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CHAPTEHR I

DEFINITIONS AND NOTATIONS

Throughout this paper [a,b] will denote a closed
interval for which a < b and (a,b) belongs to SXS, where

S is the set of real numbers.

Definition 1.1

The statement that D = {xi}?=0 is a subdivision
of [a,b] means D is a finite subset of S such that a = Xqs

b = x_ and x, < x,, where 0 < i < n,
n i i -

-1

Definition 1.2

The statement that D' is a refinement of a sub-
division D of [a,b] means D' is a subdivision of [a,b] and

D is a subset of D',

Definition 1.3

The statement that fz H exists, where {(a,b)

belongs to SXS and H is a function from SXS to 8, means

1



there exists a number J of S such that if € is a positive

number, then there exists a subdivision D of [a,b] such

n
(x;15 o

that if D' is a refinement of D, then

: H(xi-l’xi) - J| < €.

ol ™mBs

1
]

Definition 1.4

The statement that I = [x,y] is a subinterval
of [a,b] means [x,y] is a closed interval, (x,y), belongs

to 8X8 and a < x < y £ b,

Definition 1.5

If £ is a function from S to S, then:

(1) £ is nondecreasing on [a,b] means, if a < p < g
< b, then £(p) < f(q).
(2) f is increasing on [a,b] means, if a < p < q < b,

then f(p)< f(q).

Definition 1.6

The statement that the number set R has a least

upper bound means there is a number M such that



(1) if x belongs to R, then x < M, and
(2) if p < M, then there exists an element x of R

such that p < x.

Definition 1.7

The statement that the number set R has a greatest

lower bound means there is a number M such that

(1) if x belongs to R, then x > M, and
(2) if p > M, then there exists an element x of R

such that p > x.

Notations

If H is a function from SXS to 85, f is a function

n
i=0

subdivision of [a,b], then, where no misunderstanding is

from S to S, (a,b) belongs to SXS, and D = (x,]} is a

likely, the following notations will be used:

(1) lower case letters will be used to denote functions
from 8 to 8, and capital letters to denote func-
tions from SXS to S, or functions from number

intervals to S;

(2) Hi = H(Xi-l’xi);



if I

if I
H(I)
if I
Af =

AT,
i

if x, y belong to S, then the function G(x,y) =

£(y)

il
™MB
==}

i
—
I—lo
==
-

= [x,y] is a subinterval of [a,b], then
[; B = [7 H;

= [x,y] is a subinterval of [a,b], then

i

H(x,y);
= [x,y] is a subinterval of [a,b], then
£f(y) - £(x);

f(xi) - f(xi_l);

- f(x) will be denoted by 4r.



CHAPTZER ITI

BASIC THEOREMS

Most of the following theorems were proved in
Mathematics 5309 (Foundations of Analysis) during the fall
of 1967. The theorems will be stated in this chapter and

will be used in establishing proofs for theorems in Chapter

IIT.

Theorem 2,1

If (a,b) belongs to SXS and each of D, and D,
is a subdivision of [a,b], then Dy U D, is a subdivision
of [a,b] and a refinement of D, and of D,.

Theorem 2.2

If £ is a function from S to S, defined on [a,b],

and D is a subdivision of [a,b], then

z Afi = f(v) - f(a).
D



Theorem 2,3

If £ is a function from S to S, defined on [a,b],

then fz df exists and is f£(b) - £(a).

Theorem 2,4

If H is a function from SXS to S such that H
is integrable on [a,b], and, for each subinterval I of

[a,b], H(I) > 0, then [ > O.

Theorem 2.5

If H and K are functions from SXS to 8 such
that each is integrable on [a,b], then fz (H + K) exists

and is IZ H + f: K.

Theorem 2,6

If H is a function from S8SXS to S, integrable
on [a,b], and ¢ belongs to S, then fz cH exists and is

c fz H,

Theorem 2,7

If H is a function from SXS to 8, integrable

on [a,b], and



Theorem 2.8

SXS to 8,

(1)

If (a,b) belongs to SXS and H is a function from

the following statements are equivalent:

f: H exists.

If € is a positive number there exists a subdivi-

sion D of [a,b] such that if D' and D" are re-

finements of D, then

s H, -2 H |<e.
D'l D"J! €



CHAPTER IITI

THEOREMS CONCERNING INTERVAL FUNCTIONS

The following sequence of theorems was taken
from publications of W. D. L. Appling [1] and [2]. How-
ever, all of the proofs shown here were done without refer-

ence to previous publications.

Theorem 3,las

Suppose H is a function from SXS to S, (a,b) be-

longs to 8XS, and,for a < x <y <z < b,

H(X,Z) < H(X)Y) + H(.V,Z)-

If D is a subdivision of [a,b] and D' is a refinement of

D, then

D D' )

Proof (by induc@ion). For each positive integer

n, let S(n) be the statement; if D, is a refinement of D

having exactly n elements which do not belong to D, then

8



ZH < H

D p. Y

n

(a) Show 8(1) is true.
Let Dy be a refinement of D having one element,
P, which does not belong to D. Denote the interval of D

to which p belongs by [xy_;,%,], then

T H = I Hy + H(xy_q1,xp)

D D
i#h

< g Hy + H(Xh_l,p) + H(p,xy)
i#h

Z Hs;.
Dy J

(p) Assume S(k) is true,
(¢) Show 8(k + 1) is true,

Let Dy,; be a refinement of D having k + 1 ele-
menﬁs which do not belong to D. Now, let D, be a refine-
ment of D obtained by deleting one of the k + 1 elements
of Dy4,; which do not belong to D. Therefore, Dy is a sub-
division of [a,b] and Dy,j is a refinement of Dy having

exactly one element not belonging to Dy. Hence,

Z Hy <% Hy from (b)
D Dy,
<=z Hy from (a)
D
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Theorem 3.1lb

Suppose H is a function from SXS to S, (a,b)

belongs to SX8, and, for a < x <y < z < b,

H(X)Z) 2> H(x:y) + H(yyz)-

If D is a subdivision of [a,b] and D' is a refinement

of D, then

Proof, A proof similar to that for Theorem

3.la will prove this Theorem,

Lemma 3.2a

If £f and m are functions from S to S such that

m is increasing, then

[£(z) - £(x)1% _ [£(y) - £(x)]12  [£(=z) - £(y)1®
(1) S =Gy £ w00 —wa T ms) —w(y

provided x < y < 2z,
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Proof (iqdirect). Assume (1) is false, then

(2) L£(2) - £(x)1% o [e(y) - £(x)]1% , [#(z) - £(y)]®

m(z) - m(x) n(y) - m(x)

mn(z) - m(y) °

Let f(z) - £(x) = A and f(y) - f(x) = B; then,

f(z) - f(y) = A - B,

Also, let m(z) m(x)

m(z)

i
™
1
o’

n(y)

and since m is increasing a > b > 0,

(2) we have

A2 B® (A - B)2
. —— + .
a > b a - b))’

hence,

B2 . (A - B)Z A%

0> b + a - b a

and, since ab(a - b) > 0,

a and m(y) - m(x) = b; then,

Substituting into
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0> a{a - b) B2 + ab(A - B)2 - b(a - b) A2

= a®B® . 2abAB + b3A°

(aB - bA)Z

v
o

Therefore assumption is false.

Theorem 3,2

If £ and m are functions from the real numbers
to the real numbers and m is increasing, the following

statements are equivalent:
b 2
(l)j. (af)® xists.
a dm

(2) There exists a real valued nondecreasing function
h on [a,b] such that, for each subinterval I of

la,b], (Af)Z < AhAm.

Proof,

Part I, l-—e2, Assume

fb (ar)®
a dm
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exists; hence, by Theorem 2,7,

f (af)®
T dm

exists for each subinterval I of [a,b]. Let

X
- (af)®
o - [ g

for x belonging to [a,b], then for each subinterval I of

la,b],

by Theorem 2.4; and hence, h is nondecreasing.
To show (Af)? < AhAm an indirect argument is
used, Buppose (Af)2 > Ahfm for some interval I of [a,b].

Then,

Since

. (an)?®
I dm



exists and

(a)? f (a8)? _
I

Lm

there is a subdivision D of I such that if D! is a re-

finement of D, then

Z(Afi) f (ar)2
dm

< Lan)® _f (af)®
Am 7 dm ’

Let D' be a refinement of D, then

(—gﬁﬁgg %;i-)—i (Lemma 3.2a, Th., 3.la)
- o] [
_ (af)®
A

This is a contradiction; hence (Af)® < AhAm and 1—=2,

14

Part II, 2—=1, Assume (2) and define R as the

set of numbers such that p belongs to R iff there is a

subdivision D of [a,b] such that
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For each subdivision D of [a,b],

ISk
Z(fl) < % Ah

D Amy ~p 1

h(v) - n(a).

i

Hence R is bounded above, by h(b) - h(a), and since R is
nonempty, R has a least upper bound, J.

For each ¢ > 0, J - € < J and there exists a
number q belonging to R for whiech J - ¢ < ¢ £ J. Since
q belongs to R there is a subdivision D of [a,b] such

that

If D' is any refinement of D, then

J - € < q

(arg)2

Amg

D
(af,)2

< Z -—J)— (Lemma 3.2a, Th. 3.la)

— o Amj



<J (Def. of
< J + e,

This is equivalent to

Z (ar,)2

Dl Am:L

- J £ €.

Therefore,

fb (af)®
a dm

exists and 2—=1,

Theorem 3.3

J)

If H and L are real valued functions

16

of subin-

tervals of [a,b] such that H is bounded and IZL~exists, then

f:IHI |L - [L] exists and is zero.

Proof, Let J = 0 and € > 0., Since H is bounded

on [a,b], there exists a number M such that [H(I)| <M

for each subinterval I of [a,b]. Since f: L exists and

€
oM - 0o
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then there exists a subdivision D of [a,b] such that if

D' and D" are refinements of D, then

(1) |z 1, - = L, < = (Th. 2.8)
D! p" J

Let E = {xi]2=o be a refinement of D. Since

oM > 0,
where n is defined by E, and f: L exists, then for each
3 3 s X 1 (3
integer i, 1 = 1, 2, 3, ..., n, fxl L exists and there
i-

exists a subdivision D; of [xi_l,xi] such that

€
(2) g. L.i - < e
1
Hence,
lé |8y | by - [; T - Jl = lg |H, | |T; - [, L] -0



where

<M Z ( Ly z Lj I + l
E Di 1 Di
<Mz lLl - % L [ + ~i->
E( Di Jl 2nM
[
= . - . 4+ =
M g lLl g Ly, 2
i
n n
=M| = |L: - Z L. +
i=1 p; ‘i i=1
;20 Q;<0
Q; = Ly - X Lji
Dy
n n
= M Z(Ly -2 Ly, 1+ Z
i=1 D; *“% i=1
Q; 20 Q3 <0
n n
=M| 2 Li+ I (Z L, -
Q;>0 Q<0
_4%
n
- 2 (X L. +
1=1\D, Ji
Qi_>_0
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where
n
Dt = U Di U E
i=1
Q;<0
and
n
D" = U Di U E
i=1
Q,>0
. £+ £ .
<M - Sm g (Eq. 1)

Theorem 3,4

If J is a number and H and L are real valued
functions of subintervals of [a,b] such that H is bounded

and fz L exists, the following statements are equivalent:

(1) f2 H([L) = 4.

(2) fg HL = J.

Proof,

Part I, 1-—=2, Assume (1), fz H(fL) = J, and

let ¢ > 0., Then, there exists a subdivision Dl of [a,b]

such that
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€
(1) gi Hy fi L-J|<3,

for each refinement D' of Dy. Also, from Theorem 3.3,
fz |E| |L - [L]| = 0; hence, there exists a subdivision

D, of [a,b] such that if D' is a refinement of D,, then
€
(2) lgi |Hs | [Ty - J3 L] -0 |< Z

Let D = Dl U D2 and let D' be a refinement of D; then,

D' is a refinement of D. and of D

1 Y and

I HiLy - Jd|g |2 HyLy - Z Hyfy L, + ’i' Hyf; L -7

D' D! D!
<% By (Ly - [y L)I +%  (Ea. 1)

< I |H;| [Ly - f3 L] + 5

s E 2
) it |E; | By - [y ] - ol + £
A (Eq. 2)
- c.

Hence, 1—=2,
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Part II, 2—e=l1, A proof similar to the proof

of Part I can be used to show 2—e=1,

Theorem 3.5

If H is a real nonnegative valued function of
subintervals of [a,b] and m is an increasing function
1
such that fz(Hdm)2 exists and there is a number R > 1 such

that H(I) < RAm, for each subinterval I of [a,b], then:

(1) ./% Lj(Hdm)%]z exists.
a

dm

(2) IZ H exists.

(3) fb [[(Ham)¥12 _ b 5

dm a

Proot.

Part (1). Let £ and h be functions such that, for
each x belonging to [a,b], f(x) = fZ(Hdm)% and h(x) = Rm(x).
Then, since m is increasing, h is inecreasing.

To show that
(1) (Af)Z < Ahlm,

for each subinterval I of [a,b], an indirect argument is

used., Assume (1) is false. Then, there is a subinterval



I of [a,b] such that

(Af)2 > Ahtm

= R(&m)2; (Def. of h)
hence,
1
Af > R%Anm,
Also,
ar = fly) - £(x), where I = [x,y]
¥ 1 % i
= fa(Hdm)2 - fa(Hdm)2 (Def. of f)
1
= [ (Ham)=. (Th. 2.7)
1 1l
Since [;(Hdm)2 = Af and Af - R°Am > 0, there exists a

subdivision D of I such that if D' is a refinement of D,

then

i i
(2) |= (H;6my)2 - Af| < Af - R?Anm.
D!

For each refinement D' of D,

22



23

1 i
Af < [of - = (Hydmg)Z | + 2 (HjAmg)?
D! D!
%
1 H,
< Af - R2Am + X (—l—) Am (Eq. 2)
pr\omy

1 L
< Af - R?Mm + R2 £ Am,
— D' 1

i i
= Af -~ R%Am + R%Am
= AfF,

Hence assumption was false and (1) is true; therefore,

by Theorem 3.2,

b (ar)®
a, dm |

exists and

fb (ae)? _ fb [f(ng)%lz, (Def. of £)
a a

Part (2) and (3). For each subinterval I of

[a,p], let

fI(Hm)%
Hl(I) =~

and
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L, (1) = [H(I) onl%;

then, fz L1 exists and Hl is real nonnegative valued.

To show Hl
For each subinterval

exists a subdivision

N

(3) g'(HiAmi)

is bounded on [a,b]l, let M =R + 1.
1
I of [a,b], fI(Hdm)2 exists and there

D of I such that

i
- fI(Hdm)Z < Am,

for each refinement D' of D, Let D' be a refinement of

D, then
[ (Ham)Z
m
B (1) = 2L
Am
1 1 L
]f (Ham)Z - £ (H,Am )2 |+ = (H,Am, )3
pr 1 1 pr + 1
<
- Am
1
H. 2
1
An + g'(mi) ~ (
< A Eq. 3)
R
< 1l +=— X Onm.
fn o, i
= 1 R
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therefore, Hy is bounded on [a,b]. Now, since

fb [/ (Ham)2 ]2
a dm

exists, from Part (1) of this Theorem, and

b 1
[[(Ham)Z ]2 _ b .
(4) JE ’dz = fa Hl(le), (Def. of Hl and Ll)

then, fz Hl(le) exists, and, by Theorem 3,4,
b _ b
(5) [ o, (JLy) = [, HL,.

Let H, be the function such that

2

H,(I) = [E%%;}%,

for each subinterval I of [a,b]. Then Hy is real nonnega-

tive valued and bounded above by R. From (5), fz HlLl

exists and since

) 1
0 7wy = 71 e
a

- J18) o



b
= fa HZ(le)’

by Theorem 3.4, fg H,L, exists and

(7) J2 H,(fL) = [} L,

Therefore,
fb [I(Hdm)%]g = (b g (L) (E
A dm - fa. 1 / 1 4
_ b
= fa HlLl (Eq.
- (b
=/, H,(JL,) (Eq.
b
N fa HZLl (Eq.
b i 1
=L(%)2(Hdm)2 (Def. of
= [P &,
a

Hence, f: H exists and is

fb [f(qu)%]z_
a dm

H

26

and L

1)
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Theorem 3.5

If P is a real nonnegative valued bounded func~
tion of subintervals of [a,b] and m is an increasing func-

tion such that fz Pdm exists, then fz PPdm exists.

Proof. For each subinterval I of [a,b], let
H(I) = [P(I)]2 Am; then, H is nonnegative valued. Since
P is bounded there is a number M such that P(I) < M, for
each subinterval I of [a,b), and, since each of P(I) and
M is nonnegative, [P(I)]® < M2®; hence, H(I) < M2Am, Since
fg Pdm exists and
1

® pam

. [2(22an?)

i

= I2(nan)?,

1
then f:(Hdm)2 exists and, by Theorem 3,5, f: H exists;

therefore, [  P2dm exists, since

o o

fz H = fz P2dn, (Def. of H)

Theorem 3.7

If each of H and K is a real nonnegative valued

function of subintervals of [a,b], m is an increasing
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b b . b
function and each of fa Hdm and fa Kdm exists, then fa HK dm

exists.

Proof. Since fg Hdm and fg Kdm exist, then
fZ(H + K) dm exists and since (H + K) is nonnegative
[°(H + K)2 an exists (Th. 5.6). Also, fz H2dm and fz K2 dm

exist (Th. 3.6). Therefore,

b 2 b .2 b L2
fa(H + K)® dm - fa H"dm -~ fa K= dm

fz[(H + K)2 - HZ - k2] am

2 fz HK dm

exists.

Theorem 3.8

If K is a real valued function of subintervals
of [a,b] such that [0 K exists, and M is a function of
subintervals of [a,b] such that, for each subinterval I
of [a,b], M(I) is either K(I) or II K, then if € > 0 there

exists a subdivision D of [a,b] such that
g' lMi - fiK|‘< €,

for each refinement D' of D.



Proof, Since fz K exists, from Theorem 3.3,
f: lK - le = 0, For each positive number e, there is

a subdivision D of [a,b] such that

sl - fE < e

for each refinement D' of D, Let D' = {xi}2=0 be a re-

finement of D, then
.55" M, - [iK| = ]z',)' as My - [yK| + Z b |M_,L - fiK[,

where a;, = 1 and bi =0, if M, =K and bi = 1 and a; =

if M, = fiK

D' 1
< z' IKi - fiKl
< €.

Theorem 3.9

If X is a real nonnegative valued function of
subintervals of [a,b], integrable on [a,b], then f:[KfK]

exists and is fz K.

29

0,

i
2
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Proof. From Theorem 3.3, fz |[K - [K| = 0; hence,
for each positive number e, there is a subdivision D of

[a,b] such that if D' is a refinement of D, then
- <
(1) g' [Ki fiK| €.

Therefore, for each refinement D' of D,

1 1
L 3
g'[KifiK] faKl = gt[KifiK] gt fiK (Th. 2.8)
3
< g' I[KifiK] v fiKI
n 1
= E ISR - g
1=
Q,>0
1 n %
+ iil |[K;[iK]1% - [.K],
Q.<0
1 i
where Q; = [K;[;K]® - [.K
n 1
= = ([K;[3K]® - [4K)
i=1
Q320
n L
2

+ I (fik - [K;[3K]7)

Q;<0
n n
<z (k; - [48K) +  Z ([4K - K;)

i= i=1
QiZO Qi<0
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< €. (Eq.- l)

LemmaVS.lOa

then

then

and

hence,

If a, b, ¢, and d are real nonnegative numbers,

L
2

T . (bd)% < [(a + b)(e + a)]2.

(ac)

Proof (indirect). Assume the conclusion is false,

N

i L
(ac)? + (pa)2 > [(a + b)(c + 4d)]2,

L
2

2(abed)? > ad + be;

1
0 > ad ~ 2(abecd)2 + be
1 1
= [(ad)Z - (bec)?]?
Z o.

Therefore assumption is false,



3z

Lemma 3.,10b

If for each positive integer n, a, and b, are

real nonnegative numbers, then

[V

n 1

2
.Z (aibi) < |
i=1 i

hMB
o
h MmB
o’

Proof, This Lemma follows directly by using

an induction proof and Lemma 3.10a.

Theorem 3,10

If each of H and K are real nonnegative vaglued
functions of subintervals of [a,b), integrable on [a,b],
then the following integrals exist and

i
2

2% = PrE (fR) ]

Proof. Let R be the set of numbers such that
P belongs to R iff there exists a subdivision D of [a,Db]

such that

p = g[(fiH)(fiK)]%.

The set R is bounded helow by zero, and is nonempty; hence,

R has a greatest lower bound, J. For each positive number
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€, d < J + ¢ and there exists a number g belonging to R
such that J < g < J + e, 8Since g belongs to R, there

exists a subdivision D of [a,b] such that

@ = B0 IE,

Hence, for each refinement D' of D,

J + e > q

Z[(/,H)(f,x) 12
D 1

L
2

> 2 [([f.H)([.K)] (Lemma 3,10a, Th, 3.1b)
D J J

(Def. of J)

v
<y

> J - €.

Therefore,

L
2

(1) FPLUEURIF = 3,

L
To prove fZ(HK)2 = J, we let fZH = A, IZK = B,
and € be a positive number, Then, there exists a subdivi-
sion D such that if D' is a refinement of D, each of the

following statements is true:



(2) |z H, - AI < 1;

(¢) |z Kk, - B|< 13

1 € 2.
(5) |z kK, - B <T§(ﬁ) ’

pr 4 ¥
(8) g'(HifiH)% - Al< %E(B i 1)25 (Th. 3.9)
(7) g'(KifiK)% - B|< %E(A < 1)2; (Th. 3.9)
(8) g,[(fiH)(fiK)]% - J |< 5 (Eq. 1)

Let D' be a refinement of D, then

g'(HiKl) - Jl
3 3
< g,(HiKi) - g'[(IiH)(fiK)] |
1
+ g'[(fiH)(fiK)]2 - J‘
% 3 3
< g'(HiKi) - g,[Hi(fiK)] + g'[Hi(IiK)]

glmimuimﬁl + £ (Eq. 8)
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1
2

i i i
< = (H)Z(I(k)Z - ([3K)21%)2
Di

D=

1 : .3
+ 2 (LOTEDE - (mT12)° 4
D'

1 1 1 1
<[z B\?)z (k)2 - ([.x)212°
B (D' l) {D. 1) (;%) }

i _é_ 1 -12~
+ (Z fiK)z{z [(H)® - (fiH)E]ZL + 3
D' D! )

(Lemma 3,10Db)

ey L
<(A+1) |z % - 252 (K;f3K)% + 2 [;K|?
D D D!
_é_.
+(B+1) |2 H - 22 (Hf;H)
D' D'
%_
+ I [4H +-%
D'
(Egs. 2,4)
113
< - B]. - 2
< (A + 1)[’§' K, - B ]+ le g,(KifiK) I}
! 14x
+ (B + 1)|[= H, - A[+ 2|A - = (8 /.8
D! 1 D! 1°1
€
3
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1
1 € 2 1 € 212 €
+ (B + l)[18(3.+ 1) * 18(B ¥ 1) } t3

(Eq.sv 3)5:6:7)

wi|m

Theorem 3.11

If H is a real nonnegative valued function of
subintervals of [a,b], integrable on [a,b], and m is a
Ll
real valued nondecreasing function on [a,b], then fZ(Hdm)2

exists.

Proof. This Theorem follows immediately from
Theorem 3.10, since fzdm exists for any real valued func-

tion m defined on [a,b].

Theorem 3,12

If H is a real nonnegative valued interval func-
tion, m is a real valued nondecreasing function on [a,b],

1
and szdm exists, then f:szm exists.
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Proof, ©Since Hdm and dm are real nonnegative

valued interval functions, defined on [a,b], and ngdm
1
2

and f:dm exist, then, from Theorem 3,10, f:[(Hdm)(dm)]

L
which is [CHPdam, exists.
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