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ON ASYMPTOTIC BEHAVIOR OF GLOBAL SOLUTIONS FOR
HYPERBOLIC HEMIVARIATIONAL INEQUALITIES

JONG YEOUL PARK, SUN HYE PARK

Abstract. In this paper we study the existence of global weak solutions for

a hyperbolic differential inclusion with a discontinuous and nonlinear multi-
valued term. Also we investigate the asymptotic behavior of solutions.

1. Introduction

The main purpose of this paper is to investigate the initial boundary value prob-
lem for the hyperbolic differential inclusion

u′′ + A2u + M(‖A1/2u‖2)Au + ϕ(u′) 3 0 in (0,∞)× Ω, (1.1)

u(0) = u0, u
′(0) = u1 in Ω, (1.2)

where ϕ is a discontinuous and nonlinear set-valued mapping by filling in jumps a
function b ∈ L∞loc(R). The precise hypothesis on the above system will be given in
the next section.

Recently, a class of nonlinear Cauchy problems are studied by many authors
[2, 3, 6, 7, 9] Medeiros [3] studied the equation

u′′ + A2u + M(‖A1/2u‖2)Au = 0,

where A is a linear operator in a Hilbert space H and M is a real function. Rivera
[9] investigated the equation

u′′ + A2u + M(‖A1/2u‖2)Au + g(u′) = 0, (1.3)

when the damping term is linear, i.e., g(x) = δx and Patcheu [7] studied the ex-
istence and asymptotic behavior of the solutions of (1.3) when g is a nonlinear
and nondecreasing continuous functions. Motivated by works of Patcheu [7], we
consider more generalized problem (1.1) with a discontinuous and nonlinear multi-
valued term ϕ. Thus, in this paper we shall deal with the existence and asymptotic
behavior of the global weak solution of the hemivariational inequality (1.1)-(1.2).
The background of these variational problems are in physics, especially in contin-
uum mechanics, where nonmonotone, multi-valued constitutive laws lead to the
above-cited hemivariational inequalities.
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At this point it is important to mention that such hemivariational inequalities
were studied by some authors [4, 5, 8], but, in their works no decay rates were
obtained as in this present paper. The plan of this paper as follows. In section 2,
the assumptions and the main results are given. In section 3, the existence of a
solution to the (1.1)-(1.2) is proved by using the Faedo-Galerkin method and finally
in section 4, the decay of solutions is investigated.

2. Assumptions and main results

First we explain the notation used throughout this paper. Let Ω be a bounded
domain in Rn with a smooth boundary ∂Ω and Q = [0, T ] × Ω, where T be any
positive real number. Let H = L2(Ω) with inner product and norm respectively
denoted by (·, ·) and ‖ · ‖. Let A be a linear operator in H, with domain D(A) = V
dense in H and the graph norm denoted by ‖ · ‖V . Let V ′ be the dual of V and let
〈·, 〉 denote the duality pairing between V ′ and V . We assume that the imbedding
V ⊂ H is compact. Identifying H and H ′, it follows that V ⊂ H ⊂ V ′ and the
imbedding H ⊂ V ′ is also compact.

The following hypothesis will be used throughout this paper.
(H1) A is self-adjoint and positive, i.e., there is a constant µ0 > 0 such that

(Av, v) ≥ µ0‖v‖2, ∀v ∈ V. (2.1)

Define A2 : V → V ′ by

〈A2u, v〉 = (Au, Av), u, v ∈ V

with W = D(A2) = {u ∈ V |A2u ∈ H}.
(H2) M(s) is a C1 real function and there exist α, β > 0 such that

M(s) ≥ α + βs, M ′(s) ≥ 0. (2.2)

Let M̄(t) be defined by

M̄(t) =
∫ t

0

M(s)ds.

(H3) (1) b ∈ L∞loc(R). (2) There exist µ1, µ2 > 0 such that b(s)s ≥ µ1|s|2 and
|b(s)| ≤ µ2|s| for all s ∈ R.

The multi-valued function ϕ : R → 2R is obtained by filling in jumps of a function
b : R → R by means of the functions bε, bε, b, b from R to R as follows:

bε(t) = ess inf
|s−t|≤ε

b(s), bε(t) = ess sup
|s−t|≤ε

b(s);

b(t) = lim
ε→0+

bε(t), b(t) = lim
ε→0+

bε(t); ϕ(t) = [b(t), b(t)].

We shall need a regularization of b defined by

bm(t) = m

∫ ∞

−∞
b(t− τ)ρ(mτ)dτ,

where ρ ∈ C∞
0 ((−1, 1)), ρ ≥ 0 and

∫ 1

−1
ρ(τ)dτ = 1. It is easy to show that bm is

continuous for all m ∈ N and bε, bε, b, b, b
m satisfy the same condition (H3)(2) with

a possibly different constant if b satisfies (H3)(2).
Now we are in a position to state our existence result.
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Theorem 2.1. Assume that the conditions (H1)-(H3) hold. Then given u0 ∈ W
and u1 ∈ V , there exist Ξ ∈ L∞(0, T ;H) and a function u : [0, T ] × Ω → R such
that

u ∈ L∞(0, T ;V ), u′ ∈ L∞(0, T ;H), u′′ ∈ L∞(0, T ;V ′)

and

u′′ + A2u + M(‖A1/2u‖2)Au + Ξ = 0 in L∞(0, T ;V ′), (2.3)

Ξ(t, x) ∈ ϕ(u′(t, x)) a.e. (t, x) ∈ Q, (2.4)

u(0) = u0, u′(0) = u1. (2.5)

Next, we establish the decay result. Let us define the energy of the system
(1.1)-(1.2) as

E(t) =
1
2
{
‖u′(t)‖2 + ‖Au(t)‖2 + M̄(‖A1/2u(t)‖2)

}
. (2.6)

Then we have

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. Then given u0 ∈
W and u1 ∈ V , there exist Ξ ∈ L∞(0, T ;H) and a function u : [0,∞) × Ω → R
such that

u ∈ L∞(0,∞;V ), u′ ∈ L∞(0, T ;H), u′′ ∈ L∞(0, T ;V ′),

u′′ + A2u + M(‖A1/2u‖2)Au + Ξ = 0 in L∞(0,∞;V ′),

Ξ(t, x) ∈ ϕ(u′(t, x)) a.e. (t, x) ∈ (0,∞)× Ω,

u(0) = u0, u′(0) = u1

and u satisfies the decay property

E(t) ≤ Ce−γt, ∀t ≥ 0 (2.7)

for some positive constants C and γ.

3. Proof of Theorem 2.1

The proof will be done by applying the Faedo-Galerkin method.

Step 1 : A priori estimate I. Assume, for simplicity, V = D(A) is separable,
then there is a sequence (wj)j≥1 consisting of eigenfunctions of the operator A
corresponding to positive real eigenvalues λj tending to ∞. Hence Awj = λjwj , j ≥
1. Let us define Wm = Span{w1, w2, . . . , wm}. Note that (wj)j≥1 is a basis of H,V
and W .
Consider a regularized Galerkin equation

(u′′m(t)+A2um(t)+M(‖A1/2um(t)‖2)Aum(t)+bm(u′m(t)), v) = 0, ∀v ∈ Wm (3.1)

with the initial conditions

um(0) = u0m =
m∑

j=1

(u0, wj)wj , u0m → u0 in W, (3.2)

u′m(0) = u1m =
m∑

j=1

(u1, wj)wj , u1m → u1 in V. (3.3)
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Substituting um(t) =
∑m

j=1 gmj(t)wj in (3.1) gives a second-order ordinary differen-
tial equations and its local solution gmj(t) exists on [0, tm), 0 < tm < T . Replacing
v by u′m(t) in (3.1), we find

1
2

d

dt

{
‖u′m(t)‖2 + ‖Aum(t)‖2 + M̄(‖A1/2um(t)‖2)

}
= −(bm(u′m(t)), u′m(t)). (3.4)

Integrating in (0, t), t ≤ tm,

1
2
{
‖u′m(t)‖2 + ‖Aum(t)‖2 + M̄(‖A1/2um(t)‖2)

}
=

1
2
{
‖u1m‖2 + ‖Au0m‖2 + M̄(‖A1/2u0m‖2)

}
−

∫ t

0

(bm(u′m(s)), u′m(s))ds.

(3.5)

By (H3)(2) and Hölder inequality,∫ t

0

(bm(u′m(s)), u′m(s))ds ≤
( ∫ t

0

‖bm(u′m(s))‖2ds
)1/2( ∫ t

0

‖u′m(s)‖2ds
)1/2

≤ µ2

∫ t

0

‖u′m(s)‖2ds.

(3.6)

From (3.5) and (3.6) we have

1
2
{
‖u′m(t)‖2 + ‖Aum(t)‖2 + M̄(‖A1/2um(t)‖2)

}
≤ 1

2
{
‖u1m‖2 + ‖Au0m‖2 + M̄(‖A1/2u0m‖2)

}
+ µ2

∫ t

0

‖u′m(s)‖2ds.

(3.7)

In what follows, we use C to denote a generic positive constant independent of m.
Using (3.2), (3.3), (3.7) and Gronwall’s inequality we obtain

‖u′m(t)‖2 + ‖Aum(t)‖2 + M̄(‖A1/2um(t)‖2) ≤ C. (3.8)

Using (2.2), we deduce that

‖u′m(t)‖2 + ‖Aum(t)‖2 + α‖A1/2um(t)‖2 +
β

2
‖A1/2um(t)‖4 ≤ C. (3.9)

By (H3)(2) and (3.8) we also obtain

‖bm(u′m(t))‖ =
( ∫

Ω

(bm(u′m(t, x)))2dx
)1/2

≤ µ2

( ∫
Ω

|u′m(t, x)|2dx
)1/2

= µ2‖u′m(t)‖ ≤ C.

(3.10)

So we can extend the approximated solutions um(t) to the whole interval [0, T ] and
we get

(u′m) is bounded in L∞(0, T ;H), (3.11)

(Aum) is bounded in L∞(0, T ;H), (3.12)

(bm(u′m)) is bounded in L∞(0, T ;H). (3.13)

Moreover by assumption (2.1),

(um) is bounded in L∞(0, T ;H). (3.14)
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Step 2 : A priori estimate II. It follows from (3.1) that for all v in Wm,

|〈u′′m(t), v〉|

≤ ‖Aum(t)‖‖Av‖+ |M(‖A1/2um(t)‖2)|‖Aum(t)‖‖v‖+ ‖bm(u′m(t))‖‖v‖

≤ (‖Aum(t)‖+ |M(‖A1/2um(t)‖2)|‖Aum(t)‖+ ‖bm(u′m(t))‖)‖v‖V .

(3.15)

Since M is a C1 real function, we have from (3.9) and (3.10), by a density argument,
that

(u′′m) is bounded in L∞(0, T ;V ′). (3.16)

Step 3: Passage to the limit. From the priori estimates (3.11)-(3.14) and (3.16),
we have subsequences (in the sequence we denote subsequences by the same symbols
as original sequences) such that

um → u weakly star in L∞(0, T ;V ), (3.17)

Aum → Au weakly star in L∞(0, T ;H), (3.18)

u′m → u′ weakly star in L∞(0, T ;H), (3.19)

u′′m → u′′ weakly star in L∞(0, T ;V ′), (3.20)

bm(u′m) → Ξ weakly star in L∞(0, T ;H), (3.21)

M(‖A1/2um‖2)Aum → Ψ weakly star in L∞(0, T ;H). (3.22)

By the Aubin-Lions compactness lemma [1], from (3.17), (3.19) and (3.20) that

um → u strongly in L2(0, T ;H), (3.23)

u′m → u′ strongly in L2(0, T ;V ′). (3.24)

Now we shall prove that Ψ = M(‖A1/2u‖2)Au. For v ∈ L2(0, T ;H), we have∫ T

0

(Ψ(t)−M(‖A1/2u(t)‖2)Au(t), v)dt

=
∫ T

0

(Ψ(t)−M(‖A1/2um(t)‖2)Aum(t), v)dt

+
∫ T

0

(M(‖A1/2u(t)‖2)(Aum(t)−Au(t)), v)dt

+
∫ T

0

(M(‖A1/2um(t)‖2)−M(‖A1/2u(t)‖2))(Aum(t), v)dt.

(3.25)

On the other hand, the fact that M is C1 and (3.9) give∫ T

0

(M(‖A1/2um(t)‖2)−M(‖A1/2u(t)‖2))(Aum(t), v)dt

≤ C

∫ T

0

∣∣‖A1/2um(t)‖2 − ‖A1/2u(t)‖2
∣∣‖Aum(t)‖‖v‖dt

≤ C

∫ T

0

∣∣(A(um(t) + u(t)), um(t)− u(t))
∣∣dt

≤ C
( ∫ T

0

‖um(t)− u(t)‖2dt
)1/2

.

(3.26)
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Considering (3.18), (3.22), (3.23) and (3.26), we deduce from (3.25) that

M(‖A1/2um‖2)Aum → M(‖A1/2u‖2)Au weakly star in L∞(0, T ;H). (3.27)

Now we may take the limit m → ∞ in the approximated (3.2). Therefore, we
obtain

〈u′′(t) + A2u(t) + M(‖A1/2u‖2)Au + Ξ, v〉 = 0.∀v ∈ V. (3.28)

Step 4: (u, Ξ) is a solution of (2.3)-(2.5). Let φ ∈ C1[0, T ] with φ(T ) = 0. By
replacing v by φ(t)wj in (3.1) and integrating by parts the result over (0, T ), we
have

(u′m(0), φ(0)wj) +
∫ T

0

(u′m(s), φ′(s)wj)ds

=
∫ T

0

(Aum(s), φ(s)Awj)ds +
∫ T

0

(M(‖A1/2um‖2)Aum(s) + bm(u′m(s)), φ(s)wj)ds.

(3.29)
Similarly, from (3.28),

(u′(0), φ(0)wj) +
∫ T

0

(u′(s), φ′(s)wj)ds

=
∫ T

0

(Au(s), φ(s)Awj)ds +
∫ T

0

(M(‖A1/2u‖2)Au(s) + Ξ(s), φ(s)wj)ds.

(3.30)

Comparing (3.29) and (3.30), we infer that

lim
m→∞

(u′m(0)− u′(0), wj) = 0, ∀j ∈ N.

This implies that u′m(0) → u′(0) weakly in H. By the uniqueness of limit, u′(0) =
u1. Analogously, taking φ ∈ C2[0, T ] with φ(T ) = φ′(T ) = 0, we may obtain that
u(0) = u0.

Next we will show that Ξ(t, x) ∈ ϕ(u′(t, x)) a.e. (t, x) ∈ Q. For this purpose, we
show the conclusion

u′m(t, x) → u′(t, x) a.e. (t, x) ∈ Q. (3.31)

First we mention the following lemmas.

Lemma 3.1 ([11, 11, p. 221]). Assume that (gm(t)) is an absolutely continuous
sequence defined on [a, b] and |g′m(t)| ≤ F (t) a.e. (m = 1, 2, 3, . . . ), F ∈ L(a, b). If
limm→∞ gm(t) = g(t) and limm→∞ g′m(t) = f(t) a.e. t ∈ [a, b], then g′(t) = f(t)
a.e. t ∈ [a, b].

Lemma 3.2 ([10, p. 152]). If (um) ⊂ C[0, T ], u ∈ C[0, T ] and um → u weakly,
then limm→∞ um(t) = u(t), t ∈ [0, T ].

Set u(t, x) =
∑∞

j=1 gj(t)wj and u′(t, x) =
∑∞

j=1 fj(t)wj . Let j ∈ N be fixed.
Since um(t) → u(t) in H for a.e. t ∈ [0, T ],

lim
m→∞

(um(t, x)− u(t, x), wj) = 0, lim
m→∞

(gmj(t)− gj(t)) = 0

a.e. t ∈ [0, T ]. Since |g′mj(t)| is bounded a.e. t ∈ [0, T ] (see (3.11)), there exists a
function ξj(t) defined on [0, T ] such that

lim
m→∞

g′mj(t) = ξj(t) a.e. t ∈ [0, T ].



EJDE-2006/139 HYPERBOLIC HEMIVARIATIONAL INEQUALITY 7

By Lemma 3.1, ξj(t) = g′j(t) a.e. t ∈ [0, T ]. Hence limm→∞ g′mj(t) = g′j(t). Let

v(s, x) =

{
wj if s ∈ [0, t],
0 if s ∈ [t, T ].

Since u′m → u′ weakly star in L∞(0, T ;H),
∫

Q
u′m(s, x)v dx ds →

∫
Q

u′(s, x)v dx ds

as m →∞, and hence

gj(t) = gj(0) +
∫ t

0

fj(s)ds.

This implies that g′j(t) = fj(t) a.e. t ∈ [0, T ]. Since u′m → u′ weakly in H

for a.e. t ∈ [0, T ] and u′ ∈ C(0, T ;V ′), u′(t, x) =
∑∞

j=1 g′j(t)wj ∈ C[0, T ] and
u′m(t, x) → u′(t, x) weakly in C[0, T ] for a.e. x ∈ Ω. Thus by Lemma 3.2, we
conclude that (3.31). Thus, for given η > 0, using the theorems of Lusin and
Egoroff, we can choose a subset ω ⊂ Q such that meas(ω) < η, u′ ∈ L∞(Q \ω) and
u′m → u′ uniformly on Q \ ω. Thus, for each ε > 0, there is an N > 2

ε such that

|u′m(t, x)− u′(t, x)| < ε

2
, ∀(t, x) ∈ Q \ ω.

Then, if |u′m(t, x) − s| < 1/m, we have |u′(t, x) − s| < ε for all m > N and
(t, x) ∈ Q \ ω. Therefore we have

bε(u
′(t, x)) ≤ bm(u′m(t, x)) ≤ bε(u′(t, x)), ∀m > N, (t, x) ∈ Q \ ω.

Let φ ∈ L∞(Q), φ ≥ 0. Then∫
Q\ω

bε(u
′(t, x))φ(t, x) dx dt ≤

∫
Q\ω

bm(u′m(t, x))φ(t, x) dx dt

≤
∫

Q\ω
bε(u′(t, x))φ(t, x) dx dt.

(3.32)

Letting m →∞ in (3.32) and using (3.21), we obtain∫
Q\ω

bε(u
′(t, x))φ(t, x) dx dt ≤

∫
Q\ω

Ξ(t, x)φ(t, x) dx dt

≤
∫

Q\ω
bε(u′(t, x))φ(t, x) dx dt.

(3.33)

Letting ε → 0+ in (3.33), we infer that

Ξ(t, x) ∈ ϕ(u′(t, x)) a.e. in Q \ ω,

and letting η → 0+, we obtain

Ξ(t, x) ∈ ϕ(u′(t, x)) a.e. inQ.

Therefore, the proof of Theorem 2.1 is complete.

Remark 3.1. Even if we replace the condition (H3)(2) by the weaker linear growth
condition:

|b(s)| ≤ µ2(1 + |s|), ∀s ∈ R,

we obtain the same results as in Theorem 2.1.



8 J. Y. PARK, S. H. PARK EJDE-2006/139

Remark 3.2. If in Theorem 2.1 we impose the condition that b is nondecreasing,
then we obtain the stronger results. In other words, the solution u of (2.3)-(2.5)
satisfies

u ∈ W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;H).

Since the proof of this result is similar to that of [7, Theorem 1.1], we omit it here.

4. Energy decay of solutions

In this section we shall prove Theorem 2.2 by applying the following lemma by
Nakao [6].

Lemma 4.1. Let φ : R+ → R be a bounded nonnegative function for which there
exist constant δ > 0 such that

sup
t≤s≤t+1

φ(s) ≤ δ(φ(t)− φ(t + 1)), ∀t ≥ 0.

Then there exist positive constants C and γ such that

φ(t) ≤ Ce−γt, ∀t ≥ 0.

Proof of Theorem 2.2. The existence part of solution of Theorem 2.2 is a conse-
quence of the proof of Theorem 2.1. To prove the decay property, we first obtain
uniform estimates for the approximated energy,

Em(t) =
1
2
(
‖u′m(t)‖2 + ‖Aum(t)‖2 + M̄(‖A1/2um‖2)

)
(4.1)

and then pass to the limit. Note that Em(t) is non-negative and uniformly bounded.
Let us fix an arbitrary t > 0. From the approximated problem (3.1) with v = u′m(t),
by (H3)(2) we have

d

dt
Em(t) = −(bm(u′m(t)), u′m(t)) ≤ −µ1‖u′m(t)‖2. (4.2)

This implies that Em(t) is a non-increasing function. Setting F 2
m(t) = Em(t) −

Em(t + 1) and integrating (4.2) over (t, t + 1) we have

F 2
m(t) ≥ µ1

∫ t+1

t

‖u′m(s)‖2ds. (4.3)

By applying the mean value theorem, there exist t1 ∈ [t, t+ 1
4 ] and t2 ∈ [t+ 3

4 , t+1]
such that

‖u′m(ti)‖ ≤
2

√
µ1

Fm(t), i = 1, 2. (4.4)

Now, replacing v by um(t) in the approximated problem we have

(A2um(t), um(t)) + (M(‖A1/2um(t)‖2)Aum(t), um(t))

= −(u′′m(t), um(t))− (bm(u′m(t)), um(t)).
(4.5)
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Integrating (4.5) over (t1, t2) and using (H3)(2), we obtain∫ t2

t1

‖Aum(s)‖2 + M(‖A1/2um‖2)‖A1/2um(s)‖2ds

= −(u′m(t2), um(t2)) + (u′m(t1), um(t1))

+
∫ t2

t1

‖u′m(s)‖2ds−
∫ t2

t1

∫
Ω

bm(u′m(s, x))um(s, x) dx ds

≤ ‖u′m(t2)‖‖um(t2)‖+ ‖u′m(t1)‖‖um(t1)‖

+
∫ t2

t1

‖u′m(s)‖2ds + µ2

∫ t2

t1

‖u′m(s)‖‖um(s)‖ds.

(4.6)

Using Hölder’s inequality and (2.1), from (4.3), (4.4) and (4.6), we have∫ t2

t1

Em(s)ds

≤ 3
2µ1

F 2
m(t) +

2
µ0
√

µ1
Fm(t)‖Aum(t2)‖

+
2

µ0
√

µ1
Fm(t)‖Aum(t1)‖+

µ2

µ0

( ∫ t2

t1

‖u′m(s)‖2ds
)1/2 sup

t1≤s≤t2

‖Aum(s)‖

(4.7)

and then we have ∫ t2

t1

Em(s)ds ≤ C1F
2
m(t) + C2Fm(t)Em(t)1/2, (4.8)

where C1, C2 are a generic positive constant independent of m. Noting that Em(t+
1) ≤ 2

∫ t2
t1

Em(s)ds and Em(t + 1) = Em(t)− F 2
m(t), from (4.8) we have

Em(t) ≤ 2
∫ t2

t1

Em(s)ds + F 2
m(t)

≤ (2C1 + 1)F 2
m(t) + 2C2Fm(t)Em(t)1/2.

(4.9)

Young’s inequality implies
Em(t) ≤ C3F

2
m(t) (4.10)

for some positive constant C3. Since Em is non-increasing, from (4.10), we have

sup
t≤s≤t+1

Em(s) ≤ C3(Em(t)− Em(t + 1)), ∀t ≥ 0.

Applying Lemma 4.1, there exist positive constants C and γ such that

Em(t) ≤ Ce−γt,∀t ≥ 0.

Passing to the limit m →∞, we get (2.7). This completes the proof of Theorem 2.2.
�
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