such that y ∈ C1(a, b) satisfies

|Gε(y′)| ≥
√

2
24

(b− a)s/2ε1−s/2 for each ε ∈ (0, ε0 = b−a
β ),

M1+s/2(G(y′)) ≥ 1
24

(b− a)s/2.

(3.10)

Proof. From the proof of Corollary 2.8, we know that the sequence ak given in
(2.21) satisfies the condition (2.1), where k(ε) and ε0 are determined in (2.11).
Also, the functions θ and ω given in (2.21) satisfy the condition (2.5), (2.12) and
(2.18). Therefore, we may apply Theorem 3.4 and to calculate the right hand side
in (3.9), where θ, ω and ak are given in (2.21). In this direction, by the help of
(3.7) for α = 1 and (3.8) we obtain

∞∑
k=k(ε/2)

( ess sup
(a2k,a2k−1)

ω − ess inf
(a2k+1,a2k)

θ) ≥ (b− a)
∞∑

k=k(ε/2)

( 1
2k

)1/β

≥ (b− a)
( 1
2k(ε/2)

)1/β

≥
(β

2
) 1

β+1
(1
8
) 1

β (b− a)
β

β+1 ε
1

β+1

≥
√

2
24

(b− a)
s
2 ε1− s

2 ,

where (2.21) is used, that is, β > 1 and 2β/(β+1) = s. Now from (3.9) immediately
follows

|Gε(y′)| ≥
√

2
24

(b− a)s/2ε1−s/2 for each ε ∈ (0, ε0 =
b− a

β
).
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Also, we have

M1+s/2(G(y′)) ≥ 2(1+s/2)−2 lim sup
ε→0

[
ε(1+s/2)−2

√
2

24
(b− a)s/2ε1−s/2

]
=

2s/2+1/2

25
(b− a)s/2 lim sup

ε→0
(εs/2−1ε1−s/2) ≥ 1

24
(b− a)s/2.

This proves the desired statement (3.10). �

4. Necessary conditions for rapid oscillations

Let us mention that the inequality (2.6), stated in Lemma 2.3, was useful in the
calculation of a lower bound of |Gε(y)|, where y is a (θ, ω, ak)-rapidly oscillating
function. Next, in Lemma 2.5 some (sufficient) conditions on the nonlinearity
f(t, η, ξ) were given such that each solution y of (1.1) is (θ, ω, ak)-rapidly oscillating.
In this section, we consider an inverse of Lemma 2.5. Precisely, supposing that there
is at least one (θ, ω, ak)-rapidly oscillating and smooth enough solution of (1.1) it
is shown what type of (necessary) conditions on the nonlinearity f(t, η, ξ) must be
satisfied. Let us remark that in both cases we are working with solutions y of (1.1)
which satisfy a basic condition

θ̃0 ≤ y(t) ≤ ω̃0 for each t ∈ [a, b], where

θ̃0 ≤ ess inf
(a,b)

θ and ω̃0 ≥ ess sup
(a,b)

ω.
(4.1)

As we have seen in Theorem 2.7, the condition (4.1) can be easily verified if the
assumption (2.19) is imposed on the nonlinear term f(t, η, ξ).

Theorem 4.1. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (2.1). Let θ(t) and ω(t) be two measurable and bounded real functions on
[a, b], θ(t) ≤ ω(t), t ∈ [a, b], which satisfy (2.5) and

ess sup
(a,b)

ω > ess inf
(a2k,a2k−1)

θ, ess sup
(a2k+1,a2k)

ω > ess inf
(a,b)

θ, k ≥ 1.

If there is at least one solution y ∈ C2(a, b) of (1.1) which is (θ, ω, ak)-rapidly oscil-
lating and satisfies (4.1), then for each k ≥ 1, the Caratheodory function f(t, η, ξ)
needs to satisfy the following inequalities:∫ a2k−2

a2k+1

ess sup
(η,ξ)∈I×R

f+(t, η, ξ)dt

≥ 1
(a2k−2 − a2k+1)p−1

(ess sup(a2k,a2k−1)
ω − ess inf(a2k,a2k−1) θ)p

ess sup(a,b) ω − ess inf(a2k,a2k−1) θ
,

(4.2)

and ∫ a2k−1

a2k+2

ess inf
(η,ξ)∈I×R

f (t, η, ξ)dt

≤ − 1
(a2k−1 − a2k+2)p−1

(ess sup(a2k+1,a2k) ω − ess inf(a2k+1,a2k) θ)p

ess sup(a2k+1,a2k) ω − ess inf(a,b) θ
,

(4.3)

where I = (ess inf(a,b) θ, ess sup(a,b) ω), and f = min{f, 0} ≤ 0, and f+ =
max{f, 0} ≥ 0.
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Taking in (2.12) that θ̃0 = ess inf(a,b) θ and ess sup(a,b) ω = ω̃0 we see that both
types of conditions, the sufficient conditions from Lemma 2.5 and the necessary
conditions from Theorem 4.1 are similar each other, especially in the variable t.

Proof. Let y be a solution of the equation (1.1) which is (θ, ω, ak)-rapidly oscillating
and satisfies the condition (4.1). According to (2.2) and (2.5) it is easy to check
that there are two numbers s∗ ∈ (a2k+1, a2k−1) and t∗ ∈ (a2k, a2k−2), s∗ < t∗, such
that

y′(s∗) ≥ 0 and y(s∗) ≥ ess sup
(a2k,a2k−1)

ω ≥ ess inf
(a2k,a2k−1)

θ, (4.4)

y(t∗) = ess inf
(a2k,a2k−1)

θ and y(t) ≥ ess inf
(a2k,a2k−1)

θ, t ∈ (s∗, t∗), (4.5)

where k is a fixed natural number. It yields

ess sup
(a2k,a2k−1)

ω − ess inf
(a2k,a2k−1)

θ ≤ y(s∗)− y(t∗) ≤
∫ t∗

s∗
|y′|dt

≤ (t∗ − s∗)1/p′(
∫ t∗

s∗
|y′|pdt)1/p

≤ (a2k−2 − a2k+1)1/p′(
∫ t∗

s∗
|y′|pdt)1/p,

where 1/p + 1/p′ = 1. Thus, we have

(ess sup(a2k,a2k−1)
ω − ess inf(a2k,a2k−1) θ)p

(a2k−2 − a2k+1)p−1
≤

∫ t∗

s∗
|y′|pdt. (4.6)

On the other hand, by means of (4.4) and (4.5) and multiplying the equation (1.1)
by the test function ϕ = y−ess inf(a2k,a2k−1) θ and integrating both sides over [s∗, t∗]
we obtain∫ t∗

s∗
|y′|pdt

=
(
|y′|p−2y′(y − ess inf

(a2k,a2k−1)
θ)

)
|t
∗

s∗ +
∫ t∗

s∗
f(t, y, y′)(y − ess inf

(a2k,a2k−1)
θ)dt

≤
∫ t∗

s∗
f(t, y, y′)(y − ess inf

(a2k,a2k−1)
θ)dt

≤ (ess sup
(a,b)

ω − ess inf
(a2k,a2k−1)

θ)
∫ a2k−2

a2k+1

ess sup
(η,ξ)∈I×R

f+(t, η, ξ)dt,

where I = (ess inf(a,b) θ, ess sup(a,b) ω) and f+ = max{f, 0} ≥ 0. Now, combining
previous inequality with (4.6) we immediately derive the inequality (4.2).

Similar to (4.4) and (4.5) and by the help of (2.2) and (2.5) we get two numbers
s∗ ∈ (a2k+2, a2k) and t∗ ∈ (a2k+1, a2k−1), s∗ < t∗, such that

y′(s∗) ≤ 0 and y(s∗) ≤ ess inf
(a2k+1,a2k)

θ ≤ ess sup
(a2k+1,a2k)

ω, (4.7)

y(t∗) = ess sup
(a2k+1,a2k)

ω and y(t) ≤ ess sup
(a2k+1,a2k)

ω, t ∈ (s∗, t∗). (4.8)

Using the same observation as in the proof of (4.2), the inequalities (4.7) and (4.8)
verify (4.3). �
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5. Upper bounds for |Gε(y)| and Ms(G(y))

In this section, we will derive an upper bound for the behaviour of |Gε(y)| as
ε ≈ 0, where y is any smooth enough solution of (1.1). In this direction, we
introduce the second type of rapid oscillations near the boundary point t = a. For
the record, the function y(t) = tα cos(1/tβ),where 0 < α < β < ∞ has such type of
rapid oscillations near t = 0.

Definition 5.1. Let ak be a decreasing sequence of real numbers from interval
(a, b) satisfying

ak ↘ a and there is an ε1 > 0 such that for each ε ∈ (0, ε1)

there is an m(ε) ∈ N such that aj−1 − aj > 4ε, for each j ≤ m(ε).
(5.1)

Let θ̃(t) and ω̃(t) be two measurable and bounded functions, both defined on [a, b],
such that θ̃(t) ≤ ω̃(t), for each t ∈ [a, b]. We say that a real function y defined on
[a, b] has convex-concave rapid oscillations in respect to (θ̃, ω̃, ak) if there hold true:

y is concave in (a2k, a2k−1) and y is convex in (a2k+1, a2k), (5.2)
for each k ≥ 1 and

θ̃(t) ≤ y(t) ≤ ω̃(t) for each t ∈ [a, b]. (5.3)

In contrast to (2.1) where the number k(ε) was appearing like an index of ε-
density of ak, here in (5.1) the number m(ε) could be taken as an index of ε-
separation of the most finite numbers of ak. Let us remark that there is a sequence
ak which satisfies both conditions (2.1) and (5.1). It will be the case of the following
example, in which we show a calculation of the number m(ε).

Example 5.2. Let ak be a sequence of real numbers defined as in Example 2.2
above, that is

ak = a +
b− a

2
(
1
k

)1/β , k ≥ 1, 0 < β < ∞. (5.4)

Let us take for m(ε) any natural number which satisfies

m(ε) ≤ 2
( b− a

β24+2/β

) β
β+1 ε−

β
β+1 for each ε ∈ (0, ε1) and ε1 > 0. (5.5)

Using an elementary inequality
1
β

(1
j

)1+1/β ≤
( 1
j − 1

)1/β −
(1
j

)1/β
,

where β > 0 and j ≥ 2, it is easy to show that the sequence ak defined in (5.4)
satisfies the condition (5.1) in respect to m(ε) determined in (5.5).

It is clear now that by the help of Example 2.2 and Example 5.2 we have in (5.4)
a sequence of real numbers which satisfies both conditions (2.1) and (5.1).

Now, we are interested to relate the convex-concave rapid oscillation of a function
y with the asymptotic behaviour of |Gε(y)| as ε ≈ 0.

Lemma 5.3. Let ak be a decreasing sequence of real numbers from (a, b) satisfying
(5.1). Let θ̃(t) and ω̃(t) be two continuous functions on [a, b] satisfying θ̃(a) =
ω̃(a) = 0 and

θ̃ is decreasing, and ω̃ is increasing in [a, b]. (5.6)
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Let y ∈ C2((a, b]) ∩ C([a, b]) have convex-concave rapid oscillations in respect to
(θ̃, ω̃, ak). Then for each ε ∈ (0, ε1) we have

|Gε(y|[a,a1])| ≤ (am(ε) − a + 2ε)
(
ω̃(am(ε))− θ̃(am(ε)) + 2ε

)
+ ε

m(ε)∑
j=2

[
(6 + π)

(
ω̃(aj−1)− θ̃(aj−1)

)
+ 2(aj−1 − aj)

]
+ 2(π + 4)ε2m(ε),

(5.7)

where ε1 and m(ε) are defined in the assumption (5.1) and where a1 is the first
member of ak.

The proof of this lemma is omitted because it is very similar to the proof of [9,
Lemma 2.2, p. 273-277]

Next, we give an example for the calculation of the right hand side in (5.7).

Example 5.4. Let y ∈C2((0, 1]) ∩ C([0, 1]) be a real continuous function on [0, 1]
and let y have convex-concave rapid oscillations in respect to (θ̃, ω̃, ak), where θ̃, ω̃
and ak are given by

ak =
1
2
(
1
k

)1/β , k ≥ 1,

θ̃(t) = −2tα and ω̃(t) = 2tα, t ∈ [0, 1],
where α and β satisfy 0 < α < β < ∞.

(5.8)

We take for m(ε) any number which satisfies

(β24+2/βε)−
β

β+1 ≤ m(ε) ≤ 2(β24+2/βε)−
β

β+1 for each ε ∈ (0, ε1), (5.9)

where ε1 = 1/(β24+2/β). It is easy to check that m(ε) ∈ N for each ε ∈ (0, ε1).
Since from (5.9) follows (5.5) we know that the sequence ak defined in (5.8) satisfies
the condition (5.1), where m(ε) is determined by (5.9). Also, it is clear that the
functions θ̃ and ω̃ defined in (5.8) satisfy the condition (5.6). Thus, the data θ̃,
ω̃ and ak from (5.8) satisfy the assumptions of Lemma 5.3 and therefore we may
calculate (5.7), where a = 0.

Let us remark that, in particular, from (5.9) we have
1

m(ε)
≤ (β24+2/βε)

β
β+1 for each ε ∈ (0, ε1). (5.10)

From (5.8), and using the inequality (5.10), for each ε ∈ (0, ε1) we get

(am(ε) +2ε)
(
ω̃(am(ε))− θ̃(am(ε))+2ε

)
≤ c1ε

α+1
β+1 + c2ε

β+α+1
β+1 + c3ε

β+2
β+1 +4ε2, (5.11)

where

c1 = 21−α+(4+ 2
β ) α+1

β+1 β
α+1
β+1 , c2 = 23−α+(4+ 2

β ) α
β+1 β

α
β+1 , c3 = 2(4+ 2

β ) 1
β+1 β

1
β+1 .

From (5.8), (5.9), and using the inequality
n∑

j=1

(1
j

)H ≤ 2
1−H

n1−H (5.12)

for each n ∈ N and H ∈ (0, 1), we obtain

(6 + π)ε
m(ε)∑
j=2

(
ω̃(aj−1)− θ̃(aj−1)

)
≤ c4ε

α+1
β+1 (5.13)
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for each ε ∈ (0, ε1), where

c4 =
6 + π

β − α
24−α−α

β−(4+ 2
β ) β−α

β+1 β
α+1
β+1 .

From (5.8), and using the inequality( 1
j − 1

)1/β −
(1
j

)1/β ≤ 1
β

( 1
j − 1

)1+1/β (5.14)

for each j ∈ N and β > 0, we get

2ε

m(ε)∑
j=2

(aj−1 − aj) ≤ c5ε for each ε ∈ (0, ε1), (5.15)

where

c5 =
1
β

∞∑
j=1

(1
j

)1+1/β
.

From (5.8), and using the right inequality from (5.9) we have

2(π + 4)ε2m(ε) ≤ c6ε
β+2
β+1 for each ε ∈ (0, ε1), (5.16)

where
c6 = (π + 4)22−(4+ 2

β ) β
β+1 β−

β
β+1 .

Putting the inequalities (5.11), (5.13), (5.15), and (5.16) into (5.7) we obtain that
for each ε ∈ (0, ε1) there holds

|Gε(y|[0,a1])| ≤ (c1 + c4)ε
α+1
β+1 + c5ε + (c3 + c6)ε

β+2
β+1 + c2ε

β+α+1
β+1 + 4ε2,

where the constants c1, c2, c3, c4, c5, c6 are determined in the process above.
Next, we give some sufficient conditions on the nonlinearity f(t, η, ξ) such that

each smooth enough solution can have convex-concave rapid oscillations in the sense
of Definition 5.1.

Lemma 5.5. Let ak be a decreasing sequence of real numbers from (a, b) which
satisfies (5.1). Let θ̃(t) and ω̃(t) be two continuous functions on [a, b] satisfying
θ̃(a) = ω̃(a) = 0 and

θ̃ is decreasing and convex on [a, b], ω̃ is increasing and concave on [a, b]. (5.17)

Let the Caratheodory function f(t, η, ξ) satisfy

f(t, η, ξ) < 0, t ∈ (a, b), η > ω̃(t), ξ ∈ R,

f(t, η, ξ) > 0, t ∈ (a, b), η < θ̃(t), ξ ∈ R,
(5.18)

and let for each k ∈ N,

f(t, η, ξ) > 0, t ∈ (a2k, a2k−1), η ∈ (θ̃0, ω̃(t)), ξ ∈ R,

f(t, η, ξ) < 0, t ∈ (a2k+1, a2k), η ∈ (θ̃(t), ω̃0), ξ ∈ R,
(5.19)

where θ̃0 and ω̃0 be two arbitrary given real numbers such that θ̃0 ≤ θ̃(b) < 0 and
0 < ω̃(b) ≤ ω̃0. Then each solution y of (1.1) such that y ∈ C2((a, b]) ∩ C([a, b])
has convex-concave rapid oscillations in respect to (θ̃, ω̃, ak).

The assumption (5.17) can be avoided in a particular case as follows.
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Lemma 5.6. Let ak be a decreasing sequence of real numbers from (a, b) which
satisfies (5.1). Let θ̃(t) and ω̃(t) be two real functions on [a, b] defined by

θ̃(t) = −2(t− a) and ω̃(t) = 2(t− a) for each t ∈ [a, b]. (5.20)

Let the Caratheodory function f(t, η, ξ) satisfy the hypotheses (5.18) and (5.19)
in respect to θ̃ and ω̃ defined in (5.20). Then each solution y of (1.1) such that
y ∈ C2((a, b])∩C([a, b]) has convex-concave rapid oscillations in respect to (θ̃, ω̃, ak).

Sketch of the proofs of Lemmas 5.5 and 5.6. It is an elementary fact that the hy-
pothesis (5.19) implies the condition (5.2), that is, the convex-concave property of
smooth solutions of (1.1) is an easy consequence of (5.19) (see a discussion in [9,
Appendix,p. 302]). But, it is not so easy to establish how the hypotheses (5.17)
and (5.18) (or (5.18) and (5.20)) give us the condition (5.3) for any solution y of
(1.1). A way to prove it, we suggest the argumentation presented in the proof of
[9, Lemma 3.1, p. 278-279]. See also Lemma 6.4 below.

Thus, the hypotheses (5.17)–(5.20) guarantee us that each solution y of (1.1)
such that y ∈ C2((a, b]) ∩ C([a, b]) satisfies the conditions (5.2) and (5.3), that is
to say, the solutions y of (1.1) have convex-concave rapid oscillations in respect to
(θ̃, ω̃, ak). �

Now, we can state the main result of this section.

Theorem 5.7. Let ak be a decreasing sequence of real numbers from (a, b) which
satisfies (5.1). Let θ̃(t) and ω̃(t) be two continuous functions on [a, b], θ̃(a) =
ω̃(a) = 0 which satisfy (5.6) and either (5.17) or (5.20). Next, let the Caratheodory
function f(t, η, ξ) satisfy the hypotheses (5.18) and (5.19). Then each solution y of
(1.1) such that y ∈ C2((a, b]) ∩ C([a, b]) satisfies

Ms(G(y)) ≤ 2s−2 lim sup
ε→0

εs−2
{
(am(ε) − a)

(
ω̃(am(ε))− θ̃(am(ε))

)
+ ε

m(ε)∑
j=2

[
(6 + π)

(
ω̃(aj−1)− θ̃(aj−1)

)
+ 2(aj−1 − aj)

]
+ 2(π + 4)ε2m(ε)

}
,

(5.21)

where s ∈ (1, 2).

Proof. ¿From Lemma 5.5 or Lemma 5.6 we have that each solution y of (1.1)
such that y ∈ C2((a, b]) ∩ C([a, b]) has convex-concave rapid oscillations in respect
to given (θ̃, ω̃, ak). Now, from Lemma 5.3 we have that such solutions y of (1.1)
satisfy the inequality (5.7). Multiplying both side in (5.7) by (2ε)s−2 and taking
lim sup as ε → 0 we immediately obtain the inequality (5.21). Note that it is not
necessary to consider the part y|[a1,b], because y ∈ W 1,p(a1, b). �

At the end of this section, we are able to derive the constant ms appearing in
(1.6).

Corollary 5.8. For arbitrarily given s ∈ (1, 2) let ak, θ̃(t), and ω̃(t) be defined by

ak = a +
b− a

2
(
1
k

)1/β , k ≥ 1,

θ̃(t) = −ω̃(t) and ω̃(t) = 2(t− a), t ∈ (a, b),

where 1 < β < ∞ and 2β
β+1 = s.

(5.22)
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Let the Caratheodory function f(t, η, ξ) satisfy the hypotheses (5.18) and (5.19) in
respect to such given (θ̃, ω̃, ak). Then each solution y of (1.1) such that y ∈ C2(a, b)
satisfies

Ms(G(y)) ≤ ms(b− a)s, (5.23)
where

ms = 26 + 22(6 + π)
2− s

s− 1
. (5.24)

Proof. As in Example 5.4, we take for m(ε) any number that satisfies( b− a

β24+2/β

) β
β+1 ε−

β
β+1 ≤ m(ε) ≤ 2

( b− a

β24+2/β

) β
β+1 ε−

β
β+1 , (5.25)

where ε ∈ (0, ε1 = b−a
β24+2/β ). From (5.22) and (5.25) we have

(am(ε) − a)
(
ω̃(am(ε))− θ̃(am(ε))

)
= 4(

b− a

2
)2(

1
m(ε)

)2/β

≤ 2(4+ 2
β ) 2

β+1 β
2

β+1 (b− a)
2β

β+1 ε
2

β+1 ≤ 26(b− a)sε2−s for each ε ∈ (0, ε1),

where s ∈ (1, 2). This implies

2s−2 lim sup
ε→0

εs−2
[
(am(ε) − a)

(
ω̃(am(ε))− θ̃(am(ε))

)]
≤ 26(b− a)s. (5.26)

Using inequality (5.12), from (5.22) and (5.25) we have

ε

m(ε)∑
j=2

(6 + π)
(
ω̃(aj−1)− θ̃(aj−1)

)
=

b− a

2
(6 + π)4ε

m(ε)∑
j=2

(
1

j − 1
)1/β

≤ 2(6 + π)(b− a)
2

1− 1/β
ε(m(ε))1−1/β

≤ (6 + π)23− 1
β−(4+ 2

β ) β−1
β+1

β
2

β+1

β − 1
(b− a)

2β
β+1 ε

2
β+1

≤ 22(6 + π)
2− s

s− 1
(b− a)sε2−s for each ε ∈ (0, ε1).

For any s ∈ (1, 2), this implies

2s−2 lim sup
ε→0

εs−2
[
ε

m(ε)∑
j=2

(6 + π)
(
ω̃(aj−1)− θ̃(aj−1)

)]
≤ 22(6 + π)(2− s)

s− 1
(b− a)s.

(5.27)
Using inequality (5.14), from (5.22) and (5.25) we have

2ε

m(ε)∑
j=2

(aj−1 − aj) = (b− a)ε
m(ε)∑
j=2

(
(

1
j − 1

)1/β − (
1
j
)1/β

)
≤ ε

b− a

β

∞∑
j=2

(
1

j − 1
)1+1/β for each ε ∈ (0, ε1).
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For any s ∈ (1, 2), this implies

2s−2 lim sup
ε→0

εs−2
[
2ε

m(ε)∑
j=2

(aj−1 − aj)
]

= 0. (5.28)

Finally, from (5.22) and (5.25), we have

2(π + 4)ε2m(ε) ≤ 4(π + 4)
( b− a

β24+2/β

) β
β+1 ε2− β

β+1 .

For any s ∈ (1, 2), this implies

2s−2 lim sup
ε→0

εs−2
[
2(π + 4)ε2m(ε)

]
= 0. (5.29)

Putting (5.26), (5.27), (5.28), and (5.29) into (5.21) we obtain (5.23) and (5.24). �

At the end of this section we consider both inequalities in (1.6). In this direction,
let us remark that both types of hypotheses on the nonlinear term f(t, η, ξ) appear-
ing in Corollary 2.8 and Corollary 5.8 are completely harmonized. It is because the
data θ, ω, θ̃, and ω̃ defined in (2.21) and (5.22) satisfy

θ̃(t) < θ(t) < 0 < ω(t) < ω̃(t),

ess inf
(a2k+1,a2k)

θ ≥ ess sup
(a2k+1,a2k)

θ̃,

ess sup
(a2k,a2k−1)

ω ≤ ess inf
(a2k,a2k−1)

ω̃.

(5.30)

Therefore, we may combine Corollary 2.8 and Corollary 5.8 to obtain the following
consequence.

Corollary 5.9. For arbitrarily s ∈ (1, 2) let ak, θ, ω, θ̃(t), and ω̃(t) be given by
(2.21) and (5.22). Let the Caratheodory function f(t, η, ξ) satisfy the hypotheses
(2.13)–(2.16), and (2.19), and (5.18)–(5.19) in respect to such given (θ, ω, θ̃, ω̃, ak).
Then each solution y of (1.1) such that y ∈ C2(a, b) satisfies

1
27

(b− a)s ≤ Ms(G(y)) ≤ ms(b− a)s, (5.31)

where the constant ms is defined in (5.24).

Thus, because of (5.31), we have proved the desired statement (1.6).

6. Lower bound for the s-dimensional upper density

In this section, we derive the inequalities (1.10) and (1.11). In this direction, we
need some preliminaries. The first one is a version of Lemma 2.3 above.

Lemma 6.1. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (2.1). Let θ(t) and ω(t) be two measurable and bounded real functions
on [a, b], θ(t) ≤ ω(t), t ∈ [a, b], which satisfy (2.5). Let y be (θ, ω, ak)-rapidly
oscillating function on [a, b] and let y ∈ C((a, b]). Let k(ε) and ε0 be from (2.1).
Then for any c ∈ (a, b) such that

there exists εc ∈ (0, ε0) satisfying ak(ε)−1 ∈ (a, c) for each ε ∈ (0, εc), (6.1)

we have

|Gε(y|[a,c])| ≥
∫ ak(ε)

a

(ω(t)− θ(t))dt for each ε ∈ (0, εc). (6.2)
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Proof. Regarding to the last line in the proof of Lemma 2.3 above and using the
same notations, we have already proved that

A(ε, θ, ω) ⊆ Gε

(
∪∞k=k(ε)+1y|[σk,σk−1]

)
for each ε ∈ (0, ε0), (6.3)

where k(ε) and ε0 are appearing in (2.1). Let c ∈ (a, b) be a real number which
satisfies (6.1). It is clear that

G(y|(a,ak(ε)−1]) ⊆ G(y|(a,c]) for each ε ∈ (0, εc). (6.4)

Since εc ∈ (0, ε0) and σk ∈ (ak, ak−1), combining (6.3) and (6.4) we obtain:

A(ε, θ, ω) ⊆ Gε

(
∪∞k=k(ε)+1y|[σk,σk−1]

)
= Gε(y|(a,σ(k(ε))]) ⊆ Gε(y|(a,ak(ε)−1]) ⊆ Gε(y|(a,c]);

that is,
A(ε, θ, ω) ⊆ Gε(y|(a,c]) for each ε ∈ (0, εc). (6.5)

Taking the Lebesgue measure of the both sides in (6.5) we get (6.2). �

A choice for the number εc appearing in (6.1) and (6.2) will be given in Corollary
6.3 below. Analogously to Theorem 2.7 we can state the following result.

Theorem 6.2. Let ak be a decreasing sequence of real numbers from interval (a, b)
satisfying (2.1). Let θ(t) and ω(t) be two measurable and bounded real functions on
[a, b], θ(t) ≤ ω(t), t ∈ [a, b], which satisfy (2.5), (2.12) and (2.18). Next, let the
Caratheodory function f(t, η, ξ) satisfy (2.13)–(2.16), and (2.19). Let c ∈ (a, b) and
εc be numbers satisfying (6.1). Then each solution y of the equation (1.1) satisfies

|Gε(y|[a,c])| ≥
∫ ak(ε)

a

(ω(t)− θ(t))dt for each ε ∈ (0, εc),

Ms(G(y|[a,c])) ≥ 2s−2 lim sup
ε→0

εs−2

∫ ak(ε)

a

(ω(t)− θ(t))dt,

for any s ∈ (1, 2).

The proof of this theorem is the same as the proof of Theorem 2.7, but using
Lemma 6.1 instead of Lemma 2.3. Now, from Theorem 6.2 we obtain the following
resutls.

Corollary 6.3. For an arbitrarily real number s ∈ (1, 2), let ak, θ and ω be given
by (2.21). Let the Caratheodory function f(t, η, ξ) satisfy (2.13)–(2.16), and (2.19)
in respect to such given (θ, ω, ak). Then for each c ∈ (a, b) and for each solution y
of the equation (1.1) there holds

|Gε(y|[a,c])| ≥
1
26

(c− a)sε2−s for each ε ∈ (0, εc),

Ms(G(y|[a,c])) ≥
1
27

(c− a)s,

(6.6)

where

εc = min{ε0,
1
β

(c− a)β+1

(b− a)β
} and ε0 =

b− a

β
. (6.7)

Proof. It is simple to check that every c ∈ (a, b) satisfies the condition (6.1) in
respect to ak, k(ε) and εc given in (2.21), (2.11) and (6.7), respectively. Next,
using the same calculation as in the proof of Corollary 2.8, the statement (6.6)
immediately follows from Theorem 6.2. �
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To derive the inequalities (1.10) and (1.11) we need a comparison result for
solutions of (1.1) which is a modification of [9, Lemma 3.1, p. 278].

Lemma 6.4. Let θ̃(t) = −2(t − a) and ω̃(t) = 2(t − a). Let the Caratheodory
function f(t, η, ξ) satisfy

f(t, η, ξ) < 0, t ∈ (a, b), η > ω̃(t), ξ ∈ R,

f(t, η, ξ) > 0, t ∈ (a, b), η < θ̃(t), ξ ∈ R.

Then each solution y of (1.1) such that y ∈ C2(a, b) satisfies

θ̃(t) ≤ y(t) ≤ ω̃(t) for each t ∈ [a, b]. (6.8)

The proof of this lemma is omitted because it is the same as the proof of [9,
Lemma 3.1, p. 278]. Finally, according to Corollary 6.3 and Lemma 6.4 we are able
to state the main result of this section.

Corollary 6.5. For an arbitrarily s ∈ (1, 2), let the hypotheses of Corollary 6.3
and Lemma 6.4 be still valid. Then each solution y of (1.1) such that y ∈ C2(a, b)
satisfies

Ms(G(y) ∩Br(a, 0)) ≥ 1
27

(
r√
5
)s for each r ∈ (0, b− a),

Ds(G(y); t = a) ≥ 1
27

(
1

2
√

5
)s;

(6.9)

that is, the constant ds appearing in (1.10) and (1.11) satisfies

ds =
1
27

(
1

2
√

5
)s.

Proof. Let us remark that because of (5.30) the assumptions of Corollary 6.3 and
Lemma 6.4 are completely harmonized, where ak, θ and ω be given by (2.21) and
where θ̃(t) = −2(t − a) and ω̃(t) = 2(t − a). Therefore, the main conclusions of
Corollary 6.3 and Lemma 6.4 may be used together.

By (6.8) and making intersections of θ̃(t) and ω̃(t) with Br(a, 0), it is clear that
for any r ∈ (0,

√
5(b− a)) we have

G(y|[a,a+ r√
5
]) ⊆ G(y) ∩Br(a, 0),

where y is any smooth enough solution of (1.1). Since Ms is a monotone set
function, it yields

Ms(G(y|[a,a+ r√
5
])) ≤ Ms(G(y) ∩Br(a, 0)). (6.10)

Next, we apply Corollary 6.3 to y|[a,a+ r√
5
] and from (6.6) we derive

Ms(G(y|[a,a+ r√
5
])) ≥

1
27

(
r√
5
)s for any r ∈ (0, b− a). (6.11)

Combining (6.10) and (6.11) we conclude that

Ms(G(y) ∩Br(a, 0)) ≥ 1
27

(
r√
5
)s for any r ∈ (0, b− a).

Multiplying both inequalities by 1/(2r)s and taking lim sup as r → 0 we immedi-
ately derive the desired statement (6.9). �
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7. Appendix

In this appendix, we sketch the proof of Lemma 2.5. Under the assumptions
of Lemma 2.5, we verify that each solution y of the equation (1.1) which satisfies
(2.17) is (θ, ω, ak)-rapidly oscillating on [a, b]. In this proof, a simple method of
the localisation of integration in (1.1) is exploited, often used in analysis of local
regular properties of solutions of PDE’s (see for instance [4, 6, 12, 13]).

Regarding Definition 2.1, it is sufficient to prove that for any fixed k ∈ N the
hypotheses (2.13), (2.14) and (2.17) verify that

∃σ2k ∈ (a2k, a2k−1) such that y(σ2k) ≥ ess sup
(a2k,a2k−1)

ω, (7.1)

and on the other hand, that the hypotheses (2.15), (2.16) and (2.17) verify that

∃σ2k+1 ∈ (a2k+1, a2k) such that y(σ2k+1) ≤ ess inf
(a2k+1,a2k)

θ. (7.2)

Since (7.2) is the dual statement of (7.1), in order to simplify the proof, we will
prove only the statement (7.1) for a fixed k ∈ N. In this direction, let σ and r be
two real numbers defined by

σ =
a2k + a2k−1

2
and r =

1
4
(a2k−1 − a2k).

Let Br = Br(σ) denote a ball with radius r > 0 centered at the point σ. Then we
have:

B2r = B2r(σ) = (a2k, a2k−1),

Br = Br(σ) = (a2k +
1
4
(a2k−1 − a2k), a2k−1 −

1
4
(a2k−1 − a2k)).

Also, let θ̃0 = ess inf(a,b) θ, and ω̃0 = ess sup(a,b) ω, and ω2r = ess supB2r
ω, and

J2r = (θ̃0, ω2r). Because of (2.5) and (2.12) we have that θ̃0 < ω2r < ω̃0. Using the
preceding notation, we can rewrite the main assumptions (2.13) and (2.14) in the
form

f(t, η, ξ) ≥ 0, t ∈ B2r, η ∈ J2r, ξ ∈ R, (7.3)∫
Br

ess inf
(η,ξ)∈J2r×R

f(t, η, ξ)dt >
c(p)
4p−1

1
rp−1

(ω̃0 − θ̃0)p

ω̃0 − ω2r

= (p− 1)p−1 (ω̃0 − θ̃0)p

ω̃0 − ω2r

|Br|
rp

,

(7.4)

where we have used |Br| = 2r and c(p) = 2[4(p− 1)]p−1. Next, let y be a solution
of (1.1) which satisfies (2.17). Let us suppose the contrary statement to (7.1), that
is

y(t) < ω2r = ess sup
B2r

ω for each t ∈ B2r. (7.5)

According to (2.17) and (7.3)–(7.5) we have

f(t, y, y′) ≥ 0 in B2r, (7.6)∫
Br

f(t, y, y′)dt > (p− 1)p−1 (ω̃0 − θ̃0)p

ω̃0 − ω2r

|Br|
rp

. (7.7)

Now we can repeat a similar argument as in [4, Theorem 5, p. 256] or [9, Lemma
4.1, p. 280]. It is known that for any c0 > 1 there exists a function Φ ∈ C∞0 (R),
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0 ≤ Φ ≤ 1 in R such that the following properties are fulfilled, see [4, Lemma 5,
pp. 267],

Φ(t) = 1 for t ∈ Br and Φ(t) = 0 for t ∈ R \B2r,

Φ(t) > 0 for t ∈ B2r and |Φ′(t)| ≤ c0

r
, t ∈ R.

(7.8)

For any c0 > 1, we take a test function ϕ defined by

ϕ(t) =

{
(y(t)− ω̃0)Φp(t) if t ∈ B2r,

0 otherwise.

It is clear that ϕ ∈ W 1,p
0 (B2r) ∩ L∞(B2r). Putting in (1.1) this test function we

obtain∫
B2r

|y′|pΦpdt

≤ p

∫
B2r

|y′|p−1Φp−1(ω̃0 − y(t))|Φ′|dt−
∫

B2r

f(t, y, y′)(ω̃0 − y(t))Φpdt.

(7.9)

Next, using that ω̃0−y(t) ≤ ω̃0−θ̃0, and (p−1)p′ = p, and δ1(pδ2) ≤ δp′

1 +( p
p′ )

p−1δp
2

in particular for

δ1 = |y′|p−1Φp−1 and δ2 = (ω̃0 − y(t))|Φ′|,
from (7.9) we obtain

0 =
[
1− p′

p′
]∫

B2r

|y′|pΦpdt

≤
( p

p′
)p−1(ω̃0 − θ̃0)p

∫
B2r

|Φ′|pdt−
∫

B2r

f(t, y, y′)(ω̃0 − y(t))Φpdt.

Now, by (7.5), (7.6) and (7.8), we have

0 ≤
( p

p′
)p−1(ω̃0 − θ̃0)p|B2r \Br|

(c0

r

)p−(ω̃0 − ω2r)
∫

Br

f(t, y, y′)dt.

Since |B2r \Br| = |Br| and passing to the limit as c0 → 1 we obtain∫
Br

f(t, y, y′)dt ≤ (p− 1)p−1 |Br|
rp

(ω̃0 − θ̃0)p

ω̃0 − ω2r
.

This inequality contradicts (7.7) and so the assumption (7.5) is not possible. Thus,
the statement (7.1) is proved.
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[11] H. O. Peitgen, H. Jűrgens, and D. Saupe, Chaos and Fractals. New Frontiers of Science,
Springer-Verlag, 1992.

[12] J. M. Rakotoson, Equivalence between the growth of
∫

B(x,r) |∇u|pdy and T in the equation

P (u) = T , J. Differential Equations, 86 (1990), 102-122.
[13] J. M. Rakotoson and R. Temam, A co-area formula with applications to monotone rearrange-

ment and to regularity, Arch. Rational Mech. Anal., 109 (1990), 213-238.

[14] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91
(1982), 57-74.

[15] C. Tricot, Curves and Fractal Dimension, Springer-Verlag, 1995.

Mervan Pašić
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Vesna Županović
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