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MODELING, ANALYSIS AND SIMULATIONS OF DEBONDING
OF BONDED ROD-BEAM SYSTEM CAUSED BY HUMIDITY

AND THERMAL EFFECTS

KEN L. KUTTLER, SERGE KRUK, PAWEL MARCINEK, MEIR SHILLOR

Abstract. This work models, analyses and simulates a one-dimensional pro-

cess of debonding of a structure made of two viscoelastic bonded slabs that
is described by a rod-beam system. It is motivated, primarily, by the degra-

dation of adhesively bonded plates in automotive applications and studies the
effects of the humidity, horizontal and vertical vibrations and temperature on

the debonding process. The existence of a weak solution to the model is es-

tablished by using approximate problems, existence theorems for differential
inclusions, and a fixed point theorem. An implicit finite differences algorithm

for the problem is developed and used to simulate the system dynamics. It is

found that the qualitative behavior of the system correlates well with exper-
imental results. Moreover, it indicates that using the shifts in the spectrum,

as described by the FFT of one component of the solution, may be used to

measure nondestructively the integrity of the bonds and their deterioration.

1. Introduction

This work deals with a mathematical model for the process of debonding of ad-
hesively bonded plates, motivated primarily by its importance in single lap joints in
automotive applications. Whereas metallic plates are very often joined by welding,
nonmetallic or metallic and nonmetallic plates are often adhesively joined by a thin
layer of glue. It is known, see e.g. [11, 14, 15] and the many references therein,
that the adhesive strength deteriorates as a result of mechanical vibrations, hu-
midity and temperature, as well as other mechanical effects. The main interest in
[11, 14, 15, 19] was in the effects of humidity on adhesively bonded parts in vehi-
cles since they are used in environments of highly varying humidity and possibly
temperature. They constructed a mathematical model using two beams for the
processes, simulated it and compared to their experimental results.

We note that the need to better understand the debonding process can be found
in other industries, in particular, in the Aerospace applications where bonding of
light plates is essential, see, e.g., [20] and the references therein.

The interest in this work is four-fold: (i) Construction of a model for the process
of debonding of two slabs. (ii) Showing that the model has a weak solution, and
provide for conditions of its uniqueness. (iii) Developing a numerical algorithm
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for the discretized problem and its implementation. (iv) Description of different
simulations that show typical debonding processes and highlight the dependence of
the process on the frequency of the driving traction and the shift in the system’s
spectrum as debonding progresses.

The model for the debonding of the slabs has been introduced recently in [21],
and its derivation from a full 3D setting is in progress in [18]. It is considerably sim-
pler than a 2-plate model, nevertheless, it includes horizontal and vertical tractions
in the adhesive region, which are essential to the process, since it contains four 1D
dynamic equations. The model uses two dynamic rods’ equations for the horizontal
shear stress in the (thin) adhesive layer; two dynamic beams’ equations for the ver-
tical shear in the layer; two parabolic equations for the temperature and humidity
in the layer; and a parabolic inclusion that describes the dynamics of the bonding
field. Thus, the system consists six partial differential equations and a differential
inclusion. Moreover, in the beam equations, to guarantee that the upper beam is
above the lower beam, we also add a set inclusion term. The use of both beams
and rods to obtain vertical and horizontal tractions seems to be new. However, the
main novelty is the description of the debonding process in this setting.

There exists growing recent literature on modeling and analysis of systems with
adhesion where the evolution of the bonding field is described by parabolic inclu-
sions. These arise from the fact that the bonding field β = β(x, t) that measures the
fraction density of active bonds is assumed to be a ‘damage variable,’ which is re-
quired to satisfy 0 ≤ β ≤ 1. The reader is referred to the monographs [5, 12, 22, 24]
for general models using differential inclusions for adhesion of solids, and the many
references therein. These, naturally, belong to the Mathematical Theory of Contact
Mechanics (MTCM), which has made considerable progress in the last two decades.
Among the many recent papers on the subject of adhesion processes in mechanical
systems, we just mention [4, 6, 7, 13, 16] and the references therein.

We also note that a different approach to humidity related debonding was taken
in [11, 15]. There, the adhesive layer was considered as an additional elastic body
with humidity dependent elastic-plastic properties, and the model was static. Their
main purpose was to construct a mathematical model for the prediction of the
breaking of the adhesive. The adhesive layer was assumed to break when the shear
or bending stresses exceeded a prescribed ceiling, the so-called yield limit. The
(static) model was in the form of coupled system of 4th order ordinary differential
equations and the diffusion equation for the humidity. It was solved numerically,
and some of its predictions were compared to experimental results. Here we deal
with the dynamic setting and we introduce the damage field, which replaces the
adhesive layer that is assumed to be very thin.

Since the model constructed in this work is nonlinear and rather complex and in-
cludes two differential inclusions for the bonding field and the motion of the beams,
we first established the existence of its weak solution. To that end, we used various
results from the theory of differential equations and inclusions for pseudomonotone
operators, see, e.g., [2, 8, 12], approximations, a priori estimates and fixed point
arguments. Moreover, under a restriction on the form of the diffusion coefficients
in the heat and humidity equations, we established the uniqueness of the weak
solution. The proof proceeded by first assuming that the bonding, temperature
and the humidity fields were known, established the existence of a weak solution to
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the resulting dynamic system with rods and beams, and then we used fixed point
arguments for the full system.

Next, to gain insight into the model solutions, we constructed an algorithm for
the computational approximations of the solutions based on finite differences, which
was fully implicit in time. The scheme was implemented and a numerical study
indicated that it was stable, robust, and seemed to have quadratic convergence.
The proof of convergence is unresolved, yet.

The numerical code was implemented and a number of simulations conducted.
Here, we present results of a few typical simulations. But first, we compare the
exact frequency spectrum of a rod that is held fixed at one end and free at the
other with the computed spectrum. The latter was obtained by using the Fast
Fourier Transform (FFT), and was found to agree very well with the theoretically
calculated frequencies from a simple formula obtained from Fourier analysis. Then,
we computed the FFT spectrum of the system without debonding. This is used for
comparison purposes in the third and fourth simulations where the FFT spectrum
in the cases when the system was driven by periodic horizontal tractions with
frequencies f = 25, 150 and 350 Hz. These are the main computational results
in this work. Next, we depict the results for debonding, when the traction has
frequency 350 Hz, for different values of the diffusion coefficient in the equation
for the bonding field. Finally, we perform a comparison of the results when the
diffusion coefficient in the equation for humidity is either constant or depends on
the bonding function.

We also conduct a numerical study of the convergence of the algorithm. The
numerical solutions of the bonding field at a fixed time and ten decreasing time steps
are presented and compared. It is seen numerically that the algorithm converges
quadratically.

Our main interest in these computer simulations lies in the questions of how do
the traction frequencies affect the debonding process, and how, in turn, the process
affects the shift in the vibration frequencies of the system as debonding progresses.
This may open a way to assess debonding in real systems by using noninvasive
measuring techniques. We return to these points in the conclusions section.

The rest of the paper is structured as follows. Section 2 presents the derivation
of the ‘classical’ model, Model 2.1, and states clearly its underlying assumptions.
The weak or abstract formulation of the model is presented in Section 4 within the
setting of the appropriate function spaces, Problem 4.1, and our main theoretical
result is stated in Theorem 4.2. Using the mathematical preliminaries of Section 3,
the existence of weak solutions is established in Section 5. A numerical algorithm for
the approximate solutions of the model that is based on finite differences, and which
is fully implicit in time, is developed in Section 6. The results of the simulations are
depicted in Section 7. Section 8 presents numerical evidence that the convergence
is almost quadratic. Finally, a summary of the results, some conclusions and a
number of unresolved questions that arise from this work are provided in the last
section, Section 9.

2. The model

We construct a model for the process of debonding of two thin long bonded
slabs, which are assumed to act as rods and beams, that is caused by humidity
and thermal effects. Its derivation from a 3D model, in the limit of two such long
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thin slabs, will appear in [18]. General methods for such derivations can be found
in [17, 25]. We use the notion of rods to describe the horizontal motion of the
two slabs and the notion of beams for the vertical motion, the bending, since these
contribute to the debonding process. The model consists of a nonlinear coupled
system of two equations of motion for the rods, two for the beams, all in terms
of the displacements, a parabolic differential inclusion for the deterioration in the
adhesive strength, and two parabolic equations for the humidity and temperature.

We note that a simpler model has been recently studied in [11, 14, 15, 19].
There, the authors used a revised Goland-Reissner method for coupled shear stress-
diffusion, and also a revised Hart-Smith model with diffusion. However, the ap-
proach here is different as we introduce the bonding field explicitly, and we also
deal with the full diffusion equations for humidity and temperature.

The two slabs occupy the intervals [0, l2] and [l1, 1], (0 < l1 < l2 < 1), and are
bonded over the interval [l1, l2]. The left end of the first slab is clamped while
its right end and the left end of the second slab are both free. Time dependent,
possibly periodic, horizontal traction p = p(t) and vertical shear q(t) act at the right
end of the second slab. We denote the horizontal displacements of the central axes
by u1 = u1(x, t) and u2 = u2(x, t), and the vertical displacements by w1 = w1(x, t)
and w2 = w2(x, t), respectively. In this model, we treat the horizontal motion of
the slabs as that of rods, while the vertical bending motion as that of two beams.
Moreover, the lengths and displacements are scaled so that the system’s length is
1. The setting is depicted in Figure 1.

x
0u1 = 0

w1 = 0
w1x = 0

l2l1
p

q

1

u1, w1

u2, w2

β, η, θ

-
�
6

Figure 1. The adhesive occupies the interval l1 ≤ x ≤ l2 where
the bonding function β and the humidity and temperature func-
tions η and θ are defined.

The slabs are assumed to be either elastic or viscoelastic, thus, the rods’ stresses
are given by

σri = EiAiuix + νriuixt, (2.1)
where here and below i = 1, 2; Ei are the Young moduli, Ai are the cross sections,
Bi are the area moments, and νri are the coefficients of viscosity. The vertical
(beam) moments and shear stresses are given by

Mi = EiBiwixx + νbiwixxt, σbi = EiBiwixxx + νbiwixxxt,

where for i = 1 the functions are defined on [0, l2], and for i = 2 they are defined
on [l1, 1]. The subscripts x and t denote the respective partial derivatives. When
the slabs are elastic the viscosity coefficients ν vanish.

Below, we use the notation ρi for the density of the materials, c2ri = Ei/ρi,
c2bi = EiBi/(Aiρi), νri = νri/(ρiAi) and νbi = νbi/(ρiAi), which simplify the
equations of motion.
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We assume that the process of debonding is irreversible and denote by β = β(x, t)
the bonding field defined on [l1, l2] that measures the strength of the bonding,
actually, the pointwise fraction of active bonds. Therefore, it satisfies

0 ≤ β ≤ 1. (2.2)

When β = 1 all the bonds are active and the bonding strength is maximal and when
β = 0 all the bonds are severed and the slabs are not bonded. When 0 < β < 1,
the fraction β of the the bonds is active and so the traction transmitted between
the rods is reduced to βKr. The full horizontal shear force transmitted by the
adhesive is assumed to depend only on (u2 − u1), thus, we let it be βKr(u2 − u1).
The vertical force transmission is assumed to be βKb(w1−w2). Moreover, we must
impose the constraint w1 ≥ w2 to avoid the penetration of the lower slab into the
upper slab, as we explain below.

For the sake of simplicity Kr and Kb are assumed to be large positive constants
representing the stiffness of the fully glued bonds. One may choose both Kr and
Kb to be functions, but at this stage it is not clear how to obtain or measure
it. Moreover, we note that in applications, it is very likely that the bonding will
break down when β reaches a small value on a large portion of the interval [l1, l2],
and we remark on this issue below. We assume that the evolution of the bonding
field is affected by the absolute value of the shear force, βKr|u2 − u1|, the vertical
force βKb(w1 − w2), the temperature θ = θ(x, t) and the humidity η = η(x, t),
in the adhesive, the latter two are defined on [l1, l2]. Following [5], we assume
that the debonding process is also affected by neighboring elements and so we add
some diffusion (see also [22, 24] for more details) and describe the process with the
debonding rate equation

βt − kββxx = −Φ(βKr|u2 − u1|, βKb(w1 − w2), η, θ).

Here, kβ is the debonding diffusion coefficient, which for the sake of simplicity is
assumed to be a small positive constant (see Subsection 7.5). The debonding source
function Φ is nonnegative and depends on the indicated variables. Since we assume
that debonding is irreversible, that is rebonding or mending do not take place,
the rate in nonpositive. Below, we discuss possible forms of Φ, and we write it as
Φ(|u2 − u1|, (w1 − w2), β, η, θ).

We note that to preserve the interpretation of β as a fraction, we need to modify
the rate equation to guarantee that condition (2.2) holds. To that end, we let I[0,1]
be the indicator function of the interval [0, 1] and denote by ∂I[0,1] the subdifferential
of I[0,1], which is the set-valued function

∂I[0,1](r) =


(−∞, 0] if r = 0,
0 if 0 < r < 1,
[0,∞) if r = 1,
∅ otherwise.

Then, the rate equation for debonding becomes the differential inclusion

βt − kββxx ∈ −Φ(|u2 − u1|, (w1 − w2), β, η, θ)− ∂I[0,1](β), l1 < x < l2. (2.3)

The subdifferential term guarantees that (2.2) is satisfied. Indeed, we may write
the inclusion as an equation and an inclusion as follows

βt − kββxx = −Φ(|u2 − u1|, (w1 − w2), β, η, θ)− ζ, ζ ∈ ∂I[0,1](β).
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When 0 < β < 1 then ζ = 0 and the equation holds. When β = 0 then ζ has
the exact negative value that prevents β from becoming negative. The case β = 1
is similar. However, since we deal only with debonding, which means that β is
a non-increasing function, if initially 0 < β0(x) ≤ 1, then the equation implies
that β ≤ 1 for all subsequent times. To complete the debonding process, we need
to prescribe the boundary conditions, which we assume to be ∂β/∂x = 0, and the
initial bonding field, which usually is assumed to be fully bonded, that is β0(x) = 1,
but we allow for a more general case with β0 with 0 < β0(x) ≤ 1.

As was noted above, the adhesive transmits the force between the two slabs,
with (scaled) stiffness coefficients Kr and Kb, and as the bonds deteriorate, the
adhesive force (per unit cross section per unit mass) between the rods is given by
Fr = βKr|u2 − u1|, and between the beams by Fb = βKb(w1 − w2), and both
are active only over [l1, l2]. We note that other choices of these term are possible,
however, for the sake of simplicity we chose these ones. Moreover, since β is only
defined on [l1, l2] in the right-hand sides of the equations of motion below, we extend
β as zero off the interval [l1, l2] so that the right-hand sides vanish where there is
no adhesive.

Next, we describe heat conduction in the adhesive layer. We do not consider heat
conduction in the rods, for the sake of simplicity, as it is straightforward to include
in the model, by adding four additional heat equations. Moreover, this assumption
is valid for slabs that have high thermal conductivity, such as metals. We assume
that heat diffusion is affected to some extent by the internal strain and the fraction
of the active bonds. So, we model heat conduction in the adhesive layer by

θt − (κθx)x = 0, l1 < x < l2. (2.4)

Here, κ = κ(|u2−u1|, w1−w2, β) is a given Lipschitz continuous function such that
κ(·, ·, ·) ≥ δ for some δ > 0, and for the sake of simplicity does not depend on θ or η.
The temperature is driven from the ends x = l1 and x = l2, where it is prescribed,
hence at the ends θ(l1, t) = θL(t) and θ(l2, t) = θR(t), and initially θ = θ0(x).

Finally, we describe the diffusion of moisture in the adhesive layer, which is
considered one of the main causes of the adhesive deterioration, [14, 15]. We use
the humidity function η = η(x, t), which measures the water content per unit length,
and assume that the diffusion is affected by the internal strain and the fraction of
the active bonds. Therefore, we model the diffusion as

ηt − (Dηx)x = 0, l1 < x < l2. (2.5)

Here, D = D(|u2 − u1|, w1 − w2, β) is the humidity diffusion coefficient function,
which is described shortly below, assumed to be continuous and such that D(·, ·, ·) ≥
δ for some δ > 0, and for the sake of simplicity does not depend on θ or η, too.
Humidity diffusion is also driven from the ends where it is that of the ambient air
around the system, so we assume that at the ends η(l1, t) = ηL(t) and η(l2, t) =
ηR(t). Although it is usually assumed that there is no initial water, for the sake of
generality, we allow the initial condition η = η0(x).

Finally, we must address the constraint that the left beam must be above the
right one, i.e., w1 ≥ w2. To that end we introduce the subdifferential of the indicator
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function I[0,∞), which is a set-valued function given by

∂I[0,∞)(r) =


0 if r > 0,
(−∞, 0] if r = 0,
∅ if r < 0.

Then, we add a term with ∂I[0,∞)(w1−w2) to the equation of motion (2.8) for the
beams, thus changing it into a differential inclusion. These terms guarantee that
w1 ≥ w2.

Collecting the equations and the conditions above and writing the equations of
motion in terms of the displacements in the rods and beams, leads to the following
dynamical model for the debonding of two viscoelastic slabs caused by humidity, heat
and vibrations.

Model 2.1. Find the functions u1, w1 : [0, l2]× [0, T ]→ R, u2, w2 : [l1, 1]× [0, T ]→
R, and β, η, θ : [l1, l2]× [0, T ]→ R, such that,

u1tt − c2r1u1xx − νr1u1txx = βKr1(u2 − u1), (2.6)

u2tt − c2r1u2xx − νr2u2txx = −βKr2(u2 − u1), (2.7)

w1tt + c2b1w1xxxx + νb1w1txxxx

∈ −βKb1(w1 − w2) −∂I[0,∞)(w1 − w2),
(2.8)

w2tt + c2b2w2xxxx + νb2w2txxxx = βKb2(w1 − w2), (2.9)

βt − kββxx + Φ(|u2 − u1|, (w1 − w2), β, η, θ) ∈ −∂I[0,1](β), (2.10)

ηt − (D(|u2 − u1|, (w1 − w2), β)ηx)x = 0, (2.11)

θt − (κ(|u2 − u1|, (w1 − w2), β)θx)x = 0; (2.12)

u1(0, t) = 0, σr1(l2, t) = 0, (2.13)

σr2(l1, t) = 0, σr2(1, t) = p(t), (2.14)

w1(0, t) = w1x(0, t) = 0, M1(l2, t) = σb1(l2, t) = 0, (2.15)

M2(l1, t) = σb2(l1, t) = 0, M2(1, t) = 0, σb2(1, t) = q(t), (2.16)

βx(l1, t) = 0, βx(l2, t) = 0, (2.17)

η(l1, t) = ηL(t), η(l2, t) = ηR(t), (2.18)

θ(l1, t) = θL(t), θ(l2, t) = θR(t), (2.19)

u1(·, 0) = u10, u1t(·, 0) = vr10, u2(·, 0) = u20, u2t(·, 0) = vr20, (2.20)

w1(·, 0) = w10, w1t(·, 0) = vb10, w2(·, 0) = w20, w2t(·, 0) = vb20, (2.21)

β(·, 0) = β0, η(·, 0) = η0, θ(·, 0) = θ0. (2.22)

We note that for equations (2.6)–(2.11) to make sense, we extend β as zero to
the rest of the interval [0, 1].

The initial conditions are given in (2.20)–(2.22), with 0 < β0(x) ≤ 1 and η0(x) ≥
0 on [l1, l2]. We assume no flux of β at the end points, (2.17). In practice, ηL(t) =
ηR(t) and both are given functions. However, for the sake of generality, we allow
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them to be distinct. Similarly, although typically θL(t) = θR(t), we allow them to
be different.

We note that the system is coupled via β,K,Φ, D and κ, and we assume that
the Ks are positive constants, although using functions with appropriate properties
leads to similar results.

Finally, we note that Φ needs to be obtained from experimental data.

3. Mathematical preliminaries

We now present some mathematical preliminaries used below. First, assume that
V ⊆ H = H ′ ⊆ V ′ is a Gelfand triple, and for p > 1 we let

V = Lp([0, T ];V ).

In the next section we make the spaces concrete.
Next, we have the following theorem, which is a special case of the one in [2, 8].

Here, A is single valued that is the case in the last reference, while a generalization
of the result can be found in [8].

Theorem 3.1. Suppose f ∈ V ′ and ω → u0 ∈ H. Also, let A(u, t) be such that
Â : V → V ′ is monotone, hemicontinuous and bounded where Â is the Nemytskii
operator associated with A(·, ·). That is, Â(u)(t) is defined as A(u(t), t). Then,
there exists a solution u ∈ V and u′ ∈ V ′ to the abstract initial value problem

u′ + z = f in V ′,
u(0) = u0 in H,

z ∈ Â(u).

In this paper, we are only interested in the case when p = 2. Then, the following
theorem is a straightforward consequence of Theorem 3.1.

Theorem 3.2. In addition, suppose that A(·, t) is strongly monotone, i.e.,

‖〈A(u, t)−A(v, t), u− v〉‖ ≥ δ‖u− v‖2V − λ|u− v|2H ,

and hemicontinuous, single valued and bounded. Let B(·, t) be bounded and satisfy
a Lipschitz condition

‖B(u, t)−B(v, t)‖V ′ ≤ K‖u− v‖V .

Then, there exists a unique solution v ∈ V, v′ ∈ V ′ to the abstract equation

v′ + Â(v) +B(u) = f,

v(0) =0∈ H,

u(t) = u0 +
∫ t

0

v(s) ds.

Proof. It is a straightforward consequence of a fixed point theorem. Indeed, we
fix v̂ ∈ V and let û(t) = u0 +

∫ t
0
v̂(s)ds. Then, by Theorem 3.1 and standard

monotonicity arguments, there exists a unique solution v ∈ V, v′ ∈ V ′ such that

v′ + Â(v) +B(û) = f,

v(0) = v0 ∈ H.
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If v̂, v̂1 are two such given functions, then if v, v1 are the corresponding solutions
to the above initial value problem,

1
2
|v(t)− v1(t)|2H + δ

∫ t

0

‖v1(s)− v(s)‖2V ds

≤
∫ t

0

〈B(û)−B(û1), v(s)− v1(s)〉ds+ λ

∫ t

0

|u− v|2ds

≤ Kδ

∫ t

0

‖û(s)− û1(s)‖2ds+
δ

2

∫ t

0

‖v(s)− v1(s)‖2ds+ λ

∫ t

0

|u− v|2ds.

Thus,

1
2
|v(t)− v1(t)|2H +

δ

2

∫ t

0

‖v1(s)− v(s)‖2V ds

≤ Kδ

∫ t

0

s

∫ s

0

‖v̂1(τ)− v̂(τ)‖2V dτds+ λ

∫ t

0

|u− v|2ds.

Using Gronwall’s inequality yields

|v(t)− v1(t)|2H ≤ CKδe
λT

∫ t

0

s

∫ s

0

‖v̂1(τ)− v̂(τ)‖2V dτds,

and then ∫ t

0

‖v1(s)− v(s)‖2V ds ≤ C(T, δ, λ)
∫ t

0

∫ s

0

‖v̂1(τ)− v̂(τ)‖2V dτds.

Iterating this inequality shows that the map θ : v̂ → v, just described, is a contrac-
tion map on V for a sufficiently high power. It follows that there is a unique fixed
point that is the unique solution to the desired initial value problem. �

To these theorems, we add a useful observation. Let I be a time interval, H =
L2(I) and let V be a closed subspace of H1(I) that contains the relevant test
functions. Let Ψ be a bounded nonnegative continuous function, and consider the
the operator A : V → V ′ given by

〈Au, v〉 = (Ψ(u)ux, vx)H .

Then, A is pseudomonotone. This follows from the compactness of the embedding
of V into C(I) so that weak convergence of un to u yields uniform convergence.
Thus

lim inf
n→∞

∫
I

Ψ(un)unx(unx − ux) ≥ lim inf
n→∞

∫
I

Ψ(un)ux(unx − ux) = 0

From this, the lim inf condition for a pseudomonotone operator follows easily.
Finally, we need the following compactness results due to Simon and Lions.

Theorem 3.3 (Simon [23]). Let q > 1 and let E ⊆ W ⊆ X, where the injection
map is continuous from W to X and compact from E to W . Let SR be defined by

SR =
{
u : ‖u(t)‖E ≤ R for all t ∈ [a, b], and

‖u(s)− u(t)‖X ≤ R|t− s|1/q
}
.
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Thus, SR is bounded in L∞(0, T, E) and the functions are uniformly Hölder contin-
uous into X. Then, SR ⊆ C([a, b];W ) and if {un} ⊆ SR, there exists a subsequence,
{unk

} that converges to a function u ∈ C([a, b];W ),

lim
k→∞

||unk
− u‖C([a,b];W ) = 0.

Theorem 3.4 (Lions [9]). Let E ⊆W ⊆ X, where the injection map is continuous
from W to X and compact from E to W . Let p ≥ 1, let q > 1, and define

Sp,q ≡
{
u ∈ Lp([a, b];E) : ‖u(t)− u(s)‖X ≤ C|t− s|1/q

and ‖u‖Lp([a,b];E) ≤ R
}
.

Thus, Sp,q is bounded in Lp([a, b];E) and Holder continuous into X. Then, Sp,q
is precompact in Lp([a, b];W ) and if {un}∞n=1 ⊆ Sp,q, it has a subsequence {unk

}
which converges in Lp([a, b];W ).

4. Abstract formulation of the model

We now construct a weak and then an abstract formulation of the model (2.6)–
(2.22). We use the usual notation for the various Sobolev function spaces (see, e.g.,
[1]). To that end, we introduce the additional Sobolev spaces:

V1 = {φ ∈ H1(0, l2) : φ(0) = 0}, V2 = H1(l1, 1),

V3 = H1
0 (l1, l2), V4 = H1(l1, l2),

and we denote by V ′j the respective dual spaces, where here and below j = 1, . . . , 4.
We denote by Hj the space L2(Ij), where Ij is the interval corresponding to Vj .
Additionally, we let

Hj = L2(0, T ;Hj), Vj = L2(0, T ;Vj),

V ′j = L2(0, T ;V ′j ), Z = L2(0, T ;H1(l1, l2)).

We also use

U1 =
{
φ ∈ H2(0, l2) : φ(0) = φ′(0) = 0}, U2 = H2(l1, 1),

and the spaces Uj are defined as above.
We expect to have ui ∈ Vi, wi ∈ Ui, for i = 1, 2, β ∈ V4, and η, θ ∈ V3.
We begin with the rod equations, proceed formally and define the operators

Ar1 : V1 → V ′1 and Ar2 : V2 → V ′2 by

〈Ar1φ, ψ〉 =
∫ l2

0

φxψx dx, 〈Ar2φ, ψ〉 =
∫ 1

l1

φxψx dx.

Next, we multiply (2.6) by a test function ψ ∈ V1, and use integration by parts
and the boundary conditions (2.13), set v1r = u1t and recall that β = 0 outside
of [l1, l2]. In this manner, we obtain the abstract version of equation (2.5) in V ′1,
together with the initial and boundary conditions,

v′r1 + c2r1Ar1u1 + νr1Ar1vr1 = βKr1(u2 − u1),

u1(t) = u10 +
∫ t

0

vr1(s)ds, vr1(0) = vr10.
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Similarly, we multiply (2.7) by a test function ψ ∈ V2, use integration by parts
and the boundary conditions (2.14) and setting vr2 = u2t we obtain

v′r2 + c2r2Ar2u2 + νr2Ar2vr2 = p(·)γ∗2 − βKr2(u2 − u1),

u2(t) = u20 +
∫ t

0

v2(s)ds, v2(0) = v20.

Here, γ2 denotes the trace of a function in V2 at the right end (x = 1) and γ∗2 is
its adjoint, so that p(·)γ∗2ψ is defined as p(·)ψ(·, 1). Thus, we can regard p(·)γ∗2 as
an element of V ′2. We assume for the sake of simplicity that the traction p(t) is a
continuous and bounded function.

Next, we consider the beams’ inclusions. We multiply the part corresponding
to the spacial derivatives in (2.8) by ψ ∈ U1, integrate by parts and using the
boundary conditions, we obtain,∫ l2

0

(c2b1w1xxxx + νb1w1txxxx)ψ dx+
∫ l2

0

r∗1ξ ψdx

= c2b1〈Ab1w1, ψ〉+ νb1〈Ab1w′1, ψ〉+ (ξ, ψ),

where rj : Hj → L2(l1, l2), for j = 1, 2, are the maps that set each element of Hj

as zero off the interval (l1, l2). Thus,∫ l2

0

r∗1ξψdx = (r∗1ξ, ψ)H1 ≡ (ξ, ψ)L2(l1,l2),

where ξ ∈ ∂I[0,∞)(w1 − w2). It follows that ξ1 ∈ L2(l1, l2). The operator Ab1 :
U1 → U ′1 is given by

〈Ab1w,ψ〉 =
∫ l2

0

wxxψxxdx.

We, next, multiply the part corresponding to the spacial derivatives in (2.9) by
ψ ∈ U2, integrate by parts and use the boundary conditions and find∫ 1

l1

(c2b2w2xxxx + νb2w2txxxx)ψ dx

= 〈γ∗q, ψ〉+ c2b2〈Ab2w2, ψ〉+ νb2〈Ab2w′2, ψ〉,

where

〈Ab2w,ψ〉 =
∫ 1

l1

wxxψxxdx, 〈γ∗q, ψ〉 = q(t)ψ(1),

and when q is continuous, or more generally a function in L2(0, T ), then γ∗q ∈ U ′2.
Thus, the two beam equations can be written abstractly in the form

w′′1 + c2b1Ab1w1 + νb1Ab1w
′
1 + r∗1ξ1 = −r∗1βKb1(w1 − w2)+

where ξ1 ∈ ∂I[0,∞)(w1 − w2),

w′′2 + c2b2Ab2w2 + νb2Ab2w
′
2 + γ∗q = r∗2βKb2(w1 − w2)+ .

As in the equation for ui it is convenient to write the equations for wi as first order
equations for a new variable

wi(t) = wi0 +
∫ t

0

yi(s)ds.
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We write the above two equations in terms of this integral and yi = wit as

y′1 + c2b1Ab1w1 + νb1Ab1y1 + r∗1ξ1 = −r∗1βKb1(w1 − w2),

y1(0) = vb10, ξi ∈ ∂I[0,∞)(w1 − w2),

y′2 + c2b2Ab2w2 + νb2Ab2y2 + γ∗q = r∗1βKb2(w1 − w2),

y2(0) = vb20.

We next note that the set-inclusion for the debonding (2.10) is already written
in an abstract form

β′ − kββxx + ∂I[0,1](β) 3 −Φ, β(0, x) = β0(x).

Here, the debonding source function is Φ = Φ(|u2 − u1|, w1 − w2, β, η, θ), and for
the sake of simplicity we assume that β0(x) = β0 ∈ (0, 1] is a constant, although
all the results below are valid if β0 is a C1 function with values in [0, 1].

Consider next the humidity diffusion equation (2.11). For the sake of math-
ematical convenience, we transform the problem so as to have zero boundary
conditions. To that end, we let Λ(x) = (l2 − x)/(l2 − l1), and let ηB(x, t) =
Λ(x)ηL(t) + (1 − Λ(x))ηR(t), which is a known function. Next, we define a new
variable η̂ that vanishes on the boundary of [l1, l2] by

η̂(x, t) = η(x, t)− ηB(x, t).

Then, (2.11) becomes
η̂t − (D(η̂x + ηBx))x = −ηBt,

with the modified initial and boundary conditions

η̂0(x, 0) = η0(x)− ηB(x, 0), η̂(l1, t) = η̂(l2, t) = 0.

We recall that D = D(|u2 − u1|, w1 − w2, β). Now, let ψ ∈ V3, and define the
operator N : V3 → V ′3 by

〈N(u1, u2, w1, w2, β)η̂, ψ〉 =
∫ l2

l1

Dη̂x ψx dx.

We follow the same procedure and multiply the equation for η̂ with ψ; use
integration by parts; use the conditions ψ(l1) = ψ(l2) = 0; note that ηBx =
(ηR(t) − ηL(t))/(l2 − l1) does not depend on x, and assume that ηL and ηR are
C1 functions, and so ηBx(t) is just a known C1([0, T ]) function. We now define
f = f(u1, u2, w1, w2, β, ηB) ∈ V ′3, by

〈f(u1, u2, w1, w2, β, ηB), ψ〉 ≡ −
∫ l2

l1

DηBxψx dx−
∫ l2

l1

ηBtψ dx. (4.1)

To simplify the notation, we use the symbol η instead of η̂ and N and f instead
of N(u1, u2, w1, w2, β) and f(u1, u2, w1, w2, β, ηB), respectively, and obtain the fol-
lowing problem: Given η0 ∈ H3, find η ∈ V3, such that

η′ +Nη = f,

η(0) = η0.

We now turn to the heat equation (2.12). As in the case of η, we transform
the problem so as to have zero boundary conditions, so we use again Λ(x) = (l2 −
x)/(l2−l1), and let θB(x, t) = Λ(x)θL(t)+(1−Λ(x))θR(t), which is a given function.
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Next, we define a new variable θ̂ that vanishes on the boundary by θ̂(x, t) = θ(x, t)−
θB(x, t). Then, (2.12) becomes

θ̂t −
(
κ(θ̂x + θBx)

)
x

= −θBt,

with the modified initial and boundary conditions

θ̂0(x, 0) = θ0(x)− θB(x, 0), θ̂(l1, t) = θ̂(l2, t) = 0.

Next, we define the operator M : V3 → V ′3 by

〈M(u1, u2, w1, w2, β)θ̂, ψ〉 =
∫ l2

l1

κ θ̂xψx dx,

where κ = κ(|u2 − u1|, w1 − w2, β). We let h(|u2 − u1|, (w1 − w2), β, θB) ∈ V ′3 be
given by

〈h(|u2 − u1|, (w1 − w2), β, θB), ψ〉 ≡ −
∫ l2

l1

κθBxψx dx−
∫ l2

l1

θBtψ dx. (4.2)

As with η, we use θ instead of θ̂, and similarly, we write θ0(x) instead of θ0(x) −
θB(x, 0).

Thus, the abstract form of the evolution problem for the (scaled) temperature
is to find θ ∈ V3, when θ0 ∈ H3 is given, such that

θ′ +Mθ = h,

θ(0) = θ0.

Finally, we also need the operator L : V4 → V ′4 defined as

〈Lβ, ψ〉 =
∫ l2

l1

βxψx dx.

Collecting all the equations and conditions above leads to the following abstract
formulation of Model 2.1, (2.6) –(2.22).

Problem 4.1 (Abstract Formulation). Find seven functions (u1, u2, w1, w2, β, η, θ)
and vi = u′i, yi = w′i, for i = 1, 2, such that

v′1 + c2r1Ar1u1 + νr1Ar1v1 = βKr1(u2 − u1) in V ′1,
v′2 + c2r2Ar2u2 + νr2Ar2v2 = p(·)γ∗2 − βK2(u2 − u1) in V ′2,
y′1 + c2b1Ab1w1 + νb1Ab1y1 + r∗1ξ = −βKb1(w1 − w2) in U ′1,

y′2 + c2b2Ab2w2 + νb2Ab2y + γ∗q = βKb2(w1 − w2)

in U ′2, r∗1ξ ∈ ∂I[0,∞](w1 − w2),

β′ + Φ(|u2 − u1|, (w1 − w2), β, η, θ) + Lβ ∈ −∂IK(β) in V ′4,
η′ +N(u1, u2, w1, w2, β)η = f(u1, u2, w1, w2, β, ηB) in V ′3,
θ′ +M(u1, u2, w1, w2, β)θ = h(u1, u2, w1, w2, β, θB) in V ′3.

(4.3)
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along with the initial conditions

ui(t) = ui0 +
∫ t

0

vi(s)ds in Vi,

wi(t) = wi0 +
∫ t

0

yi(s)ds, in Ui,

vi(0) = vi0 ∈ Hi, yi(0) = vbi0in Hi,

β(0) = β0 ∈ V4, β0(x) ∈ [0, 1],

η(0) = η0 ∈ H3, θ(0) = θ0 ∈ H3.

(4.4)

where i = 1, 2.

Thus, we have a nonlinear abstract evolution system with seven coupled equa-
tions and the relevant initial conditions.

The main theoretical result of this work is the following existence and (partial)
uniqueness theorem.

Theorem 4.2. Assume that the coefficient functions κ and D and the debonding
source function Φ are each bounded and Lipschitz continuous with respect to all their
variables. Then, there exists a solution to Problem 4.1. The solution is unique when
D and κ depend neither on η nor on θ.

This theorem guarantees the existence and uniqueness (under the above restric-
tions) of a weak solution to Model 2.1. We note here that the uniqueness of the
solution is not known when D and κ depend on η or θ.

5. Existence of weak solutions

We establish the existence of a solution to a variational or weak formulation of
Model 2.1, (2.6)–(2.22). We prove Theorem 4.2 in steps. For the sake of conve-
nience, we begin with the beam equations in the case when β is a given function.
To that end, we introduce an approximate system in which we replace the subgra-
dient with a regularization constructed with the projection operator P : R → R−,
defined by P(r) = r for r < 0 and P(r) = 0 if r ≥ 0.

We have the following result in the case when β is given, all the assumptions
above hold true and the subdifferential is approximated with a sequence of terms
nr∗1P(w1 − w2), where n ∈ N. We note that in this case w1 < w2 is possible, and
to prevent generating nonphysical traction, we replace the term −βKb1(w1 − w2)
with −βKb1(w1 − w2)+, which vanishes when w1 < w2. Also, we note that β
was extended as zero outside the interval [l1, l2], hence we do not need to use the
operator r∗1 .

Lemma 5.1. Assume that β ∈ L2([0, T ], L2(l1, l2)) is a given function having val-
ues in [0, 1]. Then, for each n ∈ N there exists a unique solution to the approximate
system

y′1 + c2b1Ab1w1 + νb1Ab1y1 + nr∗1P(w1 − w2) = −βKb1(w1 − w2)+,

y1(0) = vb10,
(5.1)

y′2 + c2b2Ab2w2 + νb2Ab2y2 + γ∗q = βKb2(w1 − w2)+,

y2(0) = vb20.
(5.2)
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Here, we omitted the superscript n from w1n, w2n, y1n, and y2n.

Proof. The result follows from Theorem 3.2, which, as explained above, is a straight-
forward application of a fixed point argument. �

For the sake of simplicity of the notation, we assume from now on that the two
beams have the same physical properties, thus c2b1 = c2b2 = c2b , and νb1 = νb2 = νb.
With these simplifying assumptions, the approximate abstract system is of the form

y′1 + c2bAb1w1 + νbAb1y1 + nr∗1P(w1 − w2) = −βKb1(w1 − w2)+, (5.3)

y′2 + c2bAb2w2 + νbAb2y2 + γ∗q = βKb2(w1 − w2)+, (5.4)

together with
y1(0) = vb10, y2(0) = vb20. (5.5)

We assume that the initial condition satisfies initially w10 ≥ w20, then

P(w10 − w20) = 0.

Let X[a,b] be the characteristic function of the interval [a, b]. It follows that if
w ∈ Ui, then X[l1,l2]w is a function in H1(l1, l2) and the various operators could
be used in the same form, replacing the full intervals with the interval [l1, l2] and
the same equations would hold with these modified operators. In fact, if w ∈ Ui,
then X[l1,l2]w can be considered as the restriction of a function in Ui to the interval
[l1, l2].

Next, we let Π′(r) = P(r),Π(r) ≥ 0, and Π(0) = 0. Thus,

Π(r) =
r2

2
if r < 0 and Π(r) = 0 if r ≥ 0,

which can be written as
Π(r) =

1
2

(r−)2.

With a slight abuse of notation, we act on X[l1,l2](y1 − y2) with (5.3) and with
(5.4) and subtract the two resulting expressions. To proceed with the necessary
estimates, we use the notation Wk = Hk(l1, l2) for the Sobolev space based on
[l1, l2], where k = 0, 1, 2. Then, after some manipulations we obtain

1
2
|y1(t)− y2(t)|2W0

− 1
2
|vb10 − vb20|2W0

+ c2b |(w1xx − w2xx)(t)|W0 − c2b |w10xx − w20xx|2W0

+ νb

∫ t

0

|y1xx − y2xx|2W0
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx

≤ C
(∫ t

0

|w1 − w2|2W2
+ |y1(s)− y2(s)|2W0

ds
)
.

This implies the inequality

|y1(t)− y2(t)|2W0
+ |(w1xx − w2xx)(t)|W0

+ νb

∫ t

0

|y1xx − y2xx|2W0
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx ≤ C,
(5.6)

where C is a constant that depends on the data but does not depend on n. Adding
νb
∫ t
0
|y1 − y2|2W1

ds to both sides yields

|y1(t)− y2(t)|2W0
+ |(w1xx − w2xx)(t)|W0
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+ νb

∫ t

0

|y1 − y2|2W2
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx

≤ C + νb

∫ t

0

|y1 − y2|2W1
ds.

Now by compactness, for any ε > 0,

|y1 − y2|W1 ≤ ε|y1 − y2|W2 + Cε|y1 − y2|W0

Using routine manipulations, and Gronwall’s inequality and modifying the constant
C leads to an inequality of the form

|y1(t)− y2(t)|2W0
+ |(w1xx − w2xx)(t)|2W0

+
∫ t

0

|y1 − y2|2W2
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx ≤ C.

This, in turn, implies that |w1(t)−w2(t)|W2 is bounded. Therefore, a more conve-
nient version of the inequality is

|y1(t)− y2(t)|2W0
+ |(w1 − w2)(t)|2W2

+
∫ t

0

|y1 − y2|2W2
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx ≤ C.
(5.7)

Next, we apply (5.4) to y2, let H2 = L2(l2, 1), and obtain

1
2
|y2(t)|2H2

+ c2b |w2xx(t)|2H2
− c2b |w20xx|2H2

+ νb

∫ t

0

|y2xx|2H2
ds+

∫ t

0

q(s)y2(s, 1)ds

=
∫ t

0

∫ l2

l1

βKb2(w1 − w2)+y2ds.

From (5.6) it follows that

|y2(t)|2H2
+ |w2xx(t)|2H2

+ νb

∫ t

0

|y2xx|2H2
ds ≤ C +

∫ t

0

|y2|2H2
ds,

where C does not depend on n. Then, adding νb
∫ t
0
|y2|2H2

ds to both sides and using
Gronwall’s inequality, we obtain the estimate

|y2(t)|2H2
+ ‖w2‖2U2

+
∫ T

0

‖y2‖2U2
ds ≤ C, (5.8)

where C does not depend on n. Now, we act on y1 with (5.3) , let H1 = L2(l2, 1),
and proceeding similarly, we obtain

1
2
|y1(t)|2H1

+ c2b |w1xx(t)|2H1
− c2b |w10xx|2H1

+ νb

∫ t

0

|y1xx|2H1
ds

+ n

∫ l2

l1

Π(w1(t)− w2(t))dx+ n

∫ t

0

∫ l2

l1

P(w1(s)− w2(s))y2(s) dx ds

= Kb1

∫ t

0

∫ l2

l1

(−β)(w1(s)− w2(s))+(y2(s)) dx ds+
1
2
|vb10|2H1

.
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This simplifies to an inequality of the form

|y1(t)|2H1
+ c2b |w1xx|2H11

+ νb

∫ t

0

|y1xx|2H1
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx

+
∫ t

0

∫ l2

l1

(Kb1β)(w1(t)− w2(t))+y2(s) dx

+ n

∫ t

0

∫ l2

l1

P(w1(s)− w2(s))y2(s) dx ds

≤ c2bs|w10xx|2H1
+ |vb10|2H1

.

(5.9)

Now, using the estimate (5.8) for y2, we find∫ t

0

∫ l2

l1

P(w1(s)− w2(s))y2(s) dx ds

≥ −
∫ t

0

∫ l2

l1

1
2

(w1 − w2)2− dx ds−
1
2

∫ t

0

∫ l2

l1

|y2(s)|2 dx ds

≥ −1
2

∫ t

0

∫ l2

l1

(w1 − w2)2− dx ds− CT

≥ −
∫ t

0

∫ l2

l1

Π(w1 − w2) dx ds− CT.

Next, (5.9) implies

|y1(t)|2H1
+ c2b |w1xx|2H11

+ νb

∫ t

0

|y1xx|2H1
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx

+
∫ t

0

∫ l2

l1

(Kb1β)(w1(t)− w2(t))+y2(s)dx

≤ c2b |w10xx|2H1
+ |vb10|2H1

+ n

∫ t

0

∫ l2

l1

Π(w1 − w2) dx ds+ CT.

(5.10)

Estimate (5.7) and the continuity of the embedding of H2(l1, l2) into C([l1, l2])
imply that the last term on the left-hand side of the inequality above is bounded
below by some constant −C, which does not depend on n. Therefore, an estimate
of the following form is obtained after adjusting the constant C.

|y1(t)|2H1
+ c2b |w1xx|2H1

+ νb

∫ t

0

|y1xx|2H1
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx

≤ c2b |w10xx|2H1
+ |vb10|2H1

+ n

∫ t

0

∫ l2

l1

Π(w1 − w2) dx ds+ CT.

(5.11)

Now, applying Gronwall’s inequality and adjusting the constant C, we obtain

|y1(t)|2H1
+ c2b |w1xx|2H1

+ νb

∫ t

0

|y1xx|2H1
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx

≤ c2b |w10xx|2H1
+ |vb10|2H1

+ CT.

(5.12)
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Then, in view of the boundary condition in U1, if we define a new norm |||w||| by
|wxx|H1 then it is equivalent to the norm ‖w‖U1 . Then, the above implies

|y1(t)|2H1
+ c2b‖w1‖2U1

+ νb

∫ t

0

‖y1(s)‖2U1
ds+ n

∫ l2

l1

Π(w1(t)− w2(t))dx

≤ c2b‖w10‖2U1
+ |vb10|2H1

+ CT.

(5.13)

We have now the necessary a priori estimates, (5.13) and ((5.8). We restore
the index n to the solutions y1n, w1n of equations (5.3) and y1n, w1n of equations
(5.4), and it follows that there exists a subsequence, still denoted with the subscript
n, such that all of the following convergences hold true. We note that the strong
convergence comes from Theorem 3.3.

yin → yi weak* in L∞([0, T ], Hi),

win → wi weak* in L∞([0, T ], Hi), yin → yi weakly in Ui,
win → wi strongly in C([0, T ], C(Ii)),

Abiwin → Abiwi weakly in U ′i ,
Abiyin → Abiyi weakly in U ′.

Furthermore, it follows from the inequality (5.6) and the above strong conver-
gence, that ∫ l2

l1

Π(w1(t)− w2(t))dx = 0,

which shows that w1(t) ≥ w2(t) for all x ∈ [l1, l2]. Also, (5.3) implies that

nr∗1P(w1n − w2n)→ ξ ∈ U ′1 weakly.

Now, for z ∈ U1, we have

〈nr∗1P(w1n − w2n), z − (w1n − w2n)〉

= n

∫ l2

l1

(w1n(x)− w2n(x), z(x)− (w1n(x)− w2n(x)))dx

≤ n
∫ l2

l1

Π(z)− n
∫ l2

l1

Π(w1n(x)− w2n(x)).

(5.14)

Since we have strong convergence in C(Ii) uniformly in t, for each x,

lim inf
n→∞

nΠ(w1n(x)− w2n(x)) ≥ 0 = I[0,∞](w1(x)− w2(x))

Then, passing to the limit by taking lim sup of (5.14) and using the strong conver-
gence, if z ≥ 0, then

〈ξ, z − (w1 − w2)〉 ≤ 0−
∫ l2

l1

lim inf
n→∞

nΠ(w1n(x)− w2n(x))dx

≤ 0−
∫ l2

l1

I[0,∞](w1(x)− w2(x))dx.

We note that if z < 0 on a set of measure zero, the right-hand side above would be
replaced with ∞, so the inequality is preserved. It follows that

r∗1ξ ∈ ∂I[0,∞](w1 − w2) a.e. for each t. (5.15)
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Thus, passing to the limit in (5.3) and (5.4) and using the strong convergence
to deal with the nonlinear terms, we obtain

y′1 + c2bAb1w1 + νbAb1y1 + ξ = −βKb1(w1 − w2)+,

y1(0) = vb10 in H1,
(5.16)

y′2 + c2bAb2w2 + νbAb2y2 + γ∗q = βKb2(w1 − w2)+,

y2(0) = vb20,
(5.17)

where for all z ≥ 0, z ∈ U1, (5.15) holds. Moreover,

w1(t) ≥ w2(t) on [l1, l2]. (5.18)

This establishes the following lemma.

Lemma 5.2. Let β be a given function in L2([0, T ], V4) that has values in [0, 1] and
extended by zero off [l1l2] Then there exists a unique solution to the system ( (5.16),
(5.17) such that (5.15) holds and also the inequality (5.18) is satisfied.

The uniqueness follows from standard monotonicity arguments, since β is given.
We turn to the full model. First, to deal with the set-inclusion in the equation

for β in (4.3), we replace it with a sequence of approximate problems involving
penalization of the subdifferential ∂I[0,1](β). To that end, let P (β) be equal to 0
on [0, 1] and be piecewise linear function on R with slope equal to 1 for β /∈ [0, 1],
and let Ψ(β) =

∫ β
0
P (r)dr. Thus, Ψ(β) = 0 on [0, 1] and is positive off this interval.

Then, we substitute for ∂IK(β) the penalization operator nP (β), where n ∈ N.
Also, we let

τ(r) =


1 if r > 1,
r if r ∈ [0, 1],
0 if r < 0.

The construction of the approximate problems follows. The existence of solutions
to these problems is straightforward to show and then we obtain the necessary
estimates and pass to the limit n→∞, which yields a solution to the model with
the differential inclusion.

Consider for each n ∈ N, the following penalized problem, for v1n, u1n, v2n,
u2n, y1n, w1n, y2n, w2n, βn, ηn and θn. However, to simplify slightly the notation,
we omitted the subscript n from the dependent variables.

v′1 + c2r1Ar1u1 + νr1Ar1v = τ(β)Kr1(u2 − u1), in V ′1, (5.19a)

v′2 + c2r2Ar2u2 + νr2Ar2v2 = p(·)γ∗2 − τ(β)Kr2(u2 − u1), in V ′2, (5.19b)

β′ + nP (β) + Lβ = −Φ, in V ′4, (5.19c)

η′ +Nη = f, in V ′3, (5.19d)

θ′ +Mθ = h, in V ′3, (5.19e)

y′1 + c2bAb1w1 + νbAb1y1 + r∗1ξ = −τ(β)Kb1(w1 − w2)+, in U ′1, (5.19f)

y′2 + c2bAb2w2 + νbAb2y + γ∗q = τ(β)Kb2(w1 − w2)+, in U ′2, (5.19g)

r∗1ξ ∈ ∂I[0,∞](w1 − w2), if z ≥ 0, (5.19h)
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along with the initial conditions.

vi(0) = vi0, i = 1, 2, β(0) = β0, η(0) = η0, θ(0) = θ0

yi(0) = vbi0, wi(t) = wi0 +
∫ t

0

yi(s)ds, i = 1, 2.
(5.20)

We recall that Φ = Φ(|u2 − u1|, (w1 − w2), β, η, θ), N = N(u1, u2, w1, w2, β), f =
f(u1, u2, w1, w2, β, ηB), M = M(u1, u2, w1, w2, β), h = h(u1, u2, β, θB).

The continuity of the various functions yields the existence of a solution to the
system (5.19), since it follows from Theorems 3.1 and 3.2. Indeed, it is facilitated
by the compactness of the embedding of H1(I) into C(I).

For given u1, u2, w1, w2, θ and η there is at most one solution to the evolution
equation for β, (5.19)c, along with the initial condition β(0) = β0. Moreover, the
operator nP (β)+Lβ can be considered maximal monotone since it can be considered
the subgradient of a convex proper lower semicontinuous function and so there exists
a unique solution to this evolution equation such that β′, Lβ ∈ L2([0, T ], H3) (where
H3 = L2(l1, l2)) [3]. Then,

(Lβ, β′)H3 =
∫ l2

l1

−βxxβt dx.

Now, we can find a sequence {βk} of functions that are smooth in x, such that
βkxx → βxx and βkx → βx in H3. Indeed, we can simply use a convolution with a
suitable mollifier {φk} so that

βk =
∫

R
β(x− y, t)φk(y)dy,

where here (unlike above) we extend β so that β(x, t) = β(l1, t) if x ≤ l1, and
β(x, t) = β(l2, t) if x ≥ l2 and φk has its support in Bk ≡ (−1/k, 1/k). Then, if
ψ ∈ C∞0 (l1, l2), we find

−
∫ l2

l1

βk(x, t)ψx(x)dx = −
∫ l2

l1

∫
Bk

β(x− y, t)φk(y)ψx(x) dydx

=
∫ l2

l1

∫
Bk

βx(x− y, t)φk(y)ψ(x) dydx,

for all sufficiently large k. Also, limk→∞ βkx(·, 0) = β0x in H3. Then, standard
arguments involving convolutions imply the convergence to βx in H3. The situation
is similar for the second derivatives. As to the time derivative, similar reasoning
implies that βkt converges to βt. Therefore,∫ t

0

(Lβ, β′)H3 ds = lim
k→∞

∫ t

0

∫ l2

l1

−βkxxβks dx ds

= lim
k→∞

∫ t

0

d

ds

∫ l2

l1

(1
2
β2
kx(x, s)

)
dx ds

=
1
2
‖βx(·, t)‖2H3

− 1
2
‖β0x‖2H3

.

Then, it follows that∫ t

0

‖β′‖2H3
ds+

∫ l2

l1

nΨ(β(t))dx+
1
2
‖βx(·, t)‖2H3

− 1
2
‖β0x‖2H3
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≤ C
∫ t

0

Φ2ds+ C

∫ t

0

‖β‖2H3
ds+

1
2

∫ t

0

‖β′‖2H3
ds

where Φ depends on various variables as above and is Lipschitz in β and also C is
a suitable constant.

Then, it follows from elementary arguments, including Gronwall’s inequality and
the Lipschitz condition of Φ in β, that

‖β(t)‖H3 + ‖β′‖H3 +
∫ l2

l1

nΨ(β(x, t))dx+ ‖β(t)‖V3 ≤ C(β0). (5.21)

The other evolution equations are somewhat easier to handle. Thus, straightfor-
ward manipulations yield

‖v1‖V1 + ‖v2‖V2 + ‖v′1‖V′1 + ‖v′2‖V′2 + ‖y′1‖U ′1 + ‖y′2‖U ′2
+ ‖u1(t)‖V1 + ‖u2(t)‖V2 + ‖η′‖V′3 + ‖θ′‖V′4 + ‖η(t)‖H3 + ‖θ(t)‖H4

+ ‖η‖V3 + ‖θ‖V4 + ‖y1‖U1 + ‖y2‖U2 ≤ C,
(5.22)

where the constant C is independent of n. Now, add to the notation of each of
these functions the subscript n. Then, the estimates and Theorems 3.3, 3.4 imply
the existence of a subsequence that converges as follows:

βn → β weak* in L∞([0, T ], H3),

β′n → β′ weakly in H4,

βn → β weak* in V4,

βn → β strongly in C([0, T ], H3) and pointwise,
vni → vi weakly in Vi,

uni → ui strongly in C([0, T ], Hi) and pointwise,

v′ni → v′i weakly in V ′i,
ηn → η weakly in V3,

ηn → η weak* in L∞([0, T ], H3),

θn → θ weak* in L∞([0, T ], H3),
θn → θ weakly in V3,

η′n → η′ weakly in V ′4,
θ′n → θ′ weakly in V ′4,

θn → θ strongly in H3 and pointwise,
ηn → η strongly in H3 and pointwise,

Aiuni → Aiui weakly in V ′i
Aivni → Avi weakly in V ′i

Φ(u1n, . . . , θn)→ Φ(|u2 − u1|, (w1 − w2), β, η, θ) strongly in H3,

N(u1n, . . . , βn)ηn → N(u1, u2, w1, w2, β)η weakly in V ′3
M(u1n, . . . , βn)θn →M(u1, u2, w1, w2, β)θ weakly in V ′4,

nP (βn)→ ξ weakly in V ′4,
y′ni → y′i weakly in U ′i ,
yni → yi weakly in Ui,



22 K. L. KUTTLER, S. KRUK, P. MARCINEK, M. SHILLOR EJDE-2017/301

wni → wi weak* in L∞(0, T ;U ′i),

wni → wi strongly in C([0, T ];C(Ii)),

where Ii is either [0, l2] or [l1, 1]. Furthermore,

Abiyni → Abiyi weakly in U ′i ,
Abiwni → Abiwi weakly in U ′i ,

τ(βn)Kb2(wn1 − wn2)+ → τ(β)Kb2(w1 − w2)+ strongly in L2(0, T ;H2),

τ(βn)Kb1(wn1 − wn2)+ → τ(β)Kb1(w1 − w2)+ strongly in L2(0, T ;H1),

Also, for each t, the above convergences show that there is a constant C, indepen-
dent of n, such that

n

∫ l2

l1

Ψ(βn(t))dx ≤ C.

Using Fatou’s lemma yields ∫ l2

l1

Ψ(β(x, t))dx = 0.

Hence, β(x, t) ∈ [0, 1] for a.e. x.
We turn to the limit in the equation for βn,

β′n + nP (βn) + Lβn = −Φ(|u2n − u1n|, (w1n − w2n), βn, ηn, θn) in V ′3.

Using monotonicity considerations and the fact that P (β) = 0 lead to

〈β′, βn − β〉+ 〈nP (βn)− nP (β), βn − β〉+ 〈Lβn, βn − β〉
≤ (−Φ(|un2 − un1|, (w1n − w2n), βn, ηn, θn), βn − β)H3 ,

and so
〈β′, βn − β〉V4 + 〈Lβn, βn − β〉V4 ≤ (−Φ(. . . ), βn − β)H3 .

Thus, lim supn→∞〈Lβn, βn − β〉 ≤ 0 and since L is monotone, hemicontinuous and
bounded as a map from V4 to V ′4 we obtain that for all δ ∈ V4,

lim inf
n→∞

〈Lβn, βn − δ〉 ≥ 〈Lβ, β − δ〉.

Now, let δ(x, t) ∈ [0, 1], with δ ∈ V4, then,

〈β′n, βn − δ〉+ 〈nP (βn), βn − δ〉+ 〈Lβn, βn − δ〉
= (−Φ(. . . ), βn − δ)H3 .

Now, monotonicity considerations lead to

〈β′, βn − β〉+ 〈β′n, β − δ〉+ 〈nP (βn)− nP (δ), βn − δ〉+ 〈Lβn, βn − δ〉
≤ (−Φ(. . . ), βn − δ)H3 ,

and
〈β′, βn − β〉+ 〈β′n, β − δ〉+ 〈Lβn, βn − δ〉 ≤ (−Φ(. . . ), βn − δ)H3 .

Passing to the lim infn→∞ we obtain

〈β′, β − δ〉+ 〈Lβ, β − δ〉 ≤ (−Φ(|u2 − u1|, (w1 − w2), β, η, θ), β − δ)H3 .

Hence, for the choice of δ as above,

〈β′ + Lβ + Φ(|u2 − u1|, (w1 − w2), β, η, θ), δ − β〉 ≥ 0,
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and so, for arbitrary δ ∈ V4,

〈β′ + Lβ + Φ(|u2 − u1|, (w1 − w2), β, η, θ), δ − β〉V4 ≥ IK(β)− IK(δ).

Therefore,

β′ + Lβ + Φ(u2 − u1, β, η, θ) ∈ −∂IK(β).

The above convergences are also sufficient to pass to a limit in all the other equa-
tions. Since β(x, t) ∈ [0, 1], it follows that τ is irrelevant. This yields the existence
of a solution to (4.3) and (4.4). This concludes the existence part of Theorem 4.2.

Proof. (Uniqueness). It remains to verify the uniqueness part of Theorem 4.2. By
assumption, the functions D and κ are Lipschitz continuous and independent of η
and θ. We consider the case of η and D, since the case with θ and κ is very similar.

Suppose η, η̂ are two such solutions with the corresponding dependent variables
without and with hats. To simplify the notations, we let

N = N(u1, u2, w1, w2, β), N̂ = N(û1, û2, ŵ1, ŵ2, β̂),

D = D(u1, u2, w1, w2, β), D̂ = D(û1, û2, ŵ1, ŵ2, β̂).

Then

〈Nη − N̂ η̂, η − η̂〉 = 〈Nη −Nη̂, η − η̂〉+ 〈(N − N̂))η̂, η − η̂〉

≥ δ‖η − η̂‖2V3
− |〈(N − N̂)η̂, η − η̂〉|.

It follows from the equation for η that there is a constant C such that ‖η‖V ≤ C
for η. Thus, the above term on the right-hand side is dominated by∫ l2

l1

|D − D̂||η̂x||(η − η̂)x|dx

≤ Cδ
∫ l2

l1

|D − D̂|2|η̂x|2dx+
δ

2

∫ l2

l1

|(η − η̂)x|2dx.

Hence,

〈Nη − N̂ η̂, η − η̂〉

≥ δ

2
‖η − η̂‖2V3

− Cδ‖D − D̂‖2L∞(l2,l1)
‖η̂‖2V4

≥ δ

2
‖η − η̂‖2V3

− CδLip(D)2(‖u1 − û1‖2E + ‖u2 − û2‖2E)‖η̂‖2V4
,

where used the facts that V3 embeds continuously into E, which embeds continu-
ously into C([l1, l2]). This and a similar inequality for θ allow us to use standard
arguments and show that the solution is unique in this special case of Lipschitz
continuity and lack of dependence on θ and η. �

When either D or κ depend on either θ or η, the uniqueness of the solutions is
not known.
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6. Numerical algorithm

We present in this section a fully implicit finite difference algorithm for the
approximate solutions of the model. In the next section, we describe its implemen-
tation and depict three representative examples and related numerical results. For
the sake of simplicity, we do not take into account thermal effects, since in our set-
ting they are similar to those of humidity. This simplifies slightly the presentation
of the algorithm and the simulations’ results.

For the sake of generality, we used the humidity diffusion coefficient

D = d+ dβ(1− β),

where d and dβ are two positive constants. In this way, the water diffusion in the
glue layer increases as the bonding decreases. It may describe voids that form in
the adhesive as it deteriorates.

Moreover, for the sake of simplicity, we assumed that the effects of viscosity are
negligible, so that the slabs were assumed to be purely elastic.

6.1. The scheme. We begin with the time and space discretization of the domain.
We divide the time interval [0, T ] into N + 1 mesh points tn, where here and below,
n = 1, 2, . . . , N + 1 with uniform time step ∆t = T/N , and then tn = (n− 1)∆t.

The spatial domain [0, 1] of each one of the slabs is discretized by the equidistant
mesh points xj , where here and below j = 1, 2, . . . S + 1, so that ∆x = 1/S and
xk = (k− 1)∆x. Moreover, the discretization is such that the right end of the first
slab is the mesh point l2 = xS+1 and the left end of the second slab is the mesh
point l1 = xj2 . Thus, the nodes x1, . . . , xS+1 are in the first slab and the nodes
xj2 , . . . , xS+j2 in the second one. The common nodes

xj2 , . . . , xS+1,

are in the region where the slabs are adhesively bonded. In our numerical exper-
iment it was set so the adhesive region occupied approximately 40% of the first
slab, and both were of the same length. Therefore, we have the mesh (xj , tn) in the
domain [0, 1+l1]×[0, T ]. We discretize a function φ(x, t) defined on [0, 1+l1]×[0, T ]
by using its nodal values

φnj = f(xj , tn).
We use the central difference temporal and spacial discretization of first and

second-order derivatives as

φt(xj , tn+1) ≈
φn+1
j − φn−1

j

(2∆t)
, φtt(xj , tn+1) ≈

φn+1
j − 2φnj + φn−1

j

(∆t)2
,

φxx(xj , tn+1) ≈
φn+1
j+1 − 2φn+1

j + φn+1
j−1

(∆x)2
,

and the fourth order derivatives we approximate as follows:

φxxxx(xj , tn) ≈
wk+1

1j−2 − 4wk+1
1j−1 + 6wk+1

1j − 4wk+1
1j+1 + wk+1

1j+2

(∆x)4
.

Since in most the simulations, at this stage, we assume that D is a positive
constant, we do not present its discretization for the sake of simplifying slightly the
matrices below.

Using these expressions in the equations (2.6)–(2.12), and the conditions (2.15)–
(2.22), and letting j = 1, . . . , S + 1 for u1 and w1, j = 1, . . . , S + 1 for u2 and w2,
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and j = j2, . . . , S − j2 + 2 for β and η, leads to the following algebraic system of
equations:

un+1
1j − 2un1j + un−1

1j

(∆t)2
− c2r1

un+1
1j+1 − 2un+1

1j + un+1
1j−1

(∆x)2

= βnj−j2+1K1(un2j−j2+1 − un1j)χj ,
(6.1)

un+1
2j − 2un2j + un−1

2j

(∆t)2
− c2r2

un+1
2j+1 − 2un+1

2j + un+1
2j−1

(∆x)2

= −βnj K2(un2j − un1j+j2−1)χj ,
(6.2)

wn+1
1j − 2wn1j + wn−1

1j

(∆t)2
+ c2b1

wn+1
1j−2 − 4wn+1

1j−1 + 6wn+1
1j − 4wn+1

1j+1 + wn+1
1j+2

(∆x)4

= −βnj−j2+1(wn1j − wn2j−j2+1)χj ,
(6.3)

wn+1
2j − 2wn1j + wn−1

1j

(∆t)2
+ c2b2

wn+1
2j−2 − 4wn+1

2j−1 + 6wn+1
2j − 4wn+1

2j+1 + wn+1
2j+2

(∆x)4

= βnj (wn1j+j2−1 − wn2j)χj ,
(6.4)

wn+1
2j − 2wn1j + wn−1

1j

(∆t)2
+ c2b2

wn+1
2j−2 − 4wn+1

2j−1 + 6wn+1
2j − 4wn+1

2j+1 + wn+1
2j+2

(∆x)4

= βnj (wn1j+j2−1 − wn2j)χj ,
(6.5)

βn+1
j − βn−1

j

2∆t
− kβ

βn+1
j+1 − 2βn+1

j + βn+1
j−1

(∆x)2

+ Φ(un+1
1j+j2−1, u

n+1
2j , wn+1

1j+j2−1, w
n+1
2j , βn+1

j , ηnj ) = 0,
(6.6)

ηn+1
j − ηn−1

j

2∆t
−D

ηn+1
j+1 − 2ηn+1

j + ηn+1
j−1

(∆x)2
= 0, (6.7)

where χj is the characteristic function of the discretized adhesive region [xj2 , xS+1].
This is equivalent to extending β as zero outside this interval and similarly for η.

The initial conditions are:

u1
1j = 0, u2

1j − u0
1j = 0,

u1
2j = 0, u2

2j − u0
2j = 0,

w1
1j = 0, w2

1j − w0
1j = 0,

w1
2j = 0, w2

2j − w0
2j = 0,

β1
j = 1, η1

j = 0.

(6.8)
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The boundary conditions are:

un1S+2 − un1S = 0, un2j2+1 − un2j2−1 = 0,
un2S+1 − un2S−1

2∆x
= pn, wn12 − wn10 = 0, wn1S+2 − 2wn1S+1 + 2n1S = 0,

−wn1S−1 + 2wn1S − 2wn1S+2 + wn1S+3 = 0, wn2j2+1 − 2wn2j2 + wn2j2−1 = 0,

−wn2j2−2 + 2wn2j2−1 − 2wn2j2+1 + wn2j2+2 = 0, wn2S+1 − 2wn2S + wn2S−1 = 0,
−wn2j2−2 + 2wn2j2−1 − 2wn2j2+1 + wn2j2+2

∆x3
= qn,

βn2 − βn1 = 0, βnS−j2+2 − βnS−j2+1 = 0,

ηn1 = ηnL, ηnS−j2+2 = ηnR,

u1
1j = u10,

u2
1j − u0

1j

2∆t
= v10,

u1
2j = u20,

u2
2j − u0

2j

2∆t
= v20,

w1
1j = w10,

w2
1j − w0

1j

2∆t
= vb10,

w1
2j = w10,

w2
2j − w0

2j

2∆t
= vb20,

β1
j = β0, η1

j = η0.

(6.9)

Remark 6.1. We point out that the right-hand sides of (6.1)–(6.6), which are
nonlinear, are kept frozen at step n, in this way the system is linearized.

Rearranging the system of equations so that all the variables at time n + 1 are
on the left-hand side, while on right-hand side are all variables at time n and n−1,
and introducing the notation

Cr1 =
(
cr1

∆t
∆x

)2

, Cr2 =
(
cr2

∆t
∆x

)2

,

Cb1 =
(
cb1

∆t
∆x2

)2

, Cb2 =
(
cb2

∆t
∆x2

)2

,

and for ease of notation, and since in the simulations Φ was a linear function of β,
we let Φ = β · Φ̃, where

Φ̃n+1
j = Φ̃(un+1

1j+j2−1, u
n+1
2j , wn+1

1j+j2−1, w
n+1
2j , ηnj ).

These lead to the linear system:

− Cr1un+1
1j−1 + (2Cr1 + 1)un+1

1j − Cr1u
n+1
1j+1

= −un−1
1j + (2−∆t2βnj−j2+1K1χj)un1j + ∆t2βnj−j2+1K1χju

n
2j−j2+1,

(6.10)

− Cr2un+1
2j−1 + (2Cr2 + 1)un+1

2j − Cr2u
n+1
2j+1

= −un−1
2j + (2−∆t2βnj K1χj)un2j + ∆t2βnj K1χju

n
1j+j2−1,

(6.11)

Cb1w
n+1
1j−2 − 4Cb1wn+1

1j−1 + (1 + 6Cb1)wn+1
1j − 4Cb1wn+1

1j+1 + Cb1w
n+1
1j+2

= (2− βnj−j2+1∆t2χj)wn1j + βnj−j2+1∆t2χjwn2j−j2+1,
(6.12)

Cb2w
n+1
2j−2 − 4Cb2wn+1

2j−1 + (1 + 6Cb2)wn+1
2j − 4Cb2wn+1

2j+1 + Cb2w
n+1
2j+2

= (2− βnj ∆t2χj)wn2j + βnj ∆t2χjwn1j+j2−1,
(6.13)
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−2Ckββn+1
j−1 + (1 + 4Ckβ)βn+1

j − 2Ckββn+1
j+1 + 2∆tβn+1

j Φ̃n+1
j = βn−1

j , (6.14)

−2CDηn+1
j−1 + (1 + 4CD)ηn+1

j − 2CDηn+1
j+1 = ηn−1

j , (6.15)

along with initial and boundary conditions (6.8), (6.9) and (6.9).
Moreover, to take care of the subdifferential conditions in (2.8) and (2.10), in the

calculations we preceded as follows. First, to guarantee that wn+1
1j ≥ wn+1

2j , when
it was found that the computed values were w̃n+1

1j < w̃n+1
2j for j ∈ {j2, . . . , S + 1},

we set

wn+1
1j = wn+1

2j =
1
2

(w̃n+1
1j + w̃n+1

2j ).

Second, when it was found computationally that β̃n+1
j < 0, we set βn+1

j = 0.
We note that from the structure of (2.10) and the assumption that Φ > 0, it

follows that β is decreasing, computationally, too, so that starting with β0 ≤ 1
(6.14) guaranteed that βn+1

j ≤ 1.
Next, we observe that in the system (6.9) and (6.9) we have to deal with the

cases when j = 2 and j = S since the equations involve undefined quantities
that are outside of the spatial domain: wn+1

10 , wn+1
1S+2, wn+1

20 and wn+1
2S+2. However,

it is straightforward to eliminate these quantities using the initial and boundary
conditions specified by (6.8), (6.9) and (6.9).

Finally, we set v to be the Λ-dimensional column vector

v = (u11, . . . , u1S+1, u21, . . . , u2S+1, w11, . . . , w1S+1, w2j , . . . , w2S+1,

. . . , βj2 , . . . , βS−j2+2, ηj2 , . . . , ηS−j2+2),

where Λ = 6(S + 1)− 2(j2 − 1).
Next, we let A, B and C be the matrices, based on the system (6.10)–(6.15), so

that it may be written as

Avn+1 = Bvn + Cvn−1. (6.16)

Here,

A =


Au1 0

Au2

Aw1

Aw2

Aβ
0 Aη

 ,

where:

Au1 =



1 0 0 . . . 0
−Cr1 2Cr1 + 1 −Cr1 0 . . . 0

0 −Cr1 2Cr1 + 1 −Cr1 0 . . . 0

...
. . .

...

0 . . . . . . 0 −Cr1 2Cr1 + 1
0 . . . . . . 0 −1 1


,
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Au2 =



−1 1 0 . . . 0
−Cr2 2Cr2 + 1 −Cr2 0 . . . 0

0 −Cr2 2Cr2 + 1 −Cr2 0 . . . 0

...
. . .

...

0 . . . . . . 0 −Cr2 2Cr2 + 1
0 . . . . . . 0 −1 1


,

Aw1 =



1 0 . . . 0
0 1 + 7Cb1 −4Cb1 Cb1 0 . . . 0
Cb1 −4Cb1 1 + 6Cb1 −4Cb1 Cb1 0 . . . 0
0 Cb1 −4Cb1 1 + 6Cb1 −4Cb1 Cb1 0 . . . 0

.

.

.
. . .

.

.

.

0 . . . . . . 0 Cb1 −4Cb1 1 + 5Cb1 −2Cb1
0 . . . . . . 0 2Cb1 −4Cb1 1 + 2Cb1


,

Aw2 =



1 + 2Cb2 −6Cb2 0 . . . 0
−2Cb2 1 + 6Cb2 −5Cb2 Cb2 0 . . . 0
Cb2 −4Cb2 1 + 6Cb2 −4Cb2 Cb2 0 . . . 0
0 Cb2 −4Cb2 1 + 6Cb2 −4Cb2 Cb2 0 . . . 0

.

.

.
. . .

.

.

.

0 . . . . . . 0 Cb2 −4Cb2 1 + 5Cb2 −2Cb2
0 . . . . . . 0 2Cb2 −4Cb2 1 + 2Cb2


,

Aβ =



−1 1 0 . . . 0
−2Ckβ 1 + 4Ckβ + 2∆tΦ̃n+1

2 −2Ckβ 0 . . . 0

...
. . .

...

0 . . . . . . 0 −1 1


,

Aη =



1 0 0 0 . . . 0
−2DC 1 + 4CD −2CD 0 . . . 0

0 −2CD 1 + 4CD −2CD 0 . . . 0

...
. . .

...

0 . . . −2CD 1 + 4CD −2CD
0 . . . . . . 0 1


.

We now describe the algorithm for the system. For the sake of simplicity, we
describe it for the case of zero initial displacements and velocities, and periodic
tractions pn = p(tn) and qn = q(tn) at the end x = 1. The modification of the
algorithm for the cases when an impulsive force is applied at x = 1 initially are
straightforward.
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To initialize the process we compute v1 and v2 as follows:

u1
1j = w1

1j = 0, j = 1, . . . , S + 1;

u1
2j = w1

2j = 0, j = 1, . . . , S + 1;

β1
j = 1, j = 1, . . . , S − j2 + 2;

η1
j = 0, j = 2, . . . , S − j2 + 1,

η1
1 = η1

L, η1
S−j2+2 = η1

R,

(6.17)

u2
1j = W1jkw

2
1k = 0, j = 1, . . . , S + 1;

u2
2j = 0, j = 1, . . . , S,

u2
2S+1 = ∆x · p2;

W2jkw
2
2k = R2jkw

1
2k, j = 1, . . . , S + 1, k = 1, . . . , S + 1,

β2
j = 1, j = 1, . . . , S − j2 + 2;

η2
j = 0 j = 2, . . . , S − j2 + 1;

η2
1 = ηL, η1

S−j2+2 = ηR.

(6.18)

Here, summation over the index k is implied, and W1, W2 and R2 are given by:

W1 =



1 0 0 . . . 0
0 2 + 7Cb1 −4Cb1 Cb1 0 . . . 0
Cb1 −4Cb1 2 + 6Cb1 −4Cb1 Cb1 0 . . . 0
0 Cb1 −4Cb1 2 + 6Cb1 −4Cb1 Cb1 0 . . . 0

.

.

.
. . .

.

.

.

0 . . . . . . 0 Cb1 −4Cb1 2 + 5Cb1 −2Cb1
0 . . . . . . 0 2Cb1 −4Cb1 2(1 + Cb1)


,

W2 =



2(1 + Cb2) −6Cb2 0 . . . 0
−2Cb2 2 + 6Cb2 −5Cb2 Cb2 0 . . . 0
Cb2 −4Cb2 2 + 6Cb2 −4Cb2 Cb2 0 . . . 0
0 Cb2 −4Cb2 2 + 6Cb2 −4Cb2 Cb2 0 . . . 0

.

.

.
. . .

.

.

.

0 . . . . . . 0 Cb2 −4Cb2 2 + 5Cb2 −2Cb2
0 . . . . . . 0 2Cb2 −4Cb2 2(1 + Cb2)


,

R2 =



0 0 0 . . . 0
0 0 0 . . . 0

...
. . .

...

0 . . . . . . 0 0 −Cb2
k2I

q2∆x3.


.

Once the system was initialized, and at time step n+ 1 the solutions v1, . . . ,vn

were found, system (6.16) was solved for vn+1.

7. Simulations

The algorithm of the previous section was implemented and run extensively.
Here, we depict some of the simulation results that we consider of interest as they
allow us to gain understanding of the debonding process dynamics. Since our
main interest was in the debonding process resulting from humidity and mechanical
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Algorithm 1 Finite Differences for the Model

Set v1,v2 according to (6.17), (6.18) {Initial conditions}
for n = 1 . . . N do

Solve Avn = Bvn−1 + Cvn−2 {Block diagonal solver}
for j = j2 . . . S + 1 do

if w̃1j ≥ w̃2j then
wn1j , w

n
2j = w̃n1j , w̃

n
2j

else
wn1j = wn2j = 1

2 (w̃n1j + w̃n2j) {Smooth out}
end if
if β̃nj ≥ 0 then
βnj = β̃nj

else
βnj = 0 {Clip}

end if
end for

end for

vibration, we present simulations along those lines. In particular, we depict the
dynamics of the system and the evolution of the debonding.

First, we show typical solutions with oscillating tractions. Our main interest lies
in answering two questions:

(1) How does the debonding process affect the vibrations spectrum?
(2) How do the periodic oscillations of the tractions affect the spatial distribu-

tion of the debonding process?
The constants used in the simulations are given in Table 1.

Table 1. Simulations system parameter values

Parameter Parameters value Units
l1; l2 1; 1 m
E1;E2 200 · 105; 190 · 105 Pa
A1;A2 10−4; 10−4 m2

B1;B2 8 · 10−6; 8 · 10−6 m4

νr1; νr2; νb1; νb2 0;0; 0;0 m2/s; m4/s
cr1; cr2 50; 49.13 m/s
cb1; cb2 14.14; 13.89 m2/s
Kr1;Kr2 104; 9 · 103 kg/s2

Kb1;Kb2 5 · 103; 7 · 103 kg/s2

kβ 0.01 m2/s
d; dβ 0.01; 0.01 m2/s
κ 2.3 · 10−5 m2/s

αh; εη 650; 0.001 1/(m· s); 1

Next, the various functions in the model were chosen as follows. The tractions
at x = 1 were either zero or

p(t) = 0.0053 cos(2πft), q(t) = 5.263 cos(2πft),
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where f is the frequency of the traction which we describe in each case.
The humidity at the ends was assumed, for the sake of simplicity, to be

ηL(t) = 1, ηR(t) = 1.

The water diffusion coefficient in the glue layer was assumed to increase as the
bonding decreases, since the water flow in voids is easier, and was chosen as

D = d+ dβ(1− β).

Thus, when there is full bonding D = d, since β = 1, and as debonding progresses D
increases to the value D = d+dβ , which is the diffusion coefficient on the debonded
surface.

Finally, the debonding source function was assumed to have the ‘simple’ form

Φ = αhβ(|u1 − u2|+ |w1 − w2|)(εη + η2),

with the debonding rate constant αh and the threshold humidity constant εη.
In some of the simulations, we used p = 0 and q = 0 and D = d, and we indicate

this in each case.

7.1. Simulation 1: Natural frequencies of the first rod. To gain confidence
in the numerical simulations, we first compared the natural frequencies of the first
rod, obtained by a simple Fourier analysis, with the computed frequencies from the
simulations. The left rod, without bonding, was excited with an initial impulse
at the right end and the natural frequencies were found by using the Fast Fourier
Transform (FFT), a subroutine in MATLAB, that was applied to the vibrations of
the (middle of the) rod.

The theoretical natural frequencies were:

fn = (n− 1
2

)
1

2L
cr1, n = 1, 2, 3, . . .

where cr1 is determined from the Young Modulus E1 and the density ρ of the
material, i.e. cr1 =

√
E1/ρ. For L = 1 m and cr1 = 50 m/s. Therefore,

f1 = 12.5, f2 = 37.5, f3 = 62.5, f4 = 87.5,
f5 = 112.5, f6 = 137.5 f7 = 162.5 Hz

Figure 2. Natural modes of a single rod (without bonding).
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The results of the simulations are depicted in Figure 2. It was found, using the
FFT with moderately small time steps, that the computed frequencies were the
same up to the second place after the decimal point,

f̃1 = 12.50, f̃2 = 37.50, f̃3 = 62.50, f̃4 = 87.50,

f̃5 = 112.50, f̃6 = 137.50, f̃7 = 162.50 Hz.

It is seen that the correspondence between the theoretical and computed fre-
quencies is excellent.

7.2. Simulation 2: Natural frequencies of the rigid system. We studied the
natural frequencies of the whole system when adhesion was full and not changing,
i.e., without deterioration, so we considered a fixed bonding field with β(x, t) ≡ 1.
An impulse was applied to the right end of the second rod, the tractions were
p = q = 0, D = d, and the natural frequencies of the (rigid) system f1, . . . , f7(Hz),
depicted in Figure 3, were found to be:

f1 = 6, f2 = 18, f3 = 28, f4 = 39, f5 = 75, f6 = 88, f7 = 100 Hz.

Figure 3. The natural frequencies of the fully bonded system,
detected in the middle of the adhesive region x = l∗

The system (with β ≡ 1) was solved and the FFT was used to obtain the
spectrum above from the vibrations at the center of the adhesive region x = l∗ =
(l1 + l2)/2. It is seen that the amplitudes of the first two frequencies, f1 and f2,
dominate, and the amplitudes of the fourth and higher resonance frequencies are
orders of magnitude smaller.

7.3. Simulation 3: Debonding with 25Hz traction. In this simulations a hor-
izontal periodic traction p(t), with period 25Hz, was applied to the right rod (with
q = 0), and the deterioration of the bonding was computed. The choice of αh was
such that almost complete debonding happened in less than 3 sec, which was not
realistic in most applications, but allowed us to run many simulations. In particu-
lar, we addressed the first question raised at the beginning of the section about the
spectrum shift.

First, the displacements of the middle of the adhesive layer vs. time, u1(l∗, t), are
depicted in Figure 4. It is seen clearly that the oscillations were quite complicated
and changed as the debonding progressed. As we show below, the bonding was



EJDE-2017/301 DEBONDING OF BONDED ROD-BEAM SYSTEM 33

insignificant at 2.4 sec, and complete debonding happened before 3 sec. Then, at
about 2 sec, when debonding was weak, the first rod settled into periodic oscillations
in its first free resonance frequency. The second rod became almost free a bit before
3 sec, actually by then the bonding field was negligibly small.

Figure 4. The displacement u1(l∗, t) vs. time in the first rod.
Debonding is complete at about 2 s.

Figure 5 illustrates the amplitude difference |u1−u2| at different times (indicated
in color) in the adhesive region of the slabs. We recall that this term is a factor in Φ
and, therefore, directly affects the debonding process. It is seen that the differences
were larger at the left end of the adhesive region and tapered off toward the right
end, where they were an order of magnitude smaller.

Figure 5. |u1 − u2| at different times

The evolution of the bonding field β, and of the humidity are depicted in Fig-
ure 6 at different times (indicated in color). It is seen that the bonding function
decreases monotonically in time while the humidity increases monotonically. The
bonding function almost vanishes at 2.4 sec, only a small region in the middle is
not negligible, but very close to being zero.

We turn to one of the two main findings in our computer simulations, namely, the
shift of the spectral frequencies of the system as debonding progresses. It was found,
as one would expect, that as the debonding process advances the vibrations of the
bonded system change and once there is full debonding, the vibrations frequencies
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Figure 6. The bonding field β (L) and humidity η (R) at differ-
ent times (color). The bonding decreases monotonically while the
humidity increases monotonically.

Figure 7. Spectrum in the first rod detected after 0.5 sec (UL),
after 1.5 sec (UR) and after 3 sec (B).

are those of the the two free rods. Indeed, this is depicted in Figure 7. The
peak at the driving frequency 25 Hz when bonding was essentially full can be seen
clearly in the upper left (UL) figure; when bonding became weak (after 1.5 sec), the
spectrum widened, became less pronounced and shifted to the left toward the first
natural frequency; then the 25 Hz peak completely disappeared after 3 sec, since
the bonds were broken and the first natural frequency f1 = 12.5 Hz (see section
7.1) was all that remained. Indeed, as can be seen in Figure 8, where the three
results were combined in one figure, the frequencies shifted down and converged to
the fundamental frequency of a single rod.

We return to this point in the conclusions section, Section 9, since it may be of
considerable interest to use such frequency shifts to detect the level of deterioration
of the adhesive in the system using nondestructive testing by employing induced
vibrations of controlled frequencies.

7.4. Simulation 4: Debonding with periodic tractions: 150Hz and 350Hz.
We next describe two simulations of the debonding process induced by tractions



EJDE-2017/301 DEBONDING OF BONDED ROD-BEAM SYSTEM 35

Figure 8. The spectrum in the first rod at the three times –
detecting the shift

with periods of f = 150Hz and f = 350Hz in p and q. We are interested in the
second question raised above on how does the frequency of the applied tractions
affect the spatial distribution of the adhesive.

It was found in the simulations that the evolution of the bonding field β depended
strongly on the frequency of the applied tractions. Here, we present two such
simulation results with two different frequencies of the tractions p and q. Again,
since the rate of change of β is affected by the term |u1 − u2|, the dependence is
guaranteed, but the spatial shape of β at different times is interesting, and very
important in applications. Indeed, as can be seen in Figs. 9 and 10, at the two
frequencies standing waves were formed that strongly affected the shapes of the
adhesive spatial distribution. The frequencies of these standing waves were those
of the applied traction, and the corresponding wavelengths were

λ =
c1

26 ·∆x
= 0.325m, f = 153.8 Hz,

λ =
c2

11 ·∆x
= 0.1375m, f = 363 Hz.

It is noted that when the frequency of the applied traction increased, while keep-
ing the amplitude the same, the bonding field’s deterioration rate became slower.
This seems to be related to the fact that at higher frequencies the wavelengths
were shorter and there were more nodes where there was no deterioration since
|u1 − u2| = 0 at those nodes.

Moreover, it was found that as the frequency increased, to obtain smoother
curves the discretization of the spatial domain had to be considerably refined, which
in turn led to much smaller time steps and longer runs. So the same discretization
was kept throughout all of the presented results, except those in Section 8.

7.5. Simulation 5: Debonding with periodic traction 350Hz and different
values of the diffusion coefficient kβ. To gain insight into the dependence of
the debonding process on the diffusion coefficient kβ , which as was noted above is
hard to measure and so it must be estimated, we run simulations of the debonding
process induced by a horizontal traction with frequency f = 350Hz with high and
low values of the coefficient. We depict in Figure 11 the results with two values:
kβ = 10−3 (U), and kβ = 10−5 (B). The figure illustrates how a higher value of
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Figure 9. Evolution of the bonding field β(x, t) (U), and the dif-
ference |u1 − u2| (B), at different times. The debonding was much
faster at the positions where the difference |u1−u2| was the largest,
and was very slow where it was small. The traction force frequency
was f = 150 Hz.

the diffusion coefficient causes the smoothing of the debonding process. Moreover,
it also slows the process, as can be seen from the curves in the figure. It is seen
clearly if one compares the fourth (pink) curve in each case.

It may be of interest to estimate the coefficient kβ from the form of the debonding
field found experimentally. Indeed, in some of the results obtained in [14] the
debonding was found to be wavy, and it may be possible to correlate these results
to an estimation of the coefficient, using a parameter identification and optimization
methods.

7.6. Simulation 6: The cases D = const. and D = D(β). The final simulations
address the issue of the effects when the humidity diffusion coefficient D is not a
constant but depends on β, thus making the whole system fully coupled (since
when D = const. the humidity equation is not coupled to the rest of the model
and can be solved separately). Therefore, we compare the results in both cases of
D = const. and D = D(β).

We assumed, for the sake of simplicity, that the diffusion coefficient had the
following form,

D = d+ dβ(1− β).

That is, a linear function that was increasing with the advance of debonding.
A comparison of the evolution of humidity in case when the diffusion coefficient

is constant and when it is given above is depicted in Figure 12. The coefficients
were chosen as d = 0.01 and dβ = 0.01. The case with constant D is shown in
red and when D depends on β in blue, at five different times. It is seen that the



EJDE-2017/301 DEBONDING OF BONDED ROD-BEAM SYSTEM 37

Figure 10. Evolution of bonding field β(x, t) (U), and the differ-
ence |u1 − u2| (B), at different times. The debonding was much
faster at the positions where the difference |u1−u2| was the largest,
and was very slow where it was small. The traction force frequency
was f = 350 Hz.

Figure 11. Evolution of the bonding field β with kβ = 10−3 (U),
and kβ = 10−5 (B), at different times.

predictions with such coefficients were very similar both qualitatively and quanti-
tatively. Moreover, it is very likely that the diffusion coefficients are much smaller
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in practice, which would make the difference even smaller. However, we note that
in the second case the humidity diffusion is slightly faster.

compD.png

Figure 12. Humidity η with diffusion coefficients D = d = 0.01
(red), and D = 0.01 + 0.01(1− β) (blue), at five different times.

We conclude that using D that depends on β may not be very helpful, since this
complicates the model without any clear benefits.

8. Numerical convergence

The theoretical study of the rate of convergence of the algorithm was deemed
too complicated, at this stage, in view of the complex nonlinear structure of the
model, and so was left open. However, to gain additional confidence in the com-
puter simulations from a different perspective than in Section 7.1, we performed a
numerical study of the scheme’s convergence. To that end, we run the simulations
with ten different time steps, each one was half of its predecessor. Choosing T = 1,
the number of the steps was

N1 = 5 · 103, N2 = 2 ·N1 = 104, . . . , N10 = 210 ·N1 = 2.56 · 106,

with corresponding time steps

∆t1 =
T

N1
= 2 · 10−4, . . . ,∆t10 = 3.9 · 10−7.

We assumed, as is customary, that the numerical solution for the smallest time
step (∆t10 = T/N10) represents the ‘true solution.’ Then, as a measure of con-
vergence, we calculated the l2 norm of consecutive differences between the solution
β = βNi with ∆ti and the solution β = βN10 with ∆t10, i.e.,

‖βNi − βN10‖22 =
S+1∑
l=1

|βNi

j2+l
− βN10

j2+l
|2,

for i = 1, . . . , 9, and also the ratios

Ri =
‖βNi − βN10‖2
‖βNi+1 − βN10‖2

,

for i = 1, . . . , 8, The norm and the ratio are summarized in Table 2. It is seen that
as the number of time steps increases the ratio is converging to 4, which implies
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second order convergence of the algorithm. We conclude that the algorithm was
very stable and robust.

Table 2. Numerical Errors with Respect to l2 Norm

Times Step ∗103 Difference in l2 Norm Ratio R

5 0.00669 1.37
10 0.004865 2.00
20 0.0024266 2.73
40 0.0008865 3.28
80 0.0002695 3.61
160 0.00007451 3.80
320 0.00001960 3.90
640 0.000005019 3.95
1280 0.000001270
2560 ‘true solution’

Finally, Figure 13 depicts the behavior of the bonding field at time t = 1 for the
ten different time steps. It visually confirms the conclusion based on the table.

Figure 13. β for ten different time steps, at time t = 1. The
traction was f = 25 Hz

9. Concluding remarks

We presented a ‘simple’ model for the process of debonding of two bonded slabs,
in the so-called single lap joint, as a result of mechanical vibrations, temperature
fluctuations and spread of humidity in the adhesive layer. The model was based on
two 1D beam-rod systems taking into account the horizontal shear (rods) and the
vertical forces (beams) in the adhesive layer. Our main interest was in the model,
its analysis and in studying the dependence of the debonding process humidity and
on the frequencies of the mechanical vibrations and the related shift is the spectrum
as debonding progresses.
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The debonding process was described by the evolution of the bonding function
β, the temperature θ and the diffusion of the humidity function η, all three defined
on the adhesion region. This gave the system an unusual form, that of a system of
dynamic equations for the slabs coupled over the adhesive region, together with the
evolution inclusion for the bonding field and the diffusion equations for temperature
and humidity.

Since the system was nonlinear and of unusual form, the first step was to an-
alyze it. The existence of weak solutions to the system was established by using
approximate problems, passing to the limits and a fixed point argument. Indeed,
use was made of a number of recent results and tools from the theory of differential
inclusions with pseudomonotone operators.

To gain insight into the possible evolution of the system, slightly simplified by
omitting the temperature field, and possibly creating more accurate models for
the prediction of the debonding process, we turned to computer simulations. A
computer algorithm was developed for the system based on fully implicit time dis-
cretization and a standard spatial discretization. The algorithm was implemented
and many simulations were conduced to gain insight into the model behavior. As
was shown in Section 7.1 and Section 8, the numerical solutions seemed to be accu-
rate and the algorithm robust and efficient, and it was found (numerically) to have
almost quadratic convergence.

Then, we presented a few simulations’ results. Many other simulations of the
system behavior under various conditions and various assumptions on the problem
data, especially the form of the debonding source function Φ, can be found in [10].
The first simulation (Section 7.1) dealt with the spectrum of an excited single rod
and comparison with known natural frequencies. The comparison was found to
be very good. Then, in Section 7.2 the spectrum of the whole system, when fully
bonded, was studied numerically using the FFT. That was the baseline simulation
to which the evolution of the bonding field, actually the debonding (the decrease
in β) was compared to.

In the third simulation, Section 7.3, we studied the debonding process caused by
the application of a vibrating traction with frequency of 25 Hz and given humidity
at the ends. The main interest here was the discovery that the vibration spectrum
of the system changed, moved to lower frequencies and broadened for some time,
as debonding progressed from full bonding to almost full debonding. This resulted
in free rod vibrations when the debonding was essentially complete, Figs. 7 and 8.
The fourth simulations, Section 7.3, studied a similar setting but with tractions that
had frequencies of 150 and 350 Hz. There, it was found that because of standing
waves in the system, which depended on the applied frequency, the debonding was
slower and exhibited a wavy form, which may be interest in applications, since it
may indicate that regions with high debonding were separated from regions with
low debonding, Figs. 9 and 10.

Finally, we investigated the dependence of the model on either a constant humid-
ity diffusion coefficient or a coefficient that depends on the bonding, i.e., D = D(β).
It was found that for the values chosen above, there were some quantitative dif-
ferences, but qualitatively the solutions looked very similar in form. However, this
waviness, which was also found experimentally in [14, 19], may be used to estimate
the bonding diffusion coefficient kβ .
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The value of the model, and of this work, lies in the fact that the model was
found simple enough to analyze, but sufficiently complex to allow for considerable
insight into its predictions. Indeed, it allowed us to run many simulations, since
the run times were in minutes.

The main findings are the dependence of the debonding spatial form on the ap-
plied frequency and the shift in the spectrum as debonding progresses. This clearly
indicated that there may be ways to find the bonding/debonding state of a bonded
system by nonintrusive measurements of the spectrum by externally exciting it.
Indeed, it may be possible to excite the system externally and by measuring the
resulting spectrum to correctly estimate the extent of the debonding.

To continue the line of research begun here, there are four steps that need to be
completed to make the model useful in real applications. The first step is to find
from experimental data and general engineering approaches an appropriate form of
the debonding source function Φ. Without reasonably accurate Φ, the predictions
are likely to be only qualitative. It may also be of interest to use different functions
with different forms and compare their effects on the debonding process.

The second need is to derive the system, or some related form, from a 3D model
in the limit of slabs that are long and thin. Some progress in this direction has
been made in [18]. A general way of obtaining such models can be found in [17, 25].

Thirdly, there is a need to use the model to study the debonding process when
tractions with many frequencies are applied.

Finally, there is a need to introduce randomness to some of the model param-
eters, especially those that are difficult to obtain experimentally, and study its
effects on the system predictions. More specifically, to find out to which of the
model parameters it is sensitive and need to be found precisely and to which it
is not sensitive so that their approximate values should be sufficient for reliable
predictions.
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