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ABSTRACT 

 The goal of this research is to develop a small footprint text-independent speaker 

recognition system for a closed set of a relatively small number of speakers (e.g., 15-20). 

The problem was inspired by its potential application to the International Space Station 

(ISS) to determine which astronaut is speaking at a given time. In this research, the so-

called Direct DNN based approach is used in which the output layer posterior 

probabilities are used to determine the identity of the speaker. Consistent with the small 

footprint design goal, a baseline DNN model was developed with just enough hidden 

layers and enough hidden units per layer, thereby reducing the total number of 

parameters, and by careful design to avoid the common problem of overfitting and to 

optimize algorithmic aspects including context-based training, activation functions, 

regularization, and learning rate. This baseline model was evaluated on two commercially 

available databases, clean speech TIMIT and multi-handset speech database HTIMIT, 

and on noise added TIMIT database that we created using four types of noises at three 

different signal-to-noise ratios (SNRs). The speaker recognition accuracy of the baseline 

is 100% for TIMIT, 96.75% for HTIMIT, and 100%, 98.75% and 98.125% for noise 

added TIMIT database at 20 dB, 10 dB and 5 dB SNR, respectively.  This demonstrates 

that the baseline system has an error-free performance in relatively clean speech and a 

robust performance under telephone handset variability and in acoustic background noise.  

The baseline model has a total of 2.4M parameters. The rest of the work was devoted to 
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reducing the complexity of the DNN system by reducing the number of parameters 

without causing significant loss in performance. Initially, we used an adaptive pruning 

method where the parameters of all the layers are pruned simultaneously and the pruned 

system is retrained. The performance of this technique was evaluated on all the above-

mentioned speech databases. We then developed a novel and enhanced pruning technique 

called Sequential Layer Specific (SLS) pruning. The SLS pruning technique performs 

pruning sequentially in multiple stages and in a layer-specific manner, followed by 

retraining after each pruning stage, while ensuring no or only minor performance loss in 

each pruning stage. The SLS pruning technique is significantly more effective than the 

adaptive pruning technique in terms of both model complexity reduction and speaker 

recognition performance loss. For the SLS pruned model, the speaker recognition 

accuracy is 100% for TIMIT database with 31X complexity reduction; 94.75% for multi-

handset database HTIMIT with 4.5X complexity reduction.  For noise added TIMIT 

database, with 1.7X complexity reduction there is no additional drop in speaker 

recognition accuracy relative to the baseline DNN in both 5 dB and 10 dB SNR and a 

99.37% accuracy is achieved with 3X complexity reduction in 20 dB SNR.  For cases 

where the speaker recognition accuracy is less than 100%, a higher “accuracy” is 

obtained using the “Top-two” performance metric in which recognition success is 

declared if the correct speaker lies in the top two choices predicted by the DNN model. 
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I. INTRODUCTION 

1.1 Motivation 

 The topic of this thesis research is DNN-based text-independent, closed-set 

speaker recognition for a relatively small number of users (e.g., 15-20).  Further goals are 

to achieve a lower complexity DNN and study the robustness of the system to acoustic 

background noise and telephone handset variability. The above-stated problem and 

associated goals were inspired by the requirements of the NASA Johnson Space Center 

(JSC) for their application to the International Space Station (ISS) [1]. We are in 

discussion with the NASA-JSC engineers from the Human Interface Branch in Houston. 

A low complexity solution with a low power requirement and a small footprint is 

important for ISS application. 

 Deep neural networks can learn complex functions using a large number of 

hidden layers, which provides the “depth” to the network. In some cases, fewer layers 

may also be capable of learning complex functions using the same number of parameters 

as “deep” models. So, it is not necessary to have deeper networks for all applications [2]. 

The advantage of having multiple layers is that they can learn features at various levels of 

abstraction. DNNs, in general, require a lot of data for training. Insufficient amount of 

data used to train the network may fail to produce reliable performance under test 

conditions. However, it is possible to improve the performance of a system using a 

suitable algorithm for training [2]. Applications such as search engines and Facebook and 

iPhone image searching tasks use deep learning. In these cases, providing sufficient data 

for training is not a problem because there are millions of users every day. However, 

DNNs with a complex design may not be necessary for a speaker recognition application 
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involving a closed-set of a relatively small number of users (e.g., 15-20) and a limited 

training database. In this case, it is possible to use a DNN with a smaller number of 

parameters. Instead of treating DNN as a black box, it is a goal of this research to use the 

knowledge of machine learning in configuring the DNN with just enough parameters.  

1.2 Background 

 Technologies such as image recognition, speech recognition, speaker 

recognition and other biometric systems use, among other things, mathematical 

computations, pattern matching, and machine learning. In recent research, traditional 

methods like Hidden Markov Models (HMM) are being replaced by machine learning 

technology. The main scope of this thesis research is speaker recognition using Deep 

Neural Networks (DNNs). The characteristics of speech signal such as vocal tract 

structure, voice pitch, speaking style, etc., play an important role in speaker recognition. 

Early work on physiological components of speech production was published by Gunnar 

Fant in 1960, and this has led to extensive advances in speech research [3]. 

  DNNs have been used recently with great success in many areas. Open-source 

toolkits such as Kaldi (a flexible speech recognition toolkit from Microsoft that supports 

discriminative training and linear transforms), Tensor Flow (software from Google that 

helps in building and training of neural networks) and CNTK (Computational Network 

Toolkit from Microsoft that trains deep learning algorithms) have been developed using 

machine learning [4] [5] [6]. Machine learning is a technology where the system acts like 

the human brain and makes decisions by learning from observed data. For instance, when 

a person sees an object the brain learns the features of the object and in the future, the 

brain recognizes that object based on the features it learnt. In the same way, in machine 
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learning technology the machine learns the features of the object and performs a 

recognition task. Earlier speaker recognition systems have used Hidden Markov Model 

(HMM) and Gaussian Mixture Model (GMM) [7]. Applications using an Artificial 

Neural Network (ANN) use a single layer of non-linear hidden units to predict HMM 

states. The research work described in [8] shows how the replacement of GMM by DNN 

gives improved results in a speaker recognition system. Several organizations including 

IBM, Google and Microsoft have succeeded in using DNNs for acoustic modeling of 

speech [9]. The speech signal has features including pitch, pitch jitter, and spectral 

parameters such as MFCCs (Mel Frequency Cepstral Coefficients) and PLPs (Perceptual 

Linear Prediction coefficients). These are some of the features that can be used in DNN 

for training the networks [9]. 

1.3 Speaker recognition 

 Speaker recognition determines the identity of the person based on the 

characteristics of their voice. Speaker verification, on the other hand, is the process of 

verifying the claimed identity of the speaker.  Speech recognition differs from speaker 

recognition as it recognizes what is being said and not who said it [10]. 

 The research in speaker recognition has been increasing as speech-related 

applications are becoming popular. Speaker recognition can be classified into text-

dependent and text-independent systems. In text-dependent speaker recognition, the 

speaker is prompted to say the text on which the system has been trained; in the text-

independent case, the speaker can say any text and the system should be able to recognize 

the speaker. Text-independent speaker recognition is a more difficult problem than text- 

dependent speaker recognition because the former system must be trained on all possible 
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text contexts [10]. 

 The speech spectral features such as MFCCs and PLPs can be used to train the 

DNN models. Voice activity detectors are used to remove the silence or noise frames 

from the speech signal [11]. In general, a context of +/- 5 or +/- 10 frames around the 

current frame is used to obtain a stacked vector of features to train the DNN model. DNN 

can be used as a feature extractor or a classifier. In the so-called indirect DNN approach, 

DNN bottleneck features are used as features for a secondary classifier like i-vector [12]. 

In the direct DNN approach, the frame level DNN posteriors from the output layer are 

combined by simply averaging to produce a single decision to recognize the speaker [12]. 

The so-called d-vectors are extracted from the last hidden layer and are used for speaker 

modeling. The d-vector based classifier has been shown to be robust to additive 

background noise and to outperform the i-vector classifier [13]. 

1.4 Deep Neural Networks 

 A Neural Network is a type of machine learning. The artificial neural 

network (ANN) is a feed forward network and is extensively used in pattern recognition 

[14]. The types of neural networks include Convolutional Neural Networks (CNNs), 

Long- Short-Term Memory (LSTM) networks, Recurrent Neural Networks (RNNs), and 

Deep Neural Networks (DNNs) [15]. This research is focused on DNN. 

 DNN is a multi-layer perceptron with three or more hidden layers and uses the 

stochastic gradient descent algorithm to initialize and update the weights used in all the 

layers [12]. Stochastic gradient descent uses a single learning rate throughout the training 

process. The Adam optimization algorithm is an extension of stochastic gradient descent, 

which optimizes the learning rate based on the first and second order moments (i.e, the  
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gradient mean and element-wise squared gradient, respectively). Adam has been shown 

to produce significantly better results for image and natural language problems [16]. 

A DNN with an input layer, an output layer and three hidden layers is shown in 

Figure 1. Each node of a hidden layer is the sum of the product of the inputs (x) and the 

weights (w). The weights are the connections or links between nodes. The nodes are 

sometimes referred as neurons. The learning rate defines the rate at which the weights are 

updated. One complete sweep over the training data is called an epoch. The training data 

is divided into batches; a number of batches are required to complete one epoch and are 

also referred as iterations. An epoch consists of many such iterations. A single neuron 

output is, 

z = (x*w )+ bias, 

where the bias assists the activation function to better fit the data [17]. The node output is 

then subjected to a non-linear complex function such as sigmoid, softmax, Rectified 

Linear units (ReLu), Leaky ReLu, tanh, sine, logistic [18]. The softmax function is used 

at the final output layer to produce a probability vector. We initially used the sigmoid 

activation function but later found that the ReLu activation function is more suitable for 

our problem.  
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Figure 1. Deep Neural Network with 3 hidden layers 

Sigmoid function  

The sigmoid activation function maps the real-valued number to between 0 and 1. 

It is sometimes used in the output layer to render negative numbers to 0 and positive 

numbers to 1. The sigmoid function suffers from a vanishing gradient problem, and it is 

also computationally expensive [18]. The sigmoid function is graphically represented in 

Figure 2. 

 

Figure 2. Sigmoid Activation Function 
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ReLu function 

 The Rectified Linear unit activation function outputs 0 for an input ‘x’ if x 

is less than 0, and it outputs x for x greater than 0. This activation function doesn’t suffer 

from the vanishing gradient problem in the positive region, but it does in the negative 

region [18]. 

The Leaky ReLu addresses the vanishing gradient problem in the negative region.  

However, many researchers use ReLu and have reported satisfactory results [18]. The 

graphical representation of ReLu function is shown in Figure 3. 

A(x) = max(0, x) 

 

Figure 3.  ReLu activation function 

1.5 Research objectives 

 In current research, DNNs are treated generally as a black box by giving 

extensive data for training. This thesis research is focused on how to reduce the 

complexity of the DNN that matches available resources. Any computer with a high-

power CPU may be sufficient for training the networks. However, an add-on GPU 

(Graphical Processor Unit) from Nvidia, for example, or a GPU enabled computer will 
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enable the training to be done faster. We used an NVIDIA GEFORCE 940MX GPU 

enabled laptop.  

 A fully connected DNN delivers high accuracy but it requires high 

computational complexity and large storage. The objective of this research is to design a 

low complexity DNN reducing power consumption, storage, computational resource and 

latency, without significant performance loss. Different approaches are investigated to 

discard unnecessary parameters and the network is retrained using only the retained 

parameters. The complexity reduced DNN results in a smaller footprint solution requiring 

lower compute power and less storage. 

 The research was focused on developing a baseline DNN configuration with 

just enough hidden layers and hidden units. Further work was carried out to find out a 

suitable activation function, learning rate, and weight-updating algorithm. After a brief 

search and advice from experts, we decided to use the CNTK Toolkit for modeling the 

neural network, as it is efficiently implemented for addressing speech-specific problems. 

The commercially available clean speech database TIMIT was chosen because it is 

widely used by speech researchers [19] [20]. The research is also extended to explore the 

robustness of the DNN solution over different conditions including telephone handset 

variability and types and levels of acoustic background noise. The effect of handset 

variability on the DNN solution is studied using the multi-handset database HTIMIT [21] 

[22] and the robustness to noise is studied using a noise added TIMIT database, which we 

created using four types of noise at three different signal-to-noise ratios. 

 The goal of this research is to use DNN not only to predict the speaker 

identity but also to determine and retain only the essential connections of the network. 
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The fully connected neural network is trained and then using a suitable algorithm the 

parameters that are not necessary are discarded, and as a result DNN with a reduced 

complexity is obtained. The simplified DNN is then retrained to get performance close to 

that of the initial, fully connected DNN. Performance results from both cases are 

compared in various conditions using TIMIT, HTIMIT, and noise-added TIMIT 

databases. There might be less frequent cases where parameters considered as 

unnecessary might turn out to be relevant; so, it is important to analyze each layer 

carefully before deciding what parameters to discard [23]. 

 The network becomes sensitive after pruning to discard selected weights 

and could degrade the performance of the system. The algorithm we have developed for 

discarding parameters is novel and effective as compared to other pruning techniques, as 

it is resistant to sensitivity and it allows smooth learning of parameters, thereby allowing 

the network to perform the speaker recognition task reliably. The pruning takes place 

sequentially in multiple stages ensuring that there is no huge drop in accuracy in each 

stage; this novel design makes the algorithm unique and effective. Thus, the resulting 

simplified DNN uses less computational resource and storage without significant loss in 

speaker recognition accuracy. 

1.6 Thesis Outline     

 The rest of the report is arranged as follows. A focused literature review on 

speaker recognition methods prior to DNN as well as the methods using DNN for speaker 

recognition, including the complexity and overfitting problems of the DNN models is 

provided in Chapter II. Then we describe in Chapter III the proposed approach of using 

DNN for small footprint speaker recognition. This chapter includes a discussion of the 
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chosen commercially available speech databases and open source software used in this 

research. In Chapter IV, we describe the development of the baseline DNN system and its 

performance results on various databases. In Chapter V, we describe the adaptive-

threshold pruning method, followed by a novel Sequential Layer Specific pruning 

technique. Performance results on various databases are also provided for both pruning 

methods.  In Chapter VI we describe the final, small footprint DNN solution and its 

performance on various databases. Chapter VII contains conclusions and future work. A 

list of references is included at the end. 
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II. LITERATURE REVIEW 

2.1 Speaker recognition methods prior to DNN 

 Earlier speaker recognition systems have used HMM (Hidden Markov Model), 

SVM (Support Vector Machine) and GMM (Gaussian Mixture Model). SVM is one of 

the discriminative classifiers. The SVM binary classifier models the decision boundary 

between two classes as a separating hyperplane. SVMs use “supervectors” as input 

which is obtained by combining several small dimensional vectors into a single higher-

dimensional vector [24]. GMM is a stochastic model that has become the de facto 

reference method in speaker recognition [24]. The speech signal contains linguistic and 

speaker-specific information. Gaussian components are used to represent the speaker-

dependent spectral shapes, and the Gaussian mixtures are used to model the arbitrary 

densities [7]. The long-term averages of acoustic features are used to average out the 

phonetic variations and preserve only speaker-specific information. A similar approach is 

used in a Gaussian classifier and has been used for text-independent speaker recognition. 

The averaging process requires the speech utterances to be long enough to obtain the 

long-term averages; otherwise it may lead to loss of speaker specific information [7]. For 

text-independent speaker recognition, the HMM-based speech recognizer was used for 

segmentation at the front end in an attempt to improve the performance, but this resulted 

in a huge computational complexity and only a minor increase in accuracy. Gaussian 

mixture densities were used for speaker identification [7]. Telephone handset variability 

in the speech database causes performance degradation in speaker recognition. The 

telephone channel effects are non-linear in nature and these effects are coupled with 
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speaker specific information and make it difficult to isolate and remove them from the 

features, thereby degrading the system performance [25]. 

 The reference [26] describes two approaches: Sparse speaker representation 

approach and discriminative regularization approach to train the Universal Background 

Model. These approaches use expectation-maximization algorithm to train the Universal 

Background Model. A Vector Quantization (VQ) technique maps the vectors from a large 

vector space to a finite number of clusters. The center of each cluster is called the 

codeword. The acoustic features are used to generate a VQ codebook. Speakers can be 

discriminated based on the location of the centroids in a cluster. Vector quantization is 

not efficient for a large database and hence neural network techniques can be used to 

improve the speaker recognition performance [27]. 

 The paper [11] describes speaker identification system using Gaussian mixture 

speaker models. The author of this research work achieved 82.8% accuracy for a closed-

set (100 speakers) speaker recognition using the Switchboard database. The GMM based 

speaker recognition system requires extensive resources to achieve state-of-the-art 

performance. The feature sub-sampling discussed in [25] increases the training speed. 

The performance of the recognition system can be increased by increasing the inter-

speaker variability in the UBM data [25]. The GMM model performance will be 

degraded due to the channel or microphone conditions of the speech data [25]. Joint 

Factor Analysis is used to compensate for the effects due to the channel variability [24]. 

Voice activity detectors are used to remove the silence or noise frames from the speech 

signal and get significant improvement in the performance [28]. The enhanced GMM 
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based systems such as Joint Factor Analysis, Eigenchannel, etc., make the system rather 

complex and not suitable for small footprint implementation. 

 Hidden Markov Models are used to represent the probability distribution over the 

sequence of observations. They are widely used in speech applications. Prior to the 

introduction of MFCCs, Linear Prediction Coefficients (LPC) were used as feature 

vectors for the intended recognition tasks. LPC represent the resonance property of vocal 

tract and these are the main feature type used in HMM classifiers. HMMs are used to 

build an acoustic model for each speaker. In the recognition phase, these models are 

compared against the target speaker models. Vector quantization is used to compress the 

feature vectors. HMM combined with VQ gives significant improvement in performance 

in both text-dependent and text-independent speaker recognition rather than using VQ 

alone [29]. 

2.2 DNN based speaker recognition 

Over the last few years, deep learning has gained wide acceptance in speech 

processing research. Several organizations including IBM, Google and Microsoft have 

succeeded in using DNNs for acoustic modeling of speech [9]. DNN can be used as a 

feature extractor or as a classifier [12]. 

2.2.1 Indirect DNN approach 

The indirect method is one of the two approaches in designing a speaker 

recognition system where the trained DNNs are used to extract the features and then these 

features are used to train a secondary classifier for the intended speaker recognition task. 

The DNN that was trained for a different purpose could be adapted and used for a 
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different task. For instance, the DNN trained for automatic speech recognition could be 

used for speaker recognition or language recognition. The DNN output posterior 

probabilities and bottleneck features are used as features for the secondary classifier like 

i-vector [12]. A voice activity detector is used to extract speech-only segments. The 600-

dimensional i-vectors are extracted from stacked mean feature vectors and are length 

normalized. The mean over the training data is used as a target model for language or 

speaker recognition task [12]. Figure 4 shows the DNN architecture used in the indirect 

DNN approach. 

 

Figure 4. DNN architecture used in the indirect DNN approach 

 The DNN is trained at the frame level to classify speakers. The features from the 

last hidden layer are extracted and used for speaker modeling. The average of these 

feature vectors over the training database is called as deep vector or d-vector, and it is 

considered as speaker model. From a test speech utterance, the d-vector is extracted by 

passing it through the DNN layers and then compared with the saved target model to 

perform the recognition task. The d-vector classifier provides a robust performance in 

acoustic background noise. The d-vector approach has been shown to outperform the i-

vector approach [13].  
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2.2.2 Direct DNN approach 

 In the direct DNN approach, the trained neural networks are used as a classifier to 

recognize the speaker. The input layer in the direct approach represents the dimension of 

the input spectral features, followed by 3 or more hidden layers and an output layer. The 

dimension of the output layer is equal to the number of speakers the system is designed to 

identify. The frame level DNN posteriors from the output layer must be combined by 

simply averaging over the test utterance [12]. 

 For a small footprint, low resource application it is possible to use DNN to 

train and predict the speaker without using a secondary classifier. The use of a secondary 

classifier itself requires additional computational resource, which is not suitable for a 

small footprint system. The performance of the system may be improved slightly by 

increasing the number of hidden layers, but it comes at the cost of increased complexity. 

During testing, the frame level aggregated DNN posteriors are averaged to produce a 

single decision [12]. The direct DNN architecture for speaker recognition is shown in 

Figure 5.  

The mini-batch stochastic gradient descent algorithm speeds up the training 

process by processing the training data in small batches. DNN learns the basic features of 

the speaker in the lower layers and learns complex features in the higher layers [30]. The 

text-independent speaker recognition system is a relatively complex problem as it 

requires all possible speech contexts for training. To achieve a robust performance, the 

system should be trained in all operating conditions including background noise and 

telephone handset variability.  
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Figure 5. Direct DNN approach 

2.3 Complexity of Deep Neural Network models 

 A complex DNN with a huge number of parameters requires extensive training 

data. Sometimes the number of parameters in the neural network exceeds the number of 

data samples available for training. Reducing the number of parameters in a neural 

network also reduces the CPU resources required to train. The DNN algorithmic aspects 

include the activation function and learning or updating algorithms. Speech recognition 

using the TIMIT database and image recognition using the CIFAR-10 database have been 

developed using shallow feedforward networks with parameters less than deeper-layer 

DNN, with performance comparable to deeper-layer DNN [2]. The just-cited work uses a 
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model compression method to train the model. Model compression is a technique where 

synthetic labeled data is obtained by passing the unlabeled data through a complex model 

(DNN) and this synthetically labeled data is used to train shallow neural networks (SNN). 

SNN is then trained to learn the same function that was already learned by the complex 

model. This shows that SNN could also learn a complex function similar to DNN [2]. 

The technique described in [31] reduces the number of parameters in the neural 

network based on the fact that the optimized weights of the neural networks tend to be 

structured. The technique of discarding less important parameters from the neural 

network with only a small performance loss is called as pruning [32].  Two types of 

structured pruning described in [32] are regularization-based pruning and importance-

based pruning.  In the regularization based pruning method, weights are divided into 

different groups based on their importance and each group uses a different regularization 

parameter resulting in zeroing out the unimportant parameters [32]. For image 

application, the proposed approach described in [32] achieved 4X speedup and 0.8% 

accuracy loss for AlexNet. The greedy network pruning called as fisher pruning [33] 

yields a 10x speedup. Fisher pruning initially focused on investigating performance 

change by removing a single parameter and then greedily removing the parameters until 

there is no significant drop in accuracy [33]. This technique reuses the already computed 

base model’s gradient information, which makes it easier to implement.  

 DNN is trained to learn both connections as well as weights. The pruning 

technique is compared to a mammalian brain. During the early stage of a child’s 

development process the synapses are created and then the little-used ones are gradually 

pruned in the later stages [34]. The iterative pruning and retraining of network ensure 
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only a small loss in accuracy but a huge reduction in the complexity of the network. L2 

regularization gives better results compared to L1 regularization. [34]. The iterative 

pruning technique outperforms the single-step aggressive pruning. Image recognition 

implemented using the MNIST database and AlexNet show that pruning reduces 

computational resource without significant loss in accuracy. This technique reduces the 

number of parameters in AlexNet from 61M to 6.7M with no loss in accuracy [34]. The 

optimal brain damage (OBD) based pruning outperforms the magnitude-based pruning. 

The OBD based pruning cuts the network complexity by half, facilitating the use of 

limited training data [35].   

2.4 Overfitting problems with deep neural network models 

 The multiple non-linear hidden layers learn complex features of input. However, 

fully connected DNN models are prone to overfitting [36]. The increase in the complexity 

of the network can overfit the data but may fail to generalize for test data that is not seen 

under training. The condition where DNN model yields poor performance in both 

training and validation data is referred as an underfitting problem; hence it is important to 

make sure that the network yields good performance on training data before dealing with 

the overfitting problem [37].  

 Early stopping is one of the techniques used to address the overfitting problem. 

The technique involves careful observation of the training process by analyzing the 

evaluation metrics and stopping updating of weights as the average error on the 

validation set starts increasing. The practical validation error curve usually has two or 

more local minima, so it is important to stop training at the smallest local minima [36]. 

Figure 6 shows the overfitted, underfitted and appropriate fit neural network models. 
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Figure 6. Overfit, Underfit and appropriate fit of Neural Network 

 Regularization also helps in overfitting. L1 and L2 are the two types of 

regularization technique. The regularization parameter is a hyperparameter added to the 

cost function to reduce overfitting. The most commonly used regularization is L2 

regularization; also known as weight decay, it acts as a scale factor that drives the 

weights towards zero and reduces the error rate. However, imposing large regularization 

sometimes fails the learning algorithm like gradient descent [38]. Experimental results on 

VGG-16 [39] and AlexNet [40] architectures show regularization helps in increasing the 

accuracy but suddenly exhibits 1% drop in accuracy for a large regularization. Delayed 

Strong Regularization is also one of the techniques used to addresses the gradient 

diminishing problem in learning method [38]. 

 The so-called dropout technique significantly reduces the overfitting problem and 

outperforms regularization techniques. This technique significantly improves the 

performance in speech, image and document classification problems [37]. The limited 

training data and extensive training yield an overfitted model. A complex neural network 
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requires a large amount of training data. When the available training data is limited it is 

possible to use the dropout method. It is a technique of temporarily removing certain 

hidden units during training. The choice of removing the hidden units from the network is 

done randomly. For instance, 50% dropout removes half of the hidden units. It is possible 

to use a different dropout rate for each hidden layer [37]. High momentum is a technique 

used in neural network to speed up the learning process. There might be cases where 

large momentum and learning rate make the network weights to grow very large; in such 

scenarios it is possible to use Max-norm regularization technique to address this problem. 

Using dropout along with max-norm regularization, decaying learning rates and high 

momentum provide a significant improvement in performance [37]. Experimental results 

on TIMIT, MNIST, CIFAR-10, and ImageNet databases have all shown the effectiveness 

of using dropout in combatting the overfitting problem. However, many researchers use 

dropout alone and have reported satisfactory results. [41]. 

The Gaussian dropout described in [37] multiplies the output of the hidden units 

by Gaussian noise. This dropout method increases the training time by 2-3 times the 

original training without dropout [37]. The experimental results on the TIMIT database 

using a 6-layer network shows that this dropout technique decreases the phone error rate 

from 23.4% to 21.8% [37]. It is important to remember that the dropout method doesn’t 

decrease the complexity of the network as the nodes of the neural network are just 

ignored in that particular updating step during training but are not removed from the 

network. Figure 7 shows the fully connected network with and without dropout. 
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Figure 7. Dropout technique 
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III. PROPOSED APPROACH 

3.1 Direct DNN based solution 

The proposed approach of this research is illustrated in  Figure 8, where the top 

diagram shows the training process and the bottom diagram shows the testing process. 

For training and testing, we used two commercially available databases, clean speech 

TIMIT database and multi-handset database HTIMIT, and a noise added TIMIT database 

we created using four types of noise at three different signal-to-noise ratios (SNRs). We 

used 80% of the data for training and 20% of the data for testing. We used the HTK 

Toolkit as feature extractor to extract the MFCCs from the speech data. A stacked vector 

of MFCC features is used as input to the DNN. We used CNTK toolkit to develop the 

DNN model and the direct DNN based approach for the intended speaker recognition, 

which is explained later in this chapter. In training phase, the prediction error from the 

DNN output is used to update the weights and train the DNN model. The trained DNN 

model is used in testing phase, and the DNN posterior probabilities are used to determine 

the identity of the speaker.  

With this proposed approach, the following tasks were carried out in this research: 

(1) developing a baseline DNN system; (2) evaluating the performance of the baseline 

system over the three speech databases mentioned above; (3) investigation of complexity 

reduction techniques; and (4) evaluating the performance of the final complexity reduced 

system over the same three speech databases. The rest of the chapter explains the details 

of HTK, CNTK, and speech databases used in this research.  
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Figure 8. Block diagram of the proposed approach 

3.2 HTK TOOLKIT  

 To extract MFCC feature vectors, the speech signal is pre-processed using a pre-

emphasis filter and then divided into frames. A Hamming window is applied to each 

frame to reduce the spectral leakage. Each frame is then processed using Fast Fourier 

Transform and the resulting frequencies are linearly spaced into a Mel-frequency filter 

bank. Finally, a logarithmic transformation followed by cosine transformation is applied 

to generate Mel-Frequency Cepstral Coefficients [24]. We calculated MFCCs using the 

Hidden Markov Toolkit [42].  A configuration file is first created, specifying the required 

parameters like window size, sampling rate, etc., along with a text file specifying the 
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location of the .wav file and .mfc file and then use HTK’s HCopy tool to extract the 

MFCC feature vectors, using the following command.   

HCopy -T 1 -C config_wav2mfc -S convert.scp  [42] 

The 39-dimensional MFCC features are extracted from the speech signal. The 

feature vector of each frame has 12 MFCCs, 1 normalized energy, 13 delta, and 13 delta-

delta coefficients. CNTK expects as input HTK format MFCC files and label files. It 

expects the start and end of the frame in the label file. We used HVITE tool [42] to create 

the label files containing information about the start and end of the frames. The generated 

label files are then formatted using a python script for use in CNTK. 

3.3 CNTK TOOLKIT 

 CNTK is one of the popular open-source deep learning software toolkits [5]. It is 

used to implement deep learning architectures, such as Convolution Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Deep 

Structured Semantic Models (DSSM), and Deep Neural Networks (DNNs). CNTK 

supports Windows and Linux platforms.  Also, it supports popular data such as plain text, 

speech, images, and binary [5]. CNTK trains deep learning models faster than other 

available open-source deep learning libraries like TensorFlow, Theano, Caffe, etc., [43]. 

The compatibility of CNTK library with C++ and Python allows the user to customize 

the built-in algorithms.  This library can be efficiently implemented on a CPU, single or 

multiple GPU [5]. We chose to use CNTK as it is efficiently implemented for speech 

applications. CNTK is 2 to 4 times faster than TensorFlow [43]. CNTK is best suited 

when the resource availability is limited. One can use Brain Script or Python to 

implement their neural network models. CNTK supports sparse data computation but 
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doesn’t support sparse weight computation. All DNN experiments described in this thesis 

were performed on an NVIDIA GEFORCE 940MX GPU enabled laptop, using the 

Microsoft Windows operating system.  

 CNTK requires as input MFCC files and the corresponding label files of the 

speech data to train the DNN model. As mentioned above, we used the HTK toolkit to 

extract features from the speech data. The CNTK library provides a function to read the 

HTK format feature and label files.  

3.4 Speech databases 

 DNN requires a lot of data for training if it has a large number of parameters. Our 

research is focused on small footprint closed-set speaker recognition. Further goals are to 

develop a reduced complexity DNN and demonstrate robust performance under telephone 

handset variability and in acoustic background noise. After investigating commercially 

available databases and with advice from experts in the field, we chose TIMIT database 

for DNN-based speaker recognition system development and HTIMIT database to 

evaluate its performance robustness to handset variability. Also, we created a noise-added 

TIMIT database, by adding four types of noise to clean TIMIT speech at three different 

signal-to-noise ratios, to evaluate the robustness of the system under different acoustic 

background noise conditions. 

3.4.1 TIMIT database 

 The TIMIT (Texas Instruments Massachusetts Institute of Technology) corpus is 

widely used for the development and evaluation of speech related applications. It is 

commercially available from the Linguistic Data Consortium (LDC) [20]. It contains the 
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recordings of 630 speakers of eight different dialects.  The speech was recorded using a 

high-quality microphone at a sampling rate of 16 kHz [20]. The TIMIT corpus contains 

phonetically rich speech waveform files for each utterance as well as corresponding 

phonetic and word transcription files. The corpus contains two dialect sentences (SA), 

three phonetically diverse sentences (SI) and five phonetically compact sentences (SX) 

for each speaker. The same two dialect sentences (SA) are spoken by all speakers [20]. 

The TIMIT database files are in SPHERE format. We used the sox tool [44] to convert 

the files from SPHERE format to wave format. 

 As our research is focused on small footprint, text-independent speaker 

recognition, we selected randomly 20 speakers (10 male and 10 female speakers) 

representing all 8 dialects.  

3.4.2 HTIMIT Database 

 The HTIMIT database [21] is used in this research to evaluate the effect of 

telephone handset variability on the performance of our DNN-based speaker recognition 

system. The HTIMIT database is created by playing a subset of TIMIT database from a 

loudspeaker though ten different handsets [22]. The TIMIT database is downsampled 

from 16 kHz to 8 kHz before playing them through the loudspeaker. The ten different 

handsets were used to collect the HTIMIT database. The ten handsets include nine 

telephone handsets and a high-quality microphone [22]. Of the ten handsets used, four of 

them had carbon button microphone (cb1, cb2, cb3, cb4), four of them has electret 

microphones (el1, el2, el3, el4), one was a portable (cordless) phone (pt1), and the tenth 

one was a Sennheizer high-quality head-mounted microphone (senh). 

 To have variable sound characteristics, different transducer designs were chosen 
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as a criterion to select carbon-button handsets and different transducer grill designs were 

chosen as a criterion to select different electret handsets. Handsets cb3 and cb4 were 

selected to evaluate the robustness of the system in poor handset conditions [22]. The 

HTIMIT database files are also in SPHERE format; we used the sox tool to convert the 

files from SPHERE format to wave format. 

3.4.3 Noise added TIMIT database 

 To evaluate the robustness of DNN based speaker recognition in acoustic 

background noise conditions, we created a noisy database by adding noise to the clean 

TIMIT speech.  We selected four different noise types: moving car noise, wind noise, 

white noise and city traffic noise [45]. The noise files were sampled at 16 kHz.  

 The noise files were added to the TIMIT speech files at three signal-to-noise 

ratios: 5 dB, 10 dB, and 20 dB. The noise power for individual noise file was calculated 

and a fixed scale factor K was then calculated and applied to reduce the energy of the 

noise signal for a given SNR. Finally, the resulting noise file is added to the clean speech 

file producing a noise added speech file. We wrote a MATLAB function to add noise at 

specified SNR to clean speech. We used a MATLAB tool to estimate the SNR of the 

noise-added speech files and verified that the SNR was, indeed, correct. The 

mathematical expression to calculate the factor K is given by, 

K = (signal_power/noise_power) * 10^(-(SNR/10)) 
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IV.  DEVELOPMENT OF THE BASELINE DNN SYSTEM 

4.1 DNN Configuration 

 There is no thumb-rule for selecting the number of hidden units to use in DNN. 

As this research work is focused on designing a closed-set small footprint speaker 

recognition system, it is our goal to design a model with just enough parameters. Hence, 

we conducted experiments to find the right number of hidden units per layer for our 

problem that are applicable to all three databases: TIMIT, HTIMIT, and noise added 

TIMIT. We initially trained the network on full utterance speech data, but it failed to give 

acceptable results, as it is not considered as an effective training approach in speech 

applications [12]. For a relatively small set of speakers (20 in our case), it is expected that 

we get 100% speaker recognition accuracy for clean speech.  However, the full utterance 

training produced significantly lower performance.  Hence, we investigated the context- 

based training approach, where a stacked set of spectral features (MFCCs) extracted from 

speech frames over a context window of 5 frames to the left and 5 frames to the right 

around the current input frame is used as feature vector input to DNN [12]. A 39-

dimensional MFCC feature vector is extracted for each frame of the speech signal. With 

context-window being 11 frames wide, the dimension of the input layer is 429 (=11x39). 

The output layer dimension is 20, as we are developing a speaker recognition system for 

20 speakers. 

The classification or prediction error is calculated during training to assist the 

back-propagation technique in updating the weights. We initially used the stochastic 

gradient descent (SGD) algorithm to update the weights. SGD uses a single learning rate 

throughout the training process. We then decided to use Adam optimization, which gave 
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comparatively better results. Adam optimization algorithm is an extension of SGD, and it 

optimizes the learning rate based on the first and second order moments of the gradients. 

Adam is widely used in natural language problems [16]. The learning rate specifies the 

rate at which the weights are updated. We used the learning rate of 0.001. A larger 

learning rate increases the training speed, but the gradient descent can overshoot the 

minimum, thereby failing to converge or even diverging, resulting in ineffective training. 

We experimented with different learning rates in the exponential range of 0.1, 0.01, 0.001 

and found that the learning rate of 0.001 provides good overall performance for our 

training data. We conducted the following experiments using HTIMIT database. 

The hidden layer units are a linear function of their inputs.  The activation 

function transforms the linear hidden units into a non-linear function. We initially used 

sigmoid as the activation function, but it resulted in the vanishing gradient problem. To 

address this problem, we switched to the ReLu activation function. 

 The accuracy of the model increased with the increase in the number of hidden 

units per layer but reached a plateau; any further increase produced no additional increase 

in accuracy. There is a risk in that too many hidden units can cause overfitting and hence 

lower performance over test data.  
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Figure 9. Performance of the network for various hidden number of units per layer 

We used 3 hidden layers for this experiment. Seen from Figure 9, using 1000 

hidden units per layer produces good performance. 

After deciding the number of hidden units per layer, experiments were carried out 

to find the appropriate number of hidden layers. The performance of DNN can, in 

general, improve with increase in the number of layers. However, for our problem of 

speaker recognition for a closed set of 20 speakers, it is sufficient to use just three layers. 

Anything beyond 3 hidden layers reached a plateau.  Let us recall that this research is 

focused on designing a DNN solution with just enough hidden layers and enough hidden 

units per layer. Using 3 hidden layers and 1000 hidden units per layer meets this goal. 

Neural networks tend to overfit the training data when the available data for 

training is limited. One can address this issue by adding more data for training such that 

DNN will be trained on all possible training data and decrease the generalization error for 

unseen new test data.  In our experiments, we observed overfitting and the resulting high 

generalization error. We used the dropout technique to solve this issue; however, it is 
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important to use a proper level of dropout as otherwise it will result in underfitting, 

thereby yielding a lower performance even in training. In order to achieve good overall 

performance of DNN, we carefully experimented on the use of different dropout rates as 

illustrated in Figure 10 and found that the dropout rate of 30% is best suited for our 

problem. 

 The dropout technique randomly ignores certain hidden nodes during training. It 

is important to note that the dropout technique helps in resolving the problem of 

overfitting but doesn’t help in decreasing the complexity of the network because the 

nodes and connections of the network are just ignored while training and are not removed 

from the network. 
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Figure 10. Performance of the network on different dropout rate 

One complete sweep over the training data set is called an epoch. Using more 

epochs will help DNN to learn from the prediction errors and progressively optimize the 

weights, thereby yielding progressively better performance. Training the DNN more than 

required might result in an overfitted network.  
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Figure 11. Baseline DNN architecture 

 Figure 11 shows the baseline DNN model used in our research.  The baseline has 

three hidden layers, each with 1000 hidden units. The context-based training gave error-

free performance for clean speech condition as expected and robust performance under 

acoustic background noise and handset variability, as described in the next section. This 

DNN configuration is our baseline system for the intended speaker recognition task and 

for subsequent complexity reduction task. This baseline DNN has 2.4M parameters. 

4.2 Performance evaluation of the baseline DNN system  

 The performance of the baseline model was evaluated on clean speech database 

TIMIT, multi-handset database HTIMIT, and noise added TIMIT database.  

The baseline DNN speaker recognition accuracies on TIMIT database in training 

and testing are both 100%.  Training set here consisted of 8 utterances from each of 20 

speakers, for a total of 160 utterances. Test set here consisted of 2 utterances from each of 
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20 speakers, for a total of 40 utterances. Each utterance is approximately 3 seconds long, 

which means approximately 150 frames. 

Table 1. Performance of the baseline DNN model on HTIMIT Database 

Condition Accuracy Top-two  

Training set 100% - 

Testing set 96.75% 99.5% 

 

We used the HTIMIT database to evaluate the robustness of the baseline DNN 

model over handset variability. A higher error rate was found for female speakers 

because of the loss of high-frequency information due to the downsampling of TIMIT 

database and 300-3200 Hz band-limiting done to produce HTIMIT [22]. The error rate on 

female speakers was found to be 5.5% and the error rate on the male speakers was found 

to be only 1%. This is consistent with what has been reported previously where the GMM 

method was used [22]. 

In Table 1, “Top-two” refers to the performance metric where if the correct 

speaker identify corresponds to the top two averaged output posterior probabilities, the 

performance is declared as correct. The motivation for reporting top-two performance is 

that other context-based information, such as if the first-choice speaker is not “on duty” 

or the context of the ongoing dialog, can be used to correctly disambiguate between the 

top two choices. Top-two performance numbers are reported in the rest of this thesis 

whenever the standard (or “top-one”) performance is less than 100%. The performance of 

the baseline DNN model on test data from individual handsets is given in Table 2. 

Training in these cases was performed over data from all ten handsets. 
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We achieved 100% performance for cb2, el1, and senh handset conditions. Recall 

that senh is a high-quality microphone. The handsets cb3, cb4, and pt1 produced lower 

performance as expected. Recall that pt1 is a cordless phone.  

Table 3. Performance of the baseline model on noise added TIMIT 

 

Condition 

Accuracy 

20 dB 10 dB 5 dB 

Training set 100% 100% 100% 

Testing set 100% 98.75% 98.125% 

(Top-Two) - (100%) (100%) 

 

Table 2. Performance of the baseline DNN model on individual 
handset data 

Handset Accuracy Top-Two 

cb1 95% 97.5% 

cb2 100% - 

cb3 95% 100% 

cb4 90% 100% 

el1 100% - 

el2 97.5% 100% 

el3 97.5% 100% 

el4 97.5% 100% 

pt1 95% 97.5% 

senh 100% - 
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To study the robustness of the baseline DNN model in acoustic background noise, 

we evaluated the baseline system using the noise-added TIMIT database, which includes 

4 noise types and 3 SNRs for each noise type. The performance of the baseline DNN 

model in noise at different SNRs is shown in Table 3. Figure 12 shows speaker 

recognition error rate at 3 different SNR conditions. 

  Training was performed over all 4 noise types at a given SNR. The baseline DNN 

model performs at 100% for 20 dB SNR condition and above 98% in 10 dB and 5 dB 

conditions. As mentioned above, the top-two performance means that the correct speaker 

is always in the top two choices in the DNN posterior probabilities. Under the top-two 

performance metric, the baseline DNN is flawless for all three SNRs, which is 

impressive. 
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Figure 12. Performance of the baseline DNN on noise added TIMIT at different 
SNR conditions 



 

36 

V. INVESTIGATION OF COMPLEXITY REDUCTION TECHNIQUES AND 

THEIR PERFORMANCE 

Reducing the complexity of the model is critical in small footprint DNN based 

speaker recognition system. When the available resources are limited it is possible to 

design a simplified DNN speaker recognition system using a suitable complexity 

reduction technique.  Complexity reduction of the model can be achieved in several 

ways. This research is focused on reducing the number of parameters in the DNN model 

without significant loss in the accuracy. Pruning is a technique of removing the 

parameters from the network using a suitable algorithm. Pruning technique converts the 

fully connected dense network into a sparse network [34]. 

As noted earlier, this research uses the CNTK deep learning library to design the 

DNN. However, CNTK parameters can only be dense corresponding to fully connected 

hidden layers This is one of the drawbacks of using CNTK for pruning purpose. 

Therefore, we had to come up with a different approach to implement pruning using 

CNTK. Instead of removing the parameters from the network we set the less important 

parameters to zero and explicitly developed a python-based function in CNTK to avoid 

the zero weights from being updated while training the network.  

5.1 Adaptive pruning 

 Pruning is a technique of removing parameters, namely weights, from the neural 

network without significant loss in accuracy. In a pruning technique, after training is 

completed, any weight that is less than a certain threshold is considered less important 

and is thus discarded or zeroed out.  In the adaptive pruning technique we investigated, 

the standard deviation of each layer’s weights multiplied by a quality factor is used as a 
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threshold, which makes the threshold data-adaptive rather than fixed. The weights below 

this adaptive threshold are removed from the network (or zeroed out as mentioned above) 

and the network is retrained. Failing to retrain will significantly impact the network’s 

performance [34]. 

As noted above, the baseline model has 2.4M parameters. The parameters, namely 

weights, that fall below the adaptive threshold in each layer are set to zero and the final 

model with sustained (that is, non-zero) parameters is obtained. It is important to retrain 

the model starting with the sustained parameters rather than re-initializing the model 

weights. This makes the network train relatively quickly because of good starting 

conditions, thereby requiring less computation for retraining as well. 

Table 4. Performance of adaptive pruning on TIMIT Data 

Condition Performance Parameters left 
(Complexity reduction) 

Training set 98.73% 254K (9.5X) 

Testing set 95.23% 

 

We initially experimented on TIMIT database. The performance of the pruned 

model on training and test sets is as shown Table 4. We obtained 1.27% error on training 

set and 4.77% error on test set. The adaptive greedy pruning technique exhibited a high 

variation in the performance of the model. It is, therefore, important to closely watch the 

retraining process. We were able to reduce the number of parameters nearly 9.5X 

compared to the original baseline but with a significant drop in accuracy. 
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Table 5. Performance of adaptive pruning on HTIMIT 

Condition Performance Parameters left 
(Complexity reduction) 

Training set 98.3% 215K (11X) 

Testing set 85.5% 

 

To study the robustness of the pruned model in various handset conditions, we 

experimented on the HTIMIT database; the performance results are given in Table 5. The 

adaptive pruning produced a 1.7% error rate on the training set and 14.5% error rate on 

the test set, although with over 11X complexity reduction. With the adaptive pruning 

technique, it is harder to prune the network weights without sizeable performance loss, 

when the dataset has various handset conditions.  In other words, when the database is 

not homogeneous, the effectiveness of the pruning approach becomes less. 

We then experimented the pruning technique on noise added TIMIT database in 

different noise levels and different background noise types. The performance of the 

system in different noise conditions is shown in Figure 13. 
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                                                                                                                220K (10.9X) 
 

 
Figure 13. Performance of adaptive pruning on noise added TIMIT at different 
SNR conditions 

This greedy pruning technique makes pruning less effective and exhibits high 

variation in the performance of the system under noise. We were able to achieve 10.9X 

complexity reduction but with a large performance loss. 

We tried using L2 regularization to scale the updating of parameters while 

retraining to minimize the variations in the network but didn’t get any significant 

improvement in the performance. The lack of effectiveness of pruning may, in part, be 

due to the fact that each noise condition involves 4 different noise types making the 

database non-homogeneous. 

220K (10.9X) 
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5.2 Sequential Layer Specific pruning 

 As noted earlier, in DNN the lower layers learn simple features and the higher 

layers learn more complex features. As stated in the literature review section, in indirect 

DNN based speaker recognition, DNN is used as a feature extractor. Usually, the hidden 

layers near the output layer are used for feature extraction because these layers contain 

speaker-specific information. The extracted features are then used with a secondary 

classifier to predict the speaker identity. We used this working principle of DNN to find 

the sequence or order in which the layers need to be pruned. This approach is based on 

the inter-dependency [46] of DNN layers. It is important to note that pruning here refers 

to zeroing out the parameters that fall below the threshold, as we are limited by the 

functionality of CNTK for pruning purpose. However, in cases of pruning supported 

software, one can use the sequential layer specific (SLS) pruning technique to remove the 

weights instead of making them zero. Figure 14 shows the baseline DNN architecture, 

with number of nodes of each layer shown. 

 

Figure 14. Our baseline Deep Neural Network architecture 
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The four sets of connections W, X, Y, and Z are sequentially dependent on each 

other: Y as a collection depends on X’s output, X on W’s output, and Z on Y’s outputs. 

As before, we initially trained the fully connected DNN model. The standard deviation of 

each layer’s weights is calculated.  The threshold for each layer is calculated by 

multiplying the respective standard deviation with the quality factor, as before. We 

started pruning the final hidden layer weights Y; we chose this layer to prune first 

because this layer contains speaker-specific information and parameters that fall below 

the threshold are considered as not speaker-specific and removing them should not 

impact the performance of the system. However, as before, it is important to retrain the 

model after pruning the weights Y, as otherwise the performance of the model will be 

significantly impacted. The pruning technique is then applied to X followed by 

retraining; this procedure is then repeated for W; at the end, pruning is applied to Z. This 

entire pruning process is called Sequential Layer-Specific (SLS) pruning. The SLS 

pruning technique proposed here is not greedy; it is dependency-based pruning. As 

described, SLS pruning takes place in multiple stages in the specific sequence mentioned, 

with different number of parameters removed in each stage immediately followed by 

retraining. 

 To describe the SLS process further, while pruning Y weights, other layer weights 

are kept untouched; hence the retraining of parameters of weights Y is dependent on 

other layers and doesn’t result in a significant drop in accuracy as compared to the earlier 

greedy pruning technique. As we are pruning one layer at a time in the right sequence as 

described above, the network is resistant to significant performance losses. We have 

found the SLS pruning techniques to outperform the earlier-described adaptive pruning 
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technique. The sequence of pruning we implemented is: start pruning from the last hidden 

layer and move towards the input layer and then finally prune the output layer if 

necessary. From experiments, we have found that aggressive pruning in the output layer 

can result in a large drop in accuracy. Hence, it is important to be cautious in pruning the 

output layer. The sequence of pruning a three hidden layer DNN is given as follows: 

Y | Keeping X, W, Z constant 

X | Keeping W, Y, Z constant 

W| Keeping X, W, Z constant 

Z | Keeping X, W, Y constant 

The flow chart in Figure 15 illustrates the SLS pruning algorithm. 

Fully- 
connected 

DNN

Remove 
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(y/x/w/z)

Retrain the 
model
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Threshold 
adjustment

Poor

Reliable

Test?

 

Figure 15. Flowchart of the SLS algorithm 
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The sequential layer specific pruning technique is a stable and efficient way of 

pruning the parameters in the neural network. This pruning technique makes the network 

resistant to sensitivity and performance loss. The proposed SLS technique involves 

zeroing out the less important parameters one layer at a time in a selective, sequential 

manner, followed by retaining the DNN model with sustained parameters at each stage. 

The SLS pruning technique requires less computation compared to other pruning 

techniques because here the number of pruning and retraining processes is equal to the 

number of layers of the neural network. In contrast, in greedy pruning technique the 

network is made to learn the connections by greedily removing parameters in large 

numbers all at once. 

We initially experimented on TIMIT database to examine the effects of SLS 

pruning on clean speech data.  Table 6 shows the layer-wise performance of SLS pruning 

on TIMIT. 

Table 6. Layer-wise performance of SLS pruning technique on TIMIT database 

Connections Train set Test set 

 

Parameters left 
in respective layer 

Y 100% 100% 7.1K 

X 100% 100% 11K 

W 100% 100% 38.2K 

Z 100% 100% 20K 

 

The SLS pruned system has 100% accuracy for TIMIT database. The 

experimental result shows that we can prune relatively aggressively in the hidden layers 
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but not in the input and output layer. After multiple stages of layer-wise pruning, we were 

able to zero out approximately 2.373M parameters and the final pruned model has 79K 

parameters without any loss in accuracy. The SLS pruned system on TIMIT database 

achieved 100% accuracy. (The 79K count in the final pruned model includes 3K bias 

values and 20K output layer connections.) We didn’t prune bias values as they help the 

model to fit the data better. We also didn’t prune the final layer because we already 

zeroed out a maximum number of parameters in other layers and the final layer 

parameters were just 20K and pruning this layer wouldn’t have contributed significantly 

to the overall complexity reduction rate. When we tried pruning the final layer, it yielded 

an error rate of 2%; this confirms our earlier position for not pruning the output layer 

connections.  

To study the robustness of the SLS pruned DNN model we conducted 

experiments on multi-handset database HTIMIT. Let us recall that the HTIMIT database 

has 10 different handset conditions. The SLS pruning technique leads to a small loss in 

the performance due to the heterogeneous nature of the database. It is possible to carry 

out the layer-wise pruning if each layer pruning in a heterogeneous database exhibits a 

small error rate because every subsequent stage retraining will improve the overall 

performance of the network and yields a low complexity pruned model without 

significant loss in accuracy.  The performance of the DNN model after pruning each layer 

and retraining the network is shown on Figure 16 , which also includes parameters left in 

respective layer (shown at the top of the bar graph).  The performance the SLS pruned 

DNN is shown in Table 7, which also includes the top-two performance metric. The final 
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SLS pruned model has 538K parameters for a 4.5X reduction relative to the fully 

connected model and exhibits reliable performance in the speaker recognition task.  

 

  

Figure 16. Layer-wise performance of SLS pruning technique on HTIMIT Database 

Table 7. Overall performance of the final pruned model on HTIMIT 
database 

Data Accuracy Top-two 

Training set 100% - 

Testing set 94.75% 98.25% 

 

The robustness of the SLS pruned model in noisy conditions is studied using the 

noise added TIMIT database. As discussed before, this database consists of 4 different 

noise types: car noise, white noise, wind noise, and city traffic noise. As shown earlier, it 

72.5K 36.7K 416.3K 10.2K 



 

46 

is difficult to prune the model effectively in noisy conditions, using the earlier adaptive 

pruning technique. The SLS pruning technique is, however, more efficient to prune the 

parameters. The performance of the system for different noise conditions is shown in the 

following figures and tables. 

 

 
Figure 17. Layer-wise performance on noise added TIMIT database at 20 dB SNR 

Table 8. Overall performance of the final SLS pruned model on noise added 
TIMIT at 20 dB SNR 

Condition Accuracy Top-two 

Training set 100% - 

Testing set 99.37% 100% 

 

 

190K 198K 404K 20K 
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                             500.8K                   465.9K                 388.5K              19.2K  

 Figure 18. Layer-wise performance on noise added TIMIT database at 10 dB SNR 

Table 9. Overall performance of the final SLS pruned model on noise added 
TIMIT at 10 dB SNR 

Condition Accuracy Top-two 

Training set 100%      - 

Testing set 98.75% 100% 
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                           25.5K                     886.1K                  429K                       20K 

 

Figure 19. Layer-wise performance on noise added TIMIT database at 5 dB SNR 

Table 10. Overall performance of the final SLS pruned model on noise added 
TIMIT at 5 dB SNR 

Condition Accuracy Top-two 

Training set 100%       - 

Testing set 98.12% 98.75% 

 

 The SLS pruning technique results in complexity reduction and speaker 

recognition accuracy for the 3 SNR conditions as follows: 3X, 99.37% for 20 dB SNR; 

1.7X, 98.75% for 10 dB SNR; and 1.7X, 98.125% for 5 dB noise.  It is interesting to note 

that in both 5 dB and 10 dB SNR conditions, the performance of the SLS pruned model is 

the same as that of the unpruned baseline, although at only a modest 1.7X complexity 
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reduction. For 20 dB SNR condition, a higher reduction of 3X is achieved but at a 

0.625% performance loss relative to the baseline. The SLS technique can therefore be 

used to prune the model for noisy conditions without significantly compromising the 

performance of the system. Figure 20 shows the error rate of the SLS pruned model at 

different SNR conditions, complexity reduction rate for each case is also shown. 
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Figure 20. Performance of the SLS pruned model at different SNR conditions 

 

 

 

 

 

 

 



 

50 

VI. FINAL DNN BASED SMALL FOOTPRINT SPEAKER RECOGNITION 

SYSTEM 

6.1 Details of the DNN baseline Model 

We used direct DNN based speaker recognition. A 39-dimensional MFCC feature 

vector is extracted for each frame of the speech signal using the HTK toolkit. With 

context-window being 11 frames wide, the dimension of the input layer is 429 (=11x39). 

The output layer dimension is 20 as we are developing a speaker recognition system for 

20 speakers. We used 3 hidden layers with 1000 hidden units per layer. In addition to 

this, the DNN baseline model has 3K bias parameters; hence the total number of 

parameters in our fully connected baseline model is about 2.4M 

(=429K+1M+1M+20K+3K). Figure 11 in Chapter IV shows the breakdown of 

parameters across layers. We used the ReLu activation function to the hidden layer units 

and softmax activation function to the output layer to get the output as a probability 

distribution over the 20 classes. Adam optimization algorithm is used with a learning rate 

of 0.001 for updating the network weights. A dropout rate of 30% and L2 regularization 

are used to effectively handle overfitting and hence to decrease the generalization error 

on unseen test data.  This DNN baseline model is used for investigation of complexity 

reduction techniques.  

6.2 Performance of the DNN baseline system 

 The direct DNN based baseline system is trained using the context-based 

training approach. The frame level DNN predictions from the output layer are averaged 

over the test utterance using a python script developed to predict the speaker identity. The 

performance of the baseline DNN system is flawless at 100% on training set data for 
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TIMIT, HTIMIT, and the three noised added TIMIT databases. The performance on test 

set is as follows: 100% accuracy on clean speech TIMIT database, 96.75% on multi-

handset database HTIMIT, and 100%, 98.75%, and 98.125% on noise added TIMIT 

database at 20 dB, 10 dB, and 5 dB SNR, respectively. The top-two performance on 

multi-handset HTIMIT database is 99.5%. Under the top-two performance metric, the 

baseline DNN achieved 100% for both 10 dB and 5 dB SNR conditions, which is 

impressive; for 20 dB SNR, the performance (top-1) is already 100%. 

6.3 Performance of the final pruned DNN system 

The layer-specific standard deviations multiplied by layer-specific quality factors 

are used as thresholds to respective layer’s connections for pruning purpose. We 

developed a custom python script to use CNTK for pruning purpose so as to allow the 

implementation of sparse connections.  We used the Sequential Layer-Specific (SLS) 

pruning technique to prune the layers of the DNN baseline model in multiple stages in a 

selective, sequential manner. The pruned model in each stage is retrained to improve the 

performance of the model. We achieved a complexity reduction rate of 31X with no loss 

in accuracy for clean speech TIMIT database. For non-homogeneous database conditions 

like the multi-handset HTIMIT database, we achieved a complexity reduction rate of 

4.5X with 2% drop in accuracy. For the non-homogeneous database of noise added 

TIMIT at each of 3 SNRs, each condition involving four different noise types, we 

achieved a complexity reduction rate of 1.7X with no loss in accuracy relative to the 

baseline DNN model for 10 dB and 5 dB SNR conditions. We were able to prune more 

parameters in 20 dB SNR condition and achieved a complexity reduction rate of 3X but 

with 0.625% accuracy drop. Under the top-two performance metric, the final pruned 
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DNN model achieved 98.25% accuracy for multi-handset HTIMIT database, and 100%, 

100%, and 98.75% accuracy for noise added TIMIT database at 20 dB, 10 dB, and 5 dB 

SNR, respectively. 
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VII. CONCLUSIONS AND FUTURE WORK 

 In this research we have developed a reduced complexity direct DNN based small 

footprint text-independent closed-set speaker recognition system for 20 speakers. 

Consistent with the small footprint design goal, a baseline DNN model was developed 

with just enough layers and enough hidden units per layer, thereby reducing the total 

number of parameters, and by careful design to avoid the common problem of overfitting 

and to optimize algorithmic aspects including context-based training, activation 

functions, regularization, and learning rate. This baseline model was evaluated on two 

commercially available databases, clean speech TIMIT and multi-handset speech 

database HTIMIT, and on noise added TIMIT database that we created using four types 

of noises at three different signal-to-noise ratios (SNRs). The speaker recognition 

accuracy of the baseline is 100% for TIMIT, 96.75% for HTIMIT, and 100%, 98.75% 

and 98.125% for noise added TIMIT database at 20 dB, 10 dB and 5 dB SNR, 

respectively.  This demonstrates that the baseline system has an error-free performance in 

relatively clean speech and a robust performance under telephone handset variability and 

in acoustic background noise.  The baseline model has a total of 2.4M parameters.  

  We then developed a novel and enhanced pruning technique called Sequential 

Layer Specific (SLS) pruning. The SLS pruning technique performs pruning sequentially 

in multiple stages and in a layer-specific manner, followed by retraining after each 

pruning stage, while ensuring no or only minor performance loss in each pruning stage. 

For the SLS pruned model, the speaker recognition accuracy is 100% for TIMIT database 

with 31X complexity reduction; 94.75% for multi-handset database HTIMIT with 4.5X 

complexity reduction.  For noise added TIMIT database, with 1.7X complexity reduction 
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there is no additional drop in speaker recognition accuracy relative to the baseline DNN 

in both 5 dB and 10 dB SNR and a 99.37% accuracy is achieved with 3X complexity 

reduction in 20 dB SNR.  For cases where the speaker recognition accuracy is less than 

100%, a higher “accuracy” is obtained using the “Top-two” performance metric in which 

recognition success is declared if the correct speaker lies in the top two choices predicted 

by the DNN model. The complexity reduced DNN gave comparatively similar results as 

the complex baseline DNN; hence, we have achieved the goal of developing a DNN with 

reduced complexity for small footprint applications.  

The main contributions of this research are listed below: 

 Optimized baseline DNN configuration is developed for a small footprint system. 

 Baseline DNN provides error-free performance for clean speech and a robust 

performance under handset variability and acoustic background noise. 

 Complexity of DNN is reduced using complexity reduction techniques. 

 Methodology is developed to customize CNTK for implementing pruning of 

weights. 

 Adaptive pruning is not as effective in non-homogeneous database conditions. 

 A novel and effective pruning technique called Sequential Layer Specific pruning 

is developed exploiting layer-specific properties of DNN. 

 SLS-pruned DNN system provides error-free performance for clean speech and a 

robust performance under handset variability and acoustic background noise. 

Areas of future work are described next. First, a speech detector preprocessor may 

be used to identify and discard silence frames and use only speech frames for training and 

testing the DNN model, as silence frames do not carry speaker-specific information, and 
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therefore not using them may increase the effectiveness of the DNN model. Second, the 

acoustic background noise is one of the important operating conditions to be considered 

when using DNN for speaker recognition in real-world applications.  A future research 

goal is to improve the performance of the developed DNN model in acoustic background 

noise by using a speech enhancement preprocessor. Third, techniques like cepstral mean 

subtraction preprocessor may be used to improve performance under handset variability. 

Fourth, for embedded applications including the one that may be used in the International 

Space Station, the total number of parameters used in the DNN model is an important 

factor as it determines required storage, memory bandwidth, and computational 

resources. The associated energy cost can be estimated for a given processor architecture 

using the approach discussed in [34]. 
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