
SPEAKER RECOGNITION USING DEEP NEURAL NETWORKS WITH REDUCED

COMPLEXITY

by

Vidya Thanda Setty, B.E.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Engineering
December 2018

Committee Members:

 Vishu Viswanathan, Chair

 George Koutitas

 Semih Aslan

COPYRIGHT

by

Vidya Thanda Setty

2018

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgement. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Vidya Thanda Setty, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

To the almighty God “Sri Krishna” for giving me the strength to finish my thesis.

To my parents Padma and Thanda Setty for believing in me; Ashwin Venkatesh for

his motivation and support; family for their continuing support; to all my friends for

their significant advice throughout the completion of my thesis.

v

ACKNOWLEDGEMENTS

I would like to sincerely thank my thesis advisor, Dr. Vishu Viswanathan for his

immense support, patience and mentoring. This work would not have been possible

without his involvement and guidance. His valuable advice and positive appreciation

helped me complete my thesis successfully.

I would like to thank my thesis committee members for their encouragement and

insightful advice throughout my thesis.

I would like to thank the engineers from NASA Johnson Space Center’s Human

Computer Interface branch, G. Salazar, A. Romero, and D. Juge, for suggesting the

problem addressed in this thesis as a potential application in the International Space

Station.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

ABSTRACT .. xiii

CHAPTER

 I. INTRODUCTION ..1

 1.1 Motivation .. 1
 1.2 Background .. 2

 1.3 Speaker recognition .. 3

 1.4 Deep Neural Networks ... 4

 1.5 Research objectives .. 7

 1.6 Thesis Outline .. 9

 II. LITERATURE REVIEW ...11

 2.1 Speaker recognition methods prior to DNN 11

 2.2 DNN based speaker recognition ... 13

 2.2.1 Indirect DNN approach .. 13
 2.2.2 Direct DNN approach ... 15

 2.3 Complexity of Deep Neural Network models 16

 2.4 Overfitting problems with deep neural network models 18

 III. PROPOSED APPROACH ...22

vii

 3.1 Direct DNN based solution .. 22
 3.2 HTK TOOLKIT ... 23
 3.3 CNTK TOOLKIT ... 24
 3.4 Speech databases .. 25

 3.4.1 TIMIT database .. 25
 3.4.2 HTIMIT Database ... 26
 3.4.3 Noise added TIMIT database ... 27

 IV. DEVELOPMENT OF THE BASELINE DNN SYSTEM28

 4.1 DNN Configuration .. 28
 4.2 Performance evaluation of the baseline DNN system 32

 V. INVESTIGATION OF COMPLEXITY REDUCTION TECHNIQUES AND
 THEIR PERFORMANCE .. 36

 5.1 Adaptive pruning .. 36
 5.2 Sequential Layer Specific pruning ... 40

 VI. FINAL DNN BASED SMALL FOOTPRINT SPEAKER RECOGNITION
 SYSTEM .. 50

 6.1 Details of the DNN baseline Model ... 50

 6.2 Performance of the DNN baseline system ... 50

 6.3 Performance of the final pruned DNN system 51

 VII. CONCLUSIONS AND FUTURE WORK ..53

REFERENCES ..56

viii

LIST OF TABLES

Table Page

1. Performance of the baseline DNN model on HTIMIT Database 33

2. Performance of the baseline DNN model on individual handset data 34

3. Performance of the baseline model on noise added TIMIT .. 34

4. Performance of adaptive pruning on TIMIT Data .. 37

5. Performance of adaptive pruning on HTIMIT .. 38

6. Layer-wise performance of SLS pruning technique on TIMIT database 43

7. Overall performance of the final pruned model on HTIMIT database 45

8. Overall performance of the final SLS pruned model on noise added TIMIT at 20
 dB SNR ... 46

9. Overall performance of the final SLS pruned model on noise added TIMIT at 10
 dB SNR ... 47

10. Overall performance of the final SLS pruned model on noise added TIMIT at 5
 dB SNR .. 48

ix

LIST OF FIGURES

Figure Page

1. Deep Neural Network with 3 hidden layers .. 6

2. Sigmoid Activation Function .. 6

3. ReLu activation function... 7

4. DNN architecture used in the indirect DNN approach ... 14

5. Direct DNN approach ... 16

6. Overfit, Underfit and appropriate fit of Neural Network .. 19

7. Dropout technique ... 21

8. Block diagram of the proposed approach ... 23

9. Performance of the network for various hidden number of units per layer 30

10. Performance of the network on different dropout rate .. 31

11. Baseline DNN architecture ... 32

12. Performance of the baseline DNN on noise added TIMIT at different SNR
 conditions ... 35

13. Performance of adaptive pruning on noise added TIMIT at different SNR
 conditions ... 39

14. Our baseline Deep Neural Network architecture .. 40

15. Flowchart of the SLS algorithm .. 42

16. Layer-wise performance of SLS pruning technique on HTIMIT Database 45

17. Layer-wise performance on noise added TIMIT database at 20 dB SNR 46

x

18. Layer-wise performance on noise added TIMIT database at 10 dB SNR 47

19. Layer-wise performance on noise added TIMIT database at 5 dB SNR 48

20. Performance of the SLS pruned model at different SNR conditions 49

xi

LIST OF ABBREVIATIONS

Abbreviation Description

DNN Deep Neural Network

ANN Artificial Neural Network

MFCC Mel-Frequency Cepstral Coefficient

PLP Perceptual Linear Prediction Coefficient

CNN Convolutional Neural Network

LSTM Long Short-Time Memory

RNN Recurrent Neural Network

ReLu Rectified Linear Unit

CPU Central Processing Unit

GPU Graphical Processor Unit

SVM Support Vector Machine

HTK Hidden Markov Toolkit

CNTK Computational Network Toolkit

SLS Sequential Layer Specific

HMM Hidden Markov Model

xii

GMM Gaussian Mixture Model

UBM Universal Background Model

SNN Shallow Neural Network

OBD Optimal Brain Damage

DSSM Deep Structured Semantic Model

TIMIT Texas Instruments Massachusetts Institute of Technology

HTIMIT Handset Texas Instruments Massachusetts Institute of
Technology

LDC Linguistic Data Consortium

SGD Stochastic Gradient Descent

SNR Signal-to-Noise Ratio

xiii

ABSTRACT

 The goal of this research is to develop a small footprint text-independent speaker

recognition system for a closed set of a relatively small number of speakers (e.g., 15-20).

The problem was inspired by its potential application to the International Space Station

(ISS) to determine which astronaut is speaking at a given time. In this research, the so-

called Direct DNN based approach is used in which the output layer posterior

probabilities are used to determine the identity of the speaker. Consistent with the small

footprint design goal, a baseline DNN model was developed with just enough hidden

layers and enough hidden units per layer, thereby reducing the total number of

parameters, and by careful design to avoid the common problem of overfitting and to

optimize algorithmic aspects including context-based training, activation functions,

regularization, and learning rate. This baseline model was evaluated on two commercially

available databases, clean speech TIMIT and multi-handset speech database HTIMIT,

and on noise added TIMIT database that we created using four types of noises at three

different signal-to-noise ratios (SNRs). The speaker recognition accuracy of the baseline

is 100% for TIMIT, 96.75% for HTIMIT, and 100%, 98.75% and 98.125% for noise

added TIMIT database at 20 dB, 10 dB and 5 dB SNR, respectively. This demonstrates

that the baseline system has an error-free performance in relatively clean speech and a

robust performance under telephone handset variability and in acoustic background noise.

The baseline model has a total of 2.4M parameters. The rest of the work was devoted to

xiv

reducing the complexity of the DNN system by reducing the number of parameters

without causing significant loss in performance. Initially, we used an adaptive pruning

method where the parameters of all the layers are pruned simultaneously and the pruned

system is retrained. The performance of this technique was evaluated on all the above-

mentioned speech databases. We then developed a novel and enhanced pruning technique

called Sequential Layer Specific (SLS) pruning. The SLS pruning technique performs

pruning sequentially in multiple stages and in a layer-specific manner, followed by

retraining after each pruning stage, while ensuring no or only minor performance loss in

each pruning stage. The SLS pruning technique is significantly more effective than the

adaptive pruning technique in terms of both model complexity reduction and speaker

recognition performance loss. For the SLS pruned model, the speaker recognition

accuracy is 100% for TIMIT database with 31X complexity reduction; 94.75% for multi-

handset database HTIMIT with 4.5X complexity reduction. For noise added TIMIT

database, with 1.7X complexity reduction there is no additional drop in speaker

recognition accuracy relative to the baseline DNN in both 5 dB and 10 dB SNR and a

99.37% accuracy is achieved with 3X complexity reduction in 20 dB SNR. For cases

where the speaker recognition accuracy is less than 100%, a higher “accuracy” is

obtained using the “Top-two” performance metric in which recognition success is

declared if the correct speaker lies in the top two choices predicted by the DNN model.

1

I. INTRODUCTION

1.1 Motivation

 The topic of this thesis research is DNN-based text-independent, closed-set

speaker recognition for a relatively small number of users (e.g., 15-20). Further goals are

to achieve a lower complexity DNN and study the robustness of the system to acoustic

background noise and telephone handset variability. The above-stated problem and

associated goals were inspired by the requirements of the NASA Johnson Space Center

(JSC) for their application to the International Space Station (ISS) [1]. We are in

discussion with the NASA-JSC engineers from the Human Interface Branch in Houston.

A low complexity solution with a low power requirement and a small footprint is

important for ISS application.

 Deep neural networks can learn complex functions using a large number of

hidden layers, which provides the “depth” to the network. In some cases, fewer layers

may also be capable of learning complex functions using the same number of parameters

as “deep” models. So, it is not necessary to have deeper networks for all applications [2].

The advantage of having multiple layers is that they can learn features at various levels of

abstraction. DNNs, in general, require a lot of data for training. Insufficient amount of

data used to train the network may fail to produce reliable performance under test

conditions. However, it is possible to improve the performance of a system using a

suitable algorithm for training [2]. Applications such as search engines and Facebook and

iPhone image searching tasks use deep learning. In these cases, providing sufficient data

for training is not a problem because there are millions of users every day. However,

DNNs with a complex design may not be necessary for a speaker recognition application

2

involving a closed-set of a relatively small number of users (e.g., 15-20) and a limited

training database. In this case, it is possible to use a DNN with a smaller number of

parameters. Instead of treating DNN as a black box, it is a goal of this research to use the

knowledge of machine learning in configuring the DNN with just enough parameters.

1.2 Background

 Technologies such as image recognition, speech recognition, speaker

recognition and other biometric systems use, among other things, mathematical

computations, pattern matching, and machine learning. In recent research, traditional

methods like Hidden Markov Models (HMM) are being replaced by machine learning

technology. The main scope of this thesis research is speaker recognition using Deep

Neural Networks (DNNs). The characteristics of speech signal such as vocal tract

structure, voice pitch, speaking style, etc., play an important role in speaker recognition.

Early work on physiological components of speech production was published by Gunnar

Fant in 1960, and this has led to extensive advances in speech research [3].

 DNNs have been used recently with great success in many areas. Open-source

toolkits such as Kaldi (a flexible speech recognition toolkit from Microsoft that supports

discriminative training and linear transforms), Tensor Flow (software from Google that

helps in building and training of neural networks) and CNTK (Computational Network

Toolkit from Microsoft that trains deep learning algorithms) have been developed using

machine learning [4] [5] [6]. Machine learning is a technology where the system acts like

the human brain and makes decisions by learning from observed data. For instance, when

a person sees an object the brain learns the features of the object and in the future, the

brain recognizes that object based on the features it learnt. In the same way, in machine

3

learning technology the machine learns the features of the object and performs a

recognition task. Earlier speaker recognition systems have used Hidden Markov Model

(HMM) and Gaussian Mixture Model (GMM) [7]. Applications using an Artificial

Neural Network (ANN) use a single layer of non-linear hidden units to predict HMM

states. The research work described in [8] shows how the replacement of GMM by DNN

gives improved results in a speaker recognition system. Several organizations including

IBM, Google and Microsoft have succeeded in using DNNs for acoustic modeling of

speech [9]. The speech signal has features including pitch, pitch jitter, and spectral

parameters such as MFCCs (Mel Frequency Cepstral Coefficients) and PLPs (Perceptual

Linear Prediction coefficients). These are some of the features that can be used in DNN

for training the networks [9].

1.3 Speaker recognition

 Speaker recognition determines the identity of the person based on the

characteristics of their voice. Speaker verification, on the other hand, is the process of

verifying the claimed identity of the speaker. Speech recognition differs from speaker

recognition as it recognizes what is being said and not who said it [10].

 The research in speaker recognition has been increasing as speech-related

applications are becoming popular. Speaker recognition can be classified into text-

dependent and text-independent systems. In text-dependent speaker recognition, the

speaker is prompted to say the text on which the system has been trained; in the text-

independent case, the speaker can say any text and the system should be able to recognize

the speaker. Text-independent speaker recognition is a more difficult problem than text-

dependent speaker recognition because the former system must be trained on all possible

4

text contexts [10].

 The speech spectral features such as MFCCs and PLPs can be used to train the

DNN models. Voice activity detectors are used to remove the silence or noise frames

from the speech signal [11]. In general, a context of +/- 5 or +/- 10 frames around the

current frame is used to obtain a stacked vector of features to train the DNN model. DNN

can be used as a feature extractor or a classifier. In the so-called indirect DNN approach,

DNN bottleneck features are used as features for a secondary classifier like i-vector [12].

In the direct DNN approach, the frame level DNN posteriors from the output layer are

combined by simply averaging to produce a single decision to recognize the speaker [12].

The so-called d-vectors are extracted from the last hidden layer and are used for speaker

modeling. The d-vector based classifier has been shown to be robust to additive

background noise and to outperform the i-vector classifier [13].

1.4 Deep Neural Networks

 A Neural Network is a type of machine learning. The artificial neural

network (ANN) is a feed forward network and is extensively used in pattern recognition

[14]. The types of neural networks include Convolutional Neural Networks (CNNs),

Long- Short-Term Memory (LSTM) networks, Recurrent Neural Networks (RNNs), and

Deep Neural Networks (DNNs) [15]. This research is focused on DNN.

 DNN is a multi-layer perceptron with three or more hidden layers and uses the

stochastic gradient descent algorithm to initialize and update the weights used in all the

layers [12]. Stochastic gradient descent uses a single learning rate throughout the training

process. The Adam optimization algorithm is an extension of stochastic gradient descent,

which optimizes the learning rate based on the first and second order moments (i.e, the

5

gradient mean and element-wise squared gradient, respectively). Adam has been shown

to produce significantly better results for image and natural language problems [16].

A DNN with an input layer, an output layer and three hidden layers is shown in

Figure 1. Each node of a hidden layer is the sum of the product of the inputs (x) and the

weights (w). The weights are the connections or links between nodes. The nodes are

sometimes referred as neurons. The learning rate defines the rate at which the weights are

updated. One complete sweep over the training data is called an epoch. The training data

is divided into batches; a number of batches are required to complete one epoch and are

also referred as iterations. An epoch consists of many such iterations. A single neuron

output is,

z = (x*w)+ bias,

where the bias assists the activation function to better fit the data [17]. The node output is

then subjected to a non-linear complex function such as sigmoid, softmax, Rectified

Linear units (ReLu), Leaky ReLu, tanh, sine, logistic [18]. The softmax function is used

at the final output layer to produce a probability vector. We initially used the sigmoid

activation function but later found that the ReLu activation function is more suitable for

our problem.

6

Figure 1. Deep Neural Network with 3 hidden layers

Sigmoid function

The sigmoid activation function maps the real-valued number to between 0 and 1.

It is sometimes used in the output layer to render negative numbers to 0 and positive

numbers to 1. The sigmoid function suffers from a vanishing gradient problem, and it is

also computationally expensive [18]. The sigmoid function is graphically represented in

Figure 2.

Figure 2. Sigmoid Activation Function

7

ReLu function

 The Rectified Linear unit activation function outputs 0 for an input ‘x’ if x

is less than 0, and it outputs x for x greater than 0. This activation function doesn’t suffer

from the vanishing gradient problem in the positive region, but it does in the negative

region [18].

The Leaky ReLu addresses the vanishing gradient problem in the negative region.

However, many researchers use ReLu and have reported satisfactory results [18]. The

graphical representation of ReLu function is shown in Figure 3.

A(x) = max(0, x)

Figure 3. ReLu activation function

1.5 Research objectives

 In current research, DNNs are treated generally as a black box by giving

extensive data for training. This thesis research is focused on how to reduce the

complexity of the DNN that matches available resources. Any computer with a high-

power CPU may be sufficient for training the networks. However, an add-on GPU

(Graphical Processor Unit) from Nvidia, for example, or a GPU enabled computer will

8

enable the training to be done faster. We used an NVIDIA GEFORCE 940MX GPU

enabled laptop.

 A fully connected DNN delivers high accuracy but it requires high

computational complexity and large storage. The objective of this research is to design a

low complexity DNN reducing power consumption, storage, computational resource and

latency, without significant performance loss. Different approaches are investigated to

discard unnecessary parameters and the network is retrained using only the retained

parameters. The complexity reduced DNN results in a smaller footprint solution requiring

lower compute power and less storage.

 The research was focused on developing a baseline DNN configuration with

just enough hidden layers and hidden units. Further work was carried out to find out a

suitable activation function, learning rate, and weight-updating algorithm. After a brief

search and advice from experts, we decided to use the CNTK Toolkit for modeling the

neural network, as it is efficiently implemented for addressing speech-specific problems.

The commercially available clean speech database TIMIT was chosen because it is

widely used by speech researchers [19] [20]. The research is also extended to explore the

robustness of the DNN solution over different conditions including telephone handset

variability and types and levels of acoustic background noise. The effect of handset

variability on the DNN solution is studied using the multi-handset database HTIMIT [21]

[22] and the robustness to noise is studied using a noise added TIMIT database, which we

created using four types of noise at three different signal-to-noise ratios.

 The goal of this research is to use DNN not only to predict the speaker

identity but also to determine and retain only the essential connections of the network.

9

The fully connected neural network is trained and then using a suitable algorithm the

parameters that are not necessary are discarded, and as a result DNN with a reduced

complexity is obtained. The simplified DNN is then retrained to get performance close to

that of the initial, fully connected DNN. Performance results from both cases are

compared in various conditions using TIMIT, HTIMIT, and noise-added TIMIT

databases. There might be less frequent cases where parameters considered as

unnecessary might turn out to be relevant; so, it is important to analyze each layer

carefully before deciding what parameters to discard [23].

 The network becomes sensitive after pruning to discard selected weights

and could degrade the performance of the system. The algorithm we have developed for

discarding parameters is novel and effective as compared to other pruning techniques, as

it is resistant to sensitivity and it allows smooth learning of parameters, thereby allowing

the network to perform the speaker recognition task reliably. The pruning takes place

sequentially in multiple stages ensuring that there is no huge drop in accuracy in each

stage; this novel design makes the algorithm unique and effective. Thus, the resulting

simplified DNN uses less computational resource and storage without significant loss in

speaker recognition accuracy.

1.6 Thesis Outline

 The rest of the report is arranged as follows. A focused literature review on

speaker recognition methods prior to DNN as well as the methods using DNN for speaker

recognition, including the complexity and overfitting problems of the DNN models is

provided in Chapter II. Then we describe in Chapter III the proposed approach of using

DNN for small footprint speaker recognition. This chapter includes a discussion of the

10

chosen commercially available speech databases and open source software used in this

research. In Chapter IV, we describe the development of the baseline DNN system and its

performance results on various databases. In Chapter V, we describe the adaptive-

threshold pruning method, followed by a novel Sequential Layer Specific pruning

technique. Performance results on various databases are also provided for both pruning

methods. In Chapter VI we describe the final, small footprint DNN solution and its

performance on various databases. Chapter VII contains conclusions and future work. A

list of references is included at the end.

11

II. LITERATURE REVIEW

2.1 Speaker recognition methods prior to DNN

 Earlier speaker recognition systems have used HMM (Hidden Markov Model),

SVM (Support Vector Machine) and GMM (Gaussian Mixture Model). SVM is one of

the discriminative classifiers. The SVM binary classifier models the decision boundary

between two classes as a separating hyperplane. SVMs use “supervectors” as input

which is obtained by combining several small dimensional vectors into a single higher-

dimensional vector [24]. GMM is a stochastic model that has become the de facto

reference method in speaker recognition [24]. The speech signal contains linguistic and

speaker-specific information. Gaussian components are used to represent the speaker-

dependent spectral shapes, and the Gaussian mixtures are used to model the arbitrary

densities [7]. The long-term averages of acoustic features are used to average out the

phonetic variations and preserve only speaker-specific information. A similar approach is

used in a Gaussian classifier and has been used for text-independent speaker recognition.

The averaging process requires the speech utterances to be long enough to obtain the

long-term averages; otherwise it may lead to loss of speaker specific information [7]. For

text-independent speaker recognition, the HMM-based speech recognizer was used for

segmentation at the front end in an attempt to improve the performance, but this resulted

in a huge computational complexity and only a minor increase in accuracy. Gaussian

mixture densities were used for speaker identification [7]. Telephone handset variability

in the speech database causes performance degradation in speaker recognition. The

telephone channel effects are non-linear in nature and these effects are coupled with

12

speaker specific information and make it difficult to isolate and remove them from the

features, thereby degrading the system performance [25].

 The reference [26] describes two approaches: Sparse speaker representation

approach and discriminative regularization approach to train the Universal Background

Model. These approaches use expectation-maximization algorithm to train the Universal

Background Model. A Vector Quantization (VQ) technique maps the vectors from a large

vector space to a finite number of clusters. The center of each cluster is called the

codeword. The acoustic features are used to generate a VQ codebook. Speakers can be

discriminated based on the location of the centroids in a cluster. Vector quantization is

not efficient for a large database and hence neural network techniques can be used to

improve the speaker recognition performance [27].

 The paper [11] describes speaker identification system using Gaussian mixture

speaker models. The author of this research work achieved 82.8% accuracy for a closed-

set (100 speakers) speaker recognition using the Switchboard database. The GMM based

speaker recognition system requires extensive resources to achieve state-of-the-art

performance. The feature sub-sampling discussed in [25] increases the training speed.

The performance of the recognition system can be increased by increasing the inter-

speaker variability in the UBM data [25]. The GMM model performance will be

degraded due to the channel or microphone conditions of the speech data [25]. Joint

Factor Analysis is used to compensate for the effects due to the channel variability [24].

Voice activity detectors are used to remove the silence or noise frames from the speech

signal and get significant improvement in the performance [28]. The enhanced GMM

13

based systems such as Joint Factor Analysis, Eigenchannel, etc., make the system rather

complex and not suitable for small footprint implementation.

 Hidden Markov Models are used to represent the probability distribution over the

sequence of observations. They are widely used in speech applications. Prior to the

introduction of MFCCs, Linear Prediction Coefficients (LPC) were used as feature

vectors for the intended recognition tasks. LPC represent the resonance property of vocal

tract and these are the main feature type used in HMM classifiers. HMMs are used to

build an acoustic model for each speaker. In the recognition phase, these models are

compared against the target speaker models. Vector quantization is used to compress the

feature vectors. HMM combined with VQ gives significant improvement in performance

in both text-dependent and text-independent speaker recognition rather than using VQ

alone [29].

2.2 DNN based speaker recognition

Over the last few years, deep learning has gained wide acceptance in speech

processing research. Several organizations including IBM, Google and Microsoft have

succeeded in using DNNs for acoustic modeling of speech [9]. DNN can be used as a

feature extractor or as a classifier [12].

2.2.1 Indirect DNN approach

The indirect method is one of the two approaches in designing a speaker

recognition system where the trained DNNs are used to extract the features and then these

features are used to train a secondary classifier for the intended speaker recognition task.

The DNN that was trained for a different purpose could be adapted and used for a

14

different task. For instance, the DNN trained for automatic speech recognition could be

used for speaker recognition or language recognition. The DNN output posterior

probabilities and bottleneck features are used as features for the secondary classifier like

i-vector [12]. A voice activity detector is used to extract speech-only segments. The 600-

dimensional i-vectors are extracted from stacked mean feature vectors and are length

normalized. The mean over the training data is used as a target model for language or

speaker recognition task [12]. Figure 4 shows the DNN architecture used in the indirect

DNN approach.

Figure 4. DNN architecture used in the indirect DNN approach

 The DNN is trained at the frame level to classify speakers. The features from the

last hidden layer are extracted and used for speaker modeling. The average of these

feature vectors over the training database is called as deep vector or d-vector, and it is

considered as speaker model. From a test speech utterance, the d-vector is extracted by

passing it through the DNN layers and then compared with the saved target model to

perform the recognition task. The d-vector classifier provides a robust performance in

acoustic background noise. The d-vector approach has been shown to outperform the i-

vector approach [13].

15

2.2.2 Direct DNN approach

 In the direct DNN approach, the trained neural networks are used as a classifier to

recognize the speaker. The input layer in the direct approach represents the dimension of

the input spectral features, followed by 3 or more hidden layers and an output layer. The

dimension of the output layer is equal to the number of speakers the system is designed to

identify. The frame level DNN posteriors from the output layer must be combined by

simply averaging over the test utterance [12].

 For a small footprint, low resource application it is possible to use DNN to

train and predict the speaker without using a secondary classifier. The use of a secondary

classifier itself requires additional computational resource, which is not suitable for a

small footprint system. The performance of the system may be improved slightly by

increasing the number of hidden layers, but it comes at the cost of increased complexity.

During testing, the frame level aggregated DNN posteriors are averaged to produce a

single decision [12]. The direct DNN architecture for speaker recognition is shown in

Figure 5.

The mini-batch stochastic gradient descent algorithm speeds up the training

process by processing the training data in small batches. DNN learns the basic features of

the speaker in the lower layers and learns complex features in the higher layers [30]. The

text-independent speaker recognition system is a relatively complex problem as it

requires all possible speech contexts for training. To achieve a robust performance, the

system should be trained in all operating conditions including background noise and

telephone handset variability.

16

DNN
Predictions are

combined

Output Layer

Hidden Layer

Hidden Layer

Input Layer

Speech Features

Speaker ID

Figure 5. Direct DNN approach

2.3 Complexity of Deep Neural Network models

 A complex DNN with a huge number of parameters requires extensive training

data. Sometimes the number of parameters in the neural network exceeds the number of

data samples available for training. Reducing the number of parameters in a neural

network also reduces the CPU resources required to train. The DNN algorithmic aspects

include the activation function and learning or updating algorithms. Speech recognition

using the TIMIT database and image recognition using the CIFAR-10 database have been

developed using shallow feedforward networks with parameters less than deeper-layer

DNN, with performance comparable to deeper-layer DNN [2]. The just-cited work uses a

17

model compression method to train the model. Model compression is a technique where

synthetic labeled data is obtained by passing the unlabeled data through a complex model

(DNN) and this synthetically labeled data is used to train shallow neural networks (SNN).

SNN is then trained to learn the same function that was already learned by the complex

model. This shows that SNN could also learn a complex function similar to DNN [2].

The technique described in [31] reduces the number of parameters in the neural

network based on the fact that the optimized weights of the neural networks tend to be

structured. The technique of discarding less important parameters from the neural

network with only a small performance loss is called as pruning [32]. Two types of

structured pruning described in [32] are regularization-based pruning and importance-

based pruning. In the regularization based pruning method, weights are divided into

different groups based on their importance and each group uses a different regularization

parameter resulting in zeroing out the unimportant parameters [32]. For image

application, the proposed approach described in [32] achieved 4X speedup and 0.8%

accuracy loss for AlexNet. The greedy network pruning called as fisher pruning [33]

yields a 10x speedup. Fisher pruning initially focused on investigating performance

change by removing a single parameter and then greedily removing the parameters until

there is no significant drop in accuracy [33]. This technique reuses the already computed

base model’s gradient information, which makes it easier to implement.

 DNN is trained to learn both connections as well as weights. The pruning

technique is compared to a mammalian brain. During the early stage of a child’s

development process the synapses are created and then the little-used ones are gradually

pruned in the later stages [34]. The iterative pruning and retraining of network ensure

18

only a small loss in accuracy but a huge reduction in the complexity of the network. L2

regularization gives better results compared to L1 regularization. [34]. The iterative

pruning technique outperforms the single-step aggressive pruning. Image recognition

implemented using the MNIST database and AlexNet show that pruning reduces

computational resource without significant loss in accuracy. This technique reduces the

number of parameters in AlexNet from 61M to 6.7M with no loss in accuracy [34]. The

optimal brain damage (OBD) based pruning outperforms the magnitude-based pruning.

The OBD based pruning cuts the network complexity by half, facilitating the use of

limited training data [35].

2.4 Overfitting problems with deep neural network models

 The multiple non-linear hidden layers learn complex features of input. However,

fully connected DNN models are prone to overfitting [36]. The increase in the complexity

of the network can overfit the data but may fail to generalize for test data that is not seen

under training. The condition where DNN model yields poor performance in both

training and validation data is referred as an underfitting problem; hence it is important to

make sure that the network yields good performance on training data before dealing with

the overfitting problem [37].

 Early stopping is one of the techniques used to address the overfitting problem.

The technique involves careful observation of the training process by analyzing the

evaluation metrics and stopping updating of weights as the average error on the

validation set starts increasing. The practical validation error curve usually has two or

more local minima, so it is important to stop training at the smallest local minima [36].

Figure 6 shows the overfitted, underfitted and appropriate fit neural network models.

19

Figure 6. Overfit, Underfit and appropriate fit of Neural Network

 Regularization also helps in overfitting. L1 and L2 are the two types of

regularization technique. The regularization parameter is a hyperparameter added to the

cost function to reduce overfitting. The most commonly used regularization is L2

regularization; also known as weight decay, it acts as a scale factor that drives the

weights towards zero and reduces the error rate. However, imposing large regularization

sometimes fails the learning algorithm like gradient descent [38]. Experimental results on

VGG-16 [39] and AlexNet [40] architectures show regularization helps in increasing the

accuracy but suddenly exhibits 1% drop in accuracy for a large regularization. Delayed

Strong Regularization is also one of the techniques used to addresses the gradient

diminishing problem in learning method [38].

 The so-called dropout technique significantly reduces the overfitting problem and

outperforms regularization techniques. This technique significantly improves the

performance in speech, image and document classification problems [37]. The limited

training data and extensive training yield an overfitted model. A complex neural network

20

requires a large amount of training data. When the available training data is limited it is

possible to use the dropout method. It is a technique of temporarily removing certain

hidden units during training. The choice of removing the hidden units from the network is

done randomly. For instance, 50% dropout removes half of the hidden units. It is possible

to use a different dropout rate for each hidden layer [37]. High momentum is a technique

used in neural network to speed up the learning process. There might be cases where

large momentum and learning rate make the network weights to grow very large; in such

scenarios it is possible to use Max-norm regularization technique to address this problem.

Using dropout along with max-norm regularization, decaying learning rates and high

momentum provide a significant improvement in performance [37]. Experimental results

on TIMIT, MNIST, CIFAR-10, and ImageNet databases have all shown the effectiveness

of using dropout in combatting the overfitting problem. However, many researchers use

dropout alone and have reported satisfactory results. [41].

The Gaussian dropout described in [37] multiplies the output of the hidden units

by Gaussian noise. This dropout method increases the training time by 2-3 times the

original training without dropout [37]. The experimental results on the TIMIT database

using a 6-layer network shows that this dropout technique decreases the phone error rate

from 23.4% to 21.8% [37]. It is important to remember that the dropout method doesn’t

decrease the complexity of the network as the nodes of the neural network are just

ignored in that particular updating step during training but are not removed from the

network. Figure 7 shows the fully connected network with and without dropout.

21

Before applying Dropout After applying Dropout

Figure 7. Dropout technique

22

III. PROPOSED APPROACH

3.1 Direct DNN based solution

The proposed approach of this research is illustrated in Figure 8, where the top

diagram shows the training process and the bottom diagram shows the testing process.

For training and testing, we used two commercially available databases, clean speech

TIMIT database and multi-handset database HTIMIT, and a noise added TIMIT database

we created using four types of noise at three different signal-to-noise ratios (SNRs). We

used 80% of the data for training and 20% of the data for testing. We used the HTK

Toolkit as feature extractor to extract the MFCCs from the speech data. A stacked vector

of MFCC features is used as input to the DNN. We used CNTK toolkit to develop the

DNN model and the direct DNN based approach for the intended speaker recognition,

which is explained later in this chapter. In training phase, the prediction error from the

DNN output is used to update the weights and train the DNN model. The trained DNN

model is used in testing phase, and the DNN posterior probabilities are used to determine

the identity of the speaker.

With this proposed approach, the following tasks were carried out in this research:

(1) developing a baseline DNN system; (2) evaluating the performance of the baseline

system over the three speech databases mentioned above; (3) investigation of complexity

reduction techniques; and (4) evaluating the performance of the final complexity reduced

system over the same three speech databases. The rest of the chapter explains the details

of HTK, CNTK, and speech databases used in this research.

23

Training
speech

database

Feature
Extractor
(HTK)

Deep Neural
Network
(CNTK)

Performance
evaluation

Training
label
file

Prediction
error

Testing
speech

database

Feature
Extractor
(HTK)

Deep Neural
Network
(CNTK)

Performance
evaluation

Speaker Identity

(a) Training

(b) Testing

Updating
weights

Figure 8. Block diagram of the proposed approach

3.2 HTK TOOLKIT

 To extract MFCC feature vectors, the speech signal is pre-processed using a pre-

emphasis filter and then divided into frames. A Hamming window is applied to each

frame to reduce the spectral leakage. Each frame is then processed using Fast Fourier

Transform and the resulting frequencies are linearly spaced into a Mel-frequency filter

bank. Finally, a logarithmic transformation followed by cosine transformation is applied

to generate Mel-Frequency Cepstral Coefficients [24]. We calculated MFCCs using the

Hidden Markov Toolkit [42]. A configuration file is first created, specifying the required

parameters like window size, sampling rate, etc., along with a text file specifying the

24

location of the .wav file and .mfc file and then use HTK’s HCopy tool to extract the

MFCC feature vectors, using the following command.

HCopy -T 1 -C config_wav2mfc -S convert.scp [42]

The 39-dimensional MFCC features are extracted from the speech signal. The

feature vector of each frame has 12 MFCCs, 1 normalized energy, 13 delta, and 13 delta-

delta coefficients. CNTK expects as input HTK format MFCC files and label files. It

expects the start and end of the frame in the label file. We used HVITE tool [42] to create

the label files containing information about the start and end of the frames. The generated

label files are then formatted using a python script for use in CNTK.

3.3 CNTK TOOLKIT

 CNTK is one of the popular open-source deep learning software toolkits [5]. It is

used to implement deep learning architectures, such as Convolution Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Deep

Structured Semantic Models (DSSM), and Deep Neural Networks (DNNs). CNTK

supports Windows and Linux platforms. Also, it supports popular data such as plain text,

speech, images, and binary [5]. CNTK trains deep learning models faster than other

available open-source deep learning libraries like TensorFlow, Theano, Caffe, etc., [43].

The compatibility of CNTK library with C++ and Python allows the user to customize

the built-in algorithms. This library can be efficiently implemented on a CPU, single or

multiple GPU [5]. We chose to use CNTK as it is efficiently implemented for speech

applications. CNTK is 2 to 4 times faster than TensorFlow [43]. CNTK is best suited

when the resource availability is limited. One can use Brain Script or Python to

implement their neural network models. CNTK supports sparse data computation but

25

doesn’t support sparse weight computation. All DNN experiments described in this thesis

were performed on an NVIDIA GEFORCE 940MX GPU enabled laptop, using the

Microsoft Windows operating system.

 CNTK requires as input MFCC files and the corresponding label files of the

speech data to train the DNN model. As mentioned above, we used the HTK toolkit to

extract features from the speech data. The CNTK library provides a function to read the

HTK format feature and label files.

3.4 Speech databases

 DNN requires a lot of data for training if it has a large number of parameters. Our

research is focused on small footprint closed-set speaker recognition. Further goals are to

develop a reduced complexity DNN and demonstrate robust performance under telephone

handset variability and in acoustic background noise. After investigating commercially

available databases and with advice from experts in the field, we chose TIMIT database

for DNN-based speaker recognition system development and HTIMIT database to

evaluate its performance robustness to handset variability. Also, we created a noise-added

TIMIT database, by adding four types of noise to clean TIMIT speech at three different

signal-to-noise ratios, to evaluate the robustness of the system under different acoustic

background noise conditions.

3.4.1 TIMIT database

 The TIMIT (Texas Instruments Massachusetts Institute of Technology) corpus is

widely used for the development and evaluation of speech related applications. It is

commercially available from the Linguistic Data Consortium (LDC) [20]. It contains the

26

recordings of 630 speakers of eight different dialects. The speech was recorded using a

high-quality microphone at a sampling rate of 16 kHz [20]. The TIMIT corpus contains

phonetically rich speech waveform files for each utterance as well as corresponding

phonetic and word transcription files. The corpus contains two dialect sentences (SA),

three phonetically diverse sentences (SI) and five phonetically compact sentences (SX)

for each speaker. The same two dialect sentences (SA) are spoken by all speakers [20].

The TIMIT database files are in SPHERE format. We used the sox tool [44] to convert

the files from SPHERE format to wave format.

 As our research is focused on small footprint, text-independent speaker

recognition, we selected randomly 20 speakers (10 male and 10 female speakers)

representing all 8 dialects.

3.4.2 HTIMIT Database

 The HTIMIT database [21] is used in this research to evaluate the effect of

telephone handset variability on the performance of our DNN-based speaker recognition

system. The HTIMIT database is created by playing a subset of TIMIT database from a

loudspeaker though ten different handsets [22]. The TIMIT database is downsampled

from 16 kHz to 8 kHz before playing them through the loudspeaker. The ten different

handsets were used to collect the HTIMIT database. The ten handsets include nine

telephone handsets and a high-quality microphone [22]. Of the ten handsets used, four of

them had carbon button microphone (cb1, cb2, cb3, cb4), four of them has electret

microphones (el1, el2, el3, el4), one was a portable (cordless) phone (pt1), and the tenth

one was a Sennheizer high-quality head-mounted microphone (senh).

 To have variable sound characteristics, different transducer designs were chosen

27

as a criterion to select carbon-button handsets and different transducer grill designs were

chosen as a criterion to select different electret handsets. Handsets cb3 and cb4 were

selected to evaluate the robustness of the system in poor handset conditions [22]. The

HTIMIT database files are also in SPHERE format; we used the sox tool to convert the

files from SPHERE format to wave format.

3.4.3 Noise added TIMIT database

 To evaluate the robustness of DNN based speaker recognition in acoustic

background noise conditions, we created a noisy database by adding noise to the clean

TIMIT speech. We selected four different noise types: moving car noise, wind noise,

white noise and city traffic noise [45]. The noise files were sampled at 16 kHz.

 The noise files were added to the TIMIT speech files at three signal-to-noise

ratios: 5 dB, 10 dB, and 20 dB. The noise power for individual noise file was calculated

and a fixed scale factor K was then calculated and applied to reduce the energy of the

noise signal for a given SNR. Finally, the resulting noise file is added to the clean speech

file producing a noise added speech file. We wrote a MATLAB function to add noise at

specified SNR to clean speech. We used a MATLAB tool to estimate the SNR of the

noise-added speech files and verified that the SNR was, indeed, correct. The

mathematical expression to calculate the factor K is given by,

K = (signal_power/noise_power) * 10^(-(SNR/10))

28

IV. DEVELOPMENT OF THE BASELINE DNN SYSTEM

4.1 DNN Configuration

 There is no thumb-rule for selecting the number of hidden units to use in DNN.

As this research work is focused on designing a closed-set small footprint speaker

recognition system, it is our goal to design a model with just enough parameters. Hence,

we conducted experiments to find the right number of hidden units per layer for our

problem that are applicable to all three databases: TIMIT, HTIMIT, and noise added

TIMIT. We initially trained the network on full utterance speech data, but it failed to give

acceptable results, as it is not considered as an effective training approach in speech

applications [12]. For a relatively small set of speakers (20 in our case), it is expected that

we get 100% speaker recognition accuracy for clean speech. However, the full utterance

training produced significantly lower performance. Hence, we investigated the context-

based training approach, where a stacked set of spectral features (MFCCs) extracted from

speech frames over a context window of 5 frames to the left and 5 frames to the right

around the current input frame is used as feature vector input to DNN [12]. A 39-

dimensional MFCC feature vector is extracted for each frame of the speech signal. With

context-window being 11 frames wide, the dimension of the input layer is 429 (=11x39).

The output layer dimension is 20, as we are developing a speaker recognition system for

20 speakers.

The classification or prediction error is calculated during training to assist the

back-propagation technique in updating the weights. We initially used the stochastic

gradient descent (SGD) algorithm to update the weights. SGD uses a single learning rate

throughout the training process. We then decided to use Adam optimization, which gave

29

comparatively better results. Adam optimization algorithm is an extension of SGD, and it

optimizes the learning rate based on the first and second order moments of the gradients.

Adam is widely used in natural language problems [16]. The learning rate specifies the

rate at which the weights are updated. We used the learning rate of 0.001. A larger

learning rate increases the training speed, but the gradient descent can overshoot the

minimum, thereby failing to converge or even diverging, resulting in ineffective training.

We experimented with different learning rates in the exponential range of 0.1, 0.01, 0.001

and found that the learning rate of 0.001 provides good overall performance for our

training data. We conducted the following experiments using HTIMIT database.

The hidden layer units are a linear function of their inputs. The activation

function transforms the linear hidden units into a non-linear function. We initially used

sigmoid as the activation function, but it resulted in the vanishing gradient problem. To

address this problem, we switched to the ReLu activation function.

 The accuracy of the model increased with the increase in the number of hidden

units per layer but reached a plateau; any further increase produced no additional increase

in accuracy. There is a risk in that too many hidden units can cause overfitting and hence

lower performance over test data.

30

0 500 1000 1500

Hidden units

0

5

10

15

20

25

30

E
rr

or
 r

at
e

in
 %

Training set

Testing set

Figure 9. Performance of the network for various hidden number of units per layer

We used 3 hidden layers for this experiment. Seen from Figure 9, using 1000

hidden units per layer produces good performance.

After deciding the number of hidden units per layer, experiments were carried out

to find the appropriate number of hidden layers. The performance of DNN can, in

general, improve with increase in the number of layers. However, for our problem of

speaker recognition for a closed set of 20 speakers, it is sufficient to use just three layers.

Anything beyond 3 hidden layers reached a plateau. Let us recall that this research is

focused on designing a DNN solution with just enough hidden layers and enough hidden

units per layer. Using 3 hidden layers and 1000 hidden units per layer meets this goal.

Neural networks tend to overfit the training data when the available data for

training is limited. One can address this issue by adding more data for training such that

DNN will be trained on all possible training data and decrease the generalization error for

unseen new test data. In our experiments, we observed overfitting and the resulting high

generalization error. We used the dropout technique to solve this issue; however, it is

31

important to use a proper level of dropout as otherwise it will result in underfitting,

thereby yielding a lower performance even in training. In order to achieve good overall

performance of DNN, we carefully experimented on the use of different dropout rates as

illustrated in Figure 10 and found that the dropout rate of 30% is best suited for our

problem.

 The dropout technique randomly ignores certain hidden nodes during training. It

is important to note that the dropout technique helps in resolving the problem of

overfitting but doesn’t help in decreasing the complexity of the network because the

nodes and connections of the network are just ignored while training and are not removed

from the network.

0 10 20 30 40 50

Dropout rate in %

3

4

5

6

7

8

E
rr

or
 r

at
e

in
 %

Figure 10. Performance of the network on different dropout rate

One complete sweep over the training data set is called an epoch. Using more

epochs will help DNN to learn from the prediction errors and progressively optimize the

weights, thereby yielding progressively better performance. Training the DNN more than

required might result in an overfitted network.

32

Figure 11. Baseline DNN architecture

 Figure 11 shows the baseline DNN model used in our research. The baseline has

three hidden layers, each with 1000 hidden units. The context-based training gave error-

free performance for clean speech condition as expected and robust performance under

acoustic background noise and handset variability, as described in the next section. This

DNN configuration is our baseline system for the intended speaker recognition task and

for subsequent complexity reduction task. This baseline DNN has 2.4M parameters.

4.2 Performance evaluation of the baseline DNN system

 The performance of the baseline model was evaluated on clean speech database

TIMIT, multi-handset database HTIMIT, and noise added TIMIT database.

The baseline DNN speaker recognition accuracies on TIMIT database in training

and testing are both 100%. Training set here consisted of 8 utterances from each of 20

speakers, for a total of 160 utterances. Test set here consisted of 2 utterances from each of

33

20 speakers, for a total of 40 utterances. Each utterance is approximately 3 seconds long,

which means approximately 150 frames.

Table 1. Performance of the baseline DNN model on HTIMIT Database

Condition Accuracy Top-two

Training set 100% -

Testing set 96.75% 99.5%

We used the HTIMIT database to evaluate the robustness of the baseline DNN

model over handset variability. A higher error rate was found for female speakers

because of the loss of high-frequency information due to the downsampling of TIMIT

database and 300-3200 Hz band-limiting done to produce HTIMIT [22]. The error rate on

female speakers was found to be 5.5% and the error rate on the male speakers was found

to be only 1%. This is consistent with what has been reported previously where the GMM

method was used [22].

In Table 1, “Top-two” refers to the performance metric where if the correct

speaker identify corresponds to the top two averaged output posterior probabilities, the

performance is declared as correct. The motivation for reporting top-two performance is

that other context-based information, such as if the first-choice speaker is not “on duty”

or the context of the ongoing dialog, can be used to correctly disambiguate between the

top two choices. Top-two performance numbers are reported in the rest of this thesis

whenever the standard (or “top-one”) performance is less than 100%. The performance of

the baseline DNN model on test data from individual handsets is given in Table 2.

Training in these cases was performed over data from all ten handsets.

34

We achieved 100% performance for cb2, el1, and senh handset conditions. Recall

that senh is a high-quality microphone. The handsets cb3, cb4, and pt1 produced lower

performance as expected. Recall that pt1 is a cordless phone.

Table 3. Performance of the baseline model on noise added TIMIT

Condition

Accuracy

20 dB 10 dB 5 dB

Training set 100% 100% 100%

Testing set 100% 98.75% 98.125%

(Top-Two) - (100%) (100%)

Table 2. Performance of the baseline DNN model on individual
handset data

Handset Accuracy Top-Two

cb1 95% 97.5%

cb2 100% -

cb3 95% 100%

cb4 90% 100%

el1 100% -

el2 97.5% 100%

el3 97.5% 100%

el4 97.5% 100%

pt1 95% 97.5%

senh 100% -

35

To study the robustness of the baseline DNN model in acoustic background noise,

we evaluated the baseline system using the noise-added TIMIT database, which includes

4 noise types and 3 SNRs for each noise type. The performance of the baseline DNN

model in noise at different SNRs is shown in Table 3. Figure 12 shows speaker

recognition error rate at 3 different SNR conditions.

 Training was performed over all 4 noise types at a given SNR. The baseline DNN

model performs at 100% for 20 dB SNR condition and above 98% in 10 dB and 5 dB

conditions. As mentioned above, the top-two performance means that the correct speaker

is always in the top two choices in the DNN posterior probabilities. Under the top-two

performance metric, the baseline DNN is flawless for all three SNRs, which is

impressive.

0 5 10 20

SNR in dB

0

0.4

0.8

1.2

1.6

2

E
rr

or
 r

at
e

in
 %

Figure 12. Performance of the baseline DNN on noise added TIMIT at different
SNR conditions

36

V. INVESTIGATION OF COMPLEXITY REDUCTION TECHNIQUES AND

THEIR PERFORMANCE

Reducing the complexity of the model is critical in small footprint DNN based

speaker recognition system. When the available resources are limited it is possible to

design a simplified DNN speaker recognition system using a suitable complexity

reduction technique. Complexity reduction of the model can be achieved in several

ways. This research is focused on reducing the number of parameters in the DNN model

without significant loss in the accuracy. Pruning is a technique of removing the

parameters from the network using a suitable algorithm. Pruning technique converts the

fully connected dense network into a sparse network [34].

As noted earlier, this research uses the CNTK deep learning library to design the

DNN. However, CNTK parameters can only be dense corresponding to fully connected

hidden layers This is one of the drawbacks of using CNTK for pruning purpose.

Therefore, we had to come up with a different approach to implement pruning using

CNTK. Instead of removing the parameters from the network we set the less important

parameters to zero and explicitly developed a python-based function in CNTK to avoid

the zero weights from being updated while training the network.

5.1 Adaptive pruning

 Pruning is a technique of removing parameters, namely weights, from the neural

network without significant loss in accuracy. In a pruning technique, after training is

completed, any weight that is less than a certain threshold is considered less important

and is thus discarded or zeroed out. In the adaptive pruning technique we investigated,

the standard deviation of each layer’s weights multiplied by a quality factor is used as a

37

threshold, which makes the threshold data-adaptive rather than fixed. The weights below

this adaptive threshold are removed from the network (or zeroed out as mentioned above)

and the network is retrained. Failing to retrain will significantly impact the network’s

performance [34].

As noted above, the baseline model has 2.4M parameters. The parameters, namely

weights, that fall below the adaptive threshold in each layer are set to zero and the final

model with sustained (that is, non-zero) parameters is obtained. It is important to retrain

the model starting with the sustained parameters rather than re-initializing the model

weights. This makes the network train relatively quickly because of good starting

conditions, thereby requiring less computation for retraining as well.

Table 4. Performance of adaptive pruning on TIMIT Data

Condition Performance Parameters left
(Complexity reduction)

Training set 98.73% 254K (9.5X)

Testing set 95.23%

We initially experimented on TIMIT database. The performance of the pruned

model on training and test sets is as shown Table 4. We obtained 1.27% error on training

set and 4.77% error on test set. The adaptive greedy pruning technique exhibited a high

variation in the performance of the model. It is, therefore, important to closely watch the

retraining process. We were able to reduce the number of parameters nearly 9.5X

compared to the original baseline but with a significant drop in accuracy.

38

Table 5. Performance of adaptive pruning on HTIMIT

Condition Performance Parameters left
(Complexity reduction)

Training set 98.3% 215K (11X)

Testing set 85.5%

To study the robustness of the pruned model in various handset conditions, we

experimented on the HTIMIT database; the performance results are given in Table 5. The

adaptive pruning produced a 1.7% error rate on the training set and 14.5% error rate on

the test set, although with over 11X complexity reduction. With the adaptive pruning

technique, it is harder to prune the network weights without sizeable performance loss,

when the dataset has various handset conditions. In other words, when the database is

not homogeneous, the effectiveness of the pruning approach becomes less.

We then experimented the pruning technique on noise added TIMIT database in

different noise levels and different background noise types. The performance of the

system in different noise conditions is shown in Figure 13.

39

 220K (10.9X)

Figure 13. Performance of adaptive pruning on noise added TIMIT at different
SNR conditions

This greedy pruning technique makes pruning less effective and exhibits high

variation in the performance of the system under noise. We were able to achieve 10.9X

complexity reduction but with a large performance loss.

We tried using L2 regularization to scale the updating of parameters while

retraining to minimize the variations in the network but didn’t get any significant

improvement in the performance. The lack of effectiveness of pruning may, in part, be

due to the fact that each noise condition involves 4 different noise types making the

database non-homogeneous.

220K (10.9X)

40

5.2 Sequential Layer Specific pruning

 As noted earlier, in DNN the lower layers learn simple features and the higher

layers learn more complex features. As stated in the literature review section, in indirect

DNN based speaker recognition, DNN is used as a feature extractor. Usually, the hidden

layers near the output layer are used for feature extraction because these layers contain

speaker-specific information. The extracted features are then used with a secondary

classifier to predict the speaker identity. We used this working principle of DNN to find

the sequence or order in which the layers need to be pruned. This approach is based on

the inter-dependency [46] of DNN layers. It is important to note that pruning here refers

to zeroing out the parameters that fall below the threshold, as we are limited by the

functionality of CNTK for pruning purpose. However, in cases of pruning supported

software, one can use the sequential layer specific (SLS) pruning technique to remove the

weights instead of making them zero. Figure 14 shows the baseline DNN architecture,

with number of nodes of each layer shown.

Figure 14. Our baseline Deep Neural Network architecture

41

The four sets of connections W, X, Y, and Z are sequentially dependent on each

other: Y as a collection depends on X’s output, X on W’s output, and Z on Y’s outputs.

As before, we initially trained the fully connected DNN model. The standard deviation of

each layer’s weights is calculated. The threshold for each layer is calculated by

multiplying the respective standard deviation with the quality factor, as before. We

started pruning the final hidden layer weights Y; we chose this layer to prune first

because this layer contains speaker-specific information and parameters that fall below

the threshold are considered as not speaker-specific and removing them should not

impact the performance of the system. However, as before, it is important to retrain the

model after pruning the weights Y, as otherwise the performance of the model will be

significantly impacted. The pruning technique is then applied to X followed by

retraining; this procedure is then repeated for W; at the end, pruning is applied to Z. This

entire pruning process is called Sequential Layer-Specific (SLS) pruning. The SLS

pruning technique proposed here is not greedy; it is dependency-based pruning. As

described, SLS pruning takes place in multiple stages in the specific sequence mentioned,

with different number of parameters removed in each stage immediately followed by

retraining.

 To describe the SLS process further, while pruning Y weights, other layer weights

are kept untouched; hence the retraining of parameters of weights Y is dependent on

other layers and doesn’t result in a significant drop in accuracy as compared to the earlier

greedy pruning technique. As we are pruning one layer at a time in the right sequence as

described above, the network is resistant to significant performance losses. We have

found the SLS pruning techniques to outperform the earlier-described adaptive pruning

42

technique. The sequence of pruning we implemented is: start pruning from the last hidden

layer and move towards the input layer and then finally prune the output layer if

necessary. From experiments, we have found that aggressive pruning in the output layer

can result in a large drop in accuracy. Hence, it is important to be cautious in pruning the

output layer. The sequence of pruning a three hidden layer DNN is given as follows:

Y | Keeping X, W, Z constant

X | Keeping W, Y, Z constant

W| Keeping X, W, Z constant

Z | Keeping X, W, Y constant

The flow chart in Figure 15 illustrates the SLS pruning algorithm.

Fully-
connected

DNN

Remove
connections

(y/x/w/z)

Retrain the
model

Prune next
layer

Threshold
adjustment

Poor

Reliable

Test?

Figure 15. Flowchart of the SLS algorithm

43

The sequential layer specific pruning technique is a stable and efficient way of

pruning the parameters in the neural network. This pruning technique makes the network

resistant to sensitivity and performance loss. The proposed SLS technique involves

zeroing out the less important parameters one layer at a time in a selective, sequential

manner, followed by retaining the DNN model with sustained parameters at each stage.

The SLS pruning technique requires less computation compared to other pruning

techniques because here the number of pruning and retraining processes is equal to the

number of layers of the neural network. In contrast, in greedy pruning technique the

network is made to learn the connections by greedily removing parameters in large

numbers all at once.

We initially experimented on TIMIT database to examine the effects of SLS

pruning on clean speech data. Table 6 shows the layer-wise performance of SLS pruning

on TIMIT.

Table 6. Layer-wise performance of SLS pruning technique on TIMIT database

Connections Train set Test set

Parameters left
in respective layer

Y 100% 100% 7.1K

X 100% 100% 11K

W 100% 100% 38.2K

Z 100% 100% 20K

The SLS pruned system has 100% accuracy for TIMIT database. The

experimental result shows that we can prune relatively aggressively in the hidden layers

44

but not in the input and output layer. After multiple stages of layer-wise pruning, we were

able to zero out approximately 2.373M parameters and the final pruned model has 79K

parameters without any loss in accuracy. The SLS pruned system on TIMIT database

achieved 100% accuracy. (The 79K count in the final pruned model includes 3K bias

values and 20K output layer connections.) We didn’t prune bias values as they help the

model to fit the data better. We also didn’t prune the final layer because we already

zeroed out a maximum number of parameters in other layers and the final layer

parameters were just 20K and pruning this layer wouldn’t have contributed significantly

to the overall complexity reduction rate. When we tried pruning the final layer, it yielded

an error rate of 2%; this confirms our earlier position for not pruning the output layer

connections.

To study the robustness of the SLS pruned DNN model we conducted

experiments on multi-handset database HTIMIT. Let us recall that the HTIMIT database

has 10 different handset conditions. The SLS pruning technique leads to a small loss in

the performance due to the heterogeneous nature of the database. It is possible to carry

out the layer-wise pruning if each layer pruning in a heterogeneous database exhibits a

small error rate because every subsequent stage retraining will improve the overall

performance of the network and yields a low complexity pruned model without

significant loss in accuracy. The performance of the DNN model after pruning each layer

and retraining the network is shown on Figure 16 , which also includes parameters left in

respective layer (shown at the top of the bar graph). The performance the SLS pruned

DNN is shown in Table 7, which also includes the top-two performance metric. The final

45

SLS pruned model has 538K parameters for a 4.5X reduction relative to the fully

connected model and exhibits reliable performance in the speaker recognition task.

Figure 16. Layer-wise performance of SLS pruning technique on HTIMIT Database

Table 7. Overall performance of the final pruned model on HTIMIT
database

Data Accuracy Top-two

Training set 100% -

Testing set 94.75% 98.25%

The robustness of the SLS pruned model in noisy conditions is studied using the

noise added TIMIT database. As discussed before, this database consists of 4 different

noise types: car noise, white noise, wind noise, and city traffic noise. As shown earlier, it

72.5K 36.7K 416.3K 10.2K

46

is difficult to prune the model effectively in noisy conditions, using the earlier adaptive

pruning technique. The SLS pruning technique is, however, more efficient to prune the

parameters. The performance of the system for different noise conditions is shown in the

following figures and tables.

Figure 17. Layer-wise performance on noise added TIMIT database at 20 dB SNR

Table 8. Overall performance of the final SLS pruned model on noise added
TIMIT at 20 dB SNR

Condition Accuracy Top-two

Training set 100% -

Testing set 99.37% 100%

190K 198K 404K 20K

47

 500.8K 465.9K 388.5K 19.2K

 Figure 18. Layer-wise performance on noise added TIMIT database at 10 dB SNR

Table 9. Overall performance of the final SLS pruned model on noise added
TIMIT at 10 dB SNR

Condition Accuracy Top-two

Training set 100% -

Testing set 98.75% 100%

48

 25.5K 886.1K 429K 20K

Figure 19. Layer-wise performance on noise added TIMIT database at 5 dB SNR

Table 10. Overall performance of the final SLS pruned model on noise added
TIMIT at 5 dB SNR

Condition Accuracy Top-two

Training set 100% -

Testing set 98.12% 98.75%

 The SLS pruning technique results in complexity reduction and speaker

recognition accuracy for the 3 SNR conditions as follows: 3X, 99.37% for 20 dB SNR;

1.7X, 98.75% for 10 dB SNR; and 1.7X, 98.125% for 5 dB noise. It is interesting to note

that in both 5 dB and 10 dB SNR conditions, the performance of the SLS pruned model is

the same as that of the unpruned baseline, although at only a modest 1.7X complexity

49

reduction. For 20 dB SNR condition, a higher reduction of 3X is achieved but at a

0.625% performance loss relative to the baseline. The SLS technique can therefore be

used to prune the model for noisy conditions without significantly compromising the

performance of the system. Figure 20 shows the error rate of the SLS pruned model at

different SNR conditions, complexity reduction rate for each case is also shown.

5 10 20

SNR rates in dB

0.8

1.2

1.6

2

E
rr

or
 r

at
e

in
 %

1.7X

3X

1.7X

Figure 20. Performance of the SLS pruned model at different SNR conditions

50

VI. FINAL DNN BASED SMALL FOOTPRINT SPEAKER RECOGNITION

SYSTEM

6.1 Details of the DNN baseline Model

We used direct DNN based speaker recognition. A 39-dimensional MFCC feature

vector is extracted for each frame of the speech signal using the HTK toolkit. With

context-window being 11 frames wide, the dimension of the input layer is 429 (=11x39).

The output layer dimension is 20 as we are developing a speaker recognition system for

20 speakers. We used 3 hidden layers with 1000 hidden units per layer. In addition to

this, the DNN baseline model has 3K bias parameters; hence the total number of

parameters in our fully connected baseline model is about 2.4M

(=429K+1M+1M+20K+3K). Figure 11 in Chapter IV shows the breakdown of

parameters across layers. We used the ReLu activation function to the hidden layer units

and softmax activation function to the output layer to get the output as a probability

distribution over the 20 classes. Adam optimization algorithm is used with a learning rate

of 0.001 for updating the network weights. A dropout rate of 30% and L2 regularization

are used to effectively handle overfitting and hence to decrease the generalization error

on unseen test data. This DNN baseline model is used for investigation of complexity

reduction techniques.

6.2 Performance of the DNN baseline system

 The direct DNN based baseline system is trained using the context-based

training approach. The frame level DNN predictions from the output layer are averaged

over the test utterance using a python script developed to predict the speaker identity. The

performance of the baseline DNN system is flawless at 100% on training set data for

51

TIMIT, HTIMIT, and the three noised added TIMIT databases. The performance on test

set is as follows: 100% accuracy on clean speech TIMIT database, 96.75% on multi-

handset database HTIMIT, and 100%, 98.75%, and 98.125% on noise added TIMIT

database at 20 dB, 10 dB, and 5 dB SNR, respectively. The top-two performance on

multi-handset HTIMIT database is 99.5%. Under the top-two performance metric, the

baseline DNN achieved 100% for both 10 dB and 5 dB SNR conditions, which is

impressive; for 20 dB SNR, the performance (top-1) is already 100%.

6.3 Performance of the final pruned DNN system

The layer-specific standard deviations multiplied by layer-specific quality factors

are used as thresholds to respective layer’s connections for pruning purpose. We

developed a custom python script to use CNTK for pruning purpose so as to allow the

implementation of sparse connections. We used the Sequential Layer-Specific (SLS)

pruning technique to prune the layers of the DNN baseline model in multiple stages in a

selective, sequential manner. The pruned model in each stage is retrained to improve the

performance of the model. We achieved a complexity reduction rate of 31X with no loss

in accuracy for clean speech TIMIT database. For non-homogeneous database conditions

like the multi-handset HTIMIT database, we achieved a complexity reduction rate of

4.5X with 2% drop in accuracy. For the non-homogeneous database of noise added

TIMIT at each of 3 SNRs, each condition involving four different noise types, we

achieved a complexity reduction rate of 1.7X with no loss in accuracy relative to the

baseline DNN model for 10 dB and 5 dB SNR conditions. We were able to prune more

parameters in 20 dB SNR condition and achieved a complexity reduction rate of 3X but

with 0.625% accuracy drop. Under the top-two performance metric, the final pruned

52

DNN model achieved 98.25% accuracy for multi-handset HTIMIT database, and 100%,

100%, and 98.75% accuracy for noise added TIMIT database at 20 dB, 10 dB, and 5 dB

SNR, respectively.

53

VII. CONCLUSIONS AND FUTURE WORK

 In this research we have developed a reduced complexity direct DNN based small

footprint text-independent closed-set speaker recognition system for 20 speakers.

Consistent with the small footprint design goal, a baseline DNN model was developed

with just enough layers and enough hidden units per layer, thereby reducing the total

number of parameters, and by careful design to avoid the common problem of overfitting

and to optimize algorithmic aspects including context-based training, activation

functions, regularization, and learning rate. This baseline model was evaluated on two

commercially available databases, clean speech TIMIT and multi-handset speech

database HTIMIT, and on noise added TIMIT database that we created using four types

of noises at three different signal-to-noise ratios (SNRs). The speaker recognition

accuracy of the baseline is 100% for TIMIT, 96.75% for HTIMIT, and 100%, 98.75%

and 98.125% for noise added TIMIT database at 20 dB, 10 dB and 5 dB SNR,

respectively. This demonstrates that the baseline system has an error-free performance in

relatively clean speech and a robust performance under telephone handset variability and

in acoustic background noise. The baseline model has a total of 2.4M parameters.

 We then developed a novel and enhanced pruning technique called Sequential

Layer Specific (SLS) pruning. The SLS pruning technique performs pruning sequentially

in multiple stages and in a layer-specific manner, followed by retraining after each

pruning stage, while ensuring no or only minor performance loss in each pruning stage.

For the SLS pruned model, the speaker recognition accuracy is 100% for TIMIT database

with 31X complexity reduction; 94.75% for multi-handset database HTIMIT with 4.5X

complexity reduction. For noise added TIMIT database, with 1.7X complexity reduction

54

there is no additional drop in speaker recognition accuracy relative to the baseline DNN

in both 5 dB and 10 dB SNR and a 99.37% accuracy is achieved with 3X complexity

reduction in 20 dB SNR. For cases where the speaker recognition accuracy is less than

100%, a higher “accuracy” is obtained using the “Top-two” performance metric in which

recognition success is declared if the correct speaker lies in the top two choices predicted

by the DNN model. The complexity reduced DNN gave comparatively similar results as

the complex baseline DNN; hence, we have achieved the goal of developing a DNN with

reduced complexity for small footprint applications.

The main contributions of this research are listed below:

 Optimized baseline DNN configuration is developed for a small footprint system.

 Baseline DNN provides error-free performance for clean speech and a robust

performance under handset variability and acoustic background noise.

 Complexity of DNN is reduced using complexity reduction techniques.

 Methodology is developed to customize CNTK for implementing pruning of

weights.

 Adaptive pruning is not as effective in non-homogeneous database conditions.

 A novel and effective pruning technique called Sequential Layer Specific pruning

is developed exploiting layer-specific properties of DNN.

 SLS-pruned DNN system provides error-free performance for clean speech and a

robust performance under handset variability and acoustic background noise.

Areas of future work are described next. First, a speech detector preprocessor may

be used to identify and discard silence frames and use only speech frames for training and

testing the DNN model, as silence frames do not carry speaker-specific information, and

55

therefore not using them may increase the effectiveness of the DNN model. Second, the

acoustic background noise is one of the important operating conditions to be considered

when using DNN for speaker recognition in real-world applications. A future research

goal is to improve the performance of the developed DNN model in acoustic background

noise by using a speech enhancement preprocessor. Third, techniques like cepstral mean

subtraction preprocessor may be used to improve performance under handset variability.

Fourth, for embedded applications including the one that may be used in the International

Space Station, the total number of parameters used in the DNN model is an important

factor as it determines required storage, memory bandwidth, and computational

resources. The associated energy cost can be estimated for a given processor architecture

using the approach discussed in [34].

56

REFERENCES

[1] G. Salazar, A. Romero and D. Juge, Personal communication, 2016, Human

Computer Interface, Avionics Systems Division, NASA Johnson Space
Center,Houston,TX.

[2] B. Lei Jimmy and R. Caruana, "Do Deep Nets really need to be Deep?," in NIPS'14
Proceedings of the 27th International Conference on Neural Information
Processing systems, 2014.

[3] G. Fant, "Phonetics and Phonlogy in the last 50 years," in Dept. of Speech, Music
and Hearing, KTH,Sweden, 2004.

[4] D. Povey, A. Ghoshal, G. Boulianne, N. Goel, M. Hannemann, Y. Qian, P.
Schwarz and G. Stemmer, "The Kaldi Speech Recognition Toolkit," in IEEE Signal
Processing Society, Hilton Waikoloa Village, Big Island, Hawaii,US, 2011.

[5] D. Yu, A. Eversole, M. L. Seltzser, K. Yao and B. G. Huang, An Introduction to
Computational Networks and the Computational Network Toolkit, Microsoft
Research,, 2015.

[6] E. J. Bradley, K. Panagiotis, A. Zeynettin, K. Timothy and K. Philbrick, "Toolkits
and Libraries for Deep Learning," in Digit Imaging, 2017.

[7] D. A. Reynolds and R. C. Rose, "Robust Text-Independent Speaker Identification
Using Gaussian Mixture Speaker Models," in IEEE Transactions on speech and
Audio Processing, 1995.

[8] D. Garcia-Romero, X. Zhang and A. McCree, "Improving Speaker Recognition
Performance in the Domain Adaptation using Deep Neural Networks," in IEEE
Spoken Language Technology Workshop, South Lake Tahoe, NV, USA, 2014.

[9] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohammed, N. Jaitly, A. Senior and
V. Vanhoucke, "Deep Neural Networks for Acoustic Modeling in Speech
Recognition," in IEEE Signal Processing Magazine, 2012.

[10] J. P. Campbell, "Speaker Recognition: A Tutorial," in Proceedings of the IEEE,
1997.

[11] D. Reynolds, "Speaker Identification and Verification using Gaussian mixture
speaker models," in Speech Communications, 1995.

[12] F. Richardson, D. Reynolds and N. Dehak, "Deep Neural Network Approaches to
Speaker and Language Recognition," in IEEE SIGNAL PROCESSING LETTERS,
2015.

[13] E. Variani, X. Lei, E. McDermott, I. L. Moreno and J. Gonzalez-Dominguez,
"Deep Neural Network For Small Footprint Text-Dependent Speaker Verification,"
in IEEE International Conference on Acoustic, Speech and Signal Processing,
2014.

[14] D. Kriesel, A Brief Introduction to Neural Networks, https://www.dkriesel.com,
2007.

[15] G. Jiuxiang, Z. Wang, J. Kuen and L. Ma, "Recent Advances in Convolutional
Neural Networks," in arXiv.org, 2015.

57

[16] D. P. Kingma and J. L. Ba, "Adam: A method for stochastic Optimization," in
International Conference for Learning Representations, San Diego, 2015.

[17] M. A. Nielsen, Neural Network and Deep Learning, Determination Press, 2015.
[18] A. V. Sharma, Understanding Activation Functions in Neural Networks,

https://medium.com/the-theory-of-everything/understanding-activation-functions-
in-neural-networks-9491262884e0.

[19] W. Brett R, K. K. Paliwal and B. Wildermoth, "GMM Based Speaker Recognition
on Readily Available Databases," in Microelectronics Engineering Research
Conference, 2003.

[20] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus and D. S. Pallett, "TIMIT
Acoustic-Phonetic Continuous Speech Corpus," Linguistic Data Consortium, 1993.

[21] D. Reynolds, "HTIMIT," Linguistic Data Consortium, 1998.
[22] D. A. Reynolds, "HTIMIT and LLHDB: Speech Corpora For The Study Of

Handset Transducer Effects," in International Conference on Acoustics, Speech,
and Signal Processing, 1997.

[23] S. Han, H. Mao and W. J. Dally, "Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding," in ICLR,
2016.

[24] T. Kinnunen and H. Li, "An overview of text-independent speaker recognition:
from features to supervectors," Elsevier Science Publishers, vol. 52, no. 1, pp. 12-
40, 2010.

[25] D. A. Reynolds, T. F. Quatieri and R. B. Dunn, "Speaker Verification using
Adapted Gaussian Mixture Models," in Digital Signal Processing 10, 2000.

[26] M. K. Omar and J. Pelecanos, "Training Universal Background Models for Speaker
Recognition," in The Speaker and Language Recognition Workshop, Czech
Republic, 2010.

[27] G. Nijhawan and D. M. K. Soni, "Speech Recognition using MFCC and Vector
Quantisation," International Journal on Recent Trends in Engineering and
Technology, vol. 11, no. 1, 2014.

[28] Ondrej Novotny, O. Plchot, P. Matejka, L. Mosner and O. Glembek, "On the use of
X-vectors for Robust Speaker Recognition," in The Speaker and Language
Recognition Workshop, France, 2018.

[29] A. Zulfiqar, A. Muhammad, A. M. Martinez-Enriquez and G. Escalada-Imaz,
"Text-Independent Speaker Identification Using VQ-HMM Model Based Multiple
Classifier System," in Mexican International Conference on Artificial Intelligence,
2010.

[30] H. Lee, P. Pham, Y. Largman and A. Y. Ng, "Unsupervised feature learning for
audio classification using convolution deep belief networks," in Advances in
Neural Information Processing Systems 22, 2009.

[31] M. Denll, B. Shaklbl, L. Dlnh, M. A. Ranzato and N. d. Freitas, "Predicting
Parameters in Deep Learning," in ARXIV, 2013.

[32] H. Wang, Q. Zhang, Y. Wang and R. Hu, "Structured Deep Neural Network
Pruning by Varying Regularization Parameters," in ARXIV, 2018.

58

[33] L. Theis, I. Korshunova, A. Tejani and F. Huszar, "Faster Gaze Prediction With
Dense Networks and Fisher Pruning," in ARXIV, 2018.

[34] S. Han, J. Pool, J. Tran and W. J. Dally, "Learning both Weights and Connections
for Efficient Neural Networks," in ARXIV, 2015.

[35] Y. LeCun, J. S. Denker and S. A. Solla, "Optimal Brain Damage," in Advances in
Neural Information Processing Systems 2, 1989.

[36] L. Prechelt, “Early stopping- But When?,” in Neural Networks:Tricks of the Trade,
Springer,Berlin,Heidelberg, 2012.

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
"Dropout: A Simple Way to Prevent Neural Network from Overfitting," Journal of
Machine Learning Research 15, pp. 1929-1958, 2014.

[38] D. H. park, C. M. H0 and Y. Chang, "Achieving Strong Regularization for Deep
Neural Networks," in ICLR, 2018.

[39] K. Simonyan and A. Zisserman, "Very Deep Convolution Networks For Large-
Scale Image Recognition," in ICLR, 2015.

[40] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep
Convolutional Neural Networks," Communications of the ACM, vol. 60, no. 6, pp.
84-90, 2017.

[41] G. Cheng, P. Vijayaditya, D. Povey, V. Manohar, S. Khudanpur and Y. Yan, "An
exploration of dropout with LSTMs," in Interspeech, 2017.

[42] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell and D. Ollason, The
HTK, 2001.

[43] https://www.microsoft.com/en-us/research/blog/microsoft-computational-network-
toolkit-offers-most-efficient-distributed-deep-learning-computational-
performance/.

[44] C. Bagwell, "Sound eXchange," SoX Contributors.
[45] https://www.freesoundeffects.com/free-sounds/ambience-10005/.
[46] https://ml4a.github.io/ml4a/how_neural_networks_are_trained/.
[47] S. Rydin, "Text dependent and text independent speaker verification systems.

Technology and applications," in Centre for Speech Technology, KTH,Stockholm,
2001.

[48] X. Zhao, Y. Wang and D. Wang, "Deep Neural Networks For Cochannel Speaker
Identification," in IEEE International Conference on Acoustic and Signal
Processing, 2015.

[49] https://pythonmachinelearning.pro/a-guide-to-improving-deep-learnings-
performance/.

[50] T. Kaddoura, K. Vadlamudi, S. Kumar, P. Bobhate, L. Guo, S. Jain and M.
Elgendi, "Acoustic diagnosis of pulmonary hypertension:automated speech-
recognition-inspired classification algorithm outperforms physicians," scientific
reports, 2016.

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	ABSTRACT
	I. INTRODUCTION
	1.1 Motivation
	1.2 Background
	1.3 Speaker recognition
	1.4 Deep Neural Networks
	1.5 Research objectives
	1.6 Thesis Outline

	II. LITERATURE REVIEW
	2.1 Speaker recognition methods prior to DNN
	2.2 DNN based speaker recognition
	2.2.1 Indirect DNN approach
	2.2.2 Direct DNN approach

	2.3 Complexity of Deep Neural Network models
	2.4 Overfitting problems with deep neural network models
	3.1 Direct DNN based solution
	3.2 HTK TOOLKIT
	3.3 CNTK TOOLKIT
	3.4 Speech databases
	3.4.1 TIMIT database
	3.4.2 HTIMIT Database
	3.4.3 Noise added TIMIT database

	IV. DEVELOPMENT OF THE BASELINE DNN SYSTEM
	4.1 DNN Configuration
	4.2 Performance evaluation of the baseline DNN system

	V. INVESTIGATION OF COMPLEXITY REDUCTION TECHNIQUES AND THEIR PERFORMANCE
	5.1 Adaptive pruning
	5.2 Sequential Layer Specific pruning

	VI. FINAL DNN BASED SMALL FOOTPRINT SPEAKER RECOGNITION SYSTEM
	6.1 Details of the DNN baseline Model
	6.2 Performance of the DNN baseline system
	6.3 Performance of the final pruned DNN system

