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POSITIVE SOLUTIONS TO A SECOND ORDER
MULTI-POINT BOUNDARY-VALUE PROBLEM

DaoMIN Ca0 & RUYUN MA

ABSTRACT. We prove the existence of positive solutions to the boundary-value prob-
lem

u”’ + Xa(t)f(u,u') =0
m—2

w(0) =0, u(l)= " aju(&),

i=1

where a is a continuous function that may change sign on [0,1], f is a continuous
function with f(0,0) > 0, and A is a samll positive constant. For finding solutions
we use the Leray-Schauder fixed point theorem.

1. INTRODUCTION

The study of multi-point boundary value problems for linear second order ordi-
nary differential equations was initiated by II'in and Moiseev [8, 9]. Motivated by
the study of II'in and Moiseev [8, 9], Gupta [4] studied certain three point boundary
value problems for nonlinear ordinary differential equations. Since then, more gen-
eral nonlinear multi-point boundary value problems have been studied by several
authors using the Leray-Schauder Continuation Theorem, Nonlinear Alternative of
Leray-Schauder, coincidence degree theory or fixed point theorem in cones. We
refer the reader to [1-3, 5, 10-12] for some existence results of nonlinear multi-point
boundary value problems. Recently, the second author[12] proved the existence of
positive solutions for the three-point boundary value problem

u’ +b(t)g(u) =0, te(0,1) (1.1)
where n € (0,1), 0 < a < %, b >0, and g > 0 is either superlinear or sublinear by
the simple application of a fixed point theorem in cones.

In this paper, we consider the nonlinear eigenvalue m-point boundary value
problem

v’ 4+ Xa(t) f(u,u') =0 (1.3)
u(0) =0, wu(l)= Z a;iu(&;) (1.4)
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where A is a positive parameter.

We make the following assumptions:
(Al) a; >0fori=1,--- ,m—3and a2 >0;&:0<& <& < - <&p_a<l1
and Z:’;Q a;& < 1.
(A2) f:[0,00) x R — R is continuous and f(0,0) > 0;
(A3) a € C[0,1] and there exist ro € [0,1] and 6 > 0 such that a(rg) # 0, and
the solution of the linear problem
u +at(t)—-(1+0)a(t)=0, te(0,1)

m—2
> au(&)
=1

is nonnegative in [0, 1], where a* is the positive part of a and a~ is the
negative part of a.
(A4) There exist a constant k in (1,00) such that

P(t) =2 kQ(t) (1.5)

u(0) =0, wu(l)

where

P(t) = / ot (syds 1 ot Wy (& = s)at(s)ds | fy (1= s)a* (s)ds

1- Y% aig; 1— 7% 4
d
Qzl) - /t “(s)ds + S a fy' (& — s)a(s)ds + Jo (1= s)a(s)ds
— 0 a (s)as 1_227;—126”& 1_2?;—120%&

Our main result is

Theorem 1. Let (A1), (A2), (A3), and (A4) hold. Then there exists a positive
number \* such that (1.3)-(1.4) has at least one positive solution for 0 < A < \*.

The proof of this theorem is based upon the Leray-Schauder fixed point theorem
and motivated by [7].

2. PRELIMINARY LEMMAS

In the sequel we shall denote by I the interval [0, 1] of the real line. E will stand
for the space of functions u : I — R such that u(0) = 0, u(1) = 27", a;u(¢;) and
v’ is continuous on I. We furnish the set £ with the norm |u|g = max{|ulo, [t'|o} =
|u’|o, where |u|g = max{u(t) | t € I}. Then E is a Banach space.

To prove Theorem 1, we need the following preliminary results.

Lemma 1 [6]. Let a; > 0 for i = 1,---,m — 2, and Z:’;Q a;& # 1, then for
y € C(I), the problem

u +yt)=0, te(0,1) (2.1)

u(0) =0, wu(l)= Z_ a;u(&;) (2.2)

has a unique solution,
t m—2 i 1
1 G P — d 1-— d
u(t) = — / (t — syy(s)ds — 2= P & Z(s)ds  Jo (L= o)y(o)ds
0 1- Z¢=1 a;&; 1- Zizl a;&;

The following two results extend Lemma 2 and Lemma 3 of [12].
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Lemma 2. Leta; >0 fori=1,--- ,m — 2, and Z?;Z(zi& <1l. IfyeC(I) and
y > 0, then the unique solution u of the problem (2.1)-(2.2) satisfies

u(t) >0, vtel

Proof From the fact that u”(x) = —y(z) < 0, we know that the graph of wu(t) is
concave down on I. So, if u(1) > 0, then the concavity of u together with the
boundary condition «(0) = 0 implies that u > 0 for all ¢ € I.

If u(1) < 0, then from the concavity of u we know that

u(é’) Z@, fori=1,--- ,m—2 (2.3)
This implies
m—2 m—2
= Z a;u(&;) > Z a;&u(l) (2.4)
i=1 =1

This contradicts the fact that Y ;- algz < 1.

Lemma 3. Leta; >0 fori=1,---,m —3, ay,_2 > 0, and Z:’;Q a;& > 1. If
ye€ C(I) and y(t) > 0 fort € I, then (2.1)-(2.2) has no positive solution.

Proof Assume that (2.1)-(2.2) has a positive solution u, then u(§;) > 0 for i =

1,---,m—2, and
m—2 m—2
= Z azu(éz) = Z azézu

= Z (2.5)

>Za@§@ . %
min{ %4

(where € € {&1,-++ ,&n_2} satisfies % =
contradicts the concavity of u.
If u(1) = 0, then applying a,,_2 > 0 we know that

uw(&pm—2) =0 (2.6)

From the concavity of u, it is easy to see that u(t) <0 for all ¢ in I.

—1,---,m —2}). This

In the rest of this paper, we assume that a; > 0fori=1,--- ,m —3, ap_o2 >0,
and Z;T;z a;&; < 1. We also assume that f(u,p) = f(0,p) for (u,p) € (—0,0).

Lemma 4. Let (A1) and (A2) hold. Then for every 0 < § < 1, there exists a
positive number X such that, for 0 < A < A, the problem

u” + xat () f(u,u’) =0 (2.7)
u(0) =0, u(l) = z_: a;u(&;) (2.8)

has a positive solution Gy with |ux|g — 0 and |@)|o — 0 as A — 0, and

x> AOF(0,0)p(t), tel (2.9)
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S e Jo' (6 = s)at(s)ds | fy(1- )at(s)ds
1= aig 1- 3" 2 ag

Proof. By Lemma 2, we know that p(¢t) > 0 for ¢ € I. From Lemma 1, (2.7)-(2.8)
is equivalent to the integral equation

p(t) = — /0 (t— $)at(s)ds — t

u(t) =\~ /0 (t — $)a* (s) F(u(s), o/ (s))ds

S a [ <s>f<u<s>,u'<s>>ds
1- Z -1 azfz
Sy = s)a* (s >f<u<s> <s>>ds]
1- Zz 1 azfz

—t

+1

defA()

where u € C'(I). Further, we have that

(Au) (t) =A[ - / o (3) 1 (u(s), u (5))ds
oI5 (6 — )" (5)] ). (5))ds

1= Zz 1 azfz (2'10)
4 o= 9t () (). o)
1- Zz 1 azfz

Then A : C*(I) — C'(I) is completely continuous and fixed points of A are so-
lutions of (2.7)-(2.8). We shall apply the Leray-Schauder fixed point theorem to
prove A has a fixed point for A small.

Let € > 0 be such that

f(u,y) 2 6£(0,0), for (u,y) € [0, €] x [~ €] (2.11)
Suppose that
L (2.12)
2|Plof(e)
where f(r) = max f(u,y). By (A2) we know that
(uw,y)€[0,7] X [—7,7]
im £ oo (2.13)
r—0t T

It follows that there exists ) € (0,¢€) such that

fr) 1
2Pl (2.14)
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We note that (2.14) implies
r»—0, asA—0 (2.15)
Now, consider the homotopy equations
u=0Au, 0 (0,1) (2.16)

Let u € C*(I) and 6 € (0,1) be such that u = §Au. We claim that |u|g # ry. In
fact,

u(t) =07 - /0 ot () (u(s), ' (s))ds
2 [y (& — s)at (s) f(uls),u(s))ds

1— 7% 4 (2.17)
L =9t (s )ﬂ{(g(s) (5))d8]
1 _Zz 1 azfz
This implies that )
[u'(t)] < Af(lulg)P(t), te€]0,1] (2.18)
hence
i < APlof(|julg) (2.19)
f(lulg) 1
e~ NPlo (2.20)

which implies that |u|g # r\. Thus by Leray-Schauder fixed point theorem, A has
a fixed point 4y with
’fLA‘E <ry<e (2.21)

Moreover, combining (2.21) and (2.11) and using (2.10) and Lemma 2, we have
that

() = AS£(0,0)p(t), (2.20)
forte I, A< ).

3. PROOF OF THE MAIN REUSLT

Proof of Theorem 1. Let

— ' o - - Z:IQGifoi 51_3 fO 1—8 )ds
O R e T
(.1

then from Lemma 2, we know that ¢(¢) > 0. By (A3) and (A4), there exist positive
numbers ¢, d € (0,1) such that for ¢ € I,

q(t) max{[f(u,y)| [ 0 <u <¢,—c <y < c} <dp(t)£(0,0),

Q) max{|f(uy)] |0 < u<e,—c<y<c <dP@H)f0,0).
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Fix § € (d,1) and let A* > 0 be such that
[ur|g + A0f(0,0)|Plo < c (3.3)

for A < A*, where 4, is given by Lemma 4, and

Pl 3) — s, )] < £0,0) (25 9) (3.4)

for (u1,y1), (u2,y2) € [0,c] x [—c¢,c| with
max{|uy — usl, [y1 — 2|} < A"6£(0,0)|Po.

Let A < A*. We look for a solution u, of the form %) + v). Here vy solves

V" + At () (f(r 4 v, @) +0) = f(@r, @Y)) — Aa” (t) f(@x + v, @) +0) = (z |
3.5

v(0) =0, v(1) = 2_: a;v(&;) (3.6)

For each w € C*(I), let v = T'(w) be the solution of

Then T : CY(I) — C'(I) is completely continuous.
Let v € CY(I) and 0 € (0,1) be such that v = Tv. Then we have

v+ OXa™ () (f (x4 v, @) + ") — f(ar, @) — OAa” (#)(f(ax + v, @) +0")) =0

v(0) =0, v(1) = Z_ a;v(&;) (3.8)

We claim that |v|g # AJf(0,0)|P|o. Suppose to the contrary that |v|p =
A3f(0,0)|Plo. Then by (3.3), we obtain

|ax +v|g < |ur|g + |v|g <c,

_ _ (3.9)
|ix + vlo < |axfo + |vfo < c.
These inequalities and (3.4) imply
~ ~/ !/ ~ ~/ 5 - d
| flan + v, @)\ + ') — fl@r, @))|o < £(0,0)(——) - (3.10)

2
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Using (3.10)and (3.2) and applying Lemma 1 and Lemma 2, we have that

(0] < 275 £0,0p(t) + Amas{1f(w. )] | 0 < u < e~ < y < cJa(t)

2 F(0,00p(2) + AdF(0,00p(2) (3.11)
_ )\(H?_—df(o, Op(t), tel

<A

and

@] < X5 F0,0)P0) + Amax{1f(wp)] [0 < u < e~ < y < Q)

< )\(S;—d £(0,0)P(£) + AdF(0,0) P(2) (3.12)

- A%f(o, 0)P(t), tel

In particular

0+d
[vlp < A=—5—1(0,0)[Plo < Ad£(0,0)[Plo (3.13)

a contradiction, and the claim is proved. Thus by Leray-Schauder fixed point
theorem, 7" has a fixed ponit vy with

loale < A0£(0,0)[Plo (3.14)
Finally, using (2.9) and (3.11), we obtain

uy > Uy — |vy]
> A6f(0,0)p(t) — AHTdf (0,0)p(¢) (3.15)

=22 0.0, ter

i.e., uy is a positive solution of (1.3)-(1.4).
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