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ABSTRACT

ON DEPTH OF POWERS OF IDEALS

by

Heather Elaine Bruch, B.A.

Texas State University-San Marcos 

April 2 0 1 1

SUPERVISING PROFESSOR: SUSAN MOREY 

The paper “The depth of powers of an ideal," by Herzog and Hibi is expanded 

to include background information and proof details. The numerical function 

f(k)=depth(S/Ik] is discussed where S is Noetherian local or standard graded and I is 

a proper ideal of S. A combinatorial example where depth is known for each power 

is included.
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Chapter 1

INTRODUCTION

Throughout this paper, S  is assumed to be a commutative ring with identity. 

Throughout sections 3, 4, and 5, S is assumed to be either a Noetherian local ring with 

maximal ideal m, or a standard graded it'-algebra with graded maximal ideal m, where 

K  is any field. Also throughout these sections, the ideal I  is assumed to be a proper 

ideal of 5 . In addition, if S  is standard graded, I  is assumed to be graded. Also note 

that the natural numbers will include zero (N =  { 0 , 1, 2, . . . } ) .

In this paper, I provide a detailed explanation of two major theorems and one 

lemma from the paper “Depth of Powers of Ideals,” written by Jürgen Herzog and 

Takayuki Hibi (4). The detail included is sufficient for a second year graduate student 

reader. In order for a student at such a level to understand this material, an extensive 

background section is also required.

Herzog and Hibi’s “Depth of Powers of Ideals,” contains cutting edge results. 

The depth of objects such as 5 / 1  have been studied with results produced by many 

authors. However, once we pass to powers of I  and study the “limit depth of / ”, 

limfc_i.00depth S /I k, very little is known. The paper “Depth of Powers of Ideals,” is 

one of the first and few commutative algebra papers producing major results involving 

depths of objects such as S /I k. In addition to the few papers cited below, Susan 

Morey’s, “Depths of Powers of the Edge Ideal of a Tree,” (5) also provides major 

results pertaining to such objects.

The first theorem (Theorem 3.0.62) will show the existence of the limit of the
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depths of the components of a graded module and provide a bound. The second 

theorem (Theorem 3.0.63) utilizes the first to essentially show that lim^oo depth 

(.S / I k) <  dim(S') — i(I)  where i  denotes analytic spread. These are not new results, 

but the methods of proof are new and shorter. To be more specific, Markus Brodmann 

(1) expanded on a result given by Lindsay Burch (2) to show that limJfc_i.00depth 

S / I k <  dim(lS') — i(I). Later, David Eisenbud and Craig Huneke (3) showed that if 

the associated graded ring grj(S') is Cohen-Macaulay, then lim^oodepth 

S / I k =  d — i(I). Herzog and Hibi’s proofs involve a great deal of the general 

commutative algebra background and also make extensive use of the Koszul Complex.

The third major focus of this paper (Lemma 4.0.64), is a lemma in Herzog and 

Hibi’s paper. It is the beginning of new material in their paper to show a strong result. 

This strong result is that depth (S /Ik) is a non-increasing function of k if I  is a graded 

ideal, and all powers of I  have a linear resolution. For Lemma 4.0 .64 we will restrict 

our attention to a polynomial ring over a field. This lemma will make use of Tor and 

Betti numbers among other various results from the background.

/



Chapter 2

BACKGROUND

The particular proofs in this paper require various definitions and results from 

commutative algebra along with an explanation of the Koszul Complex and Tor. Thus 

the background section is divided into three sections. The first section includes many 

results that are widely used in Commutative Algebra. The main focus of the second 

background section is the Koszul Complex. The Koszul complex is defined and some 

properties are discussed. In the last background section Tor modules and Betti 

numbers are defined and some properties are included.

2.0.1 Commutative Algebra

The commutative algebra section begins with a famous and frequently cited 

result known as Nakayama’s Lemma.

Lem m a 2.0.1. (10, Lemma VIII.4.5) Nakayama’s Lemma:

If I  is an ideal in S, then the following are equivalent.

(i) I is contained in every maximal ideal of S.

(ii) Is — x is a unit for every x 6  I.

(hi) If M  is a finitely generated S-module such that IM  =  M, then M  — 0. 

(iv) If E  is a submodule of a finitely generated S-module M  such that 

M  =  IM  +  E, then M  — E.

Notice that if the ring S  is local, condition (i) automatically holds simply by
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the definition of a local ring. Therefore, since we will assume all rings S  are local and 

all ideals I  are proper, we will have these four conditions at our disposal throughout 

much of this paper. We will see later that conditions (lii) and (iv) apply to 

information about the Koszul Complex and apply to the proof of Theorem 3.0.62.

We will now give our first definition followed by two key properties.

Definition 2.0.2. (10, Definition VIII. 5.2) Let S  be an extension ring of R. Let s G S. 

If there exists a monic polynomial f (x )  €  R[x] such that f(s )  =  0, then s is integral 

over R. If for each s G -S', there exists a monic polynomial f s(x) E P[cc] such that 

f s(s) =  0, then S  is integral over R or S  is an integral extension of R.

Integral extensions are widely studied in Commutative Algebra. We will only use the 

following three nice properties, and they will be applied to the proof of Lemma 2.0.28.

Theorem 2.0.3. (10, Theorem VIII. 5.9) Lying Over Theorem

Let S be an extension ring of R, let S  be integral over R, and let P be a prime 

ideal of R  Then there exists a prime ideal Q of S  such that Q D R =  P.

Corollary 2.0.4. (10, Corollary VIII.5.10) Going Up Theorem

Let S  be an extension ring of R, let S  be integral over R, and let Pq and Pi be 

prime ideals of R such that Pq C  Px. IfQ 0 is a prime ideal of S  such that 

Qo D R  =  P q, then there exists a prime ideal Qi of S  such that Q0 C  Qx and 

Qi (T R =  Pi.

Theorem 2.0.5. (10, Theorem VIII. 5.11) Let S be an integral extension ring of a ring 

R. Let Q be a prime ideal in R. If Pi and P2 are prime ideals in R such that Pi C  P 2, 

and if Pi and P2 both lie over Q, then Pi =  P 2.

Prime ideals of a ring are so useful that we have the following definition.



Definition 2.0.6. Let S  be a ring. The spectrum of S is denoted SpecfS), and 

Spec(S') =  {P  | P is a prime ideal o fS }.

In mathematics we have several notions of “size.” Let us define some notions of size in 

commutative algebra.

Definition 2.0.7. Let S  be a ring. A sequence of prime ideals in S  is a chain of prime 

ideals in S  if and only if the sequence is finite and strictly increasing, i.e., 

P 0 C P i C . . . C P n.

Definition 2.0.8. Let Pq C  P i  C  • • • C  Pn be a chain of prime ideals in a ring S. The 

length of the chain is the integer n.

So length is a notion of size for a chain.

Definition 2.0.9. Let P  be a prime ideal of a ring S. The height of P is denoted 

ht(P ), and h t(P ) =  sup (length(C) | C is a chain that ends at P}.

We may also define the height of any ideal.

Definition 2.0.10. Let S be a ring and let I  be an ideal of S. Then the height of I  is 

denotedht(I), andht(I) =m in{ht(P) | P  D I andP  ESpec(S')}

Exam ple 2.0.11. Let S  be the ring R [x, y, z] of three indeterminants over the field of 

real numbers. Let I  =  (x2, xy, y2). Then ht(I) =  2. Note that (x, y) contains I  and 

observe (0) C (x) C (x ,y ).

Thus we have a notion of size for a particular ideal of a ring.

Finally, we have a notion of size for a ring:

Definition 2.0.12. The Krull dimension of a ring S is denoted dim(S'), and dim (S') =  

sup{ht(P) | P  G Spec(S')}.



Exam ple 2.0.13. (11, Example 2.5.1) Consider the ring Z  of integers. The prime 

ideals in Z  are (0), (2), (3), (5 ),.... Each of them are maximal so dim (Z)= 1.

6

It might be useful to note that 0 is prime in S  if and only if S  is an integral domain. 

The reader might also take a moment to appreciate the difference between the 

dimension of a free module F  over a ring S  (a ring that has the invariant dimension 

property) and the dimension of a ring S  itself (the Krull dimension). The former is 

also known as rank.

In addition to the dimension of a free module, we have a definition for the 

dimension of any module. This is actually the Krull dimension, but in commutative 

algebra, “Krull” is omitted. In order to define the dimension of a module, we need the 

following definition.

Definition 2.0.14. Let S  be a ring. Let E  be an S-module. The annihilator o fE  is 

denoted anns(-E) or simply ann(E), and ann(i?) =  {x  £ S  \ x E  =  0}.

Definition 2.0.15. Let S  be a ring and M  an S-module. The Krull dimension of M, 

or rather dimension of M, is denoted dim(M), and is defined as the Krull dimension 

of S/axm(M).

Another commonly used object is the radical of an ideal.

Definition 2.0.16. Let S  be a ring. Let I  be an ideal of S. The radical of I  is denoted 

rad(/) or v X  and yfl =  {x  G S \ xn G I  for some n €  N \ {0 } }

Exam ple 2.0.17. Consider the ring Z and the ideal (9). Then 

\/{9) =  {x  E Z \xn G (9) for some n in N \ {0 }} — (3).

The next definition and theorem are useful for finding radicals of ideals.
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Definition 2.0.18. (10, Definition VIII.2.8) Let S be a ring. Let Q be an ideal in S. We 

say Q is primary if given a,b G S, ab G Q and a f  Q imples bn G Q for some 

n e  N \ {0 }.

Theorem 2.0.19. (10, Theorem VIII.2.9) Let Q be a primary ideal in a ring S. Then 

■\[Q is prime.

Exam ple 2.0.20. Consider the ring S  =  M[a:, y, z] and the ideal (x2, y3). Then 

y/(x2,y3) =  (x , y). We also have (x2, xy, y2) =  (x , y).

The next property is so useful, that it is sometimes used as a definition.

Proposition 2.0.21. (14, Proposition 1.1.10) Let S  be a ring and I  a proper ideal of 

S. Then ■s/1 =  flP  such that P  G {Q \ Q I  and Q G Spec(S')}.

Exam ple 2.0.22. Consider the ring Z and the ideal (54). Note that 54 =  332. Then 

7 ( 5 4 )  =  (2) n (3) =  (6) and v^ 27) =  (3).

This concludes our background section on commutative algebra. Commutative 

algebra is a vast field of mathematics. This background section includes a limited 

amount of material that specifically applies to the proofs in this paper.

2.0.2 Graded Modules

We now begin a section especially attributed to graded objects. Nearly every 

object we discuss is graded.

Throughout the Graded Modules section, let (H, + )  be an abelian semi-group. 

Definition 2.0.23. An H-graded ring is a ring S together with a decomposition
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S — @ aeir Sa (as a Z-module or such that for each a £  H, Sa is an abelian 

group) with the property that for each a, b £  H, SaSb C  Sa+b-

For each a £  H, Sa is referred to as a component of S. Given an element 

x £  S, if x  £  Sa for some a e  if , we say x is homogeneous of degree a and write 

deg(:r) =  a.

We will say “graded ring” when the semi-group H  =  Z. The next definition 

and two lemmas will be applied to the proof of Theorem 3.0.62.

Exam ple 2.0.24. Let S  be the ring R[rc]. Then 8  has an N-grading, S  =  ©£T0 Sa 

where Sa =  { r x a \ r  £  R }. Thus Sa is the R -vector space generated by xa.

Definition 2.0.25. Let S  =  be a graded Noetherian ring. The rth Veronese 

subring of S is denoted and S ^  =  ®Srk.

Exam ple 2.0.26. The rth Veronese subring o/R[a;] is R[x](r), and R[a;]^ =  R[a:r].

Lem m a 2.0.27. Let S  be a graded ring. Then S  is integral over the Veronese subring 

Sir).

Proof. Let s £  S. Say deg(s) =  k. Then deg(sr) =  hr. Now sr £  Skr. Thus s £  Ŝ r\ 

Then f (x )  =  xr — sr £  and f(s )  = 0 .  □

Lem m a 2.0.28. Let S  be a Noetherian graded ring. Then dim (S ) =dim (S ^ ) .

Proof. Let P ^  £  Spec(S'^r )̂. Say ht(P(r)) =  k. Then there exists a chain 

p(r) _  p (r) 3  p(r) d  . . .  d  pjf '1. By the Lying Over Theorem, since S  is integral 

over S(r\ and for all % £  { 1, . . . ,  k}, P r̂\ P!f\ £  Spec(S ^ ),  then for all i £  { 1, . . . ,  k}, 

there exist Pt, P ,_i £  Spec(S') such that P, Pi =  P ^  and P4_i IT =  P ^ v 

Now since for all i £  { 1 , . . . ,  k}, P^}x D P r̂\ then for all i £  {1 , . . . ,  k},



Pj_i n  S ^  3  P, D S ^ .  Then for all i G { 1 , k}, Pi_i I> Pi- So there exists 

P  G Spec(S') such that P  =  P0 3  Pi 3  • • • 3  P*, where each Pt G Spec(S'). So there 

exists P  G Spec(S') such that ht(P ) > k =  h t(P(r)). Then dim(S') >  dim ^S^).

We will show dim (S') <  dim(,S^'^) by contradiction. Suppose dim(S') >  

dim(S'^r)). Then there exists P  G Spec(S') such that for all Q G S p ec(P ^ ), h t(P ) >  

ht(Q). Say ht(P ) =  k. So there exists a chain P  =  P0 D Pi D ■ ■ ■ D P&. Consider 

P  n S (r) =  Po n S «  D Pi n  5 «  D • • • Pk n S ^ .  Since P  n £<r> G Spec(S<r>), 

h t(P  D S1̂ )  <  k. So there exists i G { 0 , k — 1 } such that Pl D S ^  =  Pî+i fl 

Now Pl lies over P% D S r̂\ and P î+1 lies over Pl+\ fl Ŝ T\ Also, Pl+1 Ç Pt. Then by 

Theorem 2.0.5, Pt — P l+i. This is a contradiction. Therefore dim(S') <  dim (S'^)

Thus, dim(S') =  dim(S ^ ).

□

9

Now let us move from graded rings to graded modules.

Definition 2.0.29. Let S  be an H-graded ring. An H-graded S-module M  is a 

module together with a decomposition M =  ©ie.ff M% such that for each i, j  G H, 

StMj c  Ml+J

Similar to the case of a homogeneous element of a graded ring we have a 

homogeneous element of a graded module. An element m  G M  is homogeneous of 

degree j  if m G M3. Natural curiosity leads to the idea of a graded submodule.

Definition 2.0.30. Let M  be an H-graded module. A submodule N  C  M  is an 

H-graded submodule of M  if N is generated by homogeneous elements of M.

Definition 2.0.31. Let <fi : M  N  be a map between H-graded modules. Then <j> is 

called homogeneous if for each a G IT, <f>(Ma) C  Na.
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Observe that a homogeneous map between graded modules is a 

degree-preserving map. Also note that if M  is an if-graded module and N  is an 

H -graded submodule of M, then for all a G H, (M /N )a =  Ma/N a.

The following definition provides a useful tool for creating maps in complexes. 

This definition will be applied to the proof of Lemma 4.0.64.

Definition 2.0.32. (14, Definition 2.54)

Let S  =  be a positively graded ring and a G N. The graded 8-module

obtained by a shift in the graduation of S  is given by S (—a) — ® ^ 05'(—a)t where 

the ith graded component of S (—a) is S (—a)l =  S -a+l. Note that i f—a +  i < 0,

S-a ! i — 0.

Sometimes the ith graded component of S (—a) is denoted S (—al). Then 

S (—at) — S -a+l. This is useful when multiple subscripts are needed as we will see in 

the proof of Lemma 4.0.64.

Definition 2.0.33. An H  -graded S-algebra A is an H-graded S-module such that for 

each i, j  €  H, AtA3 C Al+].

The following proposition is useful throughout the whole paper and is worth 

verifying.

Proposition 2.0.34. (8, Exercise 1.4.1)

Let S be a ring. Let A be an S-algebra. Let E  be an A-module. The structure map 

from S  to A makes E  an 3-module. If A is finite over S, and E  is finitely generated as 

an A-module, then E  is finitely generated as an S-module.

Proof. First note that E  is an S'-module by the map S  x  E  —>■ E  given by

(s, x) i—y ( (sI a)x ). Since E  is finitely generated as an A-module, let X  =  { x i , x t}
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be the generating set of E  as an A-module. Since A is finite over 5 , let 

Y  =  {yi, be the generating set of A as an 5-algebra. Now let v be an element

of the A-module E. Then v =  Ylt= 1 r%xi where r% G A. Since rt G A, rl =  S]V] 

where s3 G 5 . Now v =  X ^ = i(X ^ = i sjiVh)xi- Since each shyh is an element of A 

and each xt is an element of E  and E  is an A-module, we may distribute the xt over 

the s3ly3l. Then we have a sum of the form Y?kli(skyk)x k- Given elements s G S, 

y G A, and x  G E, (sy)x =  ^( l^ r/ ))^  since A has an identity. Then 

(.s(lAy))x =  ((sla)y)x since A is an 5-algebra. Now ( (s la)y)a: =  slA(yx) since E  is 

an A-module. Finally, sl^iyx) =  s(yx) by the map the structure map of the 5-module 

E. Thus {yiXi,y2Xi, ...,ymxt}  is a finite generating set of E  as an 5-module.

□

Now let us focus our attention to polynomial rings in particular.

Definition 2.0.35. (14, Definition 1.2.2) Let S  — K [x i , ..., xn] be a polynomial ring 

over afield K. The standard grading of S  is an N-grading created by setting 

deg(xi) =  1 for each i. For a =  ( a i , ..., an) G N", set xa =  x f  ■ ■ ■ x “n. The induced 

A-grading is

5  =  ® f=0SJ where S3 =  ®deg(x°)=jKxa.

To extend to a Z-grading, set 5 , =  0 for all % <  0.

Definition 2.0.36. Let S  be a ring, t an indeterminate of S, and I  an ideal of S. 

Consider 5[i] with the standard grading. The Rees ring of I  is denoted 1Z(I), and 

n { i )  -  5  ® fc iH k.

Note that 1Z(I) Ç S[t].



Definition 2.0.37. Let S  be a ring and I  an ideal of S. The analytic spread of I  is

denoted£(I), and£(I) = d im (7 £ (/) /xaTZ(I)).

12

Definition 2.0.38. Let S  be a ring and I  an ideal of S. The associated graded ring of

S is denoted gri (S) and gri(S) =  S ' / / © / / / 2 © - - ' ©  I l/ I l+1 © • • •. Let 

a +  P  G P~l /  P and let b +  IJ G P ~ l / P . The multiplication operation is defined as 

(a +  P)(b +  P ) =  ab +  P +i~\

Rem ark. 7Z(I) /  m 7Z(I) =grj(S) /  m grj(S) is a ring called the fiber cone or the fiber 

ring ofl. Observe 71(1)/m7Z(I) =  m f i f f t *  =  (S/  m) (■[k/  m Jfc) Since m is a

graded sub-module of S, and m I k is a graded sub-module o fIk. Also,

grI (S )/m grI (S) = s / i ® i / i2e • e p /p +1® s / r
mS/I © I/I2 

ml/I2

(S / m) ©ft (Ik/  m I k) by the third isomorphism theorem.

I2/*3 m _
ml2/I3 W ~

Example 2.0.39. Let S  =  M[a:, y], I  =  (x2, xy, y2) — (x, y)2 be an ideal of S, and 

Tx,T2, T3 be indeterminates ofS. The Rees ring is 71(1) =  { x T i i S k - i f ) • 

The fiber cone is 7s(I) — • ^he dimension offi(I) is 2, so ¿(1) =  2. For more

information see (5).

Definition 2.0.40. A sequence of module homomorphisms

■■■H2 E l+1 H 1 E % 4  j e u  ^  • • • is said to be exact at E^ if kex(fk) = im (0 ft+i). 

A sequence of module homomorphisms is said to be an exact sequence if for each 

i e Z ,  ker(0j) = im (0 ,+i). A short exact sequence is an exact sequence of the form

o A u  4  M  4  N  -> 0

Sometimes the terminology used is “exact sequence of modules,” versus “exact 

sequence of module homomorphisms.”

This concludes our section on graded objects, we now move to complexes,

which are not so different.
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2.0.3 The Koszul Complex

The Koszul Complex is a very interesting object. In our paper, its homology 

modules help us to measure depths of ideals. We begin with the definitions of a 

complex and a homology module, without which there would be no homology theory.

Definition 2.0.41. Let S be a ring. Let F  : ■ ■ ■ Fl+i ^  • • • be a

sequence of S-module homomorphisms. F  is a complex of module homomorphisms 

if for each i, 1 =  0.

Complexes are common in topology and algebraic geometry, and for historical, 

topological reasons, the homomorphisms in a complex are often called differentials.

Definition 2.0.42. If F  is a complex of module homomorphisms, the homology 

module o f F  at % is ker(<^)/im(0 l+i).

Note that a complex of module homomorphisms becomes an exact sequence if 

for each i, ker(0 j ) / im (0l+1) =  0.

Rem ark. Also notice that a graded S-module M  =  ©Mj may be viewed as a complex 

by letting the differential maps be the zero map.

The next theorem is a useful fact that relates exact sequences with homology.

It will be applied in the proof of Theorem 3.0.63.

Theorem 2.0.43. (9, Theorem 2.16) Any short exact sequence of complexes,

0 —y U -A M  -A N  -A 0, leads to a long exact sequence of homology modules 

• • • tfn-i(iV ) Hn(U) -a Hn(M) -A Hn(N) -> Hn+1(U) ->•••.
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We next define a free module. This is a commonly used object. In our paper, it 

is necessary for the definition of the Koszul Complex and also of resolutions.

Definition 2.0.44. (10, Theorem IV.2.1) Let S be a ring. A unitary S-module F  is a 

free S-module if F  is an S-module isomorphic to a direct sum of copies of the left 

S-module S.

We will now define the Koszul complex of a sequence of elements of a ring. In 

this definition and when we make use of the Koszul Complex, we use abbreviated 

notation. The object ®Sen 3z is shorter notation for Se3l ® • • • 0  Se3n. The Koszul 

Complex is a very interesting object that can be viewed as a graded algebra. The 

symbol A is the product operation in the algebra (wedge product). Given elements a, b 

in the algebra,

(i) a A b =  ( - 1  }deg(a))(deg(b))b A a

(ii) a A a — 0 if a is homogeneous with odd deg(a).

We will not need to use the wedge product, however in order to fully 

understand the definition of the complex, it is necessary to give a description so that 

we may understand the following two objects. The object en h is shorter notation for 

e3l A • • • A e3i, and the object en e-T 3z is shorter notation for e3l A • • • A ejr A • • • A e3t 

where the hat over e3r denotes the removal of e3r.

Definition 2.0.45. Let S be a ring. Let x — x-L, ...,x n 6  S. Let K 0 =  S  and K t =  0 if 

i <  0 or n < i. For 1 < i <  n, let K z =  @)Se3 l . 3l be the free S-module of rank 

with basis {e3l . j j l  <  ji < • • • <  j t <  n }. Define the differential map d : K % —> K t~i 

by eji ■]% X^r=i(—l ) r~1£> ejl_ ~ jt. Fori — 1, set d(e3) =  x3. This complex is the

Koszul complex of the sequence x and is denoted K ,(x).

Exam ple 2.0.46. Let S  be a ring, and let x, y be in S. The Koszul complex of x ,y  is 

K (x, y ) : 0 - y S ^ l s ® S  (~4y) S. See (8) page 424.
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Rem ark. Let S be a Noetherian local ring, let I  be an ideal of S, and let 

x — x i ,. . . ,x n and y =  y%,..., yn be minimal systems of generators of I. Then the 

Koszul complexes K ,(x ) and K a(y) are isomorphic. See (7).

We now define the tensor product of two modules. This definition is needed in 

order to extend the definition of the Koszul complex of a sequence of elements in a 

ring to the Koszul complex of a module.

Definition 2.0.47. (10, Definition IV. 5.1)

Let S be a ring. Let M  be a right S-module and let N  be a left S-module. Let 

F  be the free abelian group on the set M  x  N. Let K  be the subgroup of F  generated 

by elements of the following forms where mo, mi £  M, n0, ni £  N, and s £  S.

+  mi, n0) -  (m0, n 0) -  ( m i ,n 0);

(ii) (m0,n 0 +  nf) -  (m0, n 0) -  (m0,ni) ;

(iii) (m0s, no) -  (m0, sn0).

The tensor product of the modules M and N  is the quotient group F /  K. It is 

denoted M ®s N. If S  =  Z, the tensor product of M  and N  is denoted M  Cg> N.

However, it should be noted that when the ring S  is understood and not necessarily Z, 

M  ®s hi is often written M  ® N. If (m, n) is an element in F ,  the coset (m, n) +  K  

in M  ®s N  is denoted m ® n .  An element in F  is of the form 3i(mi>ni) where

j z £  Z, m, £  M, n% £  N. So an element in F / K  =  M  ®s N  is of the form

1f{rn l ® m t).

Finally, we may define the Koszul complex of a module.

Definition 2.0.48. The Koszul complex of a Module. Let M  be an S-module and let 

x =  x\ ,. . . ,x n be a sequence of elements in S. The Koszul Complex of x with 

coefficients in M  is denoted K ,(x , M), and K ,(x , M) — K ,(x ) ®s M.
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Rem ark. The homology modules of a Koszul complex K ,(x , M) are denoted 

Ht(x, M ). Some useful properties of the Koszul complex are that Hq(x , M ) == M /xM  

(xM  =  xtM) and Hn(x, M) =  { a £ J l i |  x\a =  • • • xna =  0 }.

Rem ark. If F  : • • • F%-1 —y Ft —y Fl+\ —>•••• is a complex and M  is a module, then 

F  0  M =  • • • Ft—i 0  M  —y Fz 0  M  —y Ft+ i 0  M ■ • •.

The following proposition would not be completely obvious to a beginning 

graduate student. The proposition is provided here so that it shortens the proof of 

Theorem 3.0.62.

Proposition 2.0.49. Recall that for each fc G N, E k is a finitely generated S-module. 

Note that H fx , M ) denotes the ith homology module of the Koszul Complex of a 

module M, and k represents the index of the component. The proposition is 

Hl{x, E )k =  H fx , E k).

Proof. Consider H fx , E )k. Then H fx , E )k is the fcth component of the ith homology 

module of the complex K .(x ) 0  E.

Then Ht(x, E )k is the kth component of:
ker(©Sfej^ 3̂ ^)E—v@S&3-̂ 3 _̂^ 0 E )
im((BSe3-i 3z®E)

Now using (10, Thm 1.8.10, Thm IV.5.9, and Thm 1.8.11), we have the 

following equalities.

H fx ,E )
ker(©S'ej1 3l<S>®Em—̂ ®Se3l 
imteS'e-j-i 3t+1®@Em-*® Se31 3z®(BEm) 
(ker(©(©6,eJl 3z<S>Ern) —^ ® ( ® S e 3l  3%—l ^ ^ r n ) )  

im (0(© Sej_i Jï^1® Ern)-^®(®Sej1 3ï<g>Em)) 
_  ’ (&(ker(@Se3l ^ 0 £ m-KBSen  ^ _ 10-Em)) " 

®(im(®Se3- i  3t+1®Em-*@Se31 3%®Em)) _

Now the kth component of H%{x\ E) is the term of this summation where

m  =  k which is =
ker(©S'eJ1 3fê E k—$-(BSe3̂  j z_ i® E k) 
im(®Se3- i  Jt+10 E k-^®Se3l 3z®Ek) Thus H f x ] E )k =  H fx ; E k)
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□

The following definition is crucial in understanding Theorem 3.0.62, and it 

may give the reader an initial idea of how useful the Koszul complex is in finding 

depth.

Definition 2.0.50. (7, Definition 9.1.1) Let S  be a ring, I  an ideal generated by 

X i,..., xn, and E  an S-module. If there exists i G {1 , . . . ,  n }  s.t. Hfix, E )  0, then

grad e(/, E ) —n — max{z : Hfix, E) f  0 } ;  otherwise grade(/, E )  =  oo. The 

depth of E  is denoted depth (E) and depth (E) =  grade(m, E).

Some readers might be familiar with the alternate definition of grade of a 

module that makes use of regular sequences. The above definition is consistent with 

the other definition and more information can be found in (7) on pages 10 and 336.

The next lemma is another famous one. It has many versions. The one given 

here, is the most useful for this paper.

Lem m a 2.0.51. The Depth Lemma (7, Proposition 1.2.9)

Let S  be a Noetherian ring, I  an ideal of S  and O ^ - U —ï M - î N - ^ Q a n  exact 

sequence of finite S-modules. Then

grade{I, M) >m in{grade(I, U ),grade(I , N )}, 

grade(I, U) >  min{grade(I, M ), grade(f N) +  1}, 

grade{I,N) >  m in{prode(/, U) — 1 ,g rade(I,M )}.

This concludes our section on the Koszul complex.

2.0.4 Tor and Betti Numbers
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Aside from being used in many areas of mathematics, the information 

provided in this section will be applied to Lemma 4.0.64.

We will now list several definitions and propositions to make our way to the 

Definitions 2.0.57 and 2.0.58 which define Tor and Betti numbers, respectively.

Definition 2.0.52. Let S  be a ring. Let A and B be S-modules. Let f  : A —y B  be a 

module homomorphism. Then B/im f is the cokernel of f , denoted coker(f).

Definition 2.0.53. A free resolution of an S-module M  is a complex 

T  : • • • —y Fn ^4 • • • F\ ^y F0 of free S-modules where coker <f>i =  M  and T  is exact. 

T  is minimal means for each i e N ,  imfa C m Ft_ i.

Definition 2.0.54. Let T  :•••-» Fn ^4 • • • F± ^  F0 be a free resolution of an 

S-module M. T  is a graded free resolution if S is a graded ring, if for each i, Ft is a 

graded free module, and if for each i, (j)% is a homogeneous map of degree 0.

Theorem 2.0.55. (12, Theorem 4.63) Let S  =  K [x i , ..., xn] be a polynomial ring over 

K. If K  is a principal ideal domain, then all finitely generated projective S-modules 

are free.

Proposition 2.0.56. Let S be a polynomial ring over a field k with the standard 

grading. Let I  be a graded ideal of S. The minimal graded resolution of S /1  by free 

S-modules can be expressed as

0 —y ©jf-iSbsi{~dgi) —% • ■ • —> d\j) S —y S /I  —y 0,

where all maps are degree-preserving and the dl3 are positive integers.

Definition 2.0.57. Let M  and N  be S-modules. Let

... —y F l+1 -y Fl - y  Fj_i - y  ... - y  F 0 —y 0 be a free resolution of M  as an S-module. 

Then Torf(M, N ) is the homology module at F%® N  of the complex



F l+1 ® N  —>■ Ft ® N  —y ® iV. So Torf(M, N ) =  ker(Fî ®  iV —>■ F t_i ® N) /  

im (Fj+i ® N - y F z® N )
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Rem ark. The following is a well known and useful property of Tor. Given any short 

exact sequence O - y l - y J - y K - y O  of S-modules and any S-module M, there 

exists a long exact sequence of Tor:

-------y Tor0(M , I) -y Tor0(M, J )  -y Tor0{M , K ) -y 0.

Definition 2.0.58. Lei 5  èe a ring. Let F  : -------► F î+1 H 1 Fz ^  Fl- 1 -y • • • 4  F 0

6e a/ree  minimal resolution of a module M. If rank Ft =  bu then 

TorfS/ m, M ) =  (S / m)b\ The bt are the Betti numbers of M.

We will denote the graded Betti numbers of a graded module M  over S  by 

f3(M)lJ. The following definition is based on the resolution given in Proposition

2.0.56.

Definition 2.0.59. Set Fj =  (B%iSb*'(—djt) where d3%) is a component

from Proposition 2.0.56. The jth Betti number of I  is rank Fr  The b3l are the graded 

Betti numbers.

The notations b3l or b3>l will be useful when reading the proof of Lemma 4.0.64.

Exam ple 2.0.60. Consider the ring S  — R[x, y\ and the ideal I  — (y2, x 2y, x4). Then 

we have the complex 0 —y S*12'1 © S b2’2 ^  S'61’1 © Sbl'2 © S bl’3 ^y—y S —y S /I  —y 0.

We are now finished with the background material and are ready to delve into

•••—>• Tort(M, I) -y T o rfM , J )  -y Tor^M, K ) —y Tor^ i —)■•••

&i,i =  2, blj2 =  3, òi,3 =  4, 62,1 =  4, and b2,2 =  5.

the first few results of Herzog and Hibi’s (4).



Chapter 3

LIM IT  BEHAVIOR O F D EPTH  S / I K

We may now begin to discuss the limit depth of an ideal, about which very 

little is known. This section coincides with the first section of (4). The following 

lemma will apply to the proof of Theorem 3.0.62.

Lem m a 3.0.61. Let A be a Noetherian local ring, and let M  be a finitely generated 

graded A-module. Then dim M  — 0 implies Mk =  0 V7c > >  0.

Proof. By the definition of dimension, dim M  =  0 ==> dim{A/annM ) =  0. Since 

A is local,Jet m be the unique maximal ideal of A. Notice that since annM  is an ideal 

of A, annM  C  m. If annM =  A, then A C m  But m is proper by definition so

annM  ^  A.

Now since A is commutative with 1 ^  0, m is prime. Then rti /annM  is prime 

in A/annM .

Claim: m is a minimal prime of A containing annM:

Suppose not. Then there exists a prime ideal in A such that annM  C  P  C  m. 

Then P/annM  is a prime ideal in A/annM  such that

annM /annM  C  P /annM  C  m /annM . Or 0 C  P/annM  C  m /annM . This 

implies ht(m /annM ) ^  0 which implies ht(m /annM ) >  0. Then 

dim {A/annM ) >  0. But this contradicts dim (A/annM) =  0. Thus m is a minimal 

prime of A containing annM, and this concludes the claim.

Now by Proposition 2.0.21, f )P^annM P  =  V annM  where each P  is a prime 

ideal. We know m is prime, and we know m 3  annM  since m is he maximal ideal of

20
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A. By the claim above, m is also a minimal prime containing annM. So

("1 PDannM ^  ~  m-

Now m =  s/annM  =  {re G A|rrn e  annM  for some n £  N }. Since A is 

Noetherian, m is finitely generated. Then there exists t £  N such that trd C  annM.

We know M  is finitely generated. Let Y  C M  such that Y  =  y±, and

M  — Let c be the greatest degree of any generator yl. A is commutative

with identity implies M  — A Y  — {]Ct=i aiVi\ai G A ;yt e f ; s  £  N }. Now consider 

the graded component Mc+t. Let b £  Mc+t. Then degb =  c +  t, and b is a 

homogeneous element. So b — Yft= iaiVi- Now since c is the highest degree of any yt 

and b is homogeneous implies each a3yl has degree c +  t then each at has degree at 

least t. Then each a% e  m C annM. Then each alyl =  0. Then 6 =  0. Then Mc+t =  0.

□

We are now ready to provide a more detailed proof of the first major result in 

“The Depth of Powers of Ideals.” The results of Theorem 3.0.62 and Theorem 3.0.63 

were previously and collectively shown by Burch, Brodmann, Eisenbud, and Huneke.

Theorem 3.0.62. (4, Theorem 1.1) Let A be a finitely generated, standard graded 

S-algebra, and let E  be a finitely generated graded A-module. Recall Proposition

2.0.34, then each graded component E & of E  is a finitely generated S-module. The 

depth of Ek is constant for k »  0, and hence izmfc™>OGdepth Ek exists. Moreover, 

limk-^oodepth Ek <  dim E  — dim E /  m E, and if E  is Cohen-Macaulay ('depths =  

dim_E or E  =  (0)j, equality holds.

Proof. Let x i , ..., xn be a minimal set of generators of m. Note that by a remark from 

section 2.3, we may take any minimal set of generators of m when discussing the 

Koszul Complex.
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Recall that H (x, E )  denotes the Koszul homology of the module E  with 

respect to the sequence x. Then Ht(x, E )  is the «th graded homology module, with 

componenets Iit (x, E )k.

Now recall that by Definition 2.0.50, the grade of a module with respect to an 

ideal /  can be determined by the Koszul homology modules. If the ring S  is local, the 

grade of an ¿-module with respect to m is the depth of the module. We have that m is 

an ideal in ¿  generated by X i , x n, and E k is an ¿'-module. We must show that there 

exists i such that Ht(x, E k) ^  0.

Since m is the unique maximal ideal of S, m is contained in every maximal 

ideal of S. Then by Nakayama’s Lemma (Lemma 2.0.1), m E k =  E k implies E k =  0. 

But we know E k ^  0, so m E k ^  E k. Then E k/  n\Ek ^  0.

By a remark from section 2.3 , Hq(x, E k) =  E k/m  E k. So for i =  0,

Ht(x, E k) ^  0. Thus depth E k =  n — m a x { z : H^x; E k) ^  0 }

Now let c =  max{z|dimHt(x, E) > 0 } . If i > c, dimHt(x] E )  =  0. Then by 

Lemma 3.0.61, for all % >  c, and k »  0, Ht(x; E k) =  0. Also by Lemma 3.0.61 

dimHc(x] H) >  0 =$■ for all t >  0, there exists k > t, such that Hc(x, E k) ^  0.

Then for k »  0, c =max{z\Hl(x, E k) ^  0 } . Then for k »  0, depth

E k =  n — c. Thus limfc_i.00depth E k — n — c.

Since E  is finitely generated, we may assume that E q — 0 after a shift in the 

grading. By Definition 2.0.25, E ^  =  ®tE ir.

By Lemma 2.0.28, dim E ^  =dim E. Since ( m E ) ^  =  m E^r\ 

dimE /  m E  =  dimE ^ /  m E^k  Since E ^  =  E kr by definition, then depth 

(E ^ )  =  depth (Ekr). Note that since E  =  E 0 ® E x ® E 2 © • • •, lim ^oo depth E k = 

limA._j.oo depth E kr .
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Recall that in general, depth E  <  dim E  (7, Proposition 1.2.12). So depth E  < 

dim E — dim E / m E .

Then depth E ^  <  dimE ^  — dimE ^  /  m E^r\ By the above, 

depth E ^  <  dimE  — dimE /  m E.

Claim: There exists r  G N such that depth E ^  =  hm k̂ .oodepth E k.

Since lim/j^oo depth E k exists, then there exists t G N such that for all k > t, 

depth E k =depth E t. Consider E ® .

Since for all k > t, depth E k =depth E t, and for all k G N, kt > t, then depth 

E kt — depth E t. Then for all k G N, n —

max{i\Hl(x ; E t) ^  0 }  =  n — max{i|i7l(a:; E kt) ^  0 }. So for all k G N, 

max{z|Ht(x\Et) ^  0 }  —msc {̂i\Ht{x] E kt) ^  0 }  =max{z\Hl(x] E ^ )  ^  0 } . Say 

max{«|f7j(a:; E t) ^  0 }  =  s. Then Hs(x ; E t) ^  0, and for all k G N , Hs(x; E kt) ^  0. 

Then ®kHs(x\ E ® ) ^  0. Then Hs(x; E ® )  ^  0. On the other hand, 

s =m ax{z|i/j(2;; E t) ^  0 } . So for all i > s, Hi(x; E t) =  0, and for all i > s,

H%{x\ E kt) =  0. We assumed E 0 =  0 so for all i > s, Ht(x; E ® ) =  0. So 

max{i\H%(x] E ® )  7  ̂ 0 }  =  s. So depth E ®  =  n — s. Now lim/j^oodepth 

E tk =  n —max{z|jEZj(a;; E tk) ^  0 } . Since k E N, max{z|f7,(x; E tk) ^  0 }  =  s. So 

lim/j^oodepth E tk — n — s. Thus, depth E®  =limfc_ .̂ooE tk =  limfc_i.00I?fc. Thus there 

exists r G N such that depth E W =  ¿zra^oo depth E k, completing the claim.

Now depth E ^  <dim E —dim E /  m E  gives lim/CH.codepth E k <dim E —dim 

E / m E .  If E  is Cohen-Macaulay, then by (7, Theorem 2 .12 ) ,  lim ^ooE k =dim  

E —dim E / m E .

□

The following theorem is the next major result of (4). Theorem 3.0.62 is an

application of Theorem 3.0.63.
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Theorem 3.0.63. (4, Theorem 1.2) Let A be a finitely generated, standard graded 

S-algebra, and let E  be a finitely generated graded A-module. Then each graded 

component of E  is a finitely generated 8 -module. The limits lim^^depth I k,

linik-roodepth S / I k, and lim^^depth I k/ I k+1 exist, and lim^^depth 

S / I k <lim}t̂ 00depth I k — 1 =limk^oodepth I k/ I k+1 <  dim,S' — £(I). If S  is 

Cohen-Macaulay and height I  >  0, then lim^oo depth S / I k ^dim^^depth I k — 1. 

If S is Cohen -Macaulay and the associated graded ring gri(S) is Cohen-Macaulay, 

then all limits are equal to dim,S' — £(I).

Proof. Recall I  is a proper ideal of S, and 41(1) is the Rees ring of I. Note 41(1) is a 

finitely generated graded .A-module. Then each I ktk is a finitely generated 5-module. 

Then by Theorem 3.0.62, lim/c_s.00depth I ktk exists. Thus lim^oodepth I k exists.

Now consider the associated graded ring gri(S). gri(S) a finitely generated 

graded A-module Then each I k/ I k+1 is a finitely generated 5-module Then by 3.0.62, 

lim ^oo depth I k/ I k+1 exists.

Now we will show that lim ^oo depth J k/ J k+1 <dim 5  — ¿(1). By definition, 

£(I) is the analytic spread of I, and £(I) =dim 4Z(I)/m.4Z(I). Also, dim 

gri(S) =dim (5) (7, Theorem 4.4.6). By a remark from section 2.2, dim 

g ri(S )/  m grj(S) =dim 4Z (I)/tn41(1). Note that the Mi component of grfiS) is

Now if we substitute gri(S) for E  in Theorem 3.0.62, then we have 

linifc^oodepth E & <dim E -d im  E / x a E  = >  

lim^oodepth [prj(5 )]fe <dim g n ( 5 ) -d im  g n ( 5 ) / m p r7(5 )  = >  

lim/c-KxAepth l k/ l k+l <dim grfiS ) —dim g rj(S ) /  m grj(S) = 4  

lim/c_>.00depth I k/ I k+1 < d im (5 )— dim gri(S) /  m gri(S) = 4  

limfe^oodepth I k /  I k+1 <dim (5) —dim 41(1) /  m 41(1) =4-
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linifc_i.0odepth I k/ I k+1 ^Cdin^S1) — £(/).

Now we will show that lim^oodepth S / I k exists. We know m C S  is an ideal, 

and for all k G N, I k / I k+l and S / I k are S'-modules. Consider the short exact 

sequence 0 - *  I kj l k+l — S / I k+1 —> S / I k —>■ 0 of S'-modules homomorphisms.

Since grade(m, S / I k+1) =  depth (S /I k+1) and grade(m, I k/ I k+1) =depth (Ik/ I k+1), 

then by the Depth Lemma,

depth ( S / I k+1) >min{depth (Ik/ I k+1),depth ( 8 / I k)}  and

depth (Ik/ I k+1) >min{depth (S / I k+1),depth (S / I k) +  1} .

Now since we know lim/..„>00depth I k/ I k+l exists, then there exists /c0 N 

such that for all k > ko, we have

(i) depth (S / I k+1) >min{linifc_i.00depth (Ik/ I k+1),depth (S / I k)},  and

(h) lim/£_>o0depth (Ik/ I k+1) >min{depth (S / I k+1),depth (S / I k) +  1 }.

We will prove that lim/c_s.00depth (S / I k) exists using two cases.

Case one: Assume there exists kt > ko such that depth (S / I kt) >linifc_}.00depth 

(.Ik/ I k+1).

Since depth (S / I kt) +  1 >depth (S / I kt) Mim^oodepth ( Ik/ I k+1), then (n)

gives

min{depth ( S / I ki+1),depth (S / I kt) +  1}  =  depth (S / I kt+1).

Then lim^oodepth (Ik/ I k+1) >depth (S / I kt+1). Since depth (S / I kt) >  

lim^oodepth (Ik/ I k+1), min{limfc_s.00depth (Ik/ I k+1),depth (S / I kt)}  =lim fe_foodepth 

(Ik/ I k+1).

By (i), depth (S / I kt+1) Mim^oodepth (Ik/ I k+1).

Then lim/s^oodepth (Ik/ I k+1) >  depth (S / I kt+1) and lim^oodepth 

(.Ik/ I k+1) <  depth ( S / I kt+1) imply limfc_>00depth (Ik/ I k+1) =depth (S / I kt+1).

Now we have shown depth (S / I kt) >lim;c„>O0depth (Ik/ I k+1) implies
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lirrifc^oodepth (Ik/ I k+1) =  depth ( S / I kt+1). Also, we have depth 

{ S / I kt) Mim^oodepth (Ik/ I k+1).

Thus lim^^oodepth (Ik/ I k+1) >depth (S / Ikt+1). Then lim/c_).00depth 

(Ik/ I k+1) >  depth ( S / I kt+1) implies limfe_).O0depth (Ik/ I k+1) =depth (S / I kt+2).

By induction, for all k > kt, lim^oodepth (Ik/ I k+1) =depth (S / I kt).

Case 2 : Assume for all k > k0, depth (S / I k) <lim fc_>00depth (Ik/ I k+1). Then 

for all k > ko, min{lim/J_s.00depth (Ik/ I k+1),depth (S/ Ik)}  =depth (S / I k). Then by 

(i), for all k > ko, depth (S / I k+1) >depth (S / I k). Then {depth (S / Ik)}k is a 

non-decreasing sequence for all k > kQ.

Since for all k > k0, depth (S / I k) <  lim^oodepth (Ik/ I k+l) (as we assumed),

{depth (S / I k)}k is bounded above by lim/^codepth (Ik/ I k+1) for all k > ko.

Then the fact that {depth ( S / I k) } k is anon-decreasing sequence for all k > ko 

together with the fact that {depth ( S / I k)}k is bounded above by lim^oodepth 

(Ik/ I k+1) for all k > ko implies lim^oodepth (S / I k) exists and lim^oodepth 

{ S / I k) ^hm^oodepth (I k/ I k+1).

Thus in both cases, lim ^oo depth (S / I k) exists and l im ^ ^  depth (S / I k) <

hm k-+00 depth (Ik/ I k+1).

Now we will show limt ._>00depth I k — 1 =  lim^oo depth I k/ I k+1. For all 

k e  N, 0 —>■ I k+1 —> I k —> I k j l k+l —> 0 is a short exact sequence. Then for all k £  N, 

the Depth Lemma gives depth (Ik/ I k+1) >  min{depth (I k+l) — 1,depth (I k)} .

Since we know lim^oodepth (I k) and lim^oodepth (Ik/ I k+1) exist, then we 

have limfc >0O depth (Ik/ I k+1) >  min{ lim^oo depth (I k+1) — 1, lim ^co depth (I k)} .  

Now of course lim/^oo depth ( / fe+1) =  lim^oo depth (I k). So lim ^oo depth 

(Ik/ I k+1) >  lim/^oo depth (I k+1) -  1. Then limfc^depth (Ik/ I k+1) >  lim^oo 

depth (I k) -  1.
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We will now adopt a new notation in order to identify particular homology 

modules. The ability to identify these particular homology modules will help us show

that

Zzm./c_>oodepth (Ik/ I k+1) <  lim^oo depth (I k) — 1. Let n be the minimal 

number of generators of m. Let g = lim^oodepth I k.

Suppose linifc-voodepth (Ik/ I k+1) >limfc_>0odepth (Ik) — 1.

Then

I k/ I k+1) ±  0}) >limfc_j.00(n-m in{i|i/i(x; I k) ^  0}) -  1.

Then

n -lim A._>0O(min{z|i/l( x ; / fe/ / fe+1) 7  ̂ 0}) > n -lim fe.+0O(min{i|iil(x;.Z'fc) 7  ̂0}) -  1. 

Then -n+limfe-H^ntin^liT^x; I k/ I k+1) 7  ̂ 0}) < -n + lim fc_>00(min{?|iii(^; I k) 7  ̂

0 }) +  1. Then

timk̂ 00(mhi{i\Ht(x ;I k/ I k+1) ^  0}) ^ im ^ o ^ m in ^ l# ^ ; I k) 7  ̂ 0}) +  1.

Now observe n — g =  n —lim^oodepth 

I k =  n —lim ^oon—min{i\Hi(x-, I k) ^  0}

= hm/c_>ccmin{z|ifi (x; I k) 7̂  0}. So there exists ki G N such that for all

k > ki,

Hn- g(x] I k) 7  ̂0 and Hn_g+1(x] I k) =  0.

Also observe n — g +  1 =  limfc_>00(min{?|i71(x; I k) 7  ̂ 0}) +  1. From above 

limfc_>00(min{i|iii( x ; /A:/J fc+1) =4 0}) <limfc_>00(min{z|iil(^; I k) ±  0}) +  1 

which can be written as lim^oo(min{i|TAi(x; I k/ I k+1) 7̂  0}) < n — g +  1.

Then there exists ko > k\ such that for all k > ko, Hn-g+liZ.; I k/ I k+l) =  0 

and

Hn-g(x]Ik) 7  ̂0.

We again consider the short exact sequence 0 -»  I k+1 —> I k —> I k/ I k+1 —> 0 .



Recall that each of the modules in this sequence is graded, that is I k — © n

Thus we have a short exact sequence of complexes. (See the next page.)

3 
£



o o o

( / fc+1)n-a+2 ----------- (Ik+1)n-3+1 ---------- - {Ik+1)n-9

(-ñ n - 9 + 2 ------------- ( ñ n  ~~g+ 1  ------- - (ñ n - 9

(Ik/ I k̂ g+2 —  (Ik/ I k+%„g+1 —  (7*+V/Vp

O o o

o

(Jfe+i)n-^~l

O
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Observe the sequence

• • • -+ Hn_g+1(x- I k/ I k+l) -4  ifn_g(x; I k+1) -4  Hn^ (x ; I k) -4  

Hn„g{x- I k+l/ I k) -4

Hn-g-iC^; I k+1) ■ • •

By Theorem 2.0.43, the sequence

-------► Hn_g+1(x- I k/ I k+1) -4  Hn- g{x ; / fe+1) -4  iTn_fl(x; J fc) -4  • • • is exact

for all k.

Now consider the natural map Hn^g(x; I k+1) -4  Hn^g(x\ I k). Since the sequence

-------► Hn- g+i(x; I k/ I k+1) -4  / fc+1) -4- ^ ( x ;  I fc) -4  • • ■ is exact

for all k, and since Hn- g+i(x ; I k/ I k+1) =  0 for all A; >  fc0, then 

Hn- g(x; I k+1) -4  Hn- g(x] I k) is injective for all k >  /c0. Since the composition of 

injective maps is injective, and since for all l > k > k0, i l n_ g+i(x] I l/ I l+1) =  Othen 

for each l > k, Hn- g(x\I1) -4  Hn- g(x] I k) is injective for k > kQ. But the Artin-Rees 

lemma (14, Theorem 3.4.8) implies that if M  is a finitely generated ¿'-module, then 

the natural homomorphism Hn- g(x; I lM) -4  Hn_g(x\ M ) is the zero map for l »  0. 

This implies that Hn- g(x; I 1) =  0 for l »  0, or equivalently Hn- g(x; I k) — 0 for 

k »  0. However, n — g =hm/0_>.00min{z|Hl(x ; I k) ^  0 } . Thus we have a 

contradiction. Therefore, lim^oodepth (I k) — 1 M im ^oo depth I k/ I k+1. Finally, 

lim/^oodepth (Ik) — 1 ^Mim^oo depth I k/ I k+1. Then we have 

lim^oodepth S /I k ^lim^oodepth I k — 1 =lim/ĉ codepth I k/ I k+1 <dim  

S - £ ( I ) .

Now assume S  is Cohen-Macaulay. Consider the short exact sequence 

0 -4  I k —>■ S —> S /I k -4  0. Since S  is Cohen Macaulay, depth S  >  depth 

I k — 1, and depth S  >  depth S /I k +  1. Then by the Depth Lemma, depth S /I k >  

depth I k — 1 and depth S / I k <  depth I k — 1. So depth S / I k =  depth I k — 1.
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Therefore, limfc_).00 depth S / I k =  lim^oo depth I k — 1.
I

Now if we assume grr(S) is Cohen-Macaulay and substitute gr/(S ) for E  as 

we did in the beginning of this proof, then by Theorem 3.0.62, lirn^oo depth 

[grj(5')]fc =  dim g r/(S )—dim g rj(S )/m g rj(S ). As before, this implies limfc_>00depth 

I k/ I k+1 =  dim (S') -  £(I).

Finally, if we have that S is CM and grj(S) is CM then limfc_>.00depth 

8 / I k =lim^oodepth I k -  1 =lim fĉ codepth I k/1 k+1 =dim S  -  i { I ).

□



Chapter 4

T H E IN ITIA L BEHAVIOR O F D EPTH  S /I K

This section corresponds with the second section of (4). The following 

theorem is the first proven result of their second section.

The least degree of the homogeneous generators of a module M  will be 

referred to as the initial degree of M.

Lem m a 4.0.64. (4, Lemma 2.2) Let S  =  K [x i , xn] be a polynomial ring over the 

field K  such that for each i <E { 1 , n}, degxl =  1. Let J  C  I  be graded ideals of S, 

and let d be the initial degree of I. Then (3lil+d{J) <  fii,i+d{I) Vi.

Proof. By a Remark from section 2.4, the short exact sequence 

O—y J —y l —y l / J —yO yields the long exact sequence 

------- ► Tarl+1(K, I / J )  -4  T o rfK , J )  -»  TorfiK, / ) -> • • • .

Recall Proposition 2.0.56. Since S' is a polynomial ring over a field k with the 

usual grading and J  is a graded ideal of J , the minimal graded resolution of I f  J  by 

free S'-modules can be expressed as

0  —J- ® f i = 1 S b 3 m (  —  a g m )  ^ 4  • • • —> —d im )  ^  © m = l'S l6°m d /  J i

where g is the projective dimension of I / J .  Now Torl+i(K , I / J )  is the 

homology module at i +  1 of the sequence

------- y ©^La15 6*+2-"* (-a t+2,m) ® K  H 2 <g> K  H 1

®^=1Sb̂ { - a hm) ® K  • • ■.

So T orI+i (K, I / J )  =  ker0l+i/im 0 l+2.

32
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Now recall Definitions 2.0.57 and 2.0.58. Let JF F% •••—>■ Fx % F0

be a free minimal resolution of the ¿'-module J .  Then Tort(K, J )  is the ith homology 

module of the sequence Fl+i ® K  H 1 F% ® K  ^  ¿ U  ® K  -)■ • • •. So 

Tor^K, J) =  k e r^ /im ^ + i.

Similarly, let Q : • • • —»• (¿i • • • —> G\ ^  Go be a free minimal resolution of

the ¿-module I. Then Tor^K, I) is the ith homology module of the sequence 

•••—»■ Gl+1 ® K  G i®  K  Gj_i ® 7T —>• • • •. So Torz(K, I) =  kercrt/imcrt+1.

Since and cr* are homogeneous maps, we have the long exact sequence

• • • —> Torl+i(K , I /  J ) l+d Tort(K, J ) l+d Tort(K, I)%+d Or we

can write • • • —> Torl+ i(K , / / JX + i+ ^ -i) —>■ Tort(K, J ) t+d Tort(K, I )%+d —>••••

Now let d be the initial degree of I, and let q be the initial degree of I /  J . If 

{di, d2, dn}  is the generating set of homogeneous generators of / ,  then 

{di +  J, d2 +  J, •••) dn +  J }  is sufficient for the set of homogeneous generators of I /  J.  

Thus q >  d.

Note that

Torl+i(K, I / J )  =  ker0i+1/im0i+2 

C  ® m = ^ &,+1,m <8> K /

im ( ® m = l^ +2'm( - ^ + 2,m) ® ®™=1 ¿ 6*+1’m ( - 0,+1.m) ® A").

Now we are interested in the component m  =  1 +  % +  (d — 1). So we are 

interested in

g&t+i,*+i+(d-i) (—ol+1)t+1+(d_1)) ® K.  Since we have a free minimal resolution, 

we have al+i >  ai + 1 >  « +  1. So

^  z-Tl —  V  — Gi i~\~ 1 —■ /• —ai+i-H -fl-t-d —1 F  ft-fTT^-t-l-Td—1 =  d—1.

By the definition of a shift in the graduation,

(S6î+liI+1+d_l ( _ aî+iiî+i+(i_ i) = S h + l , z + l + d ~ l
t where t < d — 1. Since
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d is the initial degree of I  and q > d, t is strictly less than q. So t is strictly less than 

the least degree of homogeneous generators of I /  J .  Thus Tori+i (K , I /  J ) l+Ci =  0 

implying Tor%(K, J ) i+d ->• Tort(K, I ) l+d is injective.

Then Torl(K, J ) l+d -»  Torl{K , I )t+d is injective implies Rank(Fj)l+ci <  

Rank(C?i)i+d. Then by the definition of Betti number, {5{J)l>l+d <  ¡3{I)l)l+d-

□



Chapter 5

A CLASS OF EXAMPLES ARISING IN COMBINATORICS

This section of the paper corresponds to section 3 of Herzog and Hibi’s paper. 

They give several classes of examples, whereas we will focus on just one. This 

example is one of the only known cases where the exact depth of S / I k can be 

computed.

Exam ple 5.0.65. (4, Corollary 3.4) Let d and n be integers such that 2 <  d < n. Let 

I  — In,d be the square-free Veronese ideals of degree d in the variables xi , . . . , xn. That 

is, the ideal o fS  generated by all square-free monomials in x \,..., xn of degree d.

Then depth S / I k =max{0, n — k(n — d) — 1}.

Exam ple 5.0.66. Set d =  2 (this gives us a complete graph). We must have n > 2. Let 

us first consider what happens when k =  1. Then depth 

S /I  =max{0, n — (n — 2) — 1} =max{0, 1 } =  1.

Now consider k — 2. Then depth

S / I 2 —max{0, n — 2 (n — 2) — 1 } =max{0, —n +  3 }. Since we must have n > 2, then 

in this case (d =  2), depth S / I 2 — 0 for all n.

Let’s consider an example where k varies while d and n remain fixed.

Exam ple 5.0.67. Fix d =  2 and n =  3. We already know depth S /I  from Example

5.0.66. Let k =  2. Then depth

S / I 2 =max{0, 3 -  2(3 -  2) -  1 } =mctx{0, 3 -  2(3 -  2) -  1 } =  0.

Observe that we have depth S / I k —max{0, 3 — k(3 — 2) — 1 } =max{0, 2 — k}. Thus 

in this case, depth S / I k =  0 if k >  1.
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