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Cauchy problem for derivors in finite dimension ∗
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Abstract

In this paper we study the uniqueness of solutions to ordinary differ-
ential equations which fail to satisfy both accretivity condition and the
uniqueness condition of Nagumo, Osgood and Kamke. The evolution sys-
tems considered here are governed by a continuous operators A defined
on RN such that A is a derivor; i.e., −A is quasi-monotone with respect
to (R+)N .

1 Introduction

For T > 0, we study the Cauchy Problem (CP)

u̇(t) +Au(t) = f(t), t ∈ [0, T ]
u(0) = u0,

(1.1)

where A is a continuous operator on RN and f belongs to L1([0, T ] : RN ). We
require in addition that A be a derivor on RN (or equivalently that −A be
quasi-monotone with respect to the cone (R+)N ) and has an additional order
property (see Assumption H1T in Section 2). The existence of local solutions of
(1.1) is proved by standard arguments (see [17] and Lemma 4.2). For instance,
in the continuous case, this local existence comes from the Peano’s Theorem.
So the problem is essentially to prove the uniqueness of a local solution and the
existence of global solutions. An important remark is that the identity operator
minus the limit of infinitesimal generators of increasing semigroups is a derivor
on the domains of the operators (see remark 2.1.d). The aim of this paper
consists of giving a special converse of this previous property. General studies
of evolution problems governed by derivors can be found in [2, 8, 9, 17] (for
existence of extremal solutions of differential inclusions in RN ) and in [13] for
the behavior of the flow (stability, etc.) in the regular case: A is C1. This
work establishes uniqueness for the Cauchy Problem and complements previous
studies.
∗Mathematics Subject Classifications: 34A12, 34A40, 34A45, 34D05.
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Let us point out that derivors often occur in the theory of production pro-
cesses in Economics (for cooperative systems, see [10, 14]), in Chemistry [12],
and in Biology [12]. Our uniqueness result given in the sequel applies to these
situations. Notice also that the additional order property; namely, existence of
uniform ascents, (see Definition 2.2) has obvious interpretations in applications
and may be considered as a special extension of the submarkovian property
(see remark 2.2.3) and [1]). Nevertheless the notion of uniform ascents is a
new concept built from the concept of progressions in [10]. This ascent notion
which extends the usual submarkovian property seems to lead naturally to the
maximum principle worked in [10]. Finally, we emphasize that the ascent no-
tion is the key to obtain a suitable increasing resolvent (see Proposition 2.4 and
Theorem 3.2).

In this paper, the operator A does not satisfy either uniqueness conditions
such as those given by Nagumo, Osgood and Kamke [4, 15, 16] nor accretivity
conditions, even in a generalized sense as in [4, 6, 16]. We will exhibit in Section
5 a simple example of operator on R2 which satisfies all our conditions and none
of the uniqueness conditions quoted above. Consequently our framework is not
included in the submarkovian case, since a continuous submarkovian derivor
is accretive in (RN , ‖ · ‖∞). Moreover based in our analysis, it appear that a
simple natural-order property can replace a classical Lipschitz condition about
uniqueness in the Cauchy Problem.

Uniqueness and order-preserving dependence with respect to the initial value
u0 are stated in Theorem 3.1. In the case f = 0, Theorem 3.2 guarantees
the existence of a global solution and a special form of the Crandall-Ligget
exponential formula [7, p. 319] involving suitable selections of the multi-valued
operators (I + λA)−1 (while in [8] (I + λA)−1 is single valued and Lipschitz).

This paper is organized as follows. Section 2 is devoted to general definitions
and preliminaries. The main results are stated in Section 3, while the proofs are
given in the next section. Section 5 gives an example in R2 which demonstrates
the need for Theorems 3.1 and 3.2. Some remarks about the asymptotic behavior
follow in Section 6.

2 Generalities

We supply RN with the usual partial order relation u ≤ v if ui ≤ vi for all i =
1, . . . , N , where ui is the i-th component. The vector in RN whose components
are C, . . . , C is denoted by C. The symbol ‖ · ‖ stands for any norm in RN . The
symbol N∗ denotes the set of integers greater than zero.

Definition 2.1 We say that the map A is a derivor on RN if it satisfies the
condition

(i) For each (u, v) ∈ (RN )2 and each i ∈ {1, . . . , N}

(u ≤ v and ui = vi) implies that Aiu ≥ Aiv (2.1)
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We say that the map A is a moderate derivor (resp. a strong derivor) if,
in addition to (i), it satisfies

(ii) For each u ∈ RN , there exist u1, u2 ∈ RN (resp. two sequences (uk)k →
+∞, (vk)k → −∞) such that u1 ≤ u ≤ u2 and Au1 ≤ 0 ≤ Au2 (see [4]).
(resp. limk→+∞Auk = +∞ and limk→+∞Avk = −∞).

The previous notation limk→+∞ wk = +∞ in RN may be interpreted to mean
that limk→+∞ wjk = +∞ in RN for each j ∈ {1, . . . , N}.

The derivor notion coincides with the notion of quasimonotone operator
on RN , except the sign (see [2], [8, p. 91], [15]). In these references, −A is
quasimonotone with respect to (R+)N if

(u ≤ v and x∗(u) = x∗(v)) implies that x∗(−Au) ≤ x∗(−Av) (2.2)

for any linear positive form x∗ on RN . Hence, A is a derivor, because if x∗ is a
linear positive form on RN , x∗ is a linear combination with positive coefficients
of coordinate forms on RN .

Remark 2.1 a) Condition (i) in the definition of derivor is automatically ful-
filled for any operator A from R to R, but it is not in the case of Condition (ii).
A special case where (ii) holds for an operator A from R to R is the case where
A is a non-decreasing operator such that there is v ∈ R satisfying Av = 0.
b) When A is a linear derivor, the reader can check that Condition (ii) is equiv-
alent to: there is u ≥ 1 satisfying Au ≥ 0.
c) An equivalent form of definition 2.1.(i) is: Ai is decreasing with respect to xj

for each i 6= j with i, j ∈ {1, . . . , N} (see [14]).
d) If P is an increasing operator on RN , then A = I−P is a derivor. Therefore,
when (Pt) is an increasing semi-group on RN , then At = I−Pt

t with t > 0 is a
derivor and so is A0, defined by A0u = limt↓0Atu (on the domain where this
limit exists).

Ascents

We denote by VK(u0) the set of compact neighborhoods of u0.

Definition 2.2 We say that a derivor A has a (strict) uniform ascent at u0

if there are V ∈ VK(u0) and a sequence (vk) in RN convergent to 0 such that
(vik)k∈N∗ is strictly decreasing for all i = 1, . . . , N and

min
i∈{1,...,N}

(Ai(u+ vk)−Aiu) > 0 (2.3)

for each k ∈ N∗ and each u ∈ V .
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Remark 2.2 1) In terms of production operator (Aiu is the production of the
i-th input of the product u), the uniform ascent property at u0 means that in
a neighborhood of u0 it is possible to increase the level of production by means
of small uniform augmentations around u0.
2) The notion of uniform ascent plays a crucial part in this work. In our opinion,
this concept is new, but it was inspired from the progression notion carried out
in [10].
3) The uniform ascent property may be connected to the submarkovian property
namely,

A(u+ C)−Au ≥ 0 (2.4)

for all u ∈ RN and all C ∈ R+. Notice that a submarkovian derivor in RN is
accretive in (RN , ‖ · ‖∞); the verification of this claim is left to the reader.
4) The following dual notion of uniform ascent at u0 provides again the results
of Section 3: There are V ∈ VK(u0) and a strictly increasing sequence (vk) in
R
N convergent to 0 such that (vik)k∈N∗ is strictly increasing for all i = 1, . . . , N

and
sup

i∈{1,...,N}
(Ai(u+ vk)−Aiu) < 0

for each k ∈ N∗ and each u ∈ V .
5) In the case A = I − P with an increasing operator P , (see Remark 2.1.d)),
Definition 2.2 means that the required sequence (vk) satisfies

P i(u+ vk)− P i(u) < vik

for all i = 1, . . . , N , for each k ∈ N∗ and all u ∈ V .

Assumptions

In the sequel, by hypothesis H1T stands for the following three conditions:

• A is a continuous derivor on RN

• A is a moderate derivor with uniform ascent at each u0

• f ∈ L1([0, T ];RN ).

When necessary, we will make precise the arguments involved for the Cauchy
Problem (1.1) as follows: CP (A, f, u0) or CP (A, f, u0, T ) for the domain [0, T ],
and CP (A, f, u0,+∞) for [0,+∞[.

The hypothesis H2T stand for the following condition (cf Section 6).

• For each u0 ∈ RN , each local solution of CP (A, f, u0) can be extended to
a solution on [0, T ].

It is well-known that sublinearity at infinity (‖Au‖ ≤ a(‖u‖ + 1)) guarantees
H2T, [13]. Moreover we will see in Theorem 3.2 that in the autonomous case
f = 0, H1T implies H2T.
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Resolvents for a moderate continuous derivor

In this section, we assume that A is a continuous moderate derivor. When B is
a continuous derivor, we have the following Theorem [10].

Theorem 2.4 Let u and w fixed in RN , if the system

v ≥ u
Bv ≥ w

(2.5)

with v as unknown quantity has a solution then it has a smallest solution.
Analogously, the system

v ≤ u
Bv ≤ w

(2.6)

has a largest solution v whenever it has a solution. In addition, in these two
systems the constraints are optimal, i.e. ∀i ∈ {1, . . . , N}, vi = ui or Bvi = wi.

In the case where A is accretive, the resolvent operators (I + λA)−1, λ > 0
are single-valued contractions. But in our case (I + λA)−1 is a priori multi
valued. Nevertheless it is possible to define suitable selectors Jλ of (I + λA)−1

as claimed in the following lemma.

Lemma 2.4 Let A be a moderate continuous derivor on RN . Let u in RN ,
λ ∈ R+ and v a solution of

v ≤ u
Av ≤ 0.

(2.7)

Then the system
w ≥ v

(I + λA)w ≥ u
(2.8)

has a smallest solution denoted by Jλ,vu. Moreover we have

Jλ,vu ∈ (I + λA)−1(u). (2.9)

Proof. According to (ii) in definition 2.1, Systems (2.7) and (2.8) have solu-
tions. Let v be a solution of (2.7). Since B = I+λA is a continuous derivor, the
existence of the smallest solution Jλ,vu of (2.8) is guaranteed by the Theorem
2.4.

It remains to prove
(I + λA)Jλ,vu = u. (2.10)

Since the constraints are optimal in (2.8), we have for each i ∈ {1, . . . , N},
((I+λA)Jλ,vu)i = ui or (Jλ,vu)i = vi. Thus we have to prove ((I+λA)Jλ,vu)i =
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ui when (Jλ,vu)i = vi. So assume (Jλ,vu)i = vi for some i ∈ {1, . . . , N},
Relation (2.1) and Jλ,vu ≥ v yield

(AJλ,vu)i ≤ (Av)i. (2.11)

Now (2.11) and (2.7) provide

(Jλ,vu)i + λ(AJλ,vu)i = vi + λ(AJλ,vu)i ≤ ui + λ(AJλ,vu)i ≤ ui.

Therefore, ((I+λA)Jλ,vu)i ≤ ui. But from (2.8) we have ((I+λA)Jλ,vu)i ≥ ui.
Finally (2.10) is proved. �

In the same way, let v be a solution of

v ≥ u
Av ≥ 0.

(2.12)

Then the system
w ≤ v

(I + λA)w ≤ u
(2.13)

has a largest solution w = J̃λ,vu. Moreover J̃λ,vu satisfies again (2.9).
Set Jλu = Jλ,vu (resp. Jλu = J̃λ,vu) for an arbitrary v satisfying (2.7)

(resp. (2.12)). Let us notice that Jλ is defined on Dv = {u ∈ RN , u ≥ v} (resp.
Dv = {u ∈ RN , u ≤ v}). The family of selectors (Jλ)λ≥0 of (I + λA)−1 is said
to be the resolvent of A.

Definition 2.4 For u given, the notation u (resp. û ) stands for the largest
solution of (2.7) (resp. the smallest solution of (2.12)).

Thanks to Theorem 2.4, such extremal elements u and û exist. Furthermore
we have clearly

u ≤ v =⇒ (u ≤ v and û ≤ v̂) (2.14)

and
u = u and ˆ̂u = û. (2.15)

The resolvent operators satisfy the following properties.

Proposition 2.4 For a given u ∈ RN , let v, v′ ∈ RN satisfying (2.7) and
w,w′ ∈ RN satisfying (2.12). Then

(a) The map Jλ is single-valued and increasing on Dv.

(b) We have
v ≤ Jλu ≤ w (2.16)

In particular
u ≤ Jλu ≤ û (2.17)
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(c) If Au ≥ 0 (resp. Au ≤ 0), then AJλu ≥ 0 (resp. AJλu ≤ 0) for each
λ ≥ 0.

(d) If Au ≥ 0, then λ→ Jλu is decreasing on RN (and increasing if Au ≤ 0).

(e) We have Jλ,vu ≤ J̃λ,wu. In particular Jλ,uu ≤ J̃λ,ûu.

(f) Jλ,uu = u and J̃λ,ûû = û.

(g) If v ≤ v′ and w ≤ w′, then Jλ,vu ≤ Jλ,v′u and J̃λ,wu ≤ J̃λ,w′u.

Proof. We prove only results (a),(b),(c),(d) in the case Jλ = Jλ,v.
(a) Let u ≥ w. Then Jλ,vu satisfies

Jλ,vu ≥ v
(I + λA)Jλ,vu ≥ u ≥ w.

Hence we get (a) from minimality of Jλ,vw for the previous system.
(b) Inequality Jλ,vu ≥ v is required in the definition of Jλ,v. Since w satisfies

w ≥ v
(I + λA)w ≥ w ≥ u,

we get (b) from minimality of Jλ,vu in the previous system.
(c) Let Au ≥ 0 and λ ≥ 0. We have

(I + λA)u ≥ u
u ≥ v

so Jλ,vu ≤ u. Hence u = Jλ,vu+ λAJλ,vu ≤ u+ λAJλ,vu and so AJλu ≥ 0.
(d) Let 0 ≤ λ ≤ µ. Then u = (I + λA)Jλ,vu ≤ (I + µA)Jλ,vu. Since we
have Jλ,vu ≥ v, from minimality of Jµu for these two constraints, it comes
Jµ,vu ≤ Jλ,vu. The proof is similar when Au ≤ 0.
(e) Since Av ≤ 0 and Aw ≥ 0, from (c) it follows AJλ,vu ≥ 0 and AJ̃λ,wu ≤ 0.
Hence (e) results from Jλ,vu+ λAJλ,vu = u = J̃λ,wu+ λAJ̃λ,wu.
Properties (f) and (g) result immediately from the definitions. �

Solution of (1.1)

We recall that a (local) strong solution of (1.1) is a continuous function u

defined on [0, θ) ⊂ [0, T ], θ > 0 such that u(t) = u0 +
∫ t

0
(−Au(τ) + f(τ))dτ for

t ∈ [0, θ). In the sequel we only look for (local) strong solutions of (1.1).
A maximal (resp. minimal) solution of (1.1) is the strong solution

u = Smax
A,f (t)u0 (resp. u = Smin

A,f (t)u0) of (1.1) defined as follows:
(i) The interval of definition [0, θ) of Smax

A,f (.)u0 (resp. Smin
A,f (.)u0) is maximal on

[0, T ], i.e. there is no solution v 6= u, such that v = u on [0, θ].
(ii) For each solution v of (1.1) on [0, T1) ⊂ [0, T ], we have v(t) ≤ Smax

A,f (t)u0

(resp. v(t) ≥ Smin
A,f (t)u0) on [0, inf(θ, T1)).
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3 Main results

For the following results, we assume the hypothesis H1T defined in Section 2.

Theorem 3.1 The problem CP (A, f, u0) has a unique local solution denoted
by SA,f (t)u0 (or SA(t)u0 if f = 0) and defined on a maximal interval [0, Tmax) ⊂
[0, T ]. Moreover if u0 ≤ u1 in RN and if f ≤ g in L1([0, T ],RN ) then SA,f (t)u0 ≤
SA,g(t)u1 on the common domain of existence of these two solutions.

The next result concerns the autonomous case, for which we have global
solutions.

Theorem 3.2 Assume that f ≡ 0. Then SA(.)u0 is defined on the whole
interval [0, T ] and

SA(t)u0 = lim
n→+∞

Jt/n,n(u0), (3.1)

for t ∈ [0, T ], where Jλ = Jλ,u0 is as defined in Section 2.
This is an exponential Crandall-Liggett’s type formula, but here (I +λA)−1

is a priori multi-valued. In the non-autonomous case f 6≡ 0, it is possible
to exhibit a formula as (3.1) which gives the solution of (1.1) as a limit of a
discrete scheme. But such a formula is more complicated than (3.1) and thus,
is not of a particular interest. When f ∈ L∞([0, T ],RN ), from Theorem 3.1
and Theorem 3.2, we can deduce that CP (A, f) has solution on [0, T ] if A is a
strong continuous derivor (see def. 2.1). Unfortunately, we do not know what
happens in the general case f ∈ L1([0, T ],RN ) without extra assumptions.

4 Proofs

The proof of Theorem 3.1 follows immediately from the three lemmas below.

Lemma 4.1 Let A be a continuous derivor. Let V be an element of VK(u0).
Then the operator B defined by

B(v) := inf
w∈V

[A(w + v)−A(w)] (4.1)

is a continuous derivor.

Proof. 1.) Let us show that B is a derivor on RN . If u ≤ v and ui = vi for
some i ∈ {1, . . . , N}, we have u + w ≤ v + w and (u + w)i = (v + w)i for each
w ∈ V . Since A is a derivor, it follows Ai(u + w) − Aiw ≥ Ai(v + w) − Aiw.
Thus

inf
w∈V

(Ai(u+ w)−Aiw) ≥ inf
w∈V

(Ai(v + w)−Aiw).

So Biu ≥ Biv for u ≤ v and ui = vi.
2.) At this stage we will show that B is continuous on RN . According to (4.1),
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B is clearly upper semi-continuous (see [3, pp. 132-137]). So it is enough to
prove that for each i ∈ {1, . . . , N}, Bi is lower semi-continuous on RN . Fix
i ∈ {1, . . . , N}. For each u ∈ RN , thanks to the compactness of V , there exists
χ(u) (which depends on i) in V satisfying

Biu = Ai(u+ χ(u))−Ai(χ(u)) (4.2)

We have to prove now that Bi is lower semi-continuous, that is (Bi)−1(]−∞, α])
is closed for all α ∈ R. In this goal, consider α ∈ R and a sequence (uk)k∈N∗
of elements of RN such that limuk = u∞ and Bi(uk) ≤ α. It suffices to prove
Bi(u∞) ≤ α.

By contradiction, let us suppose Bi(u∞) > α. Without loss of generality,
thanks to the compactness of V , we can suppose

lim
k→+∞

χ(uk) = v∞ ∈ V.

Equation (4.1) yields

α < Bi(u∞) = Ai(χ(u∞) + u∞)−Ai(χ(u∞)) ≤ Ai(v∞ + u∞)−Ai(v∞). (4.3)

From the continuity of Ai, it results

Ai(v∞+u∞)−Ai(v∞) = lim
k→+∞

Ai(χ(uk)+uk)−Ai(χ(uk)) = Bi(uk) ≤ α. (4.4)

Equations (4.3) and (4.4) lead to a contradiction. �

Lemma 4.2 Let A be a continuous derivor.
(a) Problem (1.1) has a local unique maximal solution Smax

A,f (t)u0 defined on its

maximal interval of existence [0, T 1) (resp. a unique minimal solution Smin
A,f (t)u0

on [0, T 2)).
(b) If v0 ≤ u0 and if v(t) satisfies v(0) = v0 and v′(t) ≤ −Av(t) + f(t) a.e. on
[0, T̃ ) with T̃ < T 1, then for t ∈ [0, T̃ ) we have v(t) ≤ Smax

A,f (t)u0.
(c) if v0 ≥ u0 and if v(t) satisfies v(0) = v0 and v′(t) ≥ −Av(t) + f(t) a.e. on
[0, T̃ ) with T̃ < T 2, then for t ∈ [0, T̃ ) we have v(t) ≥ Smin

A,f (t)u0.

The previous lemma will be proved by standards arguments in an analogous
way as the Kamke’s Lemma [15] and the arguments given in [13, 17].

Proof. We shall prove only parts (a) and (b). The proof of part (c) can be
obtained in an analogous way. Let v be a solution on [0, T̃ ) ⊂ [0, T ] of

v̇(t) ≤ −Av(t) + f(t), t ∈ [0, T̃ )
v(0) = v0.

For each n ∈ N∗, Problem CP (A, f + 1
n , u0) has at least a local solution un (see

[17]) defined on a maximal interval of [0, Tn].



10 Cauchy problem for derivors EJDE–2001/32

1) Let us show v ≤ un on [0, T̃ ∧ Tn), where T̃ ∧ Tn means min(T̃ , Tn). One has

un(t)− v(t) ≥ un(t0)− v(t0) +
∫ t

t0

(εn(τ) +
1
n

)dτ

εn(τ) = −Aun(τ) +Av(τ)
. (4.5)

for all t0, t ∈ [0, T̃ ∧ Tn), t0 ≤ t. Let

E = {t ∈ [0, T̃ ∧ Tn), v(τ) ≤ un(τ) for all τ ∈ [0, t]}

First, remark that E is (not empty and) closed on [0, T̃ ∧Tn). Second, if t0 ∈ E,
t0 < T̃ ∧ Tn and (v(t0))i = (un(t0))i, for some i ∈ {1, . . . , N} then the derivor
property of Definition 2.1 (i) yields

εin(t0) ≥ 0 (4.6)

Consequently, relations (4.5), (4.6) and the definition of t0 provide some η > 0
such that vi(τ) ≤ uin(τ) for τ ∈ [t0, t0 + η] ⊂ [0, T̃ ∧ Tn). Finally E is open in
[0, T̃ ∧ Tn) and thus E = [0, T̃ ∧ Tn).
2) We have un+1 ≤ un on [0, Tn+1 ∧ Tn). Indeed the proof is the same as 1) if
we replace v by un+1 and −Aun(τ) +Av(τ) by −Aun(τ) +Aun+1(τ).
3) We have T̃ ∧ Tn ≥ T̃ ∧ T1. Indeed, from parts 1) and 2), for each n ∈ N∗ we
have

v ≤ un+1 ≤ un ≤ u1 (4.7)

on the common interval of existence of these solutions. Then the extension
principle of solutions implies T̃ ∧ Tn+1 ≥ T̃ ∧ Tn since a bounded solution is
extendable.
4) The sequence (un) converges uniformly to u∞ on each compact sub-interval of
[0, T̃ ∧T1) thanks to (4.7) and the Lebesgue’s Dominated Convergence Theorem.
Furthermore u∞ is solution of CP (A, f, u0, T̃ ∧ T1) on [0, T̃ ∧ T1). Moreover,
clearly u∞ is the maximal solution of CP (A, f, u0, T̃ ∧ T1) (see Section 2).

Let F be the set of S ∈ [0, T ] such that u∞ is extendable into a continuous
function on [0, S) which is the maximal solution of CP (A, f, u0, S). One has
T̃ ∧ T1 ∈ F . By considering S∞ = supF , we obtain a maximal extension of
u∞ as a local solution of CP (A, f, u0, T ) which is by construction the maximal
solution of CP (A, f, u0, T ). �

The next lemma makes use of the ascent assumption.

Lemma 4.3 With the notation in Lemma 4.2, if H1T holds, we have

Smin
A,f (t)u0 = Smax

A,f (t)u0

on [0, T 1 ∧ T 2) = [0, T 1).
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Proof. Thanks to Lemma 4.2(a), (1.1) has a maximal solution Smax
A,f (t)u0 de-

fined on a sub-interval [0, T 1) of [0, T ] and a minimal solution u(t) = Smin
A,f (t)u0

defined on a sub-interval [0, T 2) of [0, T ]. Set T3 = T 1 ∧ T 2 and

w(t) := Smax
A,f (t)u0 − Smin

A,f (t)u0 (4.8)

for t ∈ [0, T3). We have to prove w = 0 on [0, T3), that is E = [0, T3) where
E = {t ∈ [0, T3), w(τ) = 0,∀τ ∈ [0, t]}. Since E = w−1(0) is closed in [0, T3)
(w being continuous), it just remains to show that E is open to the right. Let
t0 ∈ E, t0 < T3. We have to prove that there exists h > 0 such that w = 0 on
[t0, t0 + h]. Eventually, by changing w into w(t0 + .) and f into f(t0 + .), we
will suppose t0 = 0.

Let V ∈ VK(u0) and B as in (4.1), in view of the continuity of u at 0, there
exists T4 ∈]0, T3[ such that, for each t ∈ [0, T4], u(t) ∈ V , hence w satisfies a.e.:

w′(t) = −(A(u(t) + w(t))−Au(t)) ≤ −Bw(t)
w(0) = 0,

(4.9)

a.e. t ∈ [0, T4]. By using Lemma 4.2 (b) with B instead of A, we have

w(t) ≤ Smax
B (t)(0) (4.10)

for each t ∈ [0, T4 ∧ T5], where [0, T5] is the maximal interval of existence of
Smax
B (t)(0). The function x(t) = Smax

B (t)(0) satisfies

x′(t) = −Bx(t)
x(0) = 0.

(4.11)

Let (vk)k∈N∗ be a sequence which defines a uniform ascent at the point u0 for
the operator A on the setV (see section 2).

Bi(vk) = Ai(vk + v̂k(i))−Ai(v̂k(i)) > 0 (4.12)

for k ∈ N∗ and i ∈ {1, . . . , N} where v̂k(i) is a vector minimizing v → Ai(vk +
v)−Ai(v) on V .

Let k ∈ N be fixed, then due to Lemma 4.2(b) there exists sk > 0 such that
sk ≤ T4 ∧ T5 and

Smax
B (t)(0) ≤ Smax

B (t)(vk) (4.13)

for each t ∈ [0, sk].
Equation (4.12) and the continuity of B give the existence of tk > 0 and

tk ≤ sk such that:
B(Smax

B (t)(vk)) ≥ 0

for t ∈ [0, tk]. Thus t→ Smax
B (t)(vk) is decreasing on [0, tk]. Consequently, from

(4.10) and (4.13), it results

w(t) ≤ Smax
B (t)(vk) ≤ Smax

B (0)(vk) = vk (4.14)



12 Cauchy problem for derivors EJDE–2001/32

for each t ∈ [0, tk].
In particular, we have w(tk) ≤ vk. If we put y(t) = w(tk + t), we get

y′(t) ≤ −By(t)
y(0) = w(tk) ≤ vk

(4.15)

for a.e. t ∈ [0, tk]. Hence, according to (4.14) and (4.15), one has

w(tk + t) ≤ Smax
B (t)(vk) ≤ vk

for t ∈ [0, tk]. So w(t) ≤ vk for t ∈ [0, 2tk ∧ T4]. Whence by induction, we get

0 ≤ w(t) ≤ vk (4.16)

for t ∈ [0, T4]. Since (4.16) is valid for each k ∈ N∗ and lim vk = 0, it follows
w(t) = 0 for each t ∈ [0, T4]. Hence for h = T4 > 0, we have [0, h] ⊂ E which
completes the proof. �

Proof of Theorem 3.2

In this subsection, we assume that A satisfies H1T, and f ≡ 0 on [0, T ]. First,
let us recall some basic facts about the discretization (1.1) in the Theory of
Nonlinear Semigroups. It is known [7] that a strong solution of (1.1) is a mild
solution, i.e. a continuous function which is a uniform limit of Euler’s implicit
discrete schemes. Such discrete schemes are defined as follows.

Let ε > 0 be fixed. Then an ε-discretization on [0, T ] of u̇+Au = 0 on [0, T ]
consists of a partition 0 = t0 ≤ t1 ≤ · · · ≤ tn of the interval [0, tn] and a finite
sequence (f1, f2, . . . , fn) in RN such that
(a) ti − ti−1 < ε for i = 1, . . . , n and T − ε < tn ≤ T .
(b) Σni=1(ti − ti−1)‖fi‖ ≤ ε.

We will indicate these data by writing DA(0 = t0, t1, . . . , tn : f1, . . . , fn).
A solution of a discretization DA(0 = t0, t1, . . . , tn : f1, . . . , fn) is a piecewise

constant function v : [0, tn]→ R
N whose values vi on (ti−1, ti] satisfy

vi − vi−1

ti − ti−1
+Avi = fi

v0 = u0

(4.17)

for i ∈ {1, . . . , n}. An ε-approximate solution of CP (A, 0, u0) is a solution v of
an ε-discretization DA(0 = t0, t1, . . . , tn : f1, . . . , fn).

A mild solution of CP (A, 0, u0) on [0, T ] is a continuous function u on
[0, T ] with the property that for each ε > 0 there is an ε-approximate solution
v of CP (A, 0, u0) on [0, T ] such that ‖v(t)− u(t)‖ ≤ ε for t in the domain of v.

Now, for n ∈ N∗, let J = JT/n,u0 , and define the function un by un(0) = u0

and un(t) = J i(u0) for (i − 1)T/n < t ≤ iT/n where J i is the ith power of J .
Then, thanks to (2.9), (4.17) holds with vi = un(iT/n), ti = iT/n and fi = 0
(Lemma 4.4 below guarantees u0 ≤ vi−1 for all i ≥ 1). In other words un is a
T/n-approximate solution of CP (A, 0, u0).

Then Theorem 3.2 results immediately from the following two lemmas.
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Lemma 4.4 With the previous notations, for each t ∈ [0, T ], we have

u0 ≤ un(t) ≤ û0. (4.18)

Proof. We set vi for un(iT/n). By Proposition 2.4 (b), we have

u0 ≤ v1 = J(u0) ≤ û0 (4.19)

Then (4.18) results by induction from (4.19) and Proposition 2.4 parts (a) and
(f). �

The following lemma studies the continuous and discrete approach and gives
an exponential formula such as the Crandall-Liggett’s formula (for the accretive
autonomous case in [7]).

Lemma 4.5 The sequence of approximate solutions (un) defined in Lemma
4.4 converges uniformly on [0, T ] to SA(.)u0. Moreover, for all t ∈ [0, T ],

u0 ≤ SA(t)u0 ≤ û0 (4.20)

and
SA(t)u0 = lim

n
Jnt/n(u0)

where Jt/n = Jt/n,u0 .

Proof. The approximate solutions un satisfy an Ascoli-Arzel’s type condition
A on [0, T ] [11, p. 260-268], namely: for each ε > 0 there exists Nε ∈ N and
ηε > 0 such that (n ≥ Nε and |t−s| ≤ ηε) implies ‖un(t)−un(s)‖∞ ≤ ε. Indeed,
relations (4.17) lead to

un(tnj )− un(tni ) = −
∫ tnj

tni

Aun(t)dt. (4.21)

Using (4.18), Relation (4.21) yields

‖un(t)− un(s)‖ ≤M(|t− s|+ 2
T

n
), (4.22)

where M = supu0≤w≤û0
‖Aw‖. Consequently (see [11, p. 260]) the sequence

(un) is relatively compact in the Banach space B([0, T ],RN , ‖ ‖∞) of bounded
functions on [0, T ] with values in RN . So there exists a subsequence (unk)
converging to a continuous function u∞ which is a mild solution of CP (A, 0, u0).
Then, passing to the limit in (4.21) (or from [7, p. 314]), we see that u∞ is a
strong (even a classical) solution of CP (A, 0, u0) on [0, T ].

From Theorem 3.1, it results

u∞ = SA(.)u0 (4.23)
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on [0, T ]. Thus (4.20) follows from (4.23) and (4.18) on [0, T ]. Then, taking
T = t, (4.23) yields

SA(t)u0 = lim
n→+∞

Jnt/n(u0),

where Jt/n = Jt/n,u0 . The proof is complete.

5 An example in R2

Let A0 be the operator defined on R2 by

A0

(
x
y

)
:=
(
x+ (x− 2y)1/3

y + (2y − x)1/5

)
(5.1)

Lemma 5.1 The operator A0 satisfies H1T and H2T for all T > 0.

The proof is left to the reader. In particular, the relation

A0

(
x
y

)
+
(

2t
t

)
= A0

(
x
y

)
+
(

2t
t

)
(5.2)

for t ∈ R+, provides uniform ascents at each point. The sublinearity at infinity
implies H2T. Therefore we can apply the results of Section 3 to the operator
A0 for any T > 0. Hence CP (A0, f, u0,+∞) has a unique global solution,
on [0,+∞[. Now, our task is to prove that no condition of Nagumo-Osgood-
Kamke and no accretivity condition (even in a generalized sense) can be applied
to obtain the uniqueness of solutions of CP (A0, f, u0).

Generalized accretivity conditions

Let ‖ · ‖p, p ∈ [1,+∞], be the classical lp-norm in R2. As usual (see [7, 8]), we
set

[u, v] = lim
λ↓0

‖u+ λv‖ − ‖u‖
λ

(5.3)

for u, v ∈ R2. For p ∈ [1,+∞], the notation [u, v]p, p ∈ [1,+∞] means [u, v],
with ‖ · ‖p instead of ‖ · ‖ in (5.3).

In the sequel, φ stands for a continuous function φ : R→ R
+ satisfying the

following condition U : For each T0, the function x ≡ 0 is the unique positive
solution on [0, T0] of

ẋ(t) = φ(x(t))
x(0) = 0.
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Definition 5.2 We will say that an operator B defined on R2 is φ-accretive
in (R2, ‖ · ‖) if

−[u− v,Bu−Bv] ≤ φ(‖u− v‖) (5.4)

for all u, v ∈ R2.
We will say that B satisfies a φ-Osgood condition if

‖Bu−Bv‖ ≤ φ(‖u− v‖)

for all u, v ∈ R2.

Remark a) The condition B+ωI is accretive (ω ≥ 0) means B is φ-accretive
with φ(x) = ωx. General studies of φ-accretive conditions can be found in
[6, 16].
b) A φ-Osgood condition is a particular case of φ-accretivity.

Lemma 5.2 Let p ∈ [1,+∞]. Then, there is no φ, such that A0 is φ-accretive
in (R2, ‖ · ‖p). Moreover, there are no φ and no norm ‖ · ‖ such that A0 satisfies
a φ-Osgood condition in (R2, ‖ · ‖).

Proof. a) Suppose first p = +∞. By contradiction, suppose that A0 is φ-
accretive in (R2, ‖ · ‖∞) for some φ. Let x ∈ [0, 1[. A direct computation yields

A0

(
0
0

)
=
(

0
0

)
and

[
(

x
x− 1

2x
2

)
, A

(
x

x− 1
2x

2

)
]∞ = x1/3(x2/3 + (−1 + x)1/3). (5.5)

So, thanks to the φ-accretivity, (5.5) implies

1
2
x1/3 ≤ φ(x), (5.6)

for x ≥ 0 sufficiently small. Set

z(t) = H−1(t) , H(σ) =
∫ σ

0

dξ

φ(ξ)
. (5.7)

From (5.6), H is defined for σ ≥ 0 sufficiently small and

z(t) > 0 (5.8)

on some interval ]0, T0] with T0 > 0. By using (5.7), a straightforward compu-
tation gives z′(t) = φ(z(t)) and z(0) = 0. Then U provides

z ≡ 0 on [0, T0]. (5.9)

Hence there is a contradiction between (5.8) and (5.9).
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b) Suppose now p ∈ [1,+∞[. By contradiction again, suppose that A0 is φ-
accretive in (R2, ‖ · ‖p). In this case, for x ∈ [0, 1], by setting

u =
(

x
1
2x−

1
2x

2

)
a direct computation gives

[u,A0u]p =

(
1 +

xp−
1
3 − (x−x

2

2 )p−1x2/5

‖u‖pp

)
‖u‖p. (5.10)

According to (5.10), the reader can check that the φ-accretivity property implies
φ(‖u‖p) ≥ −[u,A0u]p ≥ 1

2p+1x
2/5 for x ∈ [0, 1] sufficiently small. Then we can

deduce that for some x0 ∈]0, 1], there is C > 0 (for instance C = e−1/5

2(2p+1) ), such
that

C‖u‖2/5p ≤ φ(‖u‖p)

for all x ∈ [0, x0]. Finally, there exists ξ0 > 0 such that φ(ξ) ≥ Cξ2/5 for
ξ ∈ [0, ξ0]. Now, as in step a), using the function H defined in (5.7), we can
easily derive a contradiction.
c) Let ‖ · ‖ be a norm in R2 and suppose that A0 satisfies a φ-Osgood condition

in (R2, ‖ · ‖). Then, by taking u =
(

0
x

)
, in the φ-Osgood property we obtain

φ(ξ) ≥ cξ1/5 for a constant c > 0, ξ1 > 0 and all ξ ∈ [0, ξ1]. So we can conclude
as before and the lemma is proved. �

6 Asymptotic behavior

Figure 5.1 motivates the following remarks about asymptotic behavior of solu-
tions of (1.1). Hypothesis H3 stands for following three conditions

• f ≡ 0

• The assumption H2T holds for all T > 0

• A is a continuous derivor on RN .

We do not assume the uniqueness of solutions of CP (A, 0, u0,+∞). We set
A+ = {u;Au ≥ 0} and A− = {u;Au ≤ 0}.

Definition 6.1 A derivor A is absorbent if u0 ∈ A+ (resp. u0 ∈ A−) im-
plies u(t) ∈ A+ (resp. u(t) ∈ A−) for all t ≥ 0 and each solution u(.) of the
autonomous problem CP (A, 0, u0,+∞). We say that A is u∞-absorbent if B
defined by Bu = Au−Au∞ is absorbent.
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Figure 1: Flow relative to A0

Proposition 6.2 Assume H3. Let u0, v0, w0 be in RN such that Av0 ≤ 0,
Aw0 ≥ 0, v0 ≤ w0 and v0 ≤ u0 ≤ w0. Suppose A is a continuous u∞-absorbent
derivor on RN such that the equation Av = 0 has a unique solution u∞ in
[v0, w0]. Then every solution u of CP (A, 0, u0,+∞) satisfies

lim
t→+∞

u(t) = u∞

Proof. It is sufficient to prove the result for Smax
A (t)w0 and Smin

A (t)v0 since
from Lemma 4.2 such extremal solutions exist and satisfy Smin

A (t)v0 ≤ u(t) ≤
Smax
A (t)w0, t ∈ [0,+∞[. If w(t) = Smax

A (t)w0 we have

w(t)− w0 = −
∫ t

0

Aw(x)dx. (5.11)

Consequently t → w(t) is decreasing because from the absorbent property
w′(t) = −Aw(t) ≤ 0. In an analogous way v(t) = Smin

A (t)u is increasing because
v′(t) = −Av(t) ≤ 0 for each t ∈ [0,+∞[. Hence we get

v0 ≤ v(t) ≤ w(t) ≤ w0.

Then l1 = limt→+∞ w(t) and l2 = limt→+∞ v(t) exist in RN . Hence, according
to (5.11),

∫ +∞
0

Av(τ)dτ and
∫ +∞

0
Aw(τ)dτ converge. Since limt→+∞Aw(t) =

Al1 and limt→+∞Av(t) = Al2, we have necessarily Al1 = Al2 = 0. So by
hypothesis limt→+∞ w(t) = limt→+∞ v(t) = u∞.
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Corollary 6.3 For the operator A0 introduced in (5.1), we have

lim
t→∞

SA0(t)(u0) =
(

0
0

)
.

Proof. We can show that A0u =
(

0
0

)
holds if and only if u =

(
0
0

)
. Moreover

A0 is absorbent. Indeed, with the notation of Lemma 4.4, let u0 ∈ A+
0 (resp.

A−0 ) and un(t) = J iT/n(u0) for (i − 1)T/n < t ≤ iT/n. Then, owing to Propo-
sition 2.4.(c), un(t) ∈ A+

0 (resp. un(t) ∈ A−0 ). Consequently, Lemma 4.5 yields
SA0(t)u0 ∈ A+

0 (resp. SA0(t)u0 ∈ A−0 ) for all t ≥ 0. So Corollary 6.3 is a direct
consequence of Proposition 6.2.
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