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OSCILLATION CRITERIA FOR IMPULSIVE DYNAMIC
EQUATIONS ON TIME SCALES

MUGEN HUANG, WEIZHEN FENG

Abstract. Oscillation criteria for impulsive dynamic equations on time scales

are obtained via impulsive inequality. An example is given to show that the

impulses play a dominant part in the oscillations of dynamic equations on time
scales.

1. Introduction

In this paper, we are interested in obtaining oscillation criteria for solutions of
the second-order nonlinear impulsive dynamic equation on time scales,

y∆∆(t) + f(t, yσ(t)) = 0, t ∈ JT := [0,∞) ∩ T, t 6= tk, k = 1, 2, . . . ,

y(t+k ) = gk(y(t−k )), y∆(t+k ) = hk(y∆(t−k )), k = 1, 2, . . . ,

y(t+0 ) = y0, y∆(t+0 ) = y∆
0 ,

(1.1)

where T is a unbounded-above time scale , with 0 ∈ T, tk ∈ T, 0 ≤ t0 < t1 < t2 <
· · · < tk < . . . and limk→∞ tk = ∞.

y(t+k ) = lim
h→0+

y(tk + h), y∆(t+k ) = lim
h→0+

y∆(tk + h), (1.2)

which represent right limits of y(t) at t = tk in the sense of time scales, and in
addition, if tk is right scattered, then y(t+k ) = y(tk), y∆(t+k ) = y∆(tk). We can
defined y(t−k ), y∆(t−k ) similar to (1.2).

We suppose that the following conditions hold:
(H1) f ∈ Crd(T × R, R), xf(t, x) > 0 (x 6= 0) and f(t, x)/ϕ(x) ≥ p(t) (x 6= 0),

where p(t) ∈ Crd(T, R+) and xϕ(x) > 0 (x 6= 0), ϕ′(x) ≥ 0.
(H2) gk, hk ∈ C(R, R) and there exist positive constants ak, a∗k, bk, b∗k such that

a∗k ≤
gk(x)

x
≤ ak, b∗k ≤

hk(x)
x

≤ bk.

We note that the theory of dynamic equations on time scales are an adequate
mathematical apparatus for the simulation of processes and phenomena observed
in biotechnology, chemical technology, economic, neural networks, physics, social
sciences etc. For further applications and questions concerning solutions of dynamic
equations on time scales, see [3, 5, 6]
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Recently, impulsive dynamic equations on time scales have been investigated by
Agarwal et al. [2], Belarbi et al. [7], Benchohra et al. [8, 9, 10, 11], Chang et al.
[12] and so forth. In [11], Benchohra et al. considered the existence of extremal
solutions for a class of second order impulsive dynamic equations on time scales,
we can see that the existence of global solutions can be guaranteed by some simple
conditions.

Based on the oscillatory behavior of the impulsive dynamic equations on time
scales, Benchohra et al. [8] discuss the existence of oscillatory and nonoscillatory
solutions by lower and upper solutions method for the first order impulsive dynamic
equations on certain time scales

y∆(t) = f(t, y(t)), t ∈ JT := [0,∞)
⋂

T, t 6= tk, k = 1, . . . ,

y(t+k ) = Ik(y(t−k )), k = 1, . . . .
(1.3)

On the other hand, Huang et al. [14] considered the second order nonlinear impul-
sive dynamic equations on time scales

y∆∆(t) + f(t, yσ(t)) = 0, t ∈ JT := [0,∞) ∩ T, t 6= tk, k = 1, 2, . . . ,

y(t+k ) = gk(y(t−k )), y∆(t+k ) = hk(y∆(t−k )), k = 1, 2, . . . ,

y(t+0 ) = y0, y∆(t+0 ) = y∆
0 ,

(1.4)

extend the well-known results of Chen et al. [13] for the impulsive differential
equations to (1.4).

Motivated by the ideas in [15], we establish the sufficient conditions for the oscil-
lation of all solutions of (1.1), which utilize Riccati transformation techniques and
impulsive inequality. Those results extend some well-known impulsive inequality
on differential equations to impulsive dynamic equations. Our method is different
from most existing ones. An example is given to show that though a dynamic equa-
tion on time scales is nonoscillatory, it may become oscillatory if some impulses are
added to it. That is, in some cases, impulses play a dominating part in oscillations
of dynamic equations on time scales.

For the remainder of the paper, we assume that, for each k = 1, 2, . . . , the points
of impulses tk are right dense (rd for short). In order to define the solutions of the
problem (1.1), we introduce the two spaces:

ACi = {y : JT → R which is i-times ∆-differentiable, and its i-th

delta-derivative y∆(i)
is absolutely continuous};

PC = {y : JT → R which is rd-continuous expect at tk, for which

y(t−k ), y(t+k ), y∆(t−k ), y∆(t+k ) exist with y(t−k ) = y(tk), y∆(t−k ) = y∆(tk)}.

A function y ∈ PC
⋂

AC2(JT\{t1, . . . }, R) is said to be a solution of (1.1), if it
satisfies y∆∆(t) + f(t, yσ(t)) = 0 a.e. on JT\{tk}, k = 1, 2, . . . , and for each k =
1, 2, . . . , y satisfies the impulsive condition y(t+k ) = gk(y(tk)), y∆(t+k ) = hk(y∆(tk))
and the initial conditions y(t+0 ) = y0, y

∆(t+0 ) = y∆
0 .

A solution y of (1.1) is called oscillatory if it is neither eventually positive nor
eventually negative; otherwise it is called nonoscillatory. Equation (1.1) is called
oscillatory if all solutions are oscillatory.
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2. Preliminary Results

We will briefly recall some basic definitions and facts from the time scales calculus
that we will use in the sequel. For more details see [1, 5, 6].

On any time scale T, we define the forward and backward jump operators by

σ(t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T : s < t},

where inf φ = sup T, supφ = inf T, and φ denotes the empty set. A nonmaximal
element t ∈ T is called right-dense if σ(t) = t and right-scattered if σ(t) > t. A
nonminimal element t ∈ T is said to be left-dense if ρ(t) = t and left-scattered if
ρ(t) < t. The graininess µ of the time scale T is defined by µ(t) = σ(t)− t.

A mapping f : T → X is said to be differentiable at t ∈ T, if there exists
b ∈ X such that for any ε > 0, there exists a neighborhood U of t satisfying
|[f(σ(t)) − f(s)] − b[σ(t) − s]| ≤ ε|σ(t) − s|, for all s ∈ U. We say that f is delta
differentiable (or in short: differentiable) on T provided f∆(t) exist for all t ∈ T.

A function f : T → R is called rd − continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in
T. The set of rd-continuous functions f : T → R will be denoted by Crd(T, R).

The derivative and forward jump operator σ are related by the formula

f(σ(t)) = f(t) + µ(t)f∆(t). (2.1)

Let f be a differentiable function on [a,b]. Then f is increasing, decreasing,
nondecreasing and nonincreasing on [a, b] if f∆ > 0, f∆ < 0, f∆ ≥ 0 and f∆ ≤ 0
for all t ∈ [a, b), respectively.

We will use the following product and quotient rules for derivative of two differ-
entiable functions f and g:

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ, (2.2)

(
f

g
)∆ =

f∆g − fg∆

ggσ
, (2.3)

where fσ = f ◦ σ, ggσ 6= 0. The integration by parts formula reads∫ b

a

f∆(t)g(t)∆t = f(t)g(t)|ba −
∫ b

a

fσ(t)g∆(t)∆t. (2.4)

Chain Rule: Assume g : T → R is ∆−differentiable on T and f : R → R is
continuously differentiable. Then f ◦ g : T → R is ∆−differentiable and satisfies

(f ◦ g)∆(t) = {
∫ 1

0

f ′(g(t) + hµ(t)g∆(t))dh}g∆(t). (2.5)

A function p : T → R is called regressive if for all t ∈ T

1 + µ(t)p(t) 6= 0.

The set of all rd− continuous function f which satisfy 1+µ(t)p(t) > 0 for all t ∈ T
will be denoted by R+. The generalized exponential function ep is defined by

ep(t, s) = exp
{ ∫ t

s

ξµ(τ)(p(τ))∆τ
}
,

with ξh(z) = log(1 + hz)/h if h 6= 0 and ξh(z) = z if h = 0.



4 M. HUANG, W. FENG EJDE-2007/169

Lemma 2.1 (5, p. 255). Let y, f ∈ Crd and p ∈ R+. Then

y∆(t) ≤ p(t)y(t) + f(t),

implies that for all t ∈ T,

y(t) ≤ y(t0)ep(t, t0) +
∫ t

t0

ep(t, σ(s))f(s)∆s .

3. Main results

Next, we prove some lemmas, which will be useful for establishing oscillation
criteria for (1.1).

Lemma 3.1. Assume that m ∈ PC1[T, R] and

m∆(t) ≤ p(t)m(t) + q(t), t ∈ JT := [0,∞) ∩ T, t 6= tk, k = 1, 2, . . . ,

m(t+k ) ≤ dkm(t−k ) + bk, k = 1, 2, . . . ,
(3.1)

then for t ≥ t0,

m(t) ≤ m(t0)
∏

t0<tk<t

dkep(t, t0) +
∑

t0<tk<t

( ∏
tk<tj<t

djep(t, tk)
)
bk

+
∫ t

t0

∏
s<tk<t

dkep(t, σ(s))q(s)∆s.

(3.2)

Proof. Let t ∈ [t0, t1]T. then use Lemma 2.1 to obtain

m(t) ≤ m(t0)ep(t, t0) +
∫ t

t0

ep(t, σ(s))q(s)∆s, t ∈ [t0, t1]T.

Hence (3.2) is true for t ∈ [t0, t1]T. Now assume that (3.2) holds for t ∈ [t0, tn]T for
some integer n > 1. Then for t ∈ (tn, tn+1]T, it follows from (3.1) and Lemma 2.1,
we get

m(t) ≤ m(t+n )ep(t, tn) +
∫ t

tn

ep(t, σ(s))q(s)∆s .

Using (3.1), we obtain, from (3.2),

m(t) ≤ [dnm(t−n ) + bn]ep(t, tn) +
∫ t

tn

ep(t, σ(s))q(s)∆s

≤ dnep(t, tn)
[
m(t0)

∏
t0<tk<tn

dkep(tn, t0) +
∑

t0<tk<tn

( ∏
tk<tj<tn

djep(tn, tk)
)
bk

+
∫ tn

t0

∏
s<tk<tn

dkep(tn, σ(s))q(s)∆s
]

+ bnep(t, tn) +
∫ t

tn

ep(t, σ(s))q(s)∆s

≤ m(t0)
∏

t0<tk<t

dkep(t, t0) +
∑

t0<tk<t

( ∏
tk<tj<t

djep(t, tk)
)
bk

+
∫ t

t0

∏
s<tk<t

dkep(t, σ(s))q(s)∆s,

which on simplification gives the estimate (3.2) for t ∈ [t0, tn+1]T, by induction, we
get (3.2) holds for t ≥ t0. �
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Lemma 3.2. Suppose that (H1), (H2) hold and y(t) > 0, t ≥ t′0 ≥ t0 is a nonoscil-
latory solution of (1.1). If

(H3)
∫∞

tj

∏
tj<tk<s

b∗k
ak

∆s = ∞ for some tj ≥ t0.

Then y∆(t+k ) ≥ 0 and y∆(t) ≥ 0 for t ∈ (tk, tk+1]T, where tk ≥ t′0.

Proof. At first, we prove that y∆(t−k ) ≥ 0 for tk ≥ t′0, otherwise, there exists some
j such that tj ≥ t′0 and y∆(t−j ) < 0, hence

y∆(t+j ) = hj

(
y∆(t−j )

)
≤ b∗jy

∆(t−j ) < 0.

Let y∆(t+j ) = −α (α > 0). From (1.1) and (H1), for t ∈ (tj+i−1, tj+i]T, i = 1, 2, . . . ,
we obtain

y∆∆(t) = −f(t, yσ(t)) ≤ −p(t)ϕ(yσ(t)) ≤ 0;

i.e., y∆(t) is nonincreasing in (tj+i−1, tj+i]T, i = 1, 2, . . . , then

y∆(t−j+1) ≤ y∆(t+j ) = −α < 0,

y∆(t−j+2) ≤ y∆(t+j+1) = hj+1

(
y∆(t−j+1)

)
≤ b∗j+1y

∆(t−j+1) ≤ −b∗j+1α < 0.
(3.3)

By induction, we obtain

y∆(t) ≤ −α
∏

tj<tk<t

b∗k < 0 t ∈ (tj+n, tj+n+1]T. (3.4)

In view of (H2), we have y(t+k ) ≤ aky(t−k ). Applying Lemma 3.1, we obtain for
t > tj

y(t) ≤ y(t+j )
∏

tj<tk<t

ak − α

∫ t

tj

∏
s<tk<t

ak

∏
tj<tk<s

b∗k∆s

=
∏

tj<tk<t

ak

[
y(t+j )− α

∫ t

tj

∏
tj<tk<s

b∗k
ak

]
∆s.

(3.5)

Since y(t+j ) > 0, one can find that (3.5) contradicts (H3) as t → ∞. Therefore,
y∆(t−k ) ≥ 0 (tk ≥ t′0). By condition (H2), we obtain, for any tk ≥ t′0,

y∆(t+k ) ≥ b∗ky∆(t−k ) ≥ 0.

Since y∆(t) is decreasing in (tk, tk+1]T, tk ≥ t′0, we have y∆(t) ≥ y∆(t−k ) ≥ 0,
t ∈ (tk, tk+1]T, tk ≥ t′0. The proof of Lemma 3.2 is complete. �

We remark that when y is eventually negative, under the hypothesis (H1)-(H3),
it can be proved similarly that y∆(t+k ) ≤ 0 and for t ∈ (tk, tk+1]T, y∆(t) ≤ 0 for
tk ≥ t′0 ≥ t0.

Theorem 3.3. Suppose that (H1)-(H3) hold and there exists a positive integer k0

such that a∗k ≥ 1 for k ≥ k0. If∫ ∞

t0

∏
t0<tk<t

1
bk

p(t)∆t = ∞, (3.6)

then (1.1) is oscillatory.
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Proof. Suppose to the contrary that Eq.(1.1) has a nonoscillatory solution y, with-
out loss of generality, we may assume that y is eventually positive solution of (1.1);
i.e., y(t) > 0, t ≥ t0 and k0 = 1. From lemma 3.2, we have y∆(t) ≥ 0, t ∈ (tk, tk+1]T,
k = 1, 2, . . . . Let

w(t) =
y∆(t)

ϕ(y(t))
. (3.7)

Then w(t+k ) ≥ 0, k = 1, 2, . . . , and w(t) > 0, t ≥ t0. Using (H1) and (1.1), when
t 6= tk,

w∆(t) = −f(t, yσ(t))
ϕ(yσ(t))

− y∆(t)
ϕ(y(t))ϕ(yσ(t))

∫ 1

0

ϕ′
(
y(t) + hµ(t)y∆(t)

)
dhy∆(t)

≤ −p(t)− ϕ(y(t))
ϕ(yσ(t))

( y∆(t)
ϕ(y(t))

)2
∫ 1

0

ϕ′
(
y(t) + hµ(t)y∆(t)

)
dh

≤ −p(t).

(3.8)

Since ϕ′(y(t)) ≥ 0 and ϕ(y(t)) > 0, from (H2) and a∗k ≥ 1, we obtain

w(t+k ) =
y∆(t+k )

ϕ(y(t+k ))
≤

bky∆(t−k )
ϕ(a∗ky(t−k ))

≤
bky∆(t−k )
ϕ(y(t−k ))

= bkw(t−k ), k = 1, 2, . . . . (3.9)

Applying Lemma 3.1, we obtain from (3.8) and (3.9),

w(t) ≤ w(t0)
∏

t0<tk<t

bk −
∫ t

t0

∏
s<tk<t

bkp(s)∆s

=
∏

t0<tk<t

bk

[
w(t0)−

∫ t

t0

∏
t0<tk<s

1
bk

p(s)∆s
]
.

(3.10)

In view of (3.6) and (3.10), we get a contradiction as t →∞. Then every solution
of (1.1) is oscillatory. �

Theorem 3.4. Assume that (H1)-(H3) hold and ϕ(ab) ≥ ϕ(a)ϕ(b) for any ab > 0.
If ∫ ∞

t0

∏
t0<tk<t

ϕ(a∗k)
bk

p(t)∆t = ∞, (3.11)

then (1.1) is oscillatory.

Proof. As before, we may suppose y(t) > 0, t ≥ t0 be a nonoscillatory solution of
(1.1), Lemma 3.2 yields y∆(t) ≥ 0, t ≥ t0, define w(t) as in (3.7), we get w(t) ≥
0, t ≥ t0, w(t+k ) ≥ 0, k = 1, 2, . . . , (3.8) holds for t 6= tk and

w(t+k ) =
y∆(t+k )

ϕ(y(t+k ))
≤

bky∆(t−k )
ϕ(a∗ky(t−k ))

≤
bky∆(t−k )

ϕ(a∗k)ϕ(y(t−k ))
=

bk

ϕ(a∗k)
w(t−k ). (3.12)

Using Lemma 3.1, we get from (3.8) and (3.12)

w(t) ≤ w(t0)
∏

t0<tk<t

bk

ϕ(a∗k)
−

∫ t

t0

∏
s<tk<t

bk

ϕ(a∗k)
p(s)∆s

=
∏

t0<tk<t

bk

ϕ(a∗k)

[
w(t0)−

∫ t

t0

∏
t0<tk<s

ϕ(a∗k)
bk

p(s)∆s
]
.

Letting t → ∞, the above inequality contradicts to (3.11). Then every solution of
(1.1) is oscillatory. �
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From Theorems 3.3 and 3.4, we have the following corollaries.

Corollary 3.5. Suppose that (H1)-(H3) hold and there exists a positive integer k0

such that a∗k ≥ 1, bk ≤ 1 for k ≥ k0. If
∫∞

p(t)∆t = ∞, then (1.1) is oscillatory.

Proof. Without loss of generality, let k0 = 1. By bk ≤ 1, we get 1
bk
≥ 1, therefore∫ t

t0

∏
t0<tk<s

1
bk

p(s)∆s ≥
∫ t

t0

p(s)∆s.

Let t → ∞ and using
∫∞

p(t)∆t = ∞, we obtain from Theorem 3.3 that (1.1) is
oscillatory. �

Corollary 3.6. Suppose that (H1)-(H3) hold and there exist a positive integer k0

and a constant α > 0 such that

a∗k ≥ 1,
1
bk

≥
( tk+1

tk

)α

, for k ≥ k0. (3.13)

If ∫ ∞
tαp(t)∆t = ∞. (3.14)

Then (1.1) is oscillatory.

Proof. Without loss of generality let k0 = 1. Then (3.6) yields∫ t

t0

∏
t0<tk<s

1
bk

p(s)∆s

=
∫ t1

t0

p(t)∆t +
1
b1

∫ t2

t1

p(t)∆t + · · ·+ 1
b1b2 . . . bn

∫ t

tn

p(t)∆t

≥ 1
tα1

[ ∫ t2

t1

tα2 p(t)∆t +
∫ t3

t2

tα3 p(t)∆t + · · ·+
∫ t

tn

tαn+1p(t)∆t
]

≥ 1
tα1

[ ∫ t2

t1

sαp(s)∆s +
∫ t3

t2

sαp(s)∆s + · · ·+
∫ t

tn

sαp(s)∆s
]

=
1
tα1

∫ t

t1

sαp(s)∆s,

(3.15)

for t ∈ (tn, tn+1]T. Let t → ∞ and use (3.15), (3.14) yields (3.6) holds. According
to Theorem 3.3, we obtain (1.1) is oscillatory. �

Corollary 3.7. Assume that (H1)-(H3) hold and ϕ(ab) ≥ ϕ(a)ϕ(b) for any ab > 0.
Suppose there exist a positive integer k0 and a constant α > 0 such that

ϕ(a∗k)
bk

≥
( tk+1

tk

)α

, for k ≥ k0.

If
∫∞

tαp(t)∆t = ∞, then (1.1) is oscillatory.

The above corollary can be deduced from Theorem 3.4. Its proof is similar to
that of Corollary 3.6; so we omit it.
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4. Example

Consider the second-order impulsive dynamic equation

y∆∆(t) +
1

tσ2(t)
yγ(σ(t)) = 0, t ≥ 1, t 6= k, k = 1, 2, . . . ,

y(k+) =
k + 1

k
y(k−), y∆(k+) = y∆(k−), k = 1, 2, . . . ,

y(1) = y0, y∆(1) = y∆
0 .

(4.1)

where γ ≥ 3 and µ(t) ≤ ct, where c is a positive constant.
Since ak = a∗k = (k +1)/k, bk = b∗k = 1, p(t) = 1/(tσ2(t)), tk = k and ϕ(y) = yγ .

It is easy to see that (H1)-(H3) hold. Let k0 = 1, α = 3, hence

ϕ(a∗k)
bk

= (k + 1)/kγ =
( tk+1

tk

)γ ≥
( tk+1

tk

)3

,

and ∫ ∞
tαp(t)∆t =

∫ ∞
t3

1
tσ2(t)

∆t =
∫ ∞ ( t

σ(t)

)2

∆t.

Since µ(t) ≤ ct, we get
t

σ(t)
=

t

t + µ(t)
≥ 1

1 + c
,

hence ∫ ∞ ( t

σ(t)

)2

∆t ≥ 1
(1 + c)2

∫ ∞
∆t = ∞.

By Corollary 3.7, we obtain that (4.1) is oscillatory. But by [4] we know that the
dynamic equation y∆∆(t) + 1

tσ2(t)y
γ(σ(t)) = 0 is nonoscillatory.

In the above example, it is interesting that the dynamic equation without im-
pulses is nonoscillatory, but when some impulses are added to it, it becomes oscil-
latory. Therefore, this example shows that impulses play an important part in the
oscillations of dynamic equations on time scales.

Acknowledgements. The authors are very grateful to the anonymous referee for
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