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APPLICATION OF PETTIS INTEGRATION TO DIFFERENTIAL
INCLUSIONS WITH THREE-POINT BOUNDARY CONDITIONS

IN BANACH SPACES

DALILA AZZAM-LAOUIR, IMEN BOUTANA

Abstract. This paper provide some applications of Pettis integration to dif-

ferential inclusions in Banach spaces with three point boundary conditions of
the form

ü(t) ∈ F (t, u(t), u̇(t)) + H(t, u(t), u̇(t)), a.e. t ∈ [0, 1],

where F is a convex valued multifunction upper semicontinuous on E × E
and H is a lower semicontinuous multifunction. The existence of solutions is

obtained under the non convexity condition for the multifunction H, and the
assumption that F(t, x, y) ⊂ Γ1(t), H(t, x, y) ⊂ Γ2(t), where the multifunctions

Γ1, Γ2 : [0, 1] ⇒ E are uniformly Pettis integrable.

1. Introduction

In the theory of integration in infinite-dimensional spaces, Pettis integrability is
a more general concept than that of Bochner integrability. Indeed, it is known that
a Banach space E is infinite dimensional if and only if there exists a Pettis inte-
grable E-valued function, which is not Bochner integrable. There is a rich literature
dealing with the Pettis integral. For acquit extensive account, we refer the reader
to the monographe by Musial [15], where further references can be found. On the
other hand, the set-valued integration has shown to be useful tool for modeling a
lot of situations in several fields ranging from mathematical economics to optimiza-
tion and optimal control. Recently, special attention has been paid to the Pettis
integral of multifunctions. For example, let us mention the recent contributions of
Amrani and Castaing [1], Amrani, Castaing and Valdier [2], and Castaing [7] which
deal with the Pettis integral of bounded, especially weakly compact, convex valued
multifunctions. See also [9], [11], [13], [14], [16] and the references therein.

Existence of solutions for second order differential inclusions of the form ü(t) ∈
F (t, u(t), u̇(t)) with three-point boundary conditions, where F : [0, 1]×E× E ⇒ E
is a convex compact valued multifunction, Lebesgue-measurable on [0, 1], and upper
semicontinuous on E × E, under the assumption that F (t, x, y) ⊂ Γ(t) in the case
where Γ is integrably bounded and the case where Γ is uniformly Pettis integrable,
has been studied by Azzam-Laouir, Castaing and Thibault [5].
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Let θ be a given number in ]0, 1[; the aim of our article is to provide existence
results for the general problem of three point boundary conditions associated with
the differential inclusion

ü(t) ∈ F (t, u(t), u̇(t)) +H(t, u(t), u̇(t)), a.e. t ∈ [0, 1],

u(0) = 0; u(θ) = u(1).
(1.1)

We suppose that F : [0, 1] × E × E ⇒ E is upper semicontinuous on E × E and
measurable on [0, 1]. We take H : [0, 1]×E×E ⇒ E as a measurable multifunction
lower semicontinuous on E × E. Furthermore we suppose that F (t, x, y) ⊂ Γ1(t),
H(t, x, y) ⊂ Γ2(t) for all (t, x, y) ∈ [0, 1] × E × E for some convex ‖ · ‖-compact
valued, and measurable multifunctions Γ1,Γ2 : [0, 1] ⇒ E which are uniformly
Pettis integrable. Then we show that the differential inclusion (1.1) has at least a
solution u ∈W2,1

P,E([0, 1]).

2. Notation and Preliminaries

Throughout, (E, ‖·‖) is a separable Banach space and E′ is its Topological dual,
BE is the unit closed ball of E, L([0, 1]) is the σ-algebra of Lebesgue-measurable
sets of [0, 1], λ = dt is the Lebesgue measure on [0, 1], and B(E) is the σ-algebra
of Borel subsets of E. By L1

E([0, 1]) we denote the space of all Lebesgue-Bochner
integrable E valued mappings defined on [0, 1]. We denote the topology of uniform
convergence on weakly compact convex sets by T w

co . Restricted to E′, this is the
Mackey topology, which is the strongest locally convex topology on E′ and we
denote it by T (E′, E). We recall some preliminary results. Let f : [0, 1] → E
be a scalarly integrable mapping, that is, for every x′ ∈ E′, the scalar function
t 7→ 〈x′, f(t)〉 is Lebesgue-integrable on [0, 1]. A scalarly integrable mapping f :
[0, 1]→ E is Pettis integrable if, for every Lebesgue measurable set A in [0, 1], the
weak integral

∫
A
f(t)dt defined by 〈x′,

∫
A
f(t)dt〉 =

∫
A
〈x′, f(t)〉dt for all x′ ∈ E′,

belongs to E. We denote by P1
E([0, 1]) the space of all Pettis-integrable E-valued

mappings defined on [0, 1]. The Pettis norm of any element f ∈ P1
E([0, 1]) is defined

by ‖f‖Pe = supx′∈BE′

∫
[0,1]
|〈x′, f(t)〉|dt. The space P1

E([0, 1]) endowed with ‖ · ‖Pe

is a normed space. A subset K ⊂ P1
E([0, 1]) is Pettis uniformly integrable (PUI for

short) if, for every ε > 0, there exists δ > 0 such that

λ(A) ≤ δ ⇒ sup
f∈K
‖1Af‖Pe ≤ ε,

where 1A stands for the characteristic function of A. If f ∈ P1
E([0, 1]), the singleton

{f} is PUI since the set {〈x′, f〉 : ‖x′‖ ≤ 1} is uniformly integrable.
Let CE([0, 1]) be the Banach space of all continuous mappings u : [0, 1] → E,

endowed with the sup-norm, and let C1
E([0, 1]) be the Banach space of all continuous

mappings u : [0, 1]→ E with continuous derivative, equipped with the norm

‖u‖C1 = max{max
t∈[0,1]

‖u(t)‖, max
t∈[0,1]

‖u̇(t)‖}.

Recall that a mapping v : [0, 1] → E is said to be scalarly derivable when there
exists some mapping v̇ : [0, 1] → E (called the weak derivative of v) such that,
for every x′ ∈ E′, the scalar function 〈x′, v(.)〉 is a.e derivable and its derivative is
equal to 〈x′, v̇(.)〉. The weak derivative v̈ of v̇ when it exists is the weak second
derivative.
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By W2,1
P,E([0, 1]) we denote the space of all continuous mappings in CE([0, 1])

such that their first weak derivatives are continuous and their second weak deriva-
tives belong to P1

E([0, 1]).
For closed subsets A and B of E, the excess of A over B is defined by

e(A,B) = sup
a∈A

d(a,B) = sup
a∈A

( inf
b∈B
‖a− b‖),

and the support function δ∗(·, A) associated with A is defined on E′ by

δ∗(x′, A) = sup
a∈A
〈x′, a〉.

Recall that we have

d(x,A) = sup
x′∈BE′

[〈x′, x〉 − δ∗(x′, A)], ∀x ∈ E. (2.1)

For a set A ⊂ E, coA is its closed convex hull.
Recall also that a set K ⊂ P1

E([0, 1]) is said to be decomposable if and only if
for every u, v ∈ K and any A ∈ L([0, 1]) we have u.1A + v.(1− 1A) ∈ K.

3. The main result

We begin with a lemma which summarizes some properties of some Green type
function (see [3], [5] ). It will be used full in the study of our boundary problems.

Lemma 3.1. Let E be a separable Banach space and let G : [0, 1] × [0, 1] → R be
the function defined by

G(t, s) =


−s if 0 ≤ s ≤ t,
−t if t < s ≤ θ,
t(s− 1)/(1− θ) if θ < s ≤ 1,

(3.1)

if 0 ≤ t < θ, and

G(t, s) =


−s if 0 ≤ s < θ,

(θ(s− t) + s(t− 1))/(1− θ) if θ ≤ s ≤ t,
t(s− 1)/(1− θ) if t < s ≤ 1,

(3.2)

if θ ≤ t ≤ 1. Then the following assertions hold.
(1) G(., s) is differentiable on [0, 1], for every s ∈ [0, 1], and its derivative is

∂G

∂t
(t, s) =


0 if 0 ≤ s ≤ t,
−1 if t < s ≤ θ,
(s− 1)/(1− θ) if θ < s ≤ 1,

if 0 ≤ t < θ, and

∂G

∂t
(t, s) =


0 if 0 ≤ s < θ,

(s− θ)/(1− θ) if θ ≤ s ≤ t,
(s− 1)/(1− θ) if t < s ≤ 1,

if θ ≤ t ≤ 1.
(2) G(., .) and ∂G

∂t (., .) satisfies

sup
t,s∈[0,1]

|G(t, s)| ≤ 1, sup
t,s∈[0,1]

|∂G
∂t

(t, s)| ≤ 1.
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(3) For f ∈ P1
E([0, 1]) and for the mapping uf : [0, 1]→ E defined by

uf (t) =
∫ 1

0

G(t, s)f(s)ds, ∀t ∈ [0, 1],

one has: (3i) uf (0) = 0 and uf (θ) = uf (1).
(3ii) The mapping t 7→ uf (t) is continuous from [0,1] into E, i.e., uf ∈ CE([0, 1]).
(3iii) The mapping uf is scalarly derivable, that is, for every x′ ∈ E′ , the scalar
function 〈x′, uf (.)〉 is a.e derivable, and its weak derivative u̇f satisfies

lim
h→0
〈x′, uf (t+ h)− uf (t)

h
〉 = 〈x′, u̇f (t)〉

=
∫ 1

0

∂G

∂t
(t, s)〈x′, f(s)〉ds

= 〈x′,
∫ 1

0

∂G

∂t
(t, s), f(s)ds〉

for all t ∈ [0, 1] and for all x′ ∈ E′ . Consequently

u̇f (t) =
∫ 1

0

∂G

∂t
(t, s)f(s)ds, ∀t ∈ [0, 1],

and u̇f is a continuous mapping from [0, 1] into E. (3vi) The mapping u̇f is scalarly
derivable, that is, there exists a mapping üf : [0, 1] → E such that, for every x′ ∈
E′, the scalar function 〈x′, u̇f (·)〉 is a.e derivable with d

dt 〈x
′, u̇f (t)〉 = 〈x′, üf (t)〉;

furthermore
üf = f a.e. on [0, 1].

Let us mention a useful consequence of Lemma 3.1.

Proposition 3.2. Let E be a separable Banach space and let f : [0, 1] → E be a
continuous mapping (respectively a mapping in P1

E([0, 1])). Then the mapping

uf (t) =
∫ 1

0

G(t, s)f(s)ds, ∀t ∈ [0, 1],

is the unique C2
E([0, 1])-solution (respectively W2,1

P,E([0, 1])-solution) to the differ-
ential equation

ü(t) = f(t) ∀t ∈ [0, 1],

u(0) = 0; u(θ) = u(1).

The following proposition is an analogous version of the continuous selection
theorem of Bressan and Colombo [6] and Fryszkowski [10], in the case where the
multifunction has values in P1

E([0, 1]). For the proof of this result we refer the
reader to [4].

Proposition 3.3. Let M : [0, 1] ⇒ P1
E([0, 1]) be a lower semicontinuous multi-

function with closed and decomposable values. Then M has a continuous selection.

For the proof of our Theorem, we need the following Lemma due to Grothendieck
[12]. See also [7] for a more general result concerning the Mackey topology for
bounded sequences in L∞E′ .
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Lemma 3.4. Let (gn) be a sequence of uniformly bounded mappings in L∞R ([0, T ]),
which converges pointwise to 0. Then for all uniformly integrable subset K of
L1

R([0, T ]), the sequence (〈gn, h〉) = (
∫ 1

0
gn(t)h(t)dt) converges uniformly to 0, for

all h ∈ K.

Now we are able to give our main result.

Theorem 3.5. Let E be a separable Banach space and let F : [0, 1]× E × E ⇒ E
be a convex compact valued multifunction, Lebesgue-measurable on [0, 1], and upper
semicontinuous on E × E. Let H : [0, 1] × E × E ⇒ E be a multifunction with
nonempty closed values such that H is L([0, 1]) ⊗ B(E) ⊗ B(E)-measurable and
lower semicontinuous on E × E. Assume that for i = 1, 2 there are some convex
‖ · ‖-compact valued, and measurable multifunctions Γi : [0, 1] ⇒ E which are Pettis
uniformly integrable, such that F (t, x, y) ⊂ Γ1(t) and H(t, x, y) ⊂ Γ2(t) for all
(t, x, y) ∈ [0, 1]× E × E. Then the differential inclusion

ü(t) ∈ F(t, u(t), u̇(t)) + H(t, u(t), u̇(t)), a.e. t ∈ [0, 1],

u(0) = 0; u(θ) = u(1).

has at least one solution u ∈W2,1
P,E([0, 1]).

Proof. Step 1. Taking co({0} ∪ Γi(t)) if necessary, we may suppose that 0 ∈ Γi(t)
for all t ∈ [0, 1] and i = 1, 2.
For t ∈ [0, 1], let Γ(t) = Γ1(t) + Γ2(t) and observe that the multifunction Γ inherits
all the properties of Γ1 and Γ2. Let us consider the differential inclusion

ü(t) ∈ Γ(t), a.e. t ∈ [0, 1],

u(0) = 0; u(θ) = u(1).
(3.3)

We wish to show that the W2,1
P,E([0, 1])-solutions set XΓ of (3.3) is nonempty and

convex compact in the Banach space C1
E([0, 1]) endowed with the norm ‖.‖C1 .

Furthermore, if a sequence (un) of XΓ ‖.‖C1-converges to u, then (u̇n) converges
pointwise to u̇ and (ün) converges σ(P1

E ,L
∞
E ⊗ E′) to ü. The proof of this last

assertion is similar of the one in [5, Lemma 5]; we include it here for the convenience
of the reader.

Let us recall that the set SPe
Γ of all Pettis integrable selections of Γ is nonempty

and sequentially compact for the topology of pointwise convergence on L∞ ⊗ E′
and that the multivalued integral∫ 1

0

Γ(t)dt =
{∫ 1

0

f(t)dt; f ∈ SPe
Γ

}
is convex and norm compact in E (see [1], [2], [7]). In view of Lemma 3.1 and
Proposition 3.2, the solutions set XΓ of (3.3) is characterized by

XΓ = {uf : [0, 1]→ E : uf (t) =
∫ 1

0

G(t, s)f(s)ds,∀t ∈ [0, 1]; f ∈ SPe
Γ }.
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Clearly XΓ is convex. Furthermore, if (tn) is a sequence in [0, 1], which converges
to t ∈ [0, 1] we have, by Lemma 3.1,

‖uf (tn)− uf (t)‖ = sup
x′∈BE′

|〈x′, uf (tn)− uf (t)〉|

= sup
x′∈BE′

|〈x′,
∫ 1

0

G(tn, s)f(s)ds−
∫ 1

0

G(t, s)f(s)ds〉|

≤ sup
x′∈BE′

∫ 1

0

|G(tn, s)−G(t, s)||〈x′, f(s)〉|ds

≤ sup
x′∈BE′

∫ 1

0

|G(tn, s)−G(t, s)||δ∗(x′,Γ(s))|ds

(3.4)

and

‖u̇f (tn)− u̇f (t)‖ ≤ sup
x′∈BE′

∫ 1

0

|∂G
∂t

(tn, s)−
∂G

∂t
(t, s)||δ∗(x′,Γ(s))|ds (3.5)

for all f ∈ SPe
Γ . As the sequences (vn(.)) := (|G(tn, .) − G(t, .)|) and (wn(.)) :=

(|∂G
∂t (tn, .) − ∂G

∂t (t, .)|) are uniformly bounded and converge pointwise to 0 and as
the set {|δ∗(x′,Γ(.))| : x′ ∈ BE′} is uniformly integrable in L1

R([0, 1]), by Lemma
3.4 we conclude that (vn(.)) and (wn(.)) converge uniformly to 0 on this set in the
duality 〈L∞R ,L1

R〉. Hence the second member of (3.4) and (3.5) tends to 0. This
says that XΓ and {u̇f : uf ∈ XΓ} are equicontinuous in CE([0, 1]). Furthermore,
the sets XΓ(t) = {uf (t) : uf ∈ XΓ} and {u̇f (t) : uf ∈ XΓ} are relatively
compact in E because they are included in the norm compact sets

∫ 1

0
G(t, s)Γ(s)ds

and
∫ 1

0
∂G
∂t (t, s)Γ(s)ds respectively. The Ascoli-Arzelà theorem yields that XΓ is

relatively compact in C1
E([0, 1]) with respect to ‖.‖C1 . We claim that XΓ is closed

in (C1
E([0, 1]), ‖.‖C1). Let (ufn) be a sequence in XΓ converging to ξ ∈ C1

E([0, 1])
with respect to ‖.‖C1 . As SPe

Γ is sequentially compact for the topology of pointwize
convergence on L∞E ⊗E′, we extract from (fn) a subsequence that we do not relabel
and which converges σ(P1

E ,L
∞
E ⊗ E′) to a mapping f ∈ SPe

Γ . In particular

lim
n→∞

〈x′,
∫ 1

0

G(t, s)fn(s)ds〉 = lim
n→∞

∫ 1

0

〈G(t, s)x′, fn(s)〉ds

=
∫ 1

0

〈G(t, s)x′, f(s)〉ds

= 〈x′,
∫ 1

0

G(t, s)f(s)ds〉.

(3.6)

As the set valued integral
∫ 1

0
G(t, s)Γ(s)ds (t ∈ [0, 1]) is norm-compact, (3.6) shows

that the sequence (ufn(·)) = (
∫ 1

0
G(., s)fn(s)ds) converges pointwise to uf (.) for E

endowed with the strong topology. Thus we get ξ = uf . This shows the compactness
of XΓ in C1

E([0, 1]).
Step 2. Let us observe that, for any Lebesgue-measurable mappings v, w : [0, 1]→
E, there is a Pettis integrable selection s ∈ SPe

Γ1
such that s(t) ∈ F (t, v(t), w(t))

a.e. Indeed, there exist two sequences (vn) and (wn) of simple E-valued mappings
converging to v and w respectively, for E endowed with the norm topology. Notice
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that the multifunctions F (., vn(.), wn(.)) are measurable. Let sn be a Lebesgue-
measurable selection of F (., vn(.), wn(.)). As sn(t) ∈ F (t, vn(t), wn(t)) ⊂ Γ1(t); for
all t ∈ [0, 1] and SPe

Γ1
is sequentially σ(P1

E ,L
∞
E ⊗E′)-compact, we may extract from

(sn) a subsequence (s′n) which converges σ(P1
E ,L

∞
E ⊗ E′) to a mapping s ∈ SPe

Γ1
.

Let (e∗k)k∈N be a dense sequence for the Mackey topology T (E′, E). Let k ∈ N
be fixed. Applying the Mazur’s trick to (〈e∗k, s′n(.)〉)n provides a sequence (zn)
with zn ∈ co{〈e∗k, s′m(.)〉 : m ≥ n} such that (zn) converges pointwise a.e. to
〈e∗k, s(.)〉. Using this fact and the pointwise convergence of the sequences (vn)
and (wn) and the upper semicontinuity of F (t, ·, ·), it is not difficult to check that
〈e∗k, s(t)〉 ≤ δ∗(e∗k, F (t, v(t), w(t)) a.e. Indeed, Let A be a measurable set of [0, 1],∫

A

〈e∗k, s(t)〉dt = lim
n→∞

∫
A

〈e∗k, s′n(t)〉dt

≤ lim sup
n→∞

∫
A

δ∗(e∗k, F (t, vn(t), wn(t)))dt

≤
∫

A

lim sup
n→∞

δ∗(e∗k, F (t, vn(t), wn(t)))dt

=
∫

A

δ∗(e∗k, F (t, v(t), w(t)))dt.

Then, for all k ∈ N

〈e∗k, s(t)〉 ≤ δ∗(e∗k, F (t, v(t), w(t))), a.e. t ∈ [0, 1]. (3.7)

On the other hand, in view of [8, Lemma III.33 and Corollary I.15], we have

sup
x′∈E′

[〈x′, s(t)〉 − δ∗(x′, F (t, v(t), w(t)))] = sup
k∈N

[〈e∗k, s(t)〉 − δ∗(e∗k, F (t, v(t), w(t)))].

(3.8)
Using relation (2.1) given in Section 2 we get by (3.7) and (3.8),

d(s(t), F (t, v(t), w(t)) ≤ sup
k∈N

[〈e∗k, s(t)〉 − δ∗(e∗k, F (t, v(t), w(t)))] ≤ 0.

Consequently s(t) ∈ F (t, v(t), w(t)) a.e. t ∈ [0, 1].
Step 3. Let Φ : XΓ ⇒ P1

E([0, 1]) be the multifunction given by

Φ(uf ) = {v ∈ P1
E([0, 1]) : v(t) ∈ H(t, uf (t), u̇f (t)), a.e. on [0, 1]}.

We will prove that, for XΓ endowed with the norm ‖ · ‖C1 , the multifunction Φ
admits a continuous selection. It is clear that Φ has nonempty closed decomposable
values. According to Proposition 3.3, it sufficient to prove that Φ is lower semicon-
tinuous. Let uf0 ∈ XΓ, v0 ∈ Φ(uf0) and let (ufn) be a sequence in XΓ converging
to uf0 in (C1

E([0, 1]), ‖ · ‖C1). For any n ∈ N, H(., ufn
(.), u̇fn

(.)) is measurable with
nonempty closed values, so the multifunction Λn defined from [0, 1] into E by

Λn(t) = {w ∈ H(t, ufn(t), u̇fn(t)) : ‖w − v0(t)‖ = d(v0(t), H(t, ufn(t), u̇fn(t)))}
is also measurable with nonempty closed values. In view of the existence theorem
of measurable selections (see [8]), there is a measurable mapping vn : [0, 1] → E
such that vn(t) ∈ Λn(t), for all t ∈ [0, 1]. This yields vn(t) ∈ H(t, ufn(t), u̇fn(t))
and

lim
n→∞

‖vn(t)− v0(t)‖ = lim
n→∞

d(v0(t), H(t, ufn(t), u̇fn(t)))

≤ lim
n→∞

e(H(t, uf0(t), u̇f0(t)), H(t, ufn(t), u̇fn(t))) = 0.
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This says that (vn) converges pointwise to v0 and since H(t, x, y) ⊂ Γ2(t) for all
(t, x, y) ∈ [0, 1]×E ×E, the convergence also holds strongly in P1

E([1, 0]). Indeed,

lim
n→∞

‖vn − v0‖Pe = lim
n→∞

sup
x′∈BE′

∫ 1

0

|〈x′, vn(t)− v0(t)〉|dt

= lim
n→∞

sup
x′∈BE′

∫ 1

0

|〈x′, vn(t)〉 − 〈x′, v0(t)〉|dt.

As vn(t) ∈ Γ2(t) for all n ∈ N and as Γ2 is scalarly uniformly integrable and hence
the set {〈x′, vn(.)〉 : ‖x′‖ ≤ 1} is uniformly integrable in L1

E([0, 1]), we get

lim
n→∞

‖vn − v0‖Pe = lim
n→∞

sup
x′∈BE′

∫ 1

0

lim
n→∞

|〈x′, vn(t)〉 − 〈x′, v0(t)〉|dt = 0.

Therefore Φ is lower semicontinous. An application of Proposition 3.3 implies
that, for XΓ endowed with the norm ‖ · ‖C1 , there exists a continuous mapping
ϕ : XΓ → P1

E([0, 1]) such that ϕ(u) ∈ Φ(u) for all u ∈ XΓ, or equivalently for each
u ∈ XΓ the inclusion ϕ(u)(t) ∈ H(t, u(t), u̇(t)) holds for a.e. t ∈ [0, 1].
Step 4. For all u ∈ XΓ, let us define the multifunction Ψ by

Ψ(u) = {v ∈ XΓ : v̈(t) ∈ F (t, u(t), u̇(t)) + ϕ(u)(t), a.e.}.
In view of Step 2, and since ϕ(u) ∈ SPe

Γ2
for all u ∈ XΓ, for any measurable selection

s of F (., u(.), u̇(.)) the mapping g := s + ϕ(u) is in SPe
Γ (because g(t) = s(t) +

ϕ(u)(t) ∈ Γ1(t)+Γ2(t) = Γ(t)) and the mapping v defined by v(t) =
∫ 1

0
G(t, s)g(s)ds

is in Ψ(u), and hence Ψ(u) is a nonempty set. It clear that Ψ(u) is a convex
subset of XΓ. We need to check that Ψ : XΓ ⇒ XΓ is upper semicontinuous on
the convex compact set XΓ. Equivalently we need to check that the graph of Ψ,
gph(Ψ) = {(u, v) ∈ XΓ ×XΓ : v ∈ Ψ(u)}, is sequentially closed in XΓ ×XΓ. Let
(un, vn) be a sequence in gph(Ψ) converging to (u, v) ∈ XΓ×XΓ. By repeating the
arguments given in Step 1, we obtain that (un, vn) converges uniformly to (u, v)
in (C1

E([0, 1]), ‖ · ‖C1), and that (ün, v̈n) converges σ(P1
E ,L

∞
E ⊗ E′) to (ü, v̈). As

v̈n(t)−ϕ(un)(t) ∈ F (t, un(t), u̇n(t)), a.e., repeating the arguments given at the end
of Step 2, we get v̈(t) − ϕ(u)(t) ∈ F (t, u(t), u̇(t)), a.e. This shows that gph(Ψ) is
closed in XΓ×XΓ and hence we get the upper semicontinuity of Ψ. An application
of the Kakutani fixed point theorem gives some u ∈ XΓ such that u ∈ Ψ(u). This
means ü(t) ∈ F (t, u(t), u̇(t)) + ϕ(u)(t), a.e. Since ϕ(u)(t) ∈ H(t, u(t), u̇(t)), we get

ü(t) ∈ F (t, u(t), u̇(t)) +H(t, u(t), u̇(t)), a.e. t ∈ [0, 1],

u(0) = 0; u(θ) = u(1).

This completes the proof of the theorem. �
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Occidentale et de l’université “AL.I.Cuza” de Iasi (2005).

Addendum posted by the editor on September 15, 2016

A reader informed us that Proposition 3.3 and Theorem 3.5 are incorrect. The
same proposition (stated as Proposition 2.2) was also used in

D. Azzam-Laouir, I. Boutana, A. Makhlouf; Application of Pettis integration to
delay second order differential inclusions, Electronic Journal of Qualitative Theory
of Differential Equations 2012, 88 pp 1–15.

A reader pointed out the mistake and the authors posted a corrigendum that
says

In the above article, Proposition 2.2 is not true since the normed
space P 1

E([0, 1]) is not complete. Consequently, to correct Theo-
rem 3.1 we have to assume that Γ1 is Pettis uniformly integrable
and that Γ2 is integrably bounded. Then in the proof we can use
Proposition 2.2 with L1

E([0, 1]) instead of P 1
E([0, 1]) to conclude the

result. This version of Proposition 2.2 can be found in
A. Fryszkowski, Continuous selections for a class of nonconvex

mul- tivalued maps, Studia Math., 76, (1983), pp. 163-174.
We asked the authors to post a similar addendum to the EJDE article, but the

authors did not reply. So we attached this note.
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