SUM INTEGRALS OF INTERVAI FUNCTIONS

THESIS

Presented to the Graduate Council of Southwest Texas State College in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF ARTS

By

$$
P R E F A C E
$$

The purpose of this paper is to present proofs of theorems showing the existence of sum integrals of functions from real number intervals to real numbers. This is a generalization of the Riemann-stieltjes Integral used in most elementary and advanced calculus books. Extensive work concerning this type of integral has been done by W. D. L. Appling.

The writer wishes to express his appreciation to Dr. B. W. Helton, Professor of Mathematics, for his supervision and encouragement during the preparation of this paper. The assistance rendered by Dr. H. N. McEwen, Associate Professor of Mathematics, and Dr. R. E. Anderson, Professor of Physics, is also gratefully acknowledged. Sincere thanks are extended to the writer's wife, Carolyn, and son, Jason, for their encouragement and patience.

> N. J. J.

San Marcos, Texas
May, 1968

$$
\text { TABLE } \quad 0 \mathrm{~F} \quad \mathrm{C} O \mathbb{N} \mathrm{E} \mathbb{N} \mathrm{~T} \text { S }
$$

Chapter Page
I. DEFINITIONS AND NOTATIONS 1
II. BASIC THEOREMS 5
III. THEOREMS CONCERNING INTERVAL FUNCTIONS 8
BIBLIOGRAPHY 38

DEFINITIONS AND NOTATIONS

Abstract

Throughout this paper [a,b] will denote a closed interval for which $a<b$ and (a, b) belongs to SXS, where S is the set of real numbers.

Definition 1.1

The statement that $D=\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $[a, b]$ means D is a finite subset of s such that $a=x_{0}$, $b=x_{n}$ and $x_{i-1}<x_{i}$, where $0<i \leq n$.

Definition I. 2

The statement that D^{\prime} is a refinement of a subdivision D of $[a, b]$ means D^{\prime} is a subdivision of $[a, b]$ and D is a subset of D^{\prime}.

Definition 1.3

The statement that $\int_{a}^{b} H$ exists, where (a, b) belongs to $S X S$ and H is a function from $S X S$ to S, means
there exists a number J of S such that if \in is a positive number, then there exists a subdivision D of [a,b] such that if $D^{\prime}=\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D, then

$$
\left|\sum_{i=1}^{n} H\left(x_{i-I}, x_{i}\right)-J\right|<\epsilon
$$

Definition 1. 4

The statement that $I=[x, y]$ is a subinterval of $[a, b]$ means $[x, y]$ is a closed interval, (x, y), belongs to $S X S$ and $a \leq x<y \leq b$.

Definition 1.5

$$
\text { If } f \text { is a function from } S \text { to } S \text {, then: }
$$

(1) f is nondecreasing on $[a, b]$ means, if $a \leq p<q$ $\leq b$, then $f(p) \leq f(q)$.
(2) f is increasing on $[a, b]$ means, if $a \leq p<q \leq b$, then $f(p)<f(q)$.

Definition 1. 6

The statement that the number set R has a least upper bound means there is a number M such that
(1) if x belongs to R, then $x \leq M$, and
(2) if $p<M$, then there exists an element x of R such that $\mathrm{p}<\mathrm{x}$.

Definition 1.7

The statement that the number set R has a greatest lower bound means there is a number M such that
(I) if x belongs to R, then $x \geq M$, and
(2) if $p>M$, then there exists an element x of R such that $p>x$.

Notations

If H is a function from $S X S$ to S, f is a function
from S to $s,(a, b)$ belongs to $S X S$, and $D=\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $[a, b]$, then, where no misunderstanding is likely, the following notations will be used:
(1) lower case letters will be used to denote functions from S to S, and capital letters to denote functions from SXS to S, or functions from number intervals to S ;
(2) $H_{i}=H\left(x_{i-1}, x_{i}\right)$;
(3) $\sum_{D} H_{i}=\sum_{i=1}^{n} H_{i}$;
(4) $\int_{i} H=\int_{x_{i-1}}^{x_{i}} H$;
(5) if $I=[x, y]$ is a subinterval of $[a, b]$, then

$$
\int_{I} H=\int_{x}^{y} H ;
$$

(6) if $I=[x, y]$ is a subinterval of $[a, b]$, then $H(I)=H(x, y) ;$
(7) if $I=[x, y]$ is a subinterval of $[a, b]$, then $\Delta f=f(y)-f(x) ;$
(8) $\Delta f_{i}=f\left(x_{i}\right)-f\left(x_{i-1}\right)$;
(9) if x, y belong to S, then the function $G(x, y)=$ $f(y)-f(x)$ will be denoted by df.

Most of the following theorems were proved in Mathematics 5309 (Foundations of Analysis) during the fall of 1967. The theorems will be stated in this chapter and will be used in establishing proofs for theorems in Chapter III.

Theorem 2.1

If (a, b) belongs to $S X S$ and each of D_{1} and D_{2} is a subdivision of $[a, b]$, then $D_{1} \cup D_{2}$ is a subdivision of $[a, b]$ and a refinement of D_{1} and of D_{2}.

Theorem 2.2

If f is a function from S to S, defined on $[a, b]$, and D is a subdivision of [a,b], then
$\sum_{D} \Delta f_{i}=f(b)-f(a)$.

Theorem 2.3

If f is a function from S to S, defined on [a,b], then $\int_{a}^{b} d f$ exists and is $f(b)-f(a)$.

Theorem 2.4

If H is a function from $S X S$ to S such that H is integrable on $[a, b]$, and, for each subinterval I of $[a, b], H(I) \geq 0$, then $\int_{a}^{b_{H}} \geq 0$.

Theorem 2.5

If H and K are functions from $S X S$ to S such
that each is integrable on $[a, b]$, then $\int_{a}^{b}(H+K)$ exists and is $\int_{a}^{b} H+\int_{a}^{b} K$.

Theorem 2.6

If H is a function from $S X S$ to S, integrable on $[a, b]$, and c belongs to s, then $\int_{a}^{b} c H$ exists and is c $\int_{a}^{b} H$,

Theorem 2.7

If H is a function from $S X S$ to S, integrable on $[a, b]$, and

$$
D=\left\{x_{i}\right\}_{i=0}^{n}
$$

is a subdivision of $[a, b]$, then

$$
\int_{a}^{b} H=\sum_{D} \int_{i} H .
$$

Theorem 2.8

If (a, b) belongs to $S X S$ and H is a function from SXS to S, the following statements are equivalent:
(1) $\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{H}$ exists.
(2) If ϵ is a positive number there exists a subdivision D of $[a, b]$ such that if D^{\prime} and $D^{\prime \prime}$ are refinements of D, then

$$
\left|\sum_{D^{\prime}} H_{i}-\sum_{D^{\prime \prime}} H_{j}\right|<\epsilon .
$$

THEOREMS CONCERNING INTERVAL FUNCTIONS

The following sequence of theorems was taken from publications of W. D. L. Appling [1] and [2]. However, all of the proofs shown here were done without reference to previous publications.

Theorem 3.1a

Suppose H is a function from $S X S$ to $S,(a, b)$ belongs to SXS, and, for $\mathrm{a} \leq \mathrm{x}<\mathrm{y}<\mathrm{z} \leq \mathrm{b}$,

$$
H(x, z) \leq H(x, y)+H(y, z) .
$$

If D is a subdivision of $[a, b]$ and D^{\prime} is a refinement of D, then
$\sum_{D} H_{i} \leq \sum_{D}, H_{j}$.
Proof (by induction). For each positive integer n, let $S(n)$ be the statement; if D_{n} is a refinement of D having exactly n elements which do not belong to D, then
$\sum_{\mathrm{D}} \mathrm{H}_{\mathrm{i}} \leq \sum_{\mathrm{D}} \mathrm{H}_{\mathrm{j}}$.
(a) Show $S(I)$ is true.

Let D_{1} be a refinement of D having one element, p, which does not belong to D. Denote the interval of D to which p belongs by $\left[\mathrm{x}_{\mathrm{h}-1}, \mathrm{x}_{\mathrm{h}}\right]$, then

$$
\begin{aligned}
\sum_{D} H_{i} & =\sum_{\substack{D \\
i \neq h}}^{H_{i}}+H\left(x_{h-1}, x_{h}\right) \\
& \leq \sum_{i \neq h}^{\sum} H_{i}+H\left(x_{h-1}, p\right)+H\left(p, x_{h}\right) \\
& =\sum_{D_{1}} H_{j} .
\end{aligned}
$$

(b) Assume $S(k)$ is true,
(c) Show $S(k+1)$ is true.

Let D_{k+1} be a refinement of D having $k+I$ lements which do not belong to D. Now, let D_{k} be a refinement of D obtained by deleting one of the $k+l$ elements of D_{k+l} which do not belong to D. Therefore, D_{k} is a subdivision of $[a, b]$ and D_{k+1} is a refinement of D_{k} having exactly one element not belonging to D_{k}. Hence,

$$
\begin{array}{rlrl}
\sum_{D} H_{i} & \leq \sum_{D_{k}} H_{j} & \text { from }(b) \\
& \leq \sum_{D_{k+1}} H_{t} & & \text { from }(a)
\end{array}
$$

Theorem 3.1b

Suppose H is a function from SXS to S, (a, b)
belongs to SXS, and, for $\mathrm{a} \leq \mathrm{x}<\mathrm{y}<\mathrm{z} \leq \mathrm{b}$,

$$
H(x, z) \geq H(x, y)+H(y, z) .
$$

If D is a subdivision of $[a, b]$ and D^{\prime} is a refinement of D, then

$$
\sum_{D} H_{i} \geq \sum_{D^{\prime}} H_{j}
$$

Proof, A proof similar to that for Theorem 3.1a will prove this Theorem.

Lemma 3.2a

```
If f and m are functions from S to S such that
``` \(m\) is increasing, then
\[
\text { (1) } \frac{[f(z)-f(x)]^{2}}{m(z)-m(x)} \leq \frac{[f(y)-f(x)]^{2}}{m(y)-m(x)}+\frac{[f(z)-f(y)]^{2}}{m(z)-m(y)}
\]
provided \(x<y<z\).
(2) \(\frac{[f(z)-f(x)]^{2}}{m(z)-m(x)}>\frac{[f(y)-f(x)]^{2}}{m(y)-m(x)}+\frac{[f(z)-f(y)]^{2}}{m(z)-m(y)}\).

Let \(f(z)-f(x)=A\) and \(f(y)-f(x)=B ;\) then,
\[
f(z)-f(y)=A-B
\]

Also, let \(m(z)-m(x)=a\) and \(m(y)-m(x)=b ;\) then,
\[
m(z)-m(y)=a-b
\]
and since \(m\) is increasing \(a>b>0\). Substituting into (2) we have
\[
\frac{A^{2}}{a}>\frac{B^{2}}{b}+\frac{(A-B)^{2}}{(a-b)} ;
\]
hence,
\[
0>\frac{B^{2}}{b}+\frac{(A-B)^{2}}{(a-b)}-\frac{A^{2}}{a}
\]
and, since \(a b(a-b)>0\),
\[
\begin{aligned}
0 & >a(a-b) B^{2}+a b(A-B)^{2}-b(a-b) A^{2} \\
& =a^{2} B^{2}-2 a b A B+b^{2} A^{2} \\
& =(a B-b A)^{2} \\
& \geq 0
\end{aligned}
\]

Therefore assumption is false.

Theorem 3.2

If \(f\) and \(m\) are functions from the real numbers to the real numbers and \(m\) is increasing, the following statements are equivalent:
(I) \(\int_{a}^{b} \frac{(d f)^{2}}{d m}\) exists.
(2) There exists a real valued nondecreasing function
\(h\) on [a,b] such that, for each subinterval I of \([a, b],(\Delta f)^{2} \leq \Delta h \Delta m\).

Proof.
Part \(I, 1 \rightarrow 2\). Assume
\[
\int_{a}^{b} \frac{(d f)^{2}}{d m}
\]
exists; hence, by Theorem 2.7,
\[
\int_{I} \frac{(d f)^{2}}{d m}
\]
exists for each subinterval \(I\) of \([a, b]\). Let
\[
h(x)=\int_{a}^{x} \frac{(d f)^{2}}{d m}
\]
for x belonging to \([\mathrm{a}, \mathrm{b}]\), then for each subinterval I of [\(a, b]\),
\[
\Delta \mathrm{h}=\int_{I} \frac{(\mathrm{df})^{2}}{\mathrm{dm}} \geq 0
\]
by Theorem 2.4; and hence, \(h\) is nondecreasing.
\[
\text { To show }(\Delta f)^{2} \leq \Delta h \Delta m \text { an indirect argument is }
\]
used. Suppose \((\Delta f)^{2}>\Delta h \Delta m\) for some interval I of [a,b]. Then,
\[
\frac{(\Delta f)^{2}}{\Delta m}>\Delta h=\int_{I} \frac{(d f)^{2}}{d m} .
\]

Since
\[
\int_{I} \frac{(d f)^{2}}{d m}
\]
exists and
\[
\frac{(\Delta f)^{2}}{\Delta m}-\int \frac{(d f)^{2}}{d m}>0
\]
there is a subdivision \(D\) of \(I\) such that if \(D^{\prime}\) is a refinement of \(D\), then
\[
\text { (1) }\left|\sum_{D^{\prime}} \frac{\left(\Delta f_{i}\right)^{2}}{\Delta m_{i}}-\int_{I} \frac{(d f)^{2}}{d m}\right|<\frac{(\Delta f)^{2}}{\Delta m}-\int_{I} \frac{(d f)^{2}}{d m}
\]

Let \(D^{\prime}\) be a refinement of \(D\), then
\[
\begin{align*}
\frac{(\Delta f)^{2}}{\Delta m} & \leq \sum_{D^{\prime}} \frac{\left(\Delta f_{i}\right)^{2}}{\Delta m_{i}} \quad \quad \text { (Lemma 3.2a, Th. 3.la) } \\
& \leq\left|\sum_{D^{\prime}} \frac{\left(\Delta f_{i}\right)^{2}}{\Delta m_{i}}-\int_{I} \frac{(d f)^{2}}{d m}\right|+\int_{I} \frac{(d f)^{2}}{d m} \\
& <\frac{(\Delta f)^{2}}{\Delta m}-\int_{I} \frac{(d f)^{2}}{d m}+\int_{I} \frac{(d f)^{2}}{d m} \quad \text { (Eq. I) } \tag{Eq.I}\\
& =\frac{(\Delta f)^{2}}{\Delta m}
\end{align*}
\]

This is a contradiction; hence \((\Delta f)^{2} \leq \Delta h \Delta m\) and \(1-2\).

Part II, \(2 \rightarrow 1\). Assume (2) and define \(R\) as the set of numbers such that \(p\) belongs to \(R\) iff there is a subdivision \(D\) of \([a, b]\) such that
\[
p=\sum_{D} \frac{\left(\Delta f_{i}\right)^{2}}{\Delta m_{i}}
\]

For each subdivision \(D\) of \([a, b]\),
\[
\begin{aligned}
\sum_{D} \frac{\left(\Delta f_{i}\right)^{2}}{\Delta m_{i}} & \leq \sum_{D} \Delta h_{i} \\
& =h(b)-h(a) .
\end{aligned}
\]

Hence \(R\) is bounded above, by \(h(b)-h(a)\), and since \(R\) is nonempty, \(R\) has a least upper bound, \(J\). For each \(\epsilon>0, J-\epsilon<J\) and there exists \(a\) number \(q\) belonging to \(R\) for which \(J-\epsilon<q \leq J\). Since \(q\) belongs to \(R\) there is a subdivision \(D\) of [a,b] such that
\[
q=\sum_{D} \frac{\left(\Delta f_{i}\right)^{2}}{\Delta m_{i}}
\]

If \(D^{\prime}\) is any refinement of \(D\), then
\[
\begin{aligned}
J-\epsilon & <q \\
& =\sum_{D} \frac{\left(\Delta f_{i}\right)^{2}}{\Delta m_{i}} \\
& \leq \sum_{D^{\prime}} \frac{\left(\Delta f_{j}\right)^{2}}{\Delta m_{j}} \quad(\text { Lemma 3.2a, Th. 3.1a) }
\end{aligned}
\]
\[
\begin{aligned}
& \leq J \quad \text { (Def. of J) } \\
& <J+\epsilon .
\end{aligned}
\]

This is equivalent to
\[
\left|\sum_{D^{\prime}} \frac{\left(\Delta f_{i}\right)^{2}}{\Delta m_{i}}-J\right|<\epsilon
\]

Therefore,
\[
\int_{a}^{b} \frac{(d f)^{2}}{d m}
\]
exists and \(2 \rightarrow 1\).

Theorem 3.3

If \(H\) and \(L\) are real valued functions of subintervals of \([a, b]\) such that \(H\) is bounded and \(\int_{a}^{b} L\) exists, then \(\int_{a}^{b}|H|\left|L-\int L\right|\) exists and is zero.

Proof. Let \(J=0\) and \(\epsilon>0\). Since \(H\) is bounded on \([a, b]\), there exists a number \(M\) such that \(|H(I)|<M\) for each subinterval \(I\) of \([a, b]\). Since \(\int_{a}^{b} L\) exists and
\[
\frac{\epsilon}{2 M}>0,
\]
then there exists a subdivision \(D\) of [ag] such that if \(D^{\prime}\) and \(D^{\prime \prime}\) are refinements of \(D\), then
(1) \(\left|\sum_{D^{\prime}} L_{i}-\sum_{D^{\prime \prime}} I_{j}\right|<\frac{\epsilon}{2 M}\).
(Th. 2.8)

Let \(E=\left\{x_{i}\right\}_{i=0}^{n}\) be a refinement of \(D\). since
\[
\frac{\epsilon}{2 \mathrm{nM}}>0
\]

Where \(n\) is defined by \(E\), and \(\int_{a}^{b} L\) exists, then for each integer \(i, i=1,2,3, \ldots, n, \int_{x_{i-1}}^{x_{i}}\) I exists and there exists a subdivision \(D_{i}\) of \(\left[x_{i-1}, x_{i}\right]\) such that
(2) \(\left|\sum_{D_{i}} L_{j_{i}}-\int_{i} L\right|<\frac{\epsilon}{2 n M}\).

Hence,
\[
\begin{aligned}
\left|\sum_{E}\right| H_{i}| | L_{i}-\int_{i} L|-J| & =\left|\sum_{E}\right| H_{i}| | L_{i}-\int_{i} L|-0| \\
& =\sum_{E}\left|H_{i}\right|\left|L_{i}-\int_{i} L\right| \\
& <M \sum_{E}\left|L_{i}-\int_{i} L\right| \\
& (\text { Def. of } M)
\end{aligned}
\]
\[
\begin{aligned}
& <M \underset{E}{\sum}\left(\left|L_{i}-\sum_{D_{i}} L_{j_{i}}\right|+\frac{\epsilon}{2 n M}\right) \quad \text { (Eq. 2) } \\
& =M \sum_{E}\left|L_{i}-\sum_{D_{i}} L_{j_{i}}\right|+\frac{\epsilon}{2}
\end{aligned}
\]
\[
\begin{aligned}
& +\frac{\epsilon}{2},
\end{aligned}
\]
where
\[
\begin{aligned}
& Q_{i}=L_{i}-\sum_{D_{i}} L_{j_{i}}
\end{aligned}
\]
\[
\begin{aligned}
& +\frac{\epsilon}{2} \\
& =M\left[\begin{array}{c}
n \\
\sum_{i=1}^{n} L_{i}+\sum_{i=1}^{n}\left(\sum_{Q_{i}<0} L_{i} J_{i}\right)-\sum_{i=1}^{n} L_{i} . \\
Q_{i}<0
\end{array}\right. \\
& -\sum_{\substack{n=1 \\
Q_{i} \geq 0}}^{n}\left(\begin{array}{ll}
D_{i} & L_{j_{i}}
\end{array}\right)+\frac{\epsilon}{2} \\
& =M\left|\begin{array}{l}
\sum_{D^{\prime}} L_{k}-\sum_{D^{\prime \prime}} L^{\prime} h
\end{array}\right|+\frac{\epsilon}{2},
\end{aligned}
\]
where
\[
D^{\prime}=\left(\begin{array}{cc}
\begin{array}{l}
n \\
i=1 \\
Q_{i}<0
\end{array} & D_{i}
\end{array}\right) \cup E
\]
and
\[
\begin{aligned}
& \quad D^{\prime \prime}=\left(\begin{array}{cc}
n \\
U & D_{i} \\
Q_{i=1} \geq 0
\end{array}\right) \cup E \\
& <M \cdot \frac{\epsilon}{2 M}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
\]

Theorem 3.4

If \(J\) is a number and \(H\) and \(L\) are real valued
functions of subintervals of \([a, b]\) such that \(H\) is bounded and \(\int_{a}^{b}\) L exists, the following statements are equivalent:
(I) \(\int_{a}^{b} H\left(\int L\right)=J\).
(2) \(\int_{a}^{b} H L=J\).

Proof.
Part I, \(1 \rightarrow 2\). Assume (I), \(\int_{a}^{b} H\left(\int L\right)=J\), and let \(\epsilon>0\). Then, there exists a subdivision \(D_{1}\) of \([a, b]\) such that
(I) \(\left|\sum_{D}, H_{i} \int_{i} L-J\right|<\frac{\epsilon}{2}\),
for each refinement \(D^{\prime}\) of \(D_{1}\). Also, from Theorem 3.3, \(\int_{a}^{b}|H|\left|L-\int L\right|=0\); hence, there exists a subdivision \(D_{2}\) of \([a, b]\) such that if \(D^{\prime}\) is a refinement of \(D_{2}\), then
\[
\text { (2) }\left|\sum_{D},\left|H_{i}\right|\right| I_{i}-\int_{i} I|-0|<\frac{\epsilon}{2} \text {. }
\]

Let \(D=D_{1} U D_{2}\) and let \(D^{\prime}\) be a refinement of \(D\); then, \(D^{\prime}\) is a refinement of \(D_{1}\) and of \(D_{2}\), and
\[
\begin{align*}
& <\left|\sum_{D} H_{i}\left(L_{i}-\int_{i} L\right)\right|+\frac{\epsilon}{2} \quad \text { (Eq. I) } \\
& \leq \sum_{D^{\prime}}\left|H_{i}\right|\left|L_{i}-\int_{i} L\right|+\frac{\epsilon}{2} \\
& =\sum_{D} \sum_{D}\left|H_{i}\right|\left|L_{i}-\int_{i} L^{\prime}\right|-0 \left\lvert\,+\frac{\epsilon}{2}\right. \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \tag{Eq.2}\\
& =\epsilon \text {. }
\end{align*}
\]

Hence, \(1 \longrightarrow 2\).

Part II, \(2 \rightarrow 1\). A proof similar to the proof of Part I can be used to show \(2 \longrightarrow 1\).

Theorem 3.5

If \(H\) is a real nonnegative valued function of subintervals of \([a, b]\) and \(m\) is an increasing function such that \(\int_{a}^{b}(H d m)^{\frac{1}{2}}\) exists and there is a number \(R>1\) such that \(H(I) \leq R \Delta m\), for each subinterval \(I\) of \([a, b]\), then:
(1) \(\int_{a}^{b} \frac{\left[\int(H d m)^{\frac{1}{2}}\right]^{2}}{d m}\) exists.
(2) \(\int_{a}^{b} H\) exists.
(3) \(\int_{a}^{b} \frac{\left[\int(H d m)^{\frac{1}{2}}\right]^{2}}{d m}=\int_{a}^{b} H\).

Proof.
Part (I). Let \(f\) and \(h\) be functions such that, for each \(x\) belonging tio \([a, b], f(x)=\int_{a}^{b}(H d m)^{\frac{1}{2}}\) and \(h(x)=R m(x)\). Then, since \(m\) is increasing, \(h\) is increasing.

To show that
(I) \((\Delta f)^{2} \leq \Delta h \Delta m\),
for each subinterval \(I\) of [a,b], an indirect argument is used. Assume (1) is false. Then, there is a subinterval

I of \([a, b]\) such that
\[
\begin{aligned}
(\Delta f)^{2} & >\Delta h \Delta m \\
& =R(\Delta m)^{2} ; \quad \text { (Def. of } h \text {) }
\end{aligned}
\]
hence,
\[
\Delta \mathrm{f}>\mathrm{R}^{\frac{1}{2}} \Delta \mathrm{~m}
\]

Also,
\[
\begin{array}{rlr}
\Delta f & =f(y)-f(x), & \text { where } I=[x, y] \\
& =\int_{a}^{y}(H d m)^{\frac{1}{2}}-\int_{a}^{x}(H d m)^{\frac{1}{2}} & \text { (Def. of f) } \\
& =\int_{I}(H d m)^{\frac{1}{2}} . & (\text { Th. } 2.7 \tag{Th.2.7}
\end{array}
\]

Since \(\int_{I}(H d m)^{\frac{1}{2}}=\Delta f\) and \(\Delta f-R^{\frac{1}{2}} \Delta m>0\), there exists a subdivision \(D\) of \(I\) such that if \(D^{\prime}\) is a refinement of \(D\), then
(2) \(\left|\sum_{D}\left(H_{i} \Delta m_{i}\right)^{\frac{1}{2}}-\Delta f\right|<\Delta f-R^{\frac{1}{2}} \Delta m\).

For each refinement \(D^{\prime}\) of \(D\),
\[
\begin{aligned}
\Delta f & \leq\left|\Delta f-\sum_{D^{\prime}}\left(H_{i} \Delta m_{i}\right)^{\frac{1}{2}}\right|+\sum_{D^{\prime}}\left(H_{i} \Delta m_{i}\right)^{\frac{1}{2}} \\
& <\Delta f-R^{\frac{1}{2}} \Delta m+\sum_{D^{\prime}}\left(\frac{H_{i}}{\Delta m_{i}}\right)^{\frac{1}{2}} \Delta m \\
& \leq \Delta f-R^{\frac{1}{2}} \Delta m+R^{\frac{1}{2}} \sum_{D^{\prime}} \Delta m_{i} \\
& =\Delta f-R^{\frac{1}{2}} \Delta m+R^{\frac{1}{2}} \Delta m \\
& =\Delta f
\end{aligned}
\]

Hence assumption was false and (I) is true; therefore, by Theorem 3.2,
\[
\int_{a}^{b} \frac{(d f)^{2}}{d m}
\]
exists and
\[
\left.\int_{a}^{b} \frac{(d f)^{2}}{d m}=\int_{a}^{b} \frac{\left[\int(H d m)^{\frac{1}{2}}\right]^{2}}{d m} . \quad \text { (Def. of } f\right)
\]

Part (2) and (3). For each subinterval I of
[abb], let
\[
H_{l}(I)=\frac{\int_{I}(H d m)^{\frac{1}{2}}}{\Delta m}
\]
and
\[
L_{1}(I)=[H(I) \Delta m]^{\frac{1}{2}} ;
\]
then, \(\int_{a}^{b} L_{l}\) exists and \(H_{l}\) is real nonnegative valued. To show \(H_{l}\) is bounded on \([a, b]\), let \(M=R+1\) 。 For each subinterval \(I\) of \([a, b], \int_{I}(H d m)^{\frac{1}{2}}\) exists and there exists a subdivision \(D\) of \(I\) such that
\[
\text { (3) }\left|\sum_{D}\left(H_{i} \Delta m_{i}\right)^{\frac{1}{2}}-\int_{I}(H d m)^{\frac{1}{2}}\right|<\Delta m \text {, }
\]
for each refinement \(D^{\prime}\) of \(D\). Let \(D^{\prime}\) be a refinement of D, then
\[
\begin{aligned}
H_{I}(I) & =\frac{\int_{I}(H \mathrm{dm})^{\frac{1}{2}}}{\Delta \mathrm{~m}} \\
& \leq \frac{\left|\int_{I}(H \mathrm{dm})^{\frac{1}{2}}-\sum_{D^{\prime}}\left(H_{i} \Delta \mathrm{~m}_{i}\right)^{\frac{1}{2}}\right|+\sum_{D^{\prime}}\left(H_{i} \Delta \mathrm{~m}_{i}\right)^{\frac{1}{2}}}{\Delta \mathrm{~m}}
\end{aligned}
\]
\[
\begin{equation*}
<\frac{\Delta m+\sum_{D}\left(\frac{H_{i}}{\Delta m_{i}}\right)^{\frac{1}{2}} \Delta m_{i}}{\Delta m} \tag{Eq.3}
\end{equation*}
\]
\[
\begin{aligned}
& <I+\frac{R}{\Delta m} \sum_{D^{\prime}} \Delta m_{i} \\
& =I+R \\
& =M ;
\end{aligned}
\]
therefore, \(\mathrm{H}_{1}\) is bounded on \([\mathrm{a}, \mathrm{b}]\). Now, since
\[
\int_{a}^{b} \frac{\left[\int(H d m)^{\frac{1}{2}}\right]^{2}}{d m}
\]
exists, from Part (I) of this Theorem, and
\[
\text { (4) } \left.\int_{a}^{b} \frac{\left[\int(H d m)^{\frac{1}{2}}\right]^{2}}{d m}=\int_{a}^{b} H_{1}\left(\int L_{1}\right) ; \quad \text { (Def. of } H_{1} \text { and } L_{1}\right)
\]
then, \(\int_{a}^{b} H_{1}\left(\int L_{1}\right)\) exists, and, by Theorem 3.4,
(5) \(\int_{a}^{b} H_{1}\left(\int L_{1}\right)=\int_{a}^{b} H_{1} L_{1}\).

Let \(H_{2}\) be the function such that
\[
H_{2}(I)=\left[\frac{H(I)}{\Delta m}\right]^{\frac{1}{2}}
\]
for each subinterval \(I\) of \([a, b]\). Then \(H_{2}\) is real nonnegative valued and bounded above by R. From (5), \(\int_{a}^{b} H_{1} L_{I}\) exists and since
\[
\text { (6) } \int_{a}^{b} H_{1} L_{1}=\int_{a}^{b} \frac{\int(H d m)^{\frac{1}{2}}}{d m} \cdot(H d m)^{\frac{1}{2}}
\]
\[
=\int_{a}^{b}\left(\frac{H}{d m}\right)^{\frac{1}{2}} \int(H d m)^{\frac{1}{2}}
\]
\[
=\int_{a}^{b} H_{2}\left(\int L_{1}\right),
\]
by Theorem \(3.4, \int_{a}^{b} H_{2} L_{1}\) exists and
\[
\text { (7) } \int_{a}^{b} H_{2}\left(\int L_{1}\right)=\int_{a}^{b} H_{2} L_{1} \text {. }
\]

Therefore,
\[
\begin{array}{rlrl}
\int_{a}^{b} \frac{\left[\int(H d m)^{\frac{1}{2}}\right]^{2}}{d m} & =\int_{a}^{b} H_{1}\left(\int L_{1}\right) & \text { (Eq. 4) } \\
& =\int_{a}^{b} H_{1} L_{1} & & (\text { Eq. 5) } \\
& =\int_{a}^{b} H_{2}\left(\int L_{1}\right) & & \text { (Eq. 6) } \\
& =\int_{a}^{b} H_{2} L_{1} & & \text { (Eq. 7) } \tag{Eq.7}\\
& =\int_{a}^{b}\left(\frac{H}{d m}\right)^{\frac{1}{2}}(H d m)^{\frac{1}{2}} & & \text { (Def. of } \left.H_{2} \text { and } L_{1}\right) \\
& =\int_{a}^{b} H .
\end{array}
\]

Hence, \(\int_{a}^{b} H\) exists and is
\[
\int_{a}^{b} \frac{\left[\int(H d m)^{\frac{1}{2}}\right]^{2}}{d m}
\]

Theorem 3.6

If \(P\) is a real nonnegative valued bounded function of subintervals of \([a, b]\) and \(m\) is an increasing function such that \(\int_{a}^{b} P d m\) exists, then \(\int_{a}^{b} P^{2} d m\) exists.

Proof. For each subinterval \(I\) of \([a, b]\), let \(H(I)=[P(I)]^{2} \Delta m\); then, \(H\) is nonnegative valued. Since \(P\) is bounded there is a number \(M\) such that \(P(I)<M\), for each subinterval \(I\) of \([a, b]\), and, since each of \(P(I)\) and \(M\) is nonnegative, \([P(I)]^{2}<M^{2}\); hence, \(H(I)<M^{2} \Delta m\). Since \(\int_{a}^{b} P d m\) exists and
\[
\begin{aligned}
\int_{a}^{b} P d m & =\int_{a}^{b}\left(P^{2} d m^{2}\right)^{\frac{1}{2}} \\
& =\int_{a}^{b}(H d m)^{\frac{1}{2}}
\end{aligned}
\]
then \(\int_{a}^{b}(H d m)^{\frac{1}{2}}\) exists and, by Theorem 3.5, \(\int_{a}^{b} H\) exists; therefore, \(\int_{a}^{b} p^{2} d m\) exists, since
\[
\int_{a}^{b} H=\int_{a}^{b} p^{2} d m
\]
(Def. of H)

Theorem 3.7

If each of \(H\) and \(K\) is a real nonnegative valued
function of subintervals of \([a, b], m\) is an increasing
function and each of \(\int_{a}^{b} H d m\) and \(\int_{a}^{b} K d m\) exists, then \(\int_{a}^{b} H K d m\) exists.

Proof. Since \(\int_{a}^{b} H d m\) and \(\int_{a}^{b} K d m\) exist, then \(\int_{a}^{b}(H+K) d m\) exists and since \((H+K)\) is nonnegative \(\int_{a}^{b}(H+K)^{2} d m\) exists (Th. 3.6). Also, \(\int_{a}^{b} H^{2} d m\) and \(\int_{a}^{b} K^{2} d m\) exist (Th. 3.6). Therefore,
\[
\begin{aligned}
\int_{a}^{b}(H & +K)^{2} d m-\int_{a}^{b} H^{2} d m-\int_{a}^{b} K^{2} d m \\
& =\int_{a}^{b}\left[(H+K)^{2}-H^{2}-K^{2}\right] d m \\
& =2 \int_{a}^{b} H K d m
\end{aligned}
\]
exists.

Theorem 3.8

If \(K\) is a real valued function of subintervals of \([a, b]\) such that \(\int_{a}^{b} K\) exists, and \(M\) is a function of subintervals of [a,b] such that, for each subinterval I of \([a, b], M(I)\) is either \(K(I)\) or \(\int_{I} K\), then if \(\epsilon>0\) there exists a subdivision \(D\) of [a,b] such that
\[
\sum_{D^{\prime}}\left|M_{i}-\int_{i} K\right|<\epsilon,
\]
for each refinement \(D^{\prime}\) of \(D\).

Proof. Since \(\int_{a}^{b} K\) exists, from Theorem 3.3, \(\int_{a}^{b}\left|K-\int K\right|=0\). For each positive number \(\epsilon\), there is a subdivision \(D\) of [a,b] such that
\[
\sum_{D},\left|K_{i}-\int_{i} K\right|<\epsilon,
\]
for each refinement \(D^{\prime}\) of \(D\). Let \(D^{\prime}=\left\{x_{i}\right\}_{i=0}^{n}\) be a refinement of \(D\), then
\[
\sum_{D^{\prime}}\left|M_{i}-\int_{i} K\right|=\sum_{D^{\prime}} a_{i}\left|M_{i}-\int_{i} K\right|+\sum_{D^{\prime}} b_{i}\left|M_{i}-\int_{i} K\right|,
\]
where \(a_{i}=1\) and \(b_{i}=0\), if \(M_{i}=K_{i}\), and \(b_{i}=1\) and \(a_{i}=0\), if \(M_{i}=\int_{i} K\)
\[
\begin{aligned}
& =\sum_{D}, a_{i}\left|M_{i}-\int_{i} K\right| \\
& \leq \sum_{D},\left|K_{i}-\int_{i} K\right| \\
& <\epsilon
\end{aligned}
\]

Theorem 3.9

If \(K\) is a real nonnegative valued function of subintervals of \([a, b]\), integrable on \([a, b]\), then \(\int_{a}^{b}[K / K]^{\frac{1}{2}}\) exists and is \(\int_{a}^{b} K\).

Proof. From Theorem 3.3, \(\int_{a}^{b}\left|K-\int K\right|=0\); hence, for each positive number \(\epsilon\), there is a subdivision \(D\) of [abb] such that if \(D^{\prime}\) is a refinement of \(D\), then
\[
\text { (1) } \sum_{D},\left|K_{i}-\int_{i} K\right|<\epsilon .
\]

Therefore, for each refinement \(D^{\prime}\) of \(D\),
where \(Q_{i}=\left[K_{i} \int_{i} K\right]^{\frac{1}{2}}-\int_{i} K\)
\[
=\sum_{\substack{i=1 \\ Q_{i} \geq 0}}^{n}\left(\left[K_{i} \int_{i} K\right]^{\frac{1}{2}}-\int_{i} K\right)
\]
\[
+\sum_{\substack{i=1 \\ Q_{i}<0}}^{n}\left(\int_{i} K-\left[K_{i} \int_{i} K\right]^{\frac{1}{2}}\right)
\]
\[
\leq \sum_{\substack{i=1 \\ Q_{i} \geq 0}}^{n}\left(K_{i}-\int_{i} K\right)+\sum_{\substack{i=1 \\ Q_{i}<0}}^{n}\left(\int_{i} K-K_{i}\right)
\]
\[
\begin{align*}
& \left|{ }_{D}{ }^{\prime}\left[K_{i} \int_{i} K\right]^{\frac{1}{2}}-\int_{a}^{b} K\right|=\left|\sum_{D}\left[K_{i} \int_{i} K\right]^{\frac{1}{2}}-\sum_{D} \sum_{i} \int_{i}\right| \tag{Th.2.6}\\
& \leq \sum_{D},\left|\left[K_{i} \int_{i} K\right]^{\frac{1}{2}}-\int_{i} K\right| \\
& =\sum_{\substack{i=1 \\
Q_{i} \geq 0}}^{n}\left|\left[K_{i} f_{i} K\right]^{\frac{1}{2}}-\int_{i} K\right| \\
& +\sum_{\substack{i=1 \\
Q_{i}<0}}^{n}\left|\left[K_{i} \int_{i} K\right]^{\frac{1}{2}}-\int_{i} K\right|,
\end{align*}
\]
\[
\begin{aligned}
& =\sum_{D},\left|K_{i}-\int_{i} K\right| \\
& <\epsilon
\end{aligned}
\]
(Eq. I)

Lemma 3.10a

If \(a, b, c\), and \(d\) are real nonnegative numbers,
then
\[
(a c)^{\frac{1}{2}}+(b d)^{\frac{1}{2}} \leq[(a+b)(c+d)]^{\frac{1}{2}}
\]

Proof (indirect). Assume the conclusion is false, then
\[
(a c)^{\frac{1}{2}}+(b d)^{\frac{1}{2}}>[(a+b)(c+d)]^{\frac{1}{2}}
\]
and
\[
2(a b c d)^{\frac{1}{2}}>a d+b c
\]
hence,
\[
\begin{aligned}
0 & >a d-2(a b c d)^{\frac{1}{2}}+b c \\
& =\left[(a d)^{\frac{1}{2}}-(b c)^{\frac{1}{2}}\right]^{2} \\
& \geq 0
\end{aligned}
\]

Lemma 3.10b

If for each positive integer \(n, a_{n}\) and \(b_{n}\) are real nonnegative numbers, then
\[
\sum_{i=1}^{n}\left(a_{i} b_{i}\right)^{\frac{1}{2}} \leq\left(\sum_{i=1}^{n} a_{i}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} b_{i}\right)^{\frac{1}{2}}
\]

Proof. This Lemma follows directly by using an induction proof and Lemma 3.10a.

Theorem 3.10

If each of \(H\) and \(K\) are real nonnegative valued functions of subintervals of [a,b], integrable on [a,b], then the following integrals exist and
\[
\int_{a}^{b}(H K)^{\frac{1}{2}}=\int_{a}^{b}\left[\left(\int H\right)\left(\int K\right)\right]^{\frac{1}{2}}
\]

Proof. Let \(R\) be the set of numbers such that \(p\) belongs to \(R\) iff there exists a subdivision \(D\) of [a, b] such that
\[
p=\sum_{D}\left[\left(\int_{i} H\right)\left(\int_{i} K\right)\right]^{\frac{1}{2}} .
\]

The set \(R\) is bounded below by zero, and is nonempty; hence, \(R\) has a greatest lower bound, J. For each positive number
\(\epsilon, J<J+\epsilon\) and there exists a number \(q\) belonging to \(R\) such that \(J \leq q<J+\epsilon\). Since \(q\) belongs to \(R\), there exists a subdivision \(D\) of [a,b] such that
\[
q=\sum_{D}\left[\left(\int_{i} H\right)\left(\int_{i} K\right)\right]^{\frac{1}{2}} .
\]

Hence, for each refinement \(D^{\prime}\) of \(D\),
\[
\begin{array}{rlr}
J+\epsilon & >q \\
& =\sum_{D}\left[\left(\int_{i} H\right)\left(\int_{i} K\right)\right]^{\frac{1}{2}} \\
& \geq \sum_{D}\left[\left(\int_{j} H\right)\left(\int_{j} K\right)\right]^{\frac{1}{2}} \quad \text { (Lemma 3.10a, Th, 3.lb) } \\
& \geq J & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&
\end{array}
\]

Therefore,
(I) \(\int_{a}^{b}\left[\left(\int H\right)\left(\int K\right)\right]^{\frac{1}{2}}=J\).
\[
\text { To prove } \int_{a}^{b}(H K)^{\frac{1}{2}}=J \text {, we let } \int_{a}^{b} H=A, \int_{a}^{b} K=B \text {, }
\]
and \(\epsilon\) be a positive number. Then, there exists a subdivision \(D\) such that if \(D^{\prime}\) is a refinement of \(D\), each of the following statements is true:
\[
\text { (2) }\left|\sum_{D} H_{i}-A\right|<1 ;
\]
(3) \(\left|\sum_{D} H_{i}-A\right|<\frac{I}{18}\left(\frac{\epsilon}{B+I}\right)^{2}\);
(4) \(\left|\sum_{D^{\prime}} K_{i}-B\right|<1\);
(5) \(\left|{ }_{D} \sum_{i} K_{i}-B\right|<\frac{1}{18}\left(\frac{\epsilon}{A+I}\right)^{2}\);
(6) \(\left|\sum_{D^{\prime}}\left(H_{i} \int_{i} H\right)^{\frac{1}{2}}-A\right|<\frac{1}{36}\left(\frac{\epsilon}{B+I}\right)^{2}\);
(Th. 3.9)
(7) \(\left|\sum_{D^{\prime}}\left(K_{i} \int_{i} K\right)^{\frac{1}{2}}-B\right|<\frac{1}{36}\left(\frac{\epsilon}{A+I}\right)^{2}\);
(Th. 3.9)
(8) \(\left.\left.\right|_{D^{\prime}}\left[\left(\int_{i} H\right)\left(\int_{i} K\right)\right]^{\frac{1}{2}}-J \right\rvert\,<\frac{\epsilon}{3}\).
(Eq. 1)

Let \(D^{\prime}\) be a refinement of \(D\), then
\[
\begin{aligned}
& \left|\sum_{D^{\prime}}\left(H_{i} K_{i}\right)^{\frac{1}{2}}-J\right| \\
& \leq\left|\sum_{D^{\prime}}\left(H_{i} K_{i}\right)^{\frac{1}{2}}-\sum_{D^{\prime}}\left[\left(\int_{i} H\right)\left(\int_{i} K\right)\right]^{\frac{1}{2}}\right| \\
& \\
& \left.+\left.\right|_{D^{\prime}} ^{\Sigma}\left[\left(\int_{i^{\prime}} H\right)\left(\int_{i} K\right)\right]^{\frac{1}{2}}-J \right\rvert\, \\
& <\left\lvert\, \sum_{D^{\prime}}\left(H_{i} K_{i}\right)^{\frac{1}{2}}-\sum_{D^{\prime}}\left[H_{i}\left(\int_{i} K\right)\right]^{\frac{1}{2}}+\sum_{D^{\prime}}\left[H_{i}\left(\int_{i^{\prime}} K\right)\right]^{\frac{1}{2}}\right. \\
& \\
&
\end{aligned}
\]
(Eqs. 2,4)
\[
\leq(A+1)\left[\left|\sum_{D^{\prime}} K_{i}-B\right|+2\left|B-\sum_{D}\left(K_{i} \int_{i} K\right)^{\frac{1}{2}}\right|\right]^{\frac{1}{2}}
\]
\[
+(B+1)\left[\left[\sum_{D^{\prime}} H_{i}-A|+2| A-\sum_{D^{\prime}}\left(\left.H_{i} \int_{i} H^{\frac{1}{2}} \right\rvert\,\right]^{\frac{1}{2}}\right.\right.
\]
\[
+\frac{\epsilon}{3}
\]
\[
<(A+1)\left[\frac{1}{18}\left(\frac{\epsilon}{A+1}\right)^{2}+\frac{1}{18}\left(\frac{\epsilon}{A+1}\right)^{2}\right]^{\frac{1}{2}}
\]
\[
\begin{aligned}
& \leq \sum_{D}\left(H_{i}\right)^{\frac{1}{2}}\left\{\left[\left(K_{i}\right)^{\frac{1}{2}}-\left(\int_{i} K\right)^{\frac{1}{2}}\right]^{2}\right\}^{\frac{1}{2}} \\
& +\sum_{D^{\prime}}\left(\int_{i} K\right)^{\frac{1}{2}}\left\{\left[\left(H_{i}\right)^{\frac{1}{2}}-\left(\int_{i} H\right)^{\frac{1}{2}}\right]^{2}\right\}^{\frac{1}{2}}+\frac{\epsilon}{3} \\
& \leq\left(\begin{array}{ll}
\sum_{D^{\prime}} & H_{i}
\end{array}\right)^{\frac{1}{2}}\left\{\begin{array}{l}
D^{\prime} \\
\end{array}\left(\left(K_{i}\right)^{\frac{1}{2}}-\left(\int_{i} K\right)^{\frac{1}{2}}\right]^{2}\right\}^{\frac{1}{2}} \\
& +\binom{D^{\prime},}{D_{i}}^{\frac{1}{2}}\left\{\sum_{D^{\prime}}\left[\left(H_{i}\right)^{\frac{1}{2}}-\left(\int_{i} H\right)^{\frac{1}{2}}\right]^{2}\right\}^{\frac{1}{2}}+\frac{\epsilon}{3} \\
& \text { (Lemma 3.10b) } \\
& <(A+1)\left|\sum_{D^{\prime}} K_{i}-2 \sum_{D^{\prime}}\left(K_{i} \int_{i} K\right)^{\frac{1}{2}}+\sum_{D^{\prime}} \int_{i} K\right|^{\frac{1}{2}} \\
& +\left.(B+I)\right|_{D^{\prime}} H_{i}-2 \sum_{D^{\prime}}\left(H_{i} \int_{i} H\right)^{\frac{1}{2}} \\
& +\left.\sum_{D^{\prime}} \int_{i} H\right|^{\frac{1}{2}}+\frac{\epsilon}{3}
\end{aligned}
\]
\[
\begin{aligned}
& \quad+(B+1)\left[\frac{1}{18}\left(\frac{\epsilon}{B+1}\right)^{2}+\frac{1}{18}\left(\frac{\epsilon}{B+1}\right)^{2}\right]^{\frac{1}{2}}+\frac{\epsilon}{3} \\
& \quad \quad \quad \text { Eqs. } 3,5,6,7) \\
& =\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3} \\
& =
\end{aligned}
\]

Theorem 3.11

If \(H\) is a real nonnegative valued function of subintervals of \([a, b]\), integrable on \([a, b]\), and \(m\) is \(a\) real valued nondecreasing function on \([a, b]\), then \(\int_{a}^{b}(H d m)^{\frac{1}{2}}\) exists.

Proof. This Theorem follows immediately from Theorem 3.10 , since \(\int_{a}^{b} d m\) exists for any real valued function \(m\) defined on [a,b].

Theorem 3.12

If \(H\) is a real nonnegative valued interval func-
tion, \(m\) is a real valued nondecreasing function on [a,b], and \(\int_{a}^{b} H d m\) exists, then \(\int_{a}^{b} H^{\frac{1}{2}} d m\) exists.

Proof. Since Ham and dm are real nonnegative valued interval functions, defined on \([a, b]\), and \(\int_{a}^{b} H d m\) and \(\int_{a}^{b} d m\) exist, then, from Theorem 3.10, \(\int_{a}^{b}[(H d m)(d m)]^{\frac{1}{2}}\), which is \(\int_{a}^{b} H^{\frac{1}{2}} d m\), exists.
```

B I B L I O G R A P H Y

```
1. Appling, W. D. L., "Interval Functions and the Hellinger Integral," Duke Mathematical Journal, Vol. 29 (1962), pp. 515-520.
2. Appling, W. D. L., "Concerning Nonnegative Valued Interval Functions," Proceedings of the American Mathematical Society, Vol. 13 (1962), pp. 784788 .

Marita Anu Jorley
2707 hemphill paht - aUStin. texas 78705 - ac 512 472-3210```

