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L2,Φ regularity for nonlinear elliptic systems of

second order ∗

Josef Daněček & Eugen Viszus

Abstract

This paper is concerned with the regularity of the gradient of the
weak solutions to nonlinear elliptic systems with linear main parts. It
demonstrates the connection between the regularity of the (generally dis-
continuous) coefficients of the linear parts of systems and the regularity
of the gradient of the weak solutions of systems. More precisely: If above-
mentioned coefficients belong to the class L∞(Ω) ∩ L2,Ψ (Ω) (generalized
Campanato spaces), then the gradient of the weak solutions belong to
L2,Φ
loc (Ω,RnN ), where the relation between the functions Ψ and Φ is for-

mulated in Theorems 3.1 and 3.2 below.

1 Introduction

In this paper, we consider the problem of the regularity of the first derivatives
of weak solutions to the nonlinear elliptic system

−Dαa
α
i (x, u,Du) = ai(x, u,Du), i = 1, . . . , N, (1.1)

where aαi , ai are Caratheodorian mappings from (x, u, z) ∈ Ω×RN ×RnN into
R, N > 1, Ω ⊂ Rn, n ≥ 3 is a bounded open set. A function u ∈ W 1,2

loc (Ω,RN )
is called a weak solution of (1.1) in Ω if∫

Ω

aαi (x, u,Du)Dαϕ
i(x) dx =

∫
Ω

ai(x, u,Du)ϕi(x) dx, ∀ϕ ∈ C∞0 (Ω,RN ).

We use the summation convention over repeated indices.
As it is known, in case of a general system (1.1), only partial regularity can

be expected for n > 2 (see e.g. [2, 6, 9]). Under the assumptions below we will
prove L2,Φ-regularity of gradient of weak solutions for the system (1.1) whose
coefficients aαi have the form

aαi (x, u,Du) = Aαβij (x)Dβu
j + gαi (x, u,Du), (1.2)
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where i, j = 1, . . . , N , α, β = 1, . . . , n, Aαβij is a matrix of functions, and the
following condition of strong ellipticity

Aαβij (x)ξiαξ
j
β ≥ ν|ξ|

2, a.e. x ∈ Ω, ∀ ξ ∈ RnN ; ν > 0 (1.3)

holds, and gαi are functions with sublinear growth in z. In what follows, we
formulate the conditions on the smoothness and the growth of the functions
Aαβij , gαi and ai precisely.

It is well known (see [2]) that, in the case of linear elliptic systems with con-
tinuous coefficients Aαβij , the gradient of weak solutions has the L2,λ-regularity
and, if the coefficients Aαβij belong to some Hölder class, then the gradient of
weak solutions belongs to the BMO-class (functions with bounded mean os-
cillations, see Definition 2.1). These results were generalized in [3] where the
first author has proved the L2,λ-regularity of the gradient of weak solutions
to (1.1)-(1.3) in the situation where the coefficients Aαβij are continuous and
the BMO-regularity of gradient in the case where coefficients Aαβij are Hölder
continuous.

In the case of linear elliptic systems when the coefficients Aαβij are “small
multipliers of BMO(Ω)”, a class neither containing nor contained in C(Ω),
Acquistapace in [1] proved global (under Dirichlet boundary condition) and local
BMO-regularity for the gradient of solutions. In [1] the local BMO-regularity
does not follow in a standard way from the global one, because there are no
regularity results in the Morrey spaces L2,λ, 0 < λ < n. The last mentioned
fact was a motive for [4] and [5]. In [4, 5] the Morrey regularity for the gradient
of weak solutions for nonlinear elliptic systems of type (1.1) is proved when the
coefficients Aαβij are generally discontinuous (not necessarily “small multipliers
of BMO(Ω)”).

The purpose of this paper is a generalization of the results from [4] and [5].
Result of this paper may open a way to proving the BMO-regularity for the
gradient of solutions of (1.1).

If we want to sketch our method of proof, we must say that its crucial point is
the assumption on Aαβij : Aαβij ∈ L∞(Ω)∩L2,Ψ (Ω) (for the definition see below).
Taking into account higher integrability of gradient Du (for some r > 2), we
obtain L2,Φ-regularity of the gradient.

2 Notation and definitions

We consider the bounded open set Ω ⊂ Rn with points x = (x1, . . . xn), n ≥ 3,
u Ω → R

N , N ≥ 1, u(x) = (u1(x), . . . , uN (x)) is a vector-valued function,
Du = (D1u, . . . ,Dnu), Dα = ∂/∂xα. The meaning of Ω0 ⊂⊂ Ω is that the
closure of Ω0 is contained in Ω, i.e. Ω0 ⊂ Ω. For the sake of simplicity we
denote by | · | the norm in Rn as well as in RN and RnN . If x ∈ Rn and r is
a positive real number, we write Br(x) = {y ∈ Rn : |y − x| < r}, i.e., the open
ball in Rn, Ω(x, r) = Ω ∩ Br(x). Denote by ux,r = |Ω(x, r)|−1

n

∫
Ω(x,r)

u(y) dy =∫
Ω(x,r)
− u(y) dy the mean value of the function u ∈ L1(Ω,RN ) over the set Ω(x, r),
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where |Ω(x, r)|n is the n-dimensional Lebesgue measure of Ω(x, r). The bounded
domain Ω ⊂ Rn is said to be of type A if there exists a constant A > 0 such
that, for every x ∈ Ω and all 0 < r < diam Ω, it holds |Ω(x, r)|n ≥ Arn. Beside
the usually used space C∞0 (Ω,RN ), the Hölder spaces C0,α(Ω,RN ), C0,α(Ω,RN )
and the Sobolev spaces W k,p(Ω,RN ), W k,p

loc (Ω,RN ), W k,p
0 (Ω,RN ) (see, e.g.[8]),

we use the following Morrey and Campanato spaces.

Definition 2.1 Let λ ∈ [0, n], q ∈ [1,∞). A function u ∈ Lq(Ω,RN ) is said
to belong to Morrey space Lq,λ(Ω,RN ) if

||u||qLq,λ(Ω,RN ) = sup
x∈Ω,r>0

1
rλ

∫
Ω(x,r)

|u(y)|q dy <∞.

Let λ ∈ [0, n+q], q ∈ [1,∞). The Campanato space Lq,λ(Ω,RN ) is the subspace
of such functions u ∈ Lq(Ω,RN ) for which

[u]qLq,λ(Ω,RN )
= sup
r>0,x∈Ω

1
rλ

∫
Ω(x,r)

|u(y)− ux,r|q dy <∞.

Let Q0 ⊂ Rn is a cube whose edges are parallel with the coordinate axes. The
BMO(Q0,R

N ) space (bounded mean oscillation space) is the subspace of such
functions u ∈ L1(Q0,R

N ) for which

〈u〉Q0 = sup
Q⊂Q0

1
|Q|

∫
Q

|u(y)− uQ| dy <∞,

where uQ =
∫
Q
− u(y) dy and Q ⊂ Q0 is the cube homotetic with Q0.

Remark u ∈ Lq,λloc (Ω,RN ) if and only if u ∈ Lq,λ(Ω0,R
N ) for each Ω0 ⊂⊂ Ω.

Proposition 2.1 For a domain Ω ⊂ Rn of the class C0,1 we have the following

(a) With the norms ‖u‖Lq,λ and ‖u‖Lq,λ = ‖u‖Lq+[u]Lq,λ , ‖u‖BMO = ‖u‖L1+
〈u〉Q, Lq,λ(Ω, RN ), Lq,λ(Ω, RN ) and BMO(Q0,R

N ) are Banach spaces.

(b) Lq,λ(Ω,RN ) is isomorphic to the Lq,λ(Ω,RN ), 1 ≤ q <∞, 0 ≤ λ < n.

(c) Lq,n(Ω,RN ) is isomorphic to the L∞(Ω,RN ) ( Lq,n(Ω,RN ), 1 ≤ q <∞.

(d) L2,n(Ω,RN ) is isomorphic to the Lq,n(Ω,RN ) and
Lq,n(Q,RN ) = BMO(Q,RN ), Q being a cube, 1 ≤ q <∞.

(e) if u ∈ W 1,2
loc (Ω,RN ) and Du ∈ L2,λ

loc (Ω,RnN ), n − 2 < λ < n, then u ∈
C0,(λ+2−n)/2(Ω,RN ).

(f) Lq,λ(Ω, RN ) is isomorphic to the C0,(λ−n)/q(Ω, RN ) for n < λ ≤ n+ q.

For more details see [2, 6, 8, 9].
The generalization of Campanato spaces Lq,λ (see [2]) are the classes L2,Ψ

introduced by Spanne [10] and [11].
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Definition 2.2 Let Ψ be a positive function on (0,diam Ω]. A function u ∈
L2(Ω,RN ) is said to belong to L2,Ψ (Ω,RN ) if

[u]2,Ψ,Ω = sup
x∈Ω,r∈(0,diam Ω]

1
Ψ(r)

(∫
Ω(x,r)

|u(y)− ux,r|2 dy
)1/2

<∞

and by l2,Ψ (Ω,RN ) we denote the subspace of all u ∈ L2,Ψ (Ω,RN ) such that

[u]2,Ψ,Ω,r0 = sup
x∈Ω,r∈(0,r0]

1
Ψ(r)

(∫
Ω(x,r)

|u(y)− ux,r|2 dy
)1/2

= o(1) as r0 ↘ 0.

Some basic properties of the above-mentioned spaces are formulated in the
following proposition (for the proofs see [1, 10, 11]).

Proposition 2.2 For a domain Ω ⊂ Rn of the class C0,1 we have the following

(a) L2,Ψ (Ω,RN ) is a Banach space with norm ‖u‖L2,Ψ (Ω,RN ) = ‖u‖L2(Ω,RN ) +
[u]L2,Ψ (Ω,RN ).

(b) Let Ψ(r) = rn/2/(1 + | ln r|). Then C0(Ω,RN ) \ L2,Ψ (Ω,RN ) and
(L∞(Ω,RN ) ∩ l2,Ψ (Ω,RN )) \ C0(Ω,RN ) are not empty.

In the sequel we assume that Ψ : (0, d]→ (0,∞) has the form

Ψ(r) = rζ/2ψ(r), 0 ≤ ζ ≤ n+ 2, (2.1)

where ψ is a continuous, non-decreasing function such that limr→0+ ψ(r) = 0
and r → ψ(r)/rξ for some ξ > 0 is almost decreasing, i.e. there exists kψ ≥ 1
and d0 ≤ d such that

kψ
ψ(r)
rξ
≥ ψ(R)

Rξ
, ∀ 0 < r < R ≤ d0. (2.2)

Remark The function ψ(r) = 1/(1 + | ln r|) satisfies (2.2) with an arbitrary
ξ > 0.

3 Main results

Suppose that for all (x, u, z) ∈ Ω× RN × RnN the following conditions hold:

|ai(x, u, z)| ≤ fi(x) + L|z|γ0 , (3.1)
|gαi (x, u, z)| ≤ fαi (x) + L|z|γ , (3.2)

gαi (x, u, z)ziα ≥ ν1|z|1+γ − f2(x) (3.3)

for almost all x ∈ Ω and all u ∈ RN , z ∈ RnN . Here L, ν1 are positive
constants, 1 ≤ γ0 < (n + 2)/n, 0 ≤ γ < 1, f , fαi ∈ Lσ,λ(Ω), σ > 2, 0 < λ ≤ n,
fi ∈ Lσq0,λq0(Ω), q0 = n/(n + 2). We set A = (Aαβij ), g = (gαi ), a = (ai),

f̃ = (fi),
˜̃
f = (fαi ).

The next theorem is slightly generalizing the main result from [4].
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Theorem 3.1 Let u ∈W 1,2
loc (Ω,RN ) be a weak solution to the system (1.1) and

the conditions (1.2), (1.3), (3.1), (3.2) and (3.3) be satisfied. Suppose further
that Aαβij ∈ L∞(Ω) ∩ L2,Ψ (Ω), i, j = 1, . . . , N , α, β = 1, . . . , n and Ψ is a
function satisfying the condition (2.1) with ζ = n. Then

Du ∈

{
L2,λ

loc (Ω, RnN ) if λ < n

L2,λ′

loc (Ω, RnN ) with arbitrary λ′ < n if λ = n.

Therefore,

u ∈

{
C0,(λ−n+2)/2(Ω,RN ) if n− 2 < λ < n

C0,ϑ(Ω, RN ) with arbitrary ϑ < 1 if λ = n.

To obtain L2,Φ-regularity for the first derivatives of the weak solution we
strengthen the conditions on the coefficients gαi and ai. Namely suppose that

|ai(x, u, z)| ≤ fi(x) + L|z|γ0 (3.4)
|gαi (x, u, z1)− gαi (y, v, z2)| ≤ L(|fαi (x)− fαi (y)|+ |z1 − z2|γ) (3.5)

gαi (x, u, z)ziα ≥ ν1|z|1+γ − f2(x). (3.6)

for a.e. x ∈ Ω and all u, v ∈ RN , z1, z2 ∈ RnN . Here L, ν1 are positive
constants, 1 ≤ γ0 < (n + 2)/n, 0 ≤ γ < 1, f , fαi ∈ L2,n(Ω), fi ∈ Lσq0,nq0(Ω),
σ > 2, q0 = n/(n+2). It is not difficult to see that from assumptions (3.4)–(3.6)
follow (3.1)–(3.3) with λ = n.

We can now formulate the main result of this paper.

Theorem 3.2 Let u ∈W 1,2
loc (Ω,RN ) be a weak solution to the system (1.1) and

suppose that the conditions (1.2), (1.3), (3.4), (3.5) and (3.6) hold. Let further
Aαβij ∈ L∞(Ω) ∩ L2,Ψ (Ω), for each i, j = 1, . . . , N , α, β = 1, . . . , n and Ψ be a
function satisfying the conditions (2.1) and (2.2) with ζ = n and 0 < ξ ≤ 2.
Then Du ∈ L2,Φ

loc (Ω,RnN ) with Φ(R) = Rn/2 in the case when the function ψ has
a form of some power function and Φ(R) = Rλ/2ψ(r−2)/2r(R) for some r > 2
and arbitrary λ < n in another cases.

Remark The conditions (2.1) and (2.2) in Theorem 3.2 are for example sat-
isfied with the function ψ(r) = 1/(1 + | ln r|) (see also Proposition 2.2(b)).

4 Some lemmas

In this section we present the results needed for the proof of the main theorem.
In BR(x) ⊂ Rn we consider a linear elliptic system

−Dα(Aαβij Dβu
j) = 0 (4.1)

with constant coefficients for which (1.3) holds.
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Lemma 4.1 ([2, pp. 54-55]) Let u ∈W 1,2(BR(x),RN ) be a weak solution to
the system (4.1). Then, for each 0 < σ ≤ R,∫

Bσ

|Du(y)|2 dy ≤ c
( σ
R

)n ∫
BR

|Du(y)|2 dy,∫
Bσ

|Du(y)− (Du)σ|2 dy ≤ c
( σ
R

)n+2
∫
BR

|Du(y)− (Du)R|2 dy

hold with a constant c independent of the homotethie.

The following lemma generalizes [7, Lemma 3.1] and is fundamental for prov-
ing Theorem 3.2.

Lemma 4.2 Let ψ be a function from the condition (2.1). Further let φ be
a nonnegative function on (0, d] and A, B, C, α, β be nonnegative constants.
Suppose that for all 0 < σ < R ≤ d, we have:

φ(σ) ≤
[
A
( σ
R

)α
+B

]
φ(R) + C Rβψ(R), (4.2)

φ(d) <∞. (4.3)

Further let the constant 0 < K < 1 exist such that ε = kψ(AKα−β−ξ +
BK−β−ξ) < 1. Then φ(σ) ≤ c σβψ(σ), for 0 < σ ≤ d, where

c = max
{ Ckψ

(1− ε)Kβ+ξ
, sup
r∈[Kd,d]

φ(r)
rβψ(r)

}
.

Proof From (4.2) and (4.3), it follows that supr∈[σ,d] φ(r) <∞. We set

cn = sup
r∈[1/n,d]

φ(r)
rβψ(r)

.

It is obvious that cn ≤ c0 = supr∈(0,d] φ(r)/rβψ(r).
When c0 = supr∈[Kd,d] φ(r)/rβψ(r), we have the result. Also

c0 > sup
r∈[Kd,d]

φ(r)
rβψ(r)

and there exists a sequence {rn}∞n=n0
such that 1/n < rn < Kd and∣∣∣∣∣ φ(rn)

rβnψ(rn)
− cn

∣∣∣∣∣ < cn
n
.

Put σ = rn, R = rn/K in (4.2) and using (2.2) we get

Kξ

kψ

φ(rn)

rβnψ(rn)
≤ φ(rn)

rβnψ( rnK )
≤ (AKα−β +BK−β)

φ( rnK )
( rnK )βψ( rnK )

+ CK−β
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and thus
φ(rn)

rβnψ(rn)
≤ kψ(AKα−β−ξ +BK−β−ξ)

φ( rnK )
( rnK )βψ( rnK )

+ CkψK
−β−ξ.

As rn/K ∈ [1/n, d], we have

φ( rnK )
( rnK )βψ( rnK )

≤ cn

and also

cn −
cn
n
≤ φ(rn)

(rn)βψ(rn)
≤ εcn + CkψK

−β−ξ.

Then (
1− ε− 1

n

)
cn ≤ CkψK−β−ξ.

For n→∞, we get the statement of this lemma. �
The following lemma is a special case of [3, Lemma 3.4].

Lemma 4.3 ([3, pp. 757-758]) (i) Let u ∈W 1,2
loc (Ω,RN ), Du ∈ L2,τ (Ω,RnN ),

0 ≤ τ < n and (3.1) be satisfied with fi ∈ L2q0,µ0q0(Ω), 0 < µ0 ≤ n. Then
ai ∈ L2q0,λ0(Ω) and for each ball BR(x) ⊂ Ω we have∫

BR(x)

|ai(x, u,Du)|2q0 dy ≤ cRλ0 , (4.4)

where c = c(n,L, γ0,diam Ω, ‖f̃‖L2q0,µ0q0 (Ω,RN ), ‖Du‖L2(Ω,RnN )) and λ0 =
min{µ0q0, n− (n− τ)q0γ0}.

(ii) Let u ∈W 1,2
loc (Ω,RN ) and (3.2) be satisfied with fαi ∈ L2,λ(Ω), 0 < λ ≤ n.

Then, for each ε ∈ (0, 1) and all BR(x) ⊂ Ω,∫
BR(x)

|gαi (x, u,Du)|2 dy ≤ c(L) ε
∫
BR(x)

|Du|2 dy + cRλ. (4.5)

where c = c(n,L, ε, γ,diam Ω, ‖˜̃f‖L2,λ(Ω,RnN ), ‖Du‖L2(Ω,RnN )).

For the proof of (i) can be found in [2, pp. 106-107] and the proof (ii) in [5].
In the following considerations we will use a result about higher integrability

of the gradient of a weak solution of the system (1.1).

Proposition 4.4 ([6, p. 138]) Suppose that (1.2), (1.3), (3.1)–(3.3) or (3.4)–
(3.6) are fulfilled and let u ∈ W 1,2

loc (Ω,RN ) be a weak solutions of (1.1). Then
there exists an exponent r > 2 such that u ∈W 1,r

loc (Ω,RN ). Moreover there exists
a constant c = c(ν, ν1, L, ‖A‖L∞) and R̃ > 0 such that, for all balls BR(x) ⊂ Ω,
R < R̃, the following inequality is satisfied( ∫

BR/2(x)

−|Du|r dy
)1/r ≤c{(∫

BR(x)

−|Du|2 dy
)1/2

+
( ∫

BR(x)

−(|f |r + |˜̃f |r) dy)1/r +R
( ∫

BR(x)

−|f̃ |rq0dy
)1/rq0}

.
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5 Proof of Theorems

Proof of Theorem 3.1. Let BR/2(x0) ⊂ BR(x0) ⊂ Ω be an arbitrary ball
and let w ∈W 1,2

0 (BR/2(x0),RN ) be a solution of the following system

∫
BR/2(x0)

(Aαβij )x0,R/2Dβw
jDαϕ

i dx

=
∫
BR/2(x0)

(
(Aαβij )x0,R/2 −A

αβ
ij (x)

)
Dβu

jDαϕ
i dx

−
∫
BR/2(x0)

gαi (x, u,Du)Dαϕ
i dx+

∫
BR/2(x0)

ai(x, u,Du)ϕi dx

(5.1)

for all ϕ ∈W 1,2
0 (BR/2(x0),RN ). It is known that, under the assumption of this

theorem, such solution exists and it is unique for all R < R′ (R′ is sufficiently
small). We can put ϕ = w in (5.1) and, using ellipticity, Hölder and Sobolev
inequalities, we obtain

ν

∫
BR/2(x0)

|Dw|2 dx ≤ c
(∫

BR/2(x0)

|Ax0,R/2 −A(x)|2|Du|2 dx

+
∫
BR/2(x0)

|g(x, u,Du)|2 dx+
( ∫

BR/2(x0)

|a(x, u,Du)|2q0 dx
)1/q0)

= c (I + II + III).

From Proposition 4.4 with r > 2, Hölder inequality (r′ = r/(r − 2)) and from
the fact that, for a BMO-function, all Lr norms, 1 ≤ r <∞ are equivalent (see
Proposition 2.1(d)) we obtain

I ≤ c
(∫

BR/2(x0)

|A(x)−Ax0,R/2|
2r′ dx

)1/r′(∫
BR/2(x0)

|Du|r dx
)2/r

(5.2)

From the assumptions of this theorem and taking into account the properties of
matrix A = (Aαβij ) we can estimate the first term on the right hand side of (5.2)

∫
BR/2(x0)

|A(x)−Ax0,R/2|
2r′ dx ≤ c

(∫
BR/2(x0)

|A(x)−Ax0,R/2|
2 dx

)1/2

×

×
(∫

BR/2(x0)

|A(x)−Ax0,R/2|
2(2r′−1) dx

)1/2

≤ c(n, [A]2,Ψ,Ω)‖A‖2r
′−1

L∞(Ω,Rn2N2 )
Rn ψ(R). (5.3)
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To estimate the last integral in (5.2) we use Proposition 4.4 obtaining(∫
BR/2(x0)

|Du|r dx
)2/r

≤ c
{ 1
Rn(1−2/r)

∫
BR(x)

|Du|2 dy

+
(∫

BR(x)

(|f |r + |˜̃f |r) dy)2/r

+R2(1−2/r)
(∫

BR(x)

|f̃ |rq0 dy
)2/rq0}

≤ c
( 1
Rn(1−2/r)

∫
BR(x)

|Du|2 dy +R2λ/r +R2(r−2+λ)/r)
)
,

(5.4)

where c = c(r, ‖f‖Lr,λ(Ω), ‖
˜̃
f‖Lr,λ(Ω), ‖f̃‖Lrq0,λq0 (Ω)). From (5.2), (5.3) and (5.4)

we obtain

I ≤ c
(
ψ1/r′(R)

∫
BR(x0)

|Du|2dx+ (R2λ/r +R2(r−2+λ)/r))Rn/r
′
ψ1/r′(R)

)
≤ c

(
ψ1/r′(R)

∫
BR(x0)

|Du|2dx+ Rn−2(n−λ)/rψ1/r′(R)
)
,

where c = c(n, r, [A]2,Ψ,Ω, ‖A‖L∞(Ω,Rn2N2 ), ‖f‖Lr,λ(Ω), ‖
˜̃
f‖Lr,λ(Ω), ‖f̃‖Lrq0,λq0 (Ω)).

We can estimate II and III by means of Lemma 4.3 (with τ = 0) and we have

ν2

∫
BR/2(x0)

|Dw|2 dx ≤ c
{

(ε+ ψ1/r′(R))
∫
BR(x0)

|Du|2 dx+Rµ
}
, (5.5)

where µ = min{n, n− 2(n− λ)/r, n+ 2− nγ0}.
The function v = u−w ∈W 1,2(BR/2(x0),RN ) is the solution of the system∫
BR/2(x0)

(Aαβij )x0,R/2Dβv
jDαϕ

i dx = 0, ∀ϕ ∈W 1,2
0 (BR/2(x0),RN ). (5.6)

From Lemma 4.1 we have, for 0 < σ ≤ R/2,∫
Bσ(x0)

|Dv|2 dx ≤ c
( σ
R

)n ∫
BR/2(x0)

|Dv|2 dx.

By means of (5.5) and the last estimate we obtain, for all 0 < σ ≤ R and
ε ∈ (0, 1), the following estimate∫

Bσ(x0)

|Du|2 dx ≤ c1
[( σ
R

)n
+ ε+ ψ1/r′(R)

] ∫
BR(x0)

|Du|2 dx+ c2R
µ,

where the constants c1 and c2 only depend on the above-mentioned parameters.
Now, in a way analogous to that from [5], we obtain the result.

Proof of Theorem 3.2. By Theorem 3.1, Du ∈ L2,λ
loc (Ω,RnN ) for arbi-

trary λ < n. Let BR/2(x0) ⊂ BR(x0) ⊂ Ω be an arbitrary ball and let
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w ∈W 1,2
0 (BR/2(x0),RN ) be a solution of the following system∫

BR/2(x0)

(Aαβij )x0,R/2Dβw
jDαϕ

i dx

=
∫
BR/2(x0)

(
(Aαβij )x0,R/2 −A

αβ
ij (x)

)
Dβu

jDαϕ
i dx

−
∫
BR/2(x0)

[
gαi (x, u,Du)− (gαi (x, u,Du))x0,R/2

]
Dαϕ

i dx

+
∫
BR/2(x0)

ai(x, u,Du)ϕi dx

(5.7)

for all ϕ ∈W 1,2
0 (BR/2(x0),RN ). It is known that, under the assumption of The-

orem 3.2, such solution exists and, it is unique for all R < R′ (R′ is sufficiently
small, R′ ≤ 1). We can put ϕ = w in (5.7) and using the ellipticity, the Hölder
and the Sobolev inequalities, we obtain

ν2

∫
BR/2(x0)

|Dw|2 dx ≤ c
(∫

BR/2(x0)

|Ax0,R/2 −A(x)|2|Du|2 dx

+
∫
BR/2(x0)

|gαi (x, u,Du)− (gαi (x, u,Du))x0,R/2|
2 dx

+
( ∫

BR/2(x0)

|a(x, u,Du)|2q0 dx
)1/q0) = c(I + II + III).

(5.8)
The estimate of I is analogous to that in Theorem 3.1 and we have

I ≤ c ψ1/r′(R)
∫
BR(x0)

|Du|2dx+ c
(
R2λ/r +R2(r−2+λ)/r)

)
Rn/r

′
ψ1/r′(R)

≤ c
(∫

BR(x0)

|Du|2dx+ cRn−2(n−λ)/r
)
ψ1/r′(R)

≤ c
(
Rλ +Rn−2(n−λ)/r

)
ψ1/r′(R) ≤ cRλψ1/r′(R),

where c = c(n, r, ‖A‖L∞(Ω,Rn2N2 ), ‖f‖Lr,λ(Ω), ‖
˜̃
f‖Lr,λ(Ω), ‖f̃‖Lrq0,λq0 (Ω)).

Further, we estimate the second integral on the right hand side of (5.8).
From the assumption (3.5) and by means of Young inequality, we obtain

II ≤
∫
BR/2(x0)

−
( ∫

BR/2(x0)

|gαi (x, u(x), Du(x))− gαi (y, u(y), Du(y))|2 dy
)
dx

≤ c
( ∫

BR/2(x0)

|˜̃f − (˜̃f)x0,R/2|
2 dx+

∫
BR/2(x0)

|Du− (Du)x0,R/2|
2γ dx

)
≤ c
(
ε

∫
BR(x0)

|Du− (Du)x0,R|2 dx+ c(ε, γ, ‖˜̃f‖2L2,n(Ω,RnN ))R
n
)
,

where ε ∈ (0, 1) is arbitrary.
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We can estimate III by means of Lemma 4.3 (with τ = λ, µ0 = n) and, using
the estimate I, II, we have

ν2

∫
BR/2(x0)

|Dw|2 dx ≤c ε
∫
BR(x0)

|Du(y)− (Du)x0,R|2 dy

+ c
(
Rn +Rλψ1/r′(R) +Rn+2−(n−λ)γ0

)
≤c ε

∫
BR(x0)

|Du(y)− (Du)x0,R|2 dy + c Φ2(R),

(5.9)

where Φ is defined in the formulation of Theorem 3.2.
The function v = u−w ∈W 1,2(BR/2(x0),RN ) is the solution of the system∫

BR/2(x0)

(Aαβij )x0,R/2Dβv
jDαϕ

i dx = 0, ∀ϕ ∈W 1,2
0 (BR/2(x0),RN ).

From Lemma 4.1, we have, for 0 < σ ≤ R/2∫
Bσ(x0)

|Dv−(Dv)x0,σ|2 dx ≤ c
( σ
R

)n+2
∫
BR/2(x0)

|Dv−(Dv)x0,R/2|
2 dx. (5.10)

By means of (5.9) and (5.10) we obtain for all 0 < σ ≤ R and ε ∈ (0, 1), the
following estimate∫

Bσ(x0)

|Du(x)− (Du)x0,σ|2 dx

≤ c1
[( σ
R

)n+2

+ ε

] ∫
BR(x0)

|Du(x)− (Du)x0,R|2 dx+ c2 Φ
2(R),

where the constants c1 and c2 only depend on the above-mentioned parameters.
Now from Lemma 4.2 we get the result in the following manner. In the

case Φ(R) = Rn/2, the result is obvious. In other cases if we put φ(R) =∫
BR(x0)

|Du(x)− (Du)x0,R|2 dx, α = n+ 2, β = λ, A = c1, B = c1ε and C = c2,
we can choose 0 < K < 1 such that AkψKn+2−λ−ξ < 1/2. It is obvious that a
constant ε > 0 exists such that BkψK−λ−ξ = c1εkψK

−λ−ξ < 1/2 and then, for
all 0 < σ ≤ R < R0, R < R0, the assumptions of Lemma 4.2 are satisfied and
therefore ∫

BR(x0)

|Du(x)− (Du)x0,R|2 dx ≤ c Φ2(R).

From this follows that Du ∈ L2,Φ
loc (Ω,RN ).

Remark In [2] for a linear system and in [3] for a nonlinear system (1.1),
(1.2), it is proved that the gradient of solution Du ∈ BMO(Ω0,R

nN ), Ω0 ⊂⊂ Ω
in a situation where the coefficients Aαβij ∈ C0,γ(Ω), γ ∈ (0, 1). Taking into
account that for Ψ(R) = Rγ+n/2 we have L2,Ψ = C0,γ , one may prove by the
method used in the proof of Theorem 3.2 (which is different from the methods
in [2] and [3]) the above results too.
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Remark In [1] the local BMO-regularity for the gradient of weak solutions
of linear elliptic systems is proved. This result was obtained using the global
BMO-regularity result and the Lp-regularity result of gradient for all 1 < p <∞.
Using the global BMO-regularity result from [1] and Theorem 3.2 one may
obtain the local BMO-regularity of the gradient too.
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[5] J. Daněček and E. Viszus, A note on regularity for nonlinear elliptic sys-
tems, Archivum math., Vol. 3, 2000, pp. 229-237.

[6] M. Giaquinta, Multiple integrals in the calculus of variations and nonlin-
ear elliptic systems, Annals of Mathematics Studied N. 105, Princenton
university press, Princeton, 1983,
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