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POSITIVE SOLUTIONS OF SINGULAR FOURTH-ORDER
BOUNDARY-VALUE PROBLEMS

YUJUN CUI, YUMEI ZOU

ABSTRACT. In this paper, we present necessary and sufficient conditions for
the existence of positive C3[0,1]NC*4(0, 1) solutions for the singular boundary-
value problem

" (t) = p(t) f(2(t), te€(0,1);

2(0) = z(1) = 2/(0) = 2'(1) =0,
where f(z) is either superlinear or sublinear, p : (0,1) — [0,+00) may be

singular at both ends t = 0 and t = 1. For this goal, we use fixed-point index
results.

1. INTRODUCTION

In this paper, we consider the fourth order differential equation
a(t) = p(t)f(x(t)), te€(0,1); (1.1)
z(0) = z(1) = 2/(0) = 2/(1) = 0. (1.2)
where f(z) is either superlinear or sublinear, p : (0,1) — [0, +00) may be singular
at bothends t =0 and t = 1.
Recently, the existence and multiplicity of positive solutions of (1.1))-(1.2) in the
non-singular case has been extensively studied in the literature; see [7, 5, 8] and
references therein. However for singular fourth order boundary-value problems,

the research has proceeded very slowly. Ma and Tisdell [6] studied the singular
sublinear fourth order boundary value problems

2" (t) = p(t)z*(t), te€(0,1); (1.3)
z(0) = z(1) = 2/(0) = 2/(1) = 0. (1.4)

where X\ € (0,1) is given, and p : (0,1) — [0, 00) may be singular at both ends ¢t = 0
and t = 1. Base upon the method of lower and upper solutions, Ma and Tisdell
showed that ([1.3)-(1.4) has a positive solution in C?[0,1] N C*(0,1) if and only if

1
0< / P21 — )P p(t)dt < +oo.
0
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Moreover, this positive solution is in C3[0,1] N C*(0,1) if and only if
1
0< / t22(1 — ) p(t)dt < 4-o0.
0

But necessary and sufficient conditions for the existence of positive solution of
superlinear BVPs — still remain unknown. In this paper, by using the
fixed point index, we give some necessary and sufficient conditions for the existence
of C3[0,1] N C*(0,1) positive solutions to the singular boundary value problem

C)-(T2).

In our discussion, by a C¥[0,1] solution (k = 2,3) of 1) we mean a
function y(t) € C*[0,1] N C*(0,1) which satisfies and (1.1)) on (0,1). We call
a solution y(t) is a positive solution if y(¢) > 0 for t € (0,1).

This paper is organized as follows. Section 2 gives some preliminary lemmas
corresponding to (L.I)-(1.2). Section 3 is devoted to the the existence of C*[0,1] N
C*(0,1) positive solutions for —. At the end of this section we state some
lemmas of the fixed point theory, which will be used in Section 3.

Let F be a Banach space, P a cone in F, ) a bounded open set in E.

Lemma 1.1 ([3]). Let 0 € Q, A: QN P — P be completely continuous. Suppose
that there exists ug € P\{0} such that

u— Au # pug, Yu € 0QNP, u>0,
then the fized point index i(A, QN P, P)=0.
Lemma 1.2 ([3]). Let 0 € Q, A: QN P — P be completely continuous. Suppose

that
Au# pu, YVuedQnP, p>1,

then the fized point index i(A, QN P, P) is equal to 1.

2. PRELIMINARIES

We give some notations, which will be used below. Let C[0,1], C*[0,1] and
L1[0,1] be the classical Banach spaces with their usual norms || - ||, || - [|cx and
I |lz, respectively. Let ACI0, 1] be the space of all absolutely continuous functions
on [0,1]. Let

ACk[0,1] = {u € C*[0,1] : u® € AC[0,1]}.
Clearly AC°[0,1] = AC[0,1]. Let I be an interval of R. We denote by L{. I the
spaces of functions defined by

Li, I ={u:I— R:ulggq € L'c,d] for every compact interval [c,d] C I}.
For n,m € N, we denote by X[n,m| the Banach space
1
X{num) = {9 € Lh(0.1)] [ #70 =07 lp(0)ldt < +oc)
0

equipped with the norm

1
Iellxinm = [ 0= p(Olar
Now let G(t,s) be the Green’s function of the linear problem
"' (t)=0, te€(0,1);
x(0) = z(1) = 2'(0) = 2'(1) = 0,
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which can be explicitly given by

Gt s) = 1 2(1—s)?(s—t)+2(1—1)s], 0<t<s<1,
t.s)=5 21— 1)2[(t—s)+2(1—s)t], 0<s<t<

It is clear that for all ¢, s € [0, 1],

%tQ(l —1)%s%(1 — 5)? < G(t,8) < %tz(l —1)2, G(t,s) <

Suppose that ¢ € X[2,2]. We denote

1
= / G(t,s)p(s)ds
0

T(e)0) = 5 [ 1= 071t = 9) +201 = lp()ds

i.e.

1
+élhﬂuf@%@fw+2@fwﬂﬂ$®-

Lemma 2.1 ([]). Let o € X[2.2). Then T()(t), () (1), [T()]" (1), [T(2)]" (1)
are AC1c(0,1) N CY(0,1), and

[T()]"™(t) = p(t), a.e. te(0,1).
Lemma 2.2 ([6]). Let ¢ € X[2,2]. Then
)

T(p)(0) = T(p)(1) = T(¢)'(0) = T(¢)'(1) = 0.
Lemma 2.3 ([6]). Let ¢ € L*(0,1). Then [T(¢)](t) € AC3[0,1].
3. MAIN RESULT

We shall assume the following conditions:

(H1) f : [0,00) — [0,00) is continuous and nondecreasing in z, f(x) > 0 on
(0,00), and there exists A > 1 such that

flex) < A Mf(x), Ve>1, ze€|0,+00). (3.1)

(H2) p : (0,1) — [0,00) is continuous, fo (1 — s)?p(s)ds < +oo, and there
exists 6 € (0,1/2) such that

1-0
0< /9 s2(1 — 5)?p(s)ds.

(H3) 0 < limsup, o, &) My my < liminf,_ oo 220 < 400, where

x x

max/ G(t,s)p(s)ds) ™,
t€[0,1]

m= (i, [ G pe

Theorem 3.1. Under assumptions (H1)-(H3), a necessary and sufficient condition
for (L.1)-(1.2) to have a positive solution in C3[0,1] N C*(0,1) is that

1
/0 p(s)f(s*(1 = 5)?)ds < +oo. (3.2)
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Remark 3.2. Inequality (3.1) implies
flex) > A f(x), Vee(0,1), 2 €[0,+00). (3.3)
Conversely, (3.3) implies (3.1)).

Remark 3.3. (H2) is equivalent to

(H2") p € C((0,1),[0,+00)) N X[2,2], and there exists o € (0,1) with p(tg) > 0.
Proof of Theorem [3.1 Necessity. Let z € C2[0,1] N C*(0,1) be a positive solution
of (1.1) and (1.2). Then by the fact

- é / {28%[(t — 5) +2(1 — )] — 45*(1 = t)[1 + 2(1 — s)]}p(s) f(x(s))ds
0
+ é /t {201 = 8)%[(s — 1) +2(1 — t)s] + 4¢(1 — 5)*[~1 — 2s]}p(s) f ((s) )ds.

we have that

1
20 = [ (1= sPp(s)f(ale)ds > 0,
2(1) :/0 2(1 — 8)p(s) f((s))ds > 0.

and accordingly, there exist I, Is € (0,400) such that
Nt2(1—t)? < z(t) < Lit?(1—t)%, telo,1].
Let ¢; > max{1,1/I1}, then
t2(1—1)? < cz(t), te][0,1].
So by (H1),

On the other hand, if co < min{1/2,1/I5}, then
t2(1 —t)? > cou(t), t€[0,1].

So by (H1) and (3.3),
1 1 1
/ p(s)f(s*(1 = 5)*)ds > / p(s)f(cax(s))ds = CS/ p(s)f(z(s))ds = 0
0 0 0
Notice that f ))ds > 0, for otherwise p(s)f(z(s)) = 0 on (0,1). In this

case . has only terlal solutlon z = 0. This contradicts the assumption
that z is a posmve solution. Thus ) holds.

Sufficiency. Suppose that (3.2) holds. we define a set P C C]0, 1] by
P={z€C[0,1]:3c, >0, 0 < a(t) < c,t*(1—t)%
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() > %#(1 — 122l te [0, 1]}

By its definition, it is easy to verify that P is a cone. We define T': P — (0, 1] by

1

T(x)(t) = ; G(t,s)p(s)f(z(s))ds, te€]0,1], x € P.

In the following, we prove that T : P — P is completely continuous.
1. We first show that T : P — P is well defined. For x € P, there exist ¢, > 1 such
that 0 < z(t) < ¢, t?(1 — t)? and for ¢ € [0,1], by (2.1]), we get
1 1
1
(T)(0) = [ Gt 9p(s)f(a(s)ds < 507 [ ple) 161 - 9P
0 0

This implies that p(t) f(x(t)) € L[0,1], by Lemma we have Tx € C[0,1]. Let
ors = 3¢ fol p(s)f(s%(1 — s)?)ds. By (3.2), we know cr, > 0, so

(Tx)(t) < epat?(1 — )%, t€0,1].
In addition, for ¢ € [0,1], by (2.1)), we get

@) = [ Gt fa(e)ds = 52002 [ 20020 (a(s)ds. (34

and

o = [ Gt p(e) (o)) < & / (0L 9l n(e))ds.
Hence .
Tl < 5 [ 20— 5Ppe)f(a(e)ds.
Combining the above with (3.4), we have

To)) = 320 =17 [ 0= R0 (as)ds > 220~ 07 T,

ie., T(P) C P.
2. We show that T': P — P is compact. Let D C P be bounded, i.e., ||z|| < M for

all x € D and some M > 0. It is clear that if z € P satisfies € D, by (H2) we
have

1 1
()01 < 5 [ 206 fa)ds < 5 [ 0= 920l r0nas

So T'(D) is uniformly bounded.

Next we prove that ||[(Tz)'|| < N for all z € D and some N > 0. In fact, for
x € D. By Lemma we know Tz € C?[0,1] and

|(T)' ()]

- ’%/0 {=25"(1 = 1)[(t — 5) + 2(1 — 9)t] + s°(1 — 1)*[1 + 2(1 — )] }p(s) f ((s))ds
1
+ %/t {26(1 = 8)*[(s — 1) +2(1 — t)s] + £*(1 — 5)*[~1 — 2s]}p(s) f(2(s))ds

< é/ {25°(1 = 5)[(1 = 5) +2(1 = )] + 5*(1 — 5)?[L + 2(1 — s)]}p(s) f(M)ds
0
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+ %/t {2t(1 — 5)%[s + 2s] + s*(1 — s)*[1 + 2s]}p(s) f(M)ds

9

+ 1
<5 [ fa-omeronas +3 [ 209 s0nd.

g/o (1 — 5)2p(s)f(M)ds = N,

This means that T'(D) is equicontinuous. From the Ascoli-Arzela theorem, T'(D)
is relatively compact. This completes the proof that T is compact.

3. We prove T : P — P is continuous. Assume that x,,x € P and x,, — . Then
there exists M > 0 such that ||z|| < M, |z,|| < M for every n > 0. Since f(x) is
continuous, we have
|f($n(8))—f($(8))‘ _)07 as n — oo, Vse [Oa 1]7
and
F@a(s) — F@(s)] < 20(M), Vie€[0,1], (n=1,2,3...).
Consequently, for all ¢ € [0, 1],

1
[(Tn)(t) = (Tx) ()] < /0 s2(1 = 5)?p(s)|f (zn(s)) — f(a(s))lds — 0. (3.5)

We now show
T2z, — Tzl = 0 asn — o0). (3.6)
If is not true, then there exist a positive number € > 0 and a sequence
{zn,} C {xn} such that
Tz, —Tx|| >e, (i=1,2,3...). (3.7)

Since {x,} is bounded, {T'z,} is relatively compact and there is a subsequence of
{T'z,,} which converges in C[0,1] to some y € C[0,1]. Without loss of generality,
we may assume that {T'z,,} itself converges to y:

| Txn, —y|| — 0, asi— oco. (3.8)

By virtue of and , we have y = Tz, and so, contradicts .
Hence, holds, and the continuity of T is proved. To sum up, we have proved
T : P — P is completely continuous.

For all x € P, from the above proof, we know Tx € P, By Lemma [2.1] and
Lemma the fixed point of the equation

Tr=z, x€P.

is the solution of (1.1})-(1.2]). Next we will look for the fixed point.
By the first part of (H3), there exist 1 > r > 0, € > 0 such that 0 < u < r
implies f(z)/x < (M; — €). Therefore, we have

fl@)<(My —e)x < (My—¢e)r, 0<az<r
Set B, = {x € C[0,1] : ||z|| < r}. For V x € 8B, N P, we have
1 1
ITz| = max / G(t, s)p(s) f(z(s))ds < (My — €)r max / G(t, s)p(s)ds
0 0

te[0,1] te[0,1]

1
<r —er max / G(t, s)p(s)ds < r.
t€(0,1] Jo
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Then for x € 9B, N P and p > 1, we have

Tx # px.

In not, there exist g € 9B, N P and po > 1 such that Txzg = poxg, then ||Txq|| >
lzo||, which is a contradiction. According to Lemma we have

i(T, B.NP, P)=1. (3.9)

By the second part of (H3), m; < liminf, .| fgf) < 400, there exist Ry >
max{fr,1}, 1 > 0 such that

f(x) > (m1+e1)x, >Ry
Let Ry > %7 and B, = {z € C[0,1] : ||z|| < Ra}, then

2
te%l,llria]x( )2 te[rgllrig] 3 ( )llzl| = R, x € 0Bp,

‘We now prove that
x—Tx # ut*(1 —t)?, for p>0and 2 € IBg, N P.

If not, then there are 1 > 0 and 2y € OBg, N P such that x; — Tx; = pt?(1—1)2
So p1 > 0, otherwise there is a fixed point in 0Bg, N P and this would complete
the proof. Let 7 = minycfg1g) z1(t). Then if t € [0, 1 — 0], we have

ri(®) = [ Gl ap(s) far (9)ds + e -1
1-6

= G(t, s)p(s)f (x1(s))ds + pt*(1 — 1)

1-60
> (my + 51)/0 G(t,s)p(s)x1(s)ds + pit*(1 —t)?

1-6
> oim+en) [ Gltop(s)ds + put(1 -1
6
1-6
> 1)+ 11 G(t, s)p(s)ds + pt*(1 — 1)
0

Therefore,
z1(t)y>n, telf,1-40],
which is a contradiction. According to Lemma [1.1], we get
«(T,Bgr, NP, P)=0. (3.10)
By and , we have
i(T, (Bg,\B,) NP, P)=i(T, Bg, NP, P)—i(T, B,NP, P)=—1.

Then T has at least a fixed point 2* in (Bg,\B,)N P satisfying 0 < r < ||z*|| < Ra.
Since z* € P, there exists r,« > 1 such that z* < r,«t?(1 — ¢)2, then

/ p(s) F (o™ (5))ds < / p($)f (ree (1 — 5)2)ds
0 0

1
< r;\* /0 p(s)f(52(1 — 5)2)d5 < 400,
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that is p(¢) f(x*(t)) € L'(0,1), then by Lemma [2.3] we have z* € AC?[0,1], so x*
is a C3[0,1] N C*(0, 1) positive solution of (1.1)-(1.2). This completes the proof of
sufficiency. O

Corollary 3 4 Let p be as above, 0 < fl 2(1 — s)?p(s)ds < +oo, and X > 1.
Then BVP (L.3)-(1.4) has at least a positive solutzon in C3[0,1] N C*(0,1)

Proof. The hypotheses on the function p(s) implies 0 < fol(s(l —5))? p(s)ds < +o0

for A > 1. The result now follows from Theorem [B.1] O
Theorem 3.5. Assume that (H1) and (H2) are satisfied. If

lim M:0, lim MJroo,

z—0+ T r—+oco I

Then a necessary and sufficient condition for (1.1| . to have a positive solution
in C3[0,1] N C*4(0,1) is that
1
/ p(s)f(s*(1 = 8)?)ds < +oc.
0
Proof. Clearly (H1)-(H3) hold, and result follows from Theorem We omit the
detail. g

Next, we shall study (1.1)-(1.2) in the sublinear case. We assume:
(HY) f : [0,00) — [0,00) is continuous and nondecreasing in z, f(x) > 0 on
(0, 00), and there exists 0 < A; < 1 such that

flex) > f(x), Vee(0,1), z€[0,+00).

(H3") 0 < limsup, ., *5 &)« pyymg < liminf, o4 f( ) < 400, where

1
M; = (max / G(t,s)p(s)ds) ™,

t€(0,1] 0

1-6
my = ( min / G(t, 5)p(s)ds) !

te[6,1-6] Jo

Theorem 3.6. Assume (H1’), (H2), and (H3’). Then a necessary and sufficient
condition for ([1.1)-(1.2) to have a positive solution in C3[0,1] N C*(0,1) is that

/0 p(s)f(s*(1 — 8)?)ds < +oc. (3.11)

Proof. By (H1’), we have f(cx) < c¢Mf(x), ¢ > 1, & € [0,+00). The proof of
necessity is almost the same as that in Theorem

We will show the roof of the sufficiency. We base the proof on the argument in
Theorem and need only show completely continuous operator T': P — P has a
fixed point.

By the first part of (H3’), there are R3 > 1, €3 > 0 such that > R3 implies
f(z) < (My —e3)z. Let M = max{f(z):0 <z < Rs}, then

f(x) < (My—e3)z+ M, x€[0,+00).
Choose Ry > max{Me;',1}. Let Br, = {x € C[0,1] : |z]| < R4}. Then for all
x € 0Br, N P, we have

|Tx| = max/ G(t,s)p(s)f(xz(s))ds

tel0,1
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1
s<wf+<ma—waﬂwngg%§hé G(t. 5)p(s)ds

1 1/
< M R4 max / G(t,s)p(s)ds + (M — €3R4)7/ s2(1 — s)*p(s)ds
t€(0,1] Jo 2 Jo

1
=Rys+ (M — 53R4)% / s2(1 — 5)?p(s)ds
0

< Ry = Hl‘”

So it is easy to know that Tx # ux for x € 0Bg, N P and p > 1. According to
Lemma [I.2] we have

i(T, Bg, NP, P)=1. (3.12)

By the second part of (H3’), m; < liminf,_, . f(;) < +00, there exist 0 < ry < 1,
€5 > 0 such that 0 < z < r; implies

/(=)

> (mq +e5)z.

Let B, = {z € C[0,1] : ||z|| < r1}. We now prove that
x— T # ut*(1 —t)?, for p >0 and 2 € 9Bg, N P.

If not, there are yp > and x5 € dB,, N P such that x5 — Try = pust?(1 —t)%. So
t2 > 0, otherwise there is a fixed point in dB,, N P and this would complete the
proof. Let 7 = mingc(g1_g x2(t). Then if t € [0, 1 — 0], we have

ra(t) = | Gltp(s)f(aa(o)ds + pot(1 - 1)
1-6
z/’ G(t, 5)p(3) f (22(5))ds + 1at2(1 — )2
0

1-6
> (mtes) [ Gl spmaleds + (1 -0

1-6
> n(mi + €5) G(t, s)p(s)ds + pat?(1 — t)?
0

1-60
> n+1es G(t, 5)p(s)ds + pat®(1 — 1)
6

Therefore,
xo(t) >m, telh,1-46].
which is a contradiction. According to Lemma 1.1, we get

i(T, B,, NP, P)=0. (3.13)

By (3.12)) and (3.13]), we have
i(T, (Br,\Br,)NP, P)=14(T, Bg, NP, P)—i(T, B,, NP, P)=1.

Then T has at least a fixed point z* in (Bgr,\By,) N P, satisfying 0 < ry < ||a*]] <
Ry, and z* is also a C3[0, 1]NC*(0, 1) positive solution of (1.1)-(1.2). This completes
the proof. |
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Corollary 3.7. Let p be as above, 0 < fol s2(1 — 5)?p(s)ds < 400, and 0 < X < 1.
Then a necessary and sufficient condition for (1.3)-(1.4) to have a positive solution
in C3[0,1] N C*(0,1) is that

1
0< / (5(1 — 5))*p(s)ds < +oo.
0
Example 3.8. The singular boundary-value problem
() =t~ — )73, e (0,1), A> 1,
x(0) = z(1) = 2'(0) = 2'(1) = 0,

has a solution = € C3[0,1] N C*(0,1) with x(t) > 0 on (0,1). To see this, we will
apply Theorem with p(t) = t75/2(1 — )43, f(z) = 2 (A > 1). Clearly (H1)
holds. Note that

1 1
/ p(s)s?(1 — s)%ds = / sT1/2(1 - 5)?3ds < 2.
0

0
Consequently (H2) holds (with § = 1/4). Also note that (H3) holds since
lim M:O7 lim M:—I-oo
z—0+ X r—+4oo I

Finally note that fol p(s)f(s%(1—s)?)ds = fol p(s)(s(1—5))?*ds < +o00. The result
now follows from Theorem [B.11
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