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C H A P T E R  I 

DEFINITIONS AND NOTATIONS

Throughout this paper [a,b] 'virill denote a closed 

interval for which a < b and (a,b) belongs to SXS, where 

S is the set of real numbers.

Definition 1.1

The statement that D = { x . i s  a subdivisioni i=0
of [a,b] means D is a finite subset of S such that a = Xq ,

b = x and x. .. < x. , where 0 < i < n„ n l-l i7 —

Definition 1.2

The statement that D' is a refinement of a sub

division D of [a,b] means D' is a subdivision of [a,b] and 

D is a subset of D ' ,

Definition 1.5

The statement that / H exists, where (a,b)a
belongs to SXS and H is a function from SXS to S, means

1



there exists a number J of S such that if e is a positive 

number, then there exists a subdivision D of [a,b] such 

that if D' = is a refinement of D, then

2

n
L H(x ,,x ) 

1=1 1"x 1 
D'

Definition 1.4

J < € .

The statement that I = [x,y] is a subinterval 

of [a,b] means [x,y] is a closed interval, (x,y), belongs 

to SXS and a < x < y < b.

Definition 1,5

If f is a function from S to S, then;

(1) f is nondecreasing on [a,b] means, if a < p < q 

< b, then f(p) < f(q).

(2) f is increasing on [a,b] means, if a < p < q < b, 

then f(p)< f(q).

Definition 1.6

The statement that the number set R has a least 

upper bound means there is a number M suqh tha,t



(1) if x belongs to R, then x < M, and.

(2) if p < M, then there exists an element x of R 

such that p < x.

Definition 1.7

The statement that the number set R has a greatest 

lower bound means there is a number M such that

(1) if x belongs to R, then x > M, and

(2) if p > M, then there exists an element x of R 

such that p > x.

3

Notations * 1

If H is a function from SXS to S, f is a function 

from S to S, (a,b) belongs to SXS, and D = x̂i^i-o '*'s a 
subdivision of [a,b], then, where no misunderstanding is 

likely, the following notations will be used:

(1) lower case letters will be used to denote functions 

from S to S, and capital letters to denote func

tions from SXS to S, or functions from number 

intervals to S;

(2) H. = H(xi_1,xi);
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n

(3) S H. = 2 Hj}
D 1=1

(4) f i H = fX±
xi~l

H;

(5) if I = [x,y] ?-S a subinterval of [ 8. j "b ] p then

f x H = f yJ X H;

(6) if •NXI._111M is a subinterval of [ 8»} b ]) then

H(l) = H(x,y) J
(7) if i—i»>5X1_111H is a subinterval of [a,b] 9 then

Af = f(y) - f(x)j

(8) Af. = f(x.) - f(X;ulb
(9) if x, y belong to S, then the function G(x,y) = 

f(y) - f(x) will be denoted by df.



C H A P T E R I I

BASIC THEOREMS

Most of the following theorems were proved in 

Mathematics 5309 (Foundations of Analysis) during the fall 

of 1967. The theorems will be stated in this chapter and 

will be used in establishing proofs for theorems in Chapter 

III.

Theorem 2.1

If (a,b) belongs to SXS and each of and Dg 

is a subdivision of [a,b], then U is a subdivision 

of [a,b] and a refinement of and of .

Theorem 2.2 * 2

If f is a function from S to S, defined on [a,b], 

and D is a subdivision of [a,b], then

2 Af. = f(b) - f(a).
D 1

5
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Theorem 2.5

If f is a function from S to S, defined on [a,b], 

then / df exists and is f(b) - f(a).3»

Theorem 2.4 

If H is a function from SXS to S such that H

is integrable on [a,b], and, for each subinterval I of 

[ a , b ] ,  H(l) > 0, then /Hi > 0.

Theorem 2.5

If H and K are functions from SXS to S such

that each is integrable on [a,b], then / (H + K) exists&>
and is H + K.a a

Theorem 2.6 

If H is a function from SXS to S, integrable
-j_

on [a,b], and c belongs to S, then / cH exists and is8,

e H *

Theorem 2.7 

If H is a function from SXS to S, integrable

on [a,b], and
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D ix.} ni=0

is a subdivision of [a,b], then

U E = Za D 'i H.

Theorem 2.8 * 1

If (a,b) belongs to SXS and H is a function from 

SXS to S, the following statements are equivalent:

1̂
(1) / H exists.0»
(2) If e is a positive number there exists a subdivi

sion D of [a,b] such that if D' and D" are re

finements of D, then

I2|D' Hi X H, 
D" 3

< e .



C H A P T E R I I I

THEOREMS CONCERNING INTERVAL FUNCTIONS

The following sequence of theorems was taken 

from publications of W. p.. L. Appling [1] and [2], How

ever, all of the proofs shown here were done without refer

ence to previous publications.

Theorem 5,1a

Suppose H is a function from SXS to S, (a,b) be

longs to SXS, and, for a < x < y < z < b ,

H(x,z) < H(x,y) + H(y,z).

If D is a subdivision of [a,b] and P' is a refinement of 

D, then 2

2 H, < Z H..
P P« J

Proof (by induction). For each positive integer 

n, let S(n) be the statement; if Pn is a refinement of P 

having exactly n elements which do not belong to P, then

8
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(a)

E Hi < Z H . .
D Dn '

Show S(l) is true.

Let D^ be a refinement of D having one element,

p, which does not belong to D. Denote the interval of D

to which p belongs by [x^^x^], then

■ (b)

Z Ht = Z %  + H < x h )
D D

i^h

< Z H1 + H(xh_1,p) + H(p,xh ) 
D

i^h

= Z Hi .
®1

Assume S(k) is true,

(c) Show S(k + l) is true,

Let Dk+]_ be a refinement of D having k + 1 ele-

ments which do not belong to D. Now, let Djj. be a refine

ment of D obtained by deleting one of the k + 1 elements 

of which do not belong to D. Therefore, Djj. is a sub

division of [a,b] and is a refinement of having

exactly one element not belonging to D-̂ . Hence,

Z H, < Z Hi from (b) 
E 1 _  J

< Z H^. from (a) 
Dk+1
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Theorem 5.1b

Suppose H is a function from SXS to S, (a,b) 

belongs to SXS, and, for a < x < y < z < b ,

H(x,z) > H(x,y) + H(y,z).

If D is a subdivision of [a,b] and D' is a refinement 

of D, then

L H. > Z Ji,.
D D' 3

Proof, A proof similar to that for Theorem 

3,1a will prove this Theorem.

Lemma 3.2a

If f and m are functions from S to S such that 

m is increasing, then

m  [fU) - f(x)]g . [ f (y) - f(x)]2 . [ f ( z) - f (y ) ]2 
m(z) - m(x) — m(y) - m(x) m(z) - m(y) *

provided x < y < z.



Proof ( indirect) . Assunse (l) is false, then
11

> [f(y) - f(
m(y) - m(

Let f(z) - f(x) f= A and f(y) - f(x)

f(z) - f(y) = A - B.

Also, let m(z) - m(x) = g. and m(y) <-

m(z) - m(y) = a - h

and since m is increasing a > b > 0. 

(2) we have

A2 Bf_ (A - B)2 .
a b (a - b) ’

hence,

0 > + jA -■ y *  - ^b (, a - b ) a 

and, since ab(a - b) > 0,

x) ]2 j. [ f( z) - f(y) ]2 
^y—  m( z) - m'(y)---

= B$ then, 

m(x) = b; then, 

Substituting into



0 > a(a - b) B2 + ab(A - B)2 - b(a - b) A2 

= a2B2 - 2abAB + b2A2 

= (aB - bA)2

12

> 0.

Therefore assumption is false.

Theorem 5,2

If f and m are functions from the real numbers 

to the real numbers and m is increasing, the following 

statements are equivalent:

(1) f ̂  ( d-**)—  exists.
J a dm

(2) There exists a real valued nondecreasihg function 

h on [a,b] such that, for each subinterval I of 

[a,b], (Af)2 < AhAm.

Proof.

Part 1 , 1 — ■ 2 . As s urne
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exists; hence, by Theorem 2.7,

(df)2
dm

exists for each subinterval I of [a,b]. Let

h(x)
x

a
( df)2 
dm '

for x belonging to [a,b], then for each subinterval I of 

[ a,b ],

Ah U f ) £ > 0,dm ~ 7

by Theorem 2.4; and hence, h is nondecreasing.

To show (Af)2 < AhAm an indirect argument is 

used. Suppose (Af)2 > AhAm for some interval I of [a,b]. 

Then,

..(At).2. > Ah =Am

Since

(df)2
dm
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exists and

(èfls _ I U t l2 > oAm L dm

there is a subdivision D of X such that if D ’ is a re

finement of P, then

( 1 )
P*

(Afj^
Am •l

(df);
dm

(Af)
Am

(df)2
dm

Let D ' be a refinement of D, then

(Af)2
Am ■*:y  ( ^ i ) 2

D? '¿“i (Lemma 3. 2a, Th. 3.1a)

y (if.)2 . f ( df)2 + f (df)2N Am. Jl dm Ji dm

< (Af)2 f
in JT (df)

dm
(df)2
dm (Eq. 1)

(Af)2 
Am ’

This is a contradiction} hence (Af)2 < AhAm and 1— ^2.

Part II, 2— > 1 . Assume (2) and define R as the 

set of numbers such that p belongs to R iff there is a 

subdivision D of [a,b] such that
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P
y (Afi)2

Am^

For each subdivision D of [a,b],

< 2 Ah 
D

- h( h) - h( a) .

Hence R is hounded above, by h(b) - h(a), and 

nonempty, R has a least upper bound, J.

For each e > 0 ,  J - e < J  and there 
number q, belonging to R for which J - e < q. < 
q belongs to R there is a subdivision D of [a 

that

If P' is any refinement of D, then

J -  e <  q.

D
( A f ^ 2
Am./

< 2 (Af.j)2
Ain-

V

since R is

exists a 
J. Since 

b] such

(Lemma 3.2a, Th. 3.1a)
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< J (Def. of J)

< J + € ,

This is equivalent to

V (Af.)2
1 - J

D' ^ i
€ •

Therefore,

b (df);
dm

exists and 2— *■!.

Theorem 3.3

If H and L are real valued functions of subin- 

tervals of [a,b] such that H is bounded and /^L exists, thenSi**1̂
/ |H| IL - /L| exists and is zero.SI

Proof. Let J = 0 and € > 0, Since H is bounded

on [a,b], there exists a nujnber M such that |H(l) | < M

for each subinterval I of [a,b]. Since / L exists anda

2M > °>



then there exists a subdivision D of [a,b] such that if 

D* and D" are refinements of D, then

17

( 1 ) Z L. - Z L. 
D ' 1 D" **

< 2M * (Th. 2.8)

nLet E = {x.}. - be a refinement of D. Since3.'1=0

2nM > o,

where n is defined by E. and / L exists, then for each* a
x *integer i, i = 1, 2, 3, ..., n, / 1 L exists and there
xi-l

exists a subdivision of [x^ ^,x^] such that

( 2 ) Z L.Di Ji h  L 2nM'

Hence,

Z |H | |L
E

. - L I -l J l I z isii il i - l i - °E

= ^ iHii i2i - u  lE

< M Z |L. - /. L

(Def. of M)
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where

< M Z 
E Li " f LJ.Di

Z L j . / L
Di 3i 1

< M £ 
E

L j - Z Lj 
Pi Ji 2nM (Eq. 2)

M 2 
E

Li - E Ld>
Bi 1

+ 4

= M
n
E

i=l
Qi>0

L Z L.
Di

n
+ Z 

i=l
Qi<0

L. - Z L, 
D. Jil

= Li - Z L.
Di

= M
ii(li

Qi>0
Z L,
Di

n
+ Z ( Z L 4

i=l\ D 
Qi<0

- Li

+ f
J

= M n nZ L. + Z ( L  L. 
1=1
Qi>°

i=iId .
Qi<0 1

n
Z (Z L . 

i=iId . Ji 
^i>o

n
Z Lj 

i=l
V °

-i

= M Z Lk - Z L y 

D' D"

IX) 
I m
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where

and

/ nh• =( U D. 1 ü E 
1=1 

\Qi<0

D" =
n
U 1 U E

\Qi>0

< M • i—  + .1 2M 2 (Eq. 1)

= € .

Theorem 5.4

If J is a number and H and L are real valuqd 

functions of subintervals of [a,b] such that H is bounded
■ĵ

and / L exists, the following statements are equivalent;

(1) ¡ 1 h (/l ) = j.

(2) HL = J.

Proof.

Part I, 1— »2. Assume (l), / H(/L) = J, andcl
let e > 0. Then, there exists a subdivision of [a,b]

such that
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(1) Z
D'

H, L  L J < _e_
2*

for each refinement D* of D-̂ . Also, from Theorem 3.3,
Idf °  jH| |L - J b| = 0$ hence, there exists a subdivision 

Dg of [a,b] such that if D ’ is a refinement of Dg, then

(2) Z
D' |H± I l2i - h 1| 6

2 ‘

Let D =s U Dg and let D 

D' is a refinement of

1 be a refinement of 

and of Dg, and
d ; then,

z HiLi - J < Z - S Hi/i L + Z Hi/i L - J
D* D' D ’ D'

< Z (Li - /i L) 
D •

+ €
*2 (Eq. 1)

< 2 lHil lLi - f i  2 l + |D*

Z
D* lHi L.l /, L £_

2

< e_
2

+ €r—2 (Eq. 2)

= € .

Hence, 1— *»2 .
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Part II, 2— »-1. A proof similar to the proof 

of Part I can be used to show 2— »»1.

Theorem 5.5

If H is a real nonnegative valued function of

subintervals of [a,b] and m is an increasing function 
b —such that /°(Hdm)2 exists and there is a number R > 1 sucha

that H(l) < RAm, for each subintervg.1 I of [a,b], then:

(1) f [,/(Hdm)2 ]—  exists.
Ja dm

(2) f t H exists.a

(3) P  ,[,/.(Hdm)j.J2 = jh
Ja dm a

Proof.

Part (l). Let f and h be functions such that, for

each x belonging t’o [a,b], f(x) = /°(Hdm)2 and h(x) = Rm(x).a
Then, since m is increasing? h is increasing.

To show that

(l) (Af)2 < AhAm,

for each subinterval I of [a,b], an indirect argument is 

used. Assume (l) is false. Then, there is a subinterval



I of [a,b] such that

(Af)2 > AhAm

= R( Am)2 $ (Def. of h)

hence,

Af > R2Am.

Also,

Af = f(y) - f(x ), where I = [x,y]

= /J(Hdm)2 - /J(Hdi?i)2
3, 3*

(Def. of f)

= Ij(Hdm)2 . (Th. 2.7)

! i
Since /^(Hdm)2 = Af and Af - R2Am > 0, there exists a 

subdivision D of I such that if D' is a refinement of D, 

then

(2) 2 - Af
D»

< Af

For each refinement D* of D,

i
R2Am.
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Af < A f -  E (jLAnij) 5  + E ( Ĥ AnijL) 
D' D'

H •
< Af - R^Am + 2 I -r̂ —D ' ^ i Am

i i
< Af - R2Am + R2 E Am.

D*

1. 1.
= A f  -  R2Am + R2Am

= Af.

(Eq. 2)

Hence assumption was false and (l) is truej therefore, 

by Theorem 3.2,

(df)g
dm

exists and

[/(Hdm)2 ]2 
dm (Def. of f)

Part (2) and (5). For each subinterval I of

[a,b], let

HX(I)
/j(Hdm)2 

Am ""

and
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L-lU )  = [ H( I) Amp.

then, /a exists and is real nonnegative valued.

To show H-j_ is bounded on [a,b], let M = R + 1. 

For each subinterval I of [a,b], /^(Hdm)2 exists and there 

exists a subdivision D of I such that

(3)
l

L ( H.Am.)2 1 1 D'
f T( Hdm)2 | < Am,

for each refinement D' of D. let D' be a refinement of 

D, then

^(1)
/jCHdm)?

Ani"

/I(Hdm)2 £
D'

(H .Am.)2 i l
Am

L
D'

(H. Am.)2 l 1

S.fe)aAm +

Am

< 1 + §- £ Am.Am D , x

= 1 + R

= M;

(Eq. 3)
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therefore, H-̂  is bounded, on [a,b]. Wow, since

/' dm

exists, from Part (l) of this Theorem, and

S•*aTi) i
(4) / = /b H (/L ); (Def. of H and L )dm a l l  1 1

then, /b H1(/L ) exists, and, by Theorem 3,4,a x x

(5) H1( /Lx) = ¡ 1 H111.

bet Hg be the function such î hat

H2(I) - H( I)
Am

for each su/binterval I of [a,b]. Then is real nonnega-
"btive valued and bounded above by R. Prom (5), / H,L.a x x

exists and since

(6) Jl HA  ■ / ‘ dm

j f e * /(Hdm) ■
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f a H2 ^ LX^ '

by Theorem 3„4, f °  H„Ln exists and J ’ 4 a 2 1

^  â, H2 ^ L1^ ^a H2L1 ’

Therefore,

/'
[f(Hdm)^]a

dm = ;b h (/l )a 1 X

= /b H L a 1 1

(Eq. 4) 

(Eq. 5)

■ !l V ' V (Eg. 6)

■ C  V i (Eq. 7)

(Def. of Hg and 1^)

- ;a H '

Hence, H exists and is

[ f(Hdm)2 ]2 
dm
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Theorem 5.6

If P is a real nonnegative valued bounded func-r 

tion of subintervals of [a,b] and m is an increasing func- 

tion such that j Fdm exists, then / P2dm exists.

Proof. For each sy.binter val I of [a,b], let

H(l) = [P(l)]2 Am; then, H is nonnegative valued. Since

P is bounded there is a number M such that P(l) < M, for

each subinteyval I of [a,b], and, since each of P(l) and

M is nonnegative, [ P (I) ]2 < M2 hence, H(l) < M2Am. Since

/ Pdm exists and a

/!: pa* - /’’(fW ) *d d

"b ~ Idthen /°(Hdm)2 exists and, by Theorem 3,5, / H exists;
p Td ptherefore^ / P dm exists, since 81

f h H = /b P2dm. (Def. of H)Si 9»

Theorem 5.7

If each of H and K is a real nonnegative valued 

function of subintervals of [a,b], m is an increasing
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Id "b Tdfunction and. each of j Hdm and. fp Kdm exists, then / HKdma a a

exists.

Id IdProof. Since /_ Hdm and /_ Kdm exist, then1,1 a 8*
/b(H + K) dm exists and since (H + K) is nonnegative

/b (H + K)2 dm exists (Th. 3.6). Also, /b H2dm and /b K2dm a 6t a
exist (Th. 3.6). Therefore,

/b(H + K)2 dm - f h H2dm - /b K2dm J a / J a J a

= /b [(H + K )2 - H2 - K2 ] dma

= 2  /b HKdm a

exists.

Theorem 5.8

If K is a real valued function of suhintervals
Idof [a,b] such that /a K exists, and M is a function of 

suhintervals of [a,b] such that, for each subinterval I 

of [a,b], M(l) is either K(l) or fj. K, then if ? > 0 there 

exists a subdivision D of [a,b] such that

2 |M - /.K| < e,
D '

for each refinement D' of D.



Proof. Since / K exists, from Theorem 3.3,aVi/ |K - /Kj = 0. For each positive number e> there is 

a subdivision D of [a,b] such that

E |K - ;tK| <
D ’

for each refinement D' of D, Let D' = f x . b e  a re-v x i=0
finement of D, then

Z IMj - /±K| = 
D '

Z
D ’ lM i - -fiK l + j¡, bi lM i - ¡ í K

•where a. = 1 and b. = 0, if M.i x * i
if M. = /. Ki 11

K. , and b . i ’ l 1 an d a. =x

= z
D*

|M. - /. K J X

< Z 
D»

< e .

Theorem 5.9

If K is a real nonnegative valued function of
b ~subintervals of [a,b], integrable on [a,b], then / d [K/K]2S.

exists and is K.a
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Proof. From Theorem 3.3, /^ |K - /K| = Oj hence, 

for each positive number e, there is a subdivision D of 

[a,b] such that if D' is a refipement of D, then

(1) Z |K. - / Kl < e.
D ' ■

Therefore, for each refinement D' of D,

2 [K / K]2 - P K  
D' 1 1 a

Z [K./.K]2 - Z f.K
D ’ X' l D ’

(Th. 2.6)

< S |[K / K]2 - / K
T)t ± J. 1

n
= | :k 1/1k ]2 - ;tK|

^ > 0
n

+ Z | [K./.K] 
i=l /iK h

Qt<0

where = [K../.K]2 - /1K

n l.
= S ([K1fiK]^ - f±K) 

i=l
Qi>0

n i
+ Z ( f iK - [Ki/iK]2 ) 

i=l 
Q^<0

n n
< 2 (K± - f ±K) + Z (/¡K - Ki)

i=l i=l
Qi>0 Q ^ O
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= 2  |Kt - /tK|
D'

< e. (Eq, 1)

Lemma 5.10a

If a, b, c, and d are real nonnegative numbers,

then

(ac)2 + (bd)2 < [(a + b)(c + d)]2 .

Proof (indirect). Assume the conclusion is false,

then

(ac)^ + (bd)2 > [(a + b) (c + d)]*,

and

i
2(abcd)2 > ad + bcj

hence,

l.
0 > ad - 2(abcd)2 + be 

= [(ad)* - (bc)*]s 

> 0.

Therefore assumption is false.
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If for each positive integer n, an and bn are 

real nonnegative numbers, then

Lemma 3t10b

Proof. This Lemma follows directly by using 

an induction proof and Lemma 3.10a.

Theorem 5,10

If each of H and K are real nonnegative valued 

functions of subintervals of [a,b], integrable on [a,b]> 

then the following integrals exist and

p belongs to R iff there exists a subdivision D of [a,b] 

such that

/¡¡(HK)2 = A ( / H ) ( / K ) ] 2& ci

Proof. Let R be the set of numbers such that

i
p = Z[(/.H)(/iK)]2

D

The set R is bounded below by zero, and is nonempty; hence, 

R has a greatest lower bound, J. For each positive number



e, J < J + € and there exists a number q belonging to R 

such that J < q < J + e. Since q belongs to R, there 

exists a subdivision D of [a,b] such that

q * £[(/ H)(/ K)]2.
D 1 1

Hence, for each refinement D ’ of D,

J + e > q

= E[(/.H)(/.K)]i
D 1 1

l> Z [(I.H)(/.K)]2 (Lemma 3,10a, Tht 3.1b) 
D * J J

> J (Def. of J)

> J - e .
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Therefore,

(1) /b [(/H)(/K)]? = J.a

To prove /b (HK)2 = J, we let /bH = A, /bK = B,a a a
and e be a positive number. Then, there exists a subdivi

sion D such that if D' is a refinement of D, each of the 

following statements is true:
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Let

(2) 2 H, - A I 
D' 1

< i;

(3) 2 H. - A I 
D» 1< h

(4) Z K. - B
Id * 1

• *\

HV

(5) Z K. - B 
D ' 1

< -1— 18

(6) Z (H./.H)2 
D ' 1

- A

(7) Z (K / K)2 
D f

- B

(8) [s k ; , h ) ( ;  k ) j®
T\ 1 1

18 I B -+ 1/ ’

181A + li 9

1 /__e
36\B + lj 9 

1  (  e
36\A + 1 f

< 3*

D' be a refinement of D, then

Z (H.K.)2 - J 
D» 1 1

(Th. 3.9) 

(Th. 3.9) 

(Eq. 1)

2 (H K )2 - Z [ ( / . H) ( / K)]2 
D' D'

Z [(/ H)(/ K)]2 
D ’ 1

- J

<
i

2 (H.K.)^ 
D*

Z [H .(/.K )]2 + Z [H (/ K)]2 
D * 1 x D f

- 2 t(/.H)(/.K)]=
D 1

4* je
3 (Eq. 8)
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< S (Hi)2 {[(Ki)2 - (j\ K)2 ]2 }2 
D'

+ E (/iK)2 {[(Hi)2 - (/iH)2 ]2 }1 + 
D *

JL2<  ( L H ^ I e  [ ( K . ) 2 - ( / - K ) 2 ]2 
D ' J l D '

♦ (d - ^ r f e [<Hi)5 ■ + ?
j

(Lemma 3.10b)

< (A + 1) E K± - E E ( K ^ K ) 2 + E /-K 
D* D' D ’

+ (B + 1) E H± - 2 E (Hj/jH) 
D ’ D*

+ E /.H
D ’ 2 * t
(Eqs. 2,4)

< (A + 1)
-, i

E K, - B 
D* 1

+ 2 B - E (K./.K)2 
D'

+ (B + 1) E H. - A 
D' 1

+ 2 S M * * )

+ 4

< (A + 1) 1
18 \A + 17 18 VA + 1

oa|
m



2
36

+ (B + 1) — í— ^18 \B + 1 + —  --18\B + 1 + jS
3

(Eqs, 3,5,6,7)

e,
3 + €_

3

= e .

Theorem 5.11

If H j.g a real nonnegative valued function of

subintervals of [a,t>], integrable on [a,b], and m is a
b -real valued nondecreasing function on [a,b], then / (Hdm)261

exists.

Proof. This Theorem follows immediately from

Theorem 3.10, since / dm exists for any real valued func- 7 a
tion m defined on [a,b].

Theorem 5.12

If H is a real nonnegative valued interval func

tion, m is a real valued nondecreasing function on [a,b],
b b •k'and fDHdm exists, then / H2dm exists, a a
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Proof. Since Helm and dm are real nonnegative 

valued interval functions, defined on [a,b], and /°HdmSt
and / dm exist, then, from Theorem 3.10, / [(Hdm)(dm)]2 ,

/^H2 dm, a•which is exists.
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