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ABSTRACT 

 

Measurement of resting metabolic rate (RMR) is an important factor for weight 

management. Previous research has reported several variables to estimate RMR such as 

body size, percent fat (%BF), age, and sex; however, little is known regarding the effect 

of circumference measures in estimating RMR. PURPOSE: The purpose of this study 

was to develop a model to estimate RMR using waist circumference (WC), an easily 

obtainable measure, and cross-validate it to previously published models. METHODS: 

Subjects were 140 adult men and women, ages 18-65 years. RMR was measured through 

indirect calorimetry, %BF was measured through air displacement plethysmography, and 

fat mass and fat-free mass were determined from %BF and weight. Other variables 

collected were: weight, height, age, sex, ethnicity, body mass index, WC, hip 

circumference, waist-to-hip ratio, waist-to-height ratio, and %BF estimated from 

bioelectrical impedance analysis. Subjects were randomly divided into derivation and 

cross-validation samples. A multiple regression model was developed to determine the 

most accurate estimation of RMR in the derivation sample. The cross-validation sample 

was used to confirm the accuracy of the model and to compare the accuracy to published 

models. RESULTS: The best predictors for estimating RMR were body weight, r = 0.70, 

p = 0.031, age, r = -0.30, p = 0.012, and sex, r = 0.51, p = 0.018. Other factors failed to 

account for significant variation in the model. The derived equation for estimating RMR 

is: RMR (kcal/day) = 843.11 + 8.77(weight) – 4.23(age) + 228.54(sex, M = 1, F = 0), R2 

= 0.68, SEE = 173 kcal/day. Cross-validation statistics were: R2 = 0.54, p  0.05, SEE = 



 

 x 

199 kcal/day, and total error = 198 kcal/day. In published models, R2 ranged from 0.47 to 

0.57, SEE ranged from 192 to 213 kcal/day, and total error ranged from 212 to 1311 

kcal/day. CONCLUSIONS: Cross-validation to published models for estimating RMR 

were similar to those of the derived model; however, the total error in the derived 

equation was lower than any of the previously published models. Several published 

models considerably overestimate RMR compared to the current model. The results of 

this study suggest that RMR can be reasonably estimated with easily obtainable measures 

which allow for estimation and implementation of RMR for weight management in 

clinical practice. 
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I. LITERATURE REVIEW: THE RELATIONSHIP BETWEEN VARIABLES           

USED IN RESTING METABOLIC RATE EQUATIONS AND 

THE PREDICTION OF ENERGY EXPENDITURE IN 

NORMAL WEIGHT AND OBESE INDIVIDUALS 

Obesity rates have been on a steady rise for the past three decades in the United 

States. More than one-third (36.5%) of US adults are currently obese (Centers for Disease 

Control and Prevention, 2016). This is alarming considering the association between 

obesity and risk of chronic disease and premature death (Centers for Disease Control and 

Prevention, 2016). Clearly, addressing this obesity epidemic is challenging and 

complicated (Bezner, 2015; Bouton, 2014). Thus, a wide variety of strategies targeting 

the many levels of influence on human behavior – individual, interpersonal, 

organizational, community, and policy – are required (McLeroy, Bibeau, Steckler, & 

Glanz, 1988). At the individual level, in particular, one fairly successful strategy is 

prescription of daily energy intakes with consideration of daily energy expenditures to 

create appropriate caloric deficits for safe and optimal weight loss (Jensen et al., 2014).   

Daily energy expenditure is comprised of three components: basal metabolic rate 

(BMR), thermic effect of feeding, and energy expenditure during physical activity 

(McArdle, Katch, & Katch, 2015). Of these, the largest component, accounting for 60 to 

80%, is BMR (Madden, Mulrooney, & Shah, 2016). BMR is the minimal amount of 

energy required to sustain life’s vital functions, such as breathing, blood circulation, 

temperature control, and cellular growth (McArdle et al., 2015). Measurement of BMR, 



 

 2 

however, involves a fairly stringent testing protocol requiring a 12 to 18-hour fast prior to 

testing (McArdle et al., 2015). A well-accepted alternative to BMR is resting metabolic 

rate (RMR). The protocol for measuring RMR is less stringent, requiring only a 3 to 4-

hour fast prior to testing, and produces only slightly higher values (Haugen, Melanson, 

Tran, Kearney, & Hill, 2003; McArdle et al., 2015). Therefore, RMR and BMR are often 

considered to be physiologically equivalent (Cunningham, 1991; McArdle et al., 2015) 

and, herein, RMR will be used.  

RMR can be accurately and reliably measured using indirect calorimetry systems, 

including whole-room calorimeters, doubly labeled water, and metabolic carts (Conway, 

Irwin, & Ainsworth, 2002; King, McLaughlin, Howley, Bassett, & Ainsworth, 1999; 

Nieman, Trone, & Austin, 2003; Phang, Rich, & Ronco, 1990; Sun & Hill, 1993; Tissot 

et al., 1995). Measurement of RMR using these systems is often impractical, as these 

systems are fairly expensive, require trained personnel to operate, and can only 

accommodate one person at a time. In addition, accurate measurement of RMR requires 

well-controlled laboratory conditions that are quite demanding and burdensome to the 

subject being tested (Horner et al., 2001). In light of these challenges, estimation of RMR 

from prediction equations is well accepted as a suitable proxy for measurement of RMR 

(Sabounchi, Rahmandad, & Ammerman, 2013).  

Prediction of RMR has been investigated since the early 1900s (Harris & 

Benedict, 1918) and a number of prediction equations have been developed. Though they 

vary in number of predictors, they all include some measure of body size (body weight) 

or composition (fat mass, FM, and/or fat-free mass, FFM). The equations that contain 

body weight either use body weight by itself or body weight with a combination of other 
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easily obtainable anthropometric (height) and/or demographic (age and/or sex) measures 

(Madden et al., 2016; Siervo et al., 2013; Willis et al., 2016). The equations that contain 

either FM or FFM typically do so without the addition of any other measures 

(Cunningham, 1991; Mifflin et al., 1990; Nelson, Weinsier, CL, & Schutz, 1992). 

Research is discordant on whether prediction equations that include body weight or body 

composition as a key predictor are more accurate. 

The accuracy of these predication equations, regardless of whether they include 

body weight, FM or FFM, also depends on the population in which they are applied 

(Sabounchi et al., 2013). Overall, the accuracy rate is lower in obese individuals than 

non-obese individuals (Frankenfield, 2013). Specifically, subnormal values are observed 

in the obese population when estimating RMR using body weight (Heymsfield et al., 

2012). Given that fat mass has a substantially lower mass-specific energy expenditure 

than FFM, prediction equations using body composition (specifically, FFM) instead of 

body weight are more accurate (Sabounchi et al., 2013) and should be used when 

predicting RMR in obese individuals (Heymsfield et al., 2012). However, an accurate 

measure of body composition may be difficult to attain for some settings where indirect 

calorimetry is unavailable. Thus, clinical settings, with limited resources, may prefer 

prediction equations that use body weight, as it is easily attainable.  

To date, research has yet to develop and validate one single prediction equation 

that is best suited for all populations. Perhaps they never will. However, the need remains 

to continue to develop and identify a set of accurate equations that can be applied to 

different populations in different settings, as the accuracy of prediction equations is 

essential for effective programs that use the energy balance approach to weight 
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management. For instance, when estimating RMR, a prediction equation that 

overestimates the energy requirements may lead to a daily caloric surplus, thereby 

resulting in weight gain. On the other hand, a prediction equation that underestimates the 

energy requirements may result in a daily caloric deficit, possibly leading to rapid, 

unhealthy weight loss (Madden et al., 2016). Thus, accurate RMR prediction equations 

targeted to available resources within settings and populations will ensure a more precise 

estimation of daily energy expenditure, which in turn will allow for the optimization of 

appropriate, individualized treatments (Psota & Chen, 2013). The purpose of this review 

is to examine the research pertaining to the accuracy of RMR prediction equations, 

compare the accuracy of the equations that include body weight to the accuracy of the 

equations that include body composition, and determine which equations are best suited 

for normal weight and obese populations. This review will: 1) be helpful to researchers 

and practitioners in identifying the best prediction equation to use given their resources 

for assessing body composition, and 2) guide future research focused on improving 

accuracy of prediction equations.  

Methods 

Search Strategy 

The research articles for this review were identified by accessing the PubMed, 

SPORTDiscus, and Medline databases for all available dates through August 1, 2017. 

These databases were searched using key words “resting metabolic rate,” “basal 

metabolic rate,” “prediction equation,” “fat distribution,” “body composition,” and 

“circumference.” References from review articles and meta-analyses were used to 

identify additional studies.  
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Selection Criteria 

For initial evaluation, the title and abstracts from 300 potential articles were 

reviewed. Articles were included if they: (1) were written in English; (2) were published 

in peer-review journals; and (3) investigated, to some extent, the accuracy of BMR or 

RMR prediction equations in healthy non-obese and obese adults. Articles were excluded 

if they did not meet all criteria. From this initial evaluation, 32 met the initial selection 

criteria. Further evaluation of articles for this review limited the inclusion criteria to the 

investigation of: RMR measured using indirect calorimetry and a measure of body size 

and/or composition (e.g., weight, waist circumference, percent body fat) included in the 

prediction equation of interest. Articles were excluded if they did not meet these criteria. 

On the basis of the inclusion criteria, studies were either identified as ‘excluded’ or ‘full 

text reviewed and applicable’. After final evaluation, 10 studies met the criteria for 

inclusion in this review.  

Results 

Body Weight 

Body weight is the main variable when predicting RMR using anthropometric and 

demographic measures. It is either used as the sole predictor (Mifflin et al., 1990; Owen 

et al., 1987, 1986) or in combination with other predictors. With regards to the latter, 

body weight may be used in combination with: height (Lazzer, Agosti, Silvestri, 

Derumeaux-Burel, & Sartorio, 2007; WHO/FAO/UNU, 1985); age (Livingston & 

Kohlstadt, 2005; WHO/FAO/UNU, 1985); height and age (Harris & Benedict, 1918); age 

and sex (Müller et al., 2004); and height, age, and sex (Mifflin et al., 1990). The most 

widely used prediction equations involving body weight are discussed in this section.  
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Body weight alone. Body weight is an easily obtainable measure that requires no 

special equipment other than a scale, and, thus prediction equations using body weight 

alone are often preferred in settings with limited resources. However, there is conflicting 

research regarding the accuracy of RMR prediction equations using body weight as the 

sole predictor. Owen et al. (1986) developed and tested a body weight-based RMR 

prediction equation on 44 women ranging in age (18-65 yr) and body mass index (BMI, 

18.2-49.6 kg/m2). Body weight, body surface area, lean body mass, body cell mass, and 

FFM by densitometry as well as by measurement of skinfold thickness were highly 

correlated with measured RMR (R2= 0.50 to 0.61) and with each other (R2> 0.71).  

Because of the latter, Owen et al. was unable to identify which variable truly reflected 

“the active protoplasmic tissue that is thought to dictate RMR” (Owen et al., 1986, p.2). 

Nevertheless, body weight alone was used to derive the RMR prediction equation for 

several reasons. Body weight: 1) was highly related to RMR (R2= 0.55) and stepwise 

inclusion of additional variables did not improve the prediction of RMR, 2) was 

correlated with the other measures of body size and composition (R2> 0.71), 3) can be 

measured with a fair degree of accuracy, and 4) can be easily obtained. Indeed, results 

revealed this equation to be fairly accurate, as it predicted RMR within -236 to 487 

kcal/24 h of the measured RMR. In a follow-up study involving only men (n=60) of 

varying ages (18-82 yr) and BMI (20.4-58.7 6 kg/m2), Owen et al. (1987) reported similar 

results. Measures of body size and composition were highly correlated with measured 

RMR (R2= 0.52 to 0.61) and with each other (R2> 0.72). Again, body weight alone was 

used to derive the RMR prediction equation; and results revealed equation to be 

somewhat accurate, as it predicted RMR within -432 to 522 kcal/24 h of the measured 
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RMR. Following these two studies, Owen (1988) published a review suggesting that 

predicting RMR using body weight alone, without additional predictors, was acceptable.  

In a study with a much larger sample, the predictive power of body weight by 

itself was not supported. Specifically, Mifflin et al. (1990) investigated the accuracy of 

body weight alone, as well as with other measures, in predicting RMR based on a sample 

of 498 apparently healthy men and women of varying ages (19-78 yr) and BMI (17-42 

kg/m2). In this group, about half were classified as normal weight (129 men and 135 

women) and about half as obese (122 men and 112 women). Analysis revealed that body 

weight contributed to an R2 of 0.56. When additional variables (i.e., height, age, and sex) 

were added to the prediction equation, R2 increased substantially to 0.71, and thus, led the 

authors to conclude that adding height, age, and sex builds on the predictive power of 

body weight in determining RMR. In short, Mifflin et al. suggested that an RMR 

prediction equation using body weight with additional metrics is more accurate than one 

using body weight alone. 

Body weight and height. Given the limited predictive power of body weight 

alone, researchers have explored the relevance of adding other easily obtainable 

measures, such as height, to RMR prediction equations. Decades old research has shown 

that the use of height in addition to body weight when predicting RMR does not 

significantly improve the accuracy of the prediction (WHO/FAO/UNU, 1985). More 

recent research, however, has shown otherwise. For example, Lazzer et al. (2007) 

developed an RMR prediction equation from a random sub-sample of 91 RMR 

measurements in severely obese women (BMI 40-≥ 50 kg/m2), aged 19-60 yr. Data 

analysis revealed body weight as a significant determinant of RMR, explaining 54% of 
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the variance (R2=0.54). Height alone explained 31% of the variance (R2=0.31), and when 

combined with body weight, increased the variance to 66% (R2=0.66). Additionally, 

results revealed the correlation coefficient between predicted RMR and measured RMR 

to be R2= 0.70, with RMR predicted accurately in 60% of the subjects. In this study, the 

prediction accuracy was defined as the percentage of subjects whose predicted RMR 

were within ±5% of their measured RMR. The remaining 40% consisted of an 

overestimation in 25% of the subjects and an underestimation in 15%. Given the high 

degree of accuracy and use of easily obtainable anthropometric measures, the authors 

concluded that this prediction equation is appropriate for obese women. Nevertheless, 

because of the discordance in literature, it is unclear whether using height is additive to 

the predictive power of body weight when predicting RMR.  

Body weight and age. When body weight is used in combination with age, the 

accuracy of the prediction of RMR has been shown to improve (Livingston & Kohlstadt, 

2005; WHO/FAO/UNU, 1985). For instance, Livingston & Kohlstadt (2005) developed 

RMR prediction equations using body weight alone as well as body weight and age based 

on a sample of 655 men and women of varying ages (18-95 yr) and body weights (33-278 

kg). Analysis revealed that body weight alone contributed to an R2 of 0.67 for women 

and 0.73 for men. When age was added to the prediction equation, R2 increased to 0.71 

for women and 0.77 for men, resulting in improvements in RMR estimation. In this 

study, the contribution of height in addition to body weight and age to RMR variance was 

also investigated. Results showed that in terms of contribution to the explained RMR 

variance, the correlation was weak (e.g., 0.07 for women) between weight and age, but 

strong (e.g., 0.32 for women) between weight and height, thereby suggesting a significant 
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overlap in body weight and height. To this end, these results indicate that body weight in 

combination with age, but not height, will strengthen the accuracy of RMR prediction.  

Body weight, age, and sex. The inclusion of sex to body weight and age when 

predicting RMR has also been investigated. Muller et al. (2004) developed prediction 

equations from a sample of 388 males and 658 females with a mean age of 44.2 ± 17.3 yr 

and BMI of 27.1 ± 7.7 kg/m2. The prediction equations derived from this sample were 

then validated on another sample including 410 males and 649 females with very similar 

anthropometric data (age 44.1±17.4 yr, 26.8±7.1 kg/m2). Further, there were no 

significant differences between these two samples in any of the measured variables. 

Results revealed that 73% of the variance (R2= 0.73) in RMR was explained by body 

weight, age, and sex. In addition, when predicted RMR was compared with measured 

RMR, the mean deviation was 9.55 ± 205.41 kcal/day. Furthermore, data analysis 

revealed that deviations between measured and predicted RMR varied between BMI 

subgroups. For instance, the deviations were higher in the obese groups and lower in the 

nonobese groups. In light of this, the researchers suggested that RMR predictions can be 

improved with the use of BMI group-specific equations. Based on these results, authors 

concluded that prediction equations using body weight, age, and sex are acceptable when 

predicting RMR.  

Body weight, height, age, and sex. Two of the first RMR prediction equations 

developed and still commonly used today are the Harris-Benedict equations. Harris & 

Benedict (1918) developed RMR prediction equations from data gathered on 136 men, 

103 women, and 94 new-born infants. Two equations were developed, one for males and 

for females. The variables in these equations included body weight, height, and age. 
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Contrary to Livingston & Kohlstadt (2005), results indicated that both body weight and 

height had independent significance as bases for the prediction of RMR. Though these 

equations remain fairly popular, their level of accuracy has been questioned. The 

population studied by Harris & Benedict (1918) were subjects of normal weight and in 

presumably good health. Thus, it is of no surprise that when applied to overweight and 

obese populations, these equations have overestimated RMR (Feurer, Crosby, Buzby, 

Rosato, & Mullen, 1983; Livingston & Kohlstadt, 2005; Pavlou, Hoefer, & Blackburn, 

1985). In fact, regardless of the populations in which these equations have been applied, 

the Harris-Benedict equations have been shown to overestimate RMR by an average of 

≥15% (Cunningham, 1980, 1982; Daly et al., 1985; Mifflin et al., 1990; Owen, 1988; 

Owen et al., 1987, 1986). Considering the limited population in which the equations were 

derived from and their consistent overprediction, caution should be exercised when using 

the Harris-Benedict equations. Thus, other gender-based equations have since been 

developed, with some showing a fair degree accuracy. For example, Mifflin et al. (1990) 

also developed an RMR prediction equation using body weight, height, age, and sex. The 

authors found that body weight alone contributed to an R2 of 0.56 when predicting RMR, 

but when height, age, and sex were added to body weight, R2 increased substantially to 

0.71. Therefore, authors concluded that although body-weight prediction equations are 

simpler than equations that use body weight, age, height, and sex, they are less accurate 

in predicting RMR. 

Body Composition 

Although prediction equations that use body weight alone or body weight in 

combination with other easily obtainable measures are often preferred by facilities for 
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practical reasons, the use of body composition may increase the accuracy of the 

prediction. Body composition is comprised of two components: FFM and FM. Equations 

involving FFM, FM, and both FFM and FM as predictors of RMR are discussed in this 

section.  

FFM alone. The reflection of metabolically active tissue (FFM) in the body has 

been shown to be highly related to RMR and, thus, the best single predictor of RMR 

(Cunningham, 1980, 1982; Mifflin et al., 1990; Nelson et al., 1992; Ormsbee et al., 2009; 

Owen et al., 1987, 1986; Ravussin & Bogardus, 1989). Cunningham (1991) conducted a 

review of numerous studies examining the relationship between RMR and FFM 

(Bernstein et al., 1983; Cunningham, 1980; Dore, Hesp, Wilkins, & Garrow, 1982; 

Garrow & Webster, 1985; Kashiwazaki, Suzuki, & Inaoka, 1988; Mifflin et al., 1990; 

Owen, 1988; Ravussin & Bogardus, 1989). Examination of these studies including a wide 

range of adults with varying body weights confirmed a primary correlation between RMR 

and FFM. With FFM explaining ~85% of the individual variation in RMR, Cunningham 

concluded that FFM can serve as a reasonable surrogate for the representation of 

metabolically active tissue that continues to alter measurement in healthy individuals. 

Further, in obese women, there is a potential contribution of FM to RMR predictions, 

whereas in nonobese individuals, this individual contribution is not supported.  

FFM and FM. Research is consistent in that FFM is highly correlated with RMR  

and, thus, a significant predictor of RMR, but when FM is used as a covariate, changes in 

body composition are better accounted for. Research by Nelson et al. (1992), tested the 

relative contribution of FFM and FM to RMR. To determine this contribution, 

researchers collected data in a laboratory as well as combined data from published data 
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sets that included FFM, FM, and RMR for each subject. The RMR prediction equations 

were derived from a sample of 213 subjects, 81 of whom were lean and 132 obese 

(percent body fat >20% for males and >30% for females). These prediction equations 

were then tested on a data set of 1067 subjects with varying body weight (54.9-131.9 kg) 

and percent body fat (10.7-50.7%). Results revealed (1) the equations which include FFM 

as an independent variable were able to predict RMR within 3% of the measured RMR; 

(2) for adult subjects, RMR is linearly related to FFM; (3) FFM and FM can explain 75% 

of the variability in RMR, with FFM explaining the largest variability and FM explaining 

very little of the remaining variance; (4) FFM has a metabolic rate 6-7 times greater than 

that of FM; and (5) when adjustments are made for FFM when predicting RMR, the 

influence of sex is negated, however, when FM is included as a covariate, sex exhibits a 

significant effect on RMR. In short, RMR prediction equations that use FFM as an 

independent variable are accurate, but the equations that use both FFM and FM are 

valuable in accounting for changes in RMR that occur with a change in both FFM and 

FM. These changes in body composition are commonly seen throughout weight loss 

programs and should be accounted for when predicting RMR.  

More recent research by Lazzer et al. (2007) also investigated the contribution of 

FFM and FM to RMR. In agreement with other research, the major determinants of RMR 

in this study population were body weight (R2= 0.54) and FFM (R2=0.39). Interestingly, 

of the remaining variables studied, FM exhibited the strongest relationship with RMR 

(R2= 0.36), which can most likely be explained by the severely obese population being 

studied (BMI 40-≥ 50 kg/m2). Based on these correlations, an RMR prediction equation 

including both FFM and FM was developed and a <-2% difference was found between 
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predicted and measured RMR. Therefore, authors suggested that FM should be included 

with FFM when predicting RMR in obese cohorts.  

Body Weight-Based Equations vs. Body Composition-Based Equations 

Numerous studies have investigated the accuracy of RMR prediction equations 

using body weight and/or body composition. The debate of whether to use body weight 

or body composition when predicting RMR will be discussed in this section. 

In 1980, Cunningham tested the hypothesis proposed originally by Harris and 

Benedict (1918), using the subjects from their classic study, that metabolically active 

tissue (i.e., lean body mass or FFM) is the single best predictor of RMR. Of the variables 

tested, including sex, age, height, body mass, and estimated FFM, FFM was found to be 

the best single predictor of RMR. Cunningham found the influence of sex and age in the 

prediction equation with FFM to be negated and, thus, proposed a simple linear equation 

to best estimate RMR with the sole predictor being FFM.  

In a subsequent study by Owen (1988), the elimination of the influence of sex 

when predicting RMR using FFM was confirmed. Owen found that when using his body-

weight equations, gender differences along with differences in athletes and non-athletes 

emerged. An explanation for the gender differences resides in the differences in body 

composition between males and females. “As body mass increases, the relative 

proportion of stored triglycerides is greater in women than in men. Thus, per unit mass, 

relatively more inert triglycerides are stored subcutaneously as fat in women than in men, 

and the energy requirements per unit of fat mass are less than the energy requirements per 

unit of fat-free mass” (Owen, 1988, p. 506). Therefore, when RMR is corrected for FFM, 

the influence of sex is eliminated when predicting RMR. As for the differences in athletes 
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and non-athletes, when RMR is corrected for FFM, the influence of training is also 

eliminated. 

Despite the elimination of the influence of sex and training when predicting RMR 

using FFM, Owen suggests that body weight alone is a reasonable predictor of RMR. 

Although FFM was found to be highly related with RMR, it yielded values comparable to 

body weight alone. Thus, since body weight is a more easily and accurately measured 

variable than FFM, as well as highly correlated with RMR, it is the preferred predictor 

when estimating RMR.  

As previously mentioned, Mifflin et al. (1990) investigated the accuracy of prediction 

equations using body weight alone, as well as prediction equations including other 

variables (i.e., height, age, sex, FFM, BMI, percent ideal body weight, and waist-to-hip 

ratio). Analysis of these measured variables and their respective influences on RMR 

revealed that FFM was most highly correlated with RMR (R2= 0.64), with body weight 

and height also demonstrating high R2 values of 0.53 and 0.48. Although FFM was most 

highly correlated with RMR, the trained personnel and equipment required to measure 

FFM is impractical for most settings. Thus, for more practical use in many different 

settings, Mifflin et al. derived prediction equations including variables that are routinely 

measured by a physician (i.e., body weight, height, age, and sex). In the body-weight 

prediction equation, weight contributed to an R2 of 0.56. When height, age, and sex were 

added to the RMR prediction equation, R2 increased substantially to 0.71. Therefore, 

authors concluded that although RMR is determined largely by FFM, body weight is also 

highly correlated with RMR and, thus, a reasonable independent RMR predictor. Further, 

the addition of height, age, and sex increases the predictive power of the body weight 
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equation when predicting RMR and the use of commonly collected variables enhances 

the practicality of use of this equation in settings with limited resources.  

A limitation presented by Mifflin et al. (1990) was the measure of body composition. 

The Jackson-Pollack skinfold method was used because of its recommended use with 

large, heterogenous populations, however, trained personnel are required for accurate 

measurements and it has been suggested that the skinfold method should not be used to 

assess the body composition of obese individuals (Heyward & Stolarczyk, 1996). 

Therefore, while the Mifflin-St. Jeor equations accurately predicted RMR in normal-

weight and moderately overweight individuals, caution should be exercised when using 

these equations with obese individuals.  

Discussion 

A precise estimation of RMR is critical for calculating daily energy expenditure. This 

is of specific significance for health professionals prescribing realistic goals for daily 

energy intake in relation to the energy balance approach for successful weight 

management. Although RMR can be accurately measured via indirect calorimetry, this 

requires expensive equipment, trained personnel, and stringent pretest instructions that 

the client must adhere to. These requirements make it difficult for measurements to be 

obtained, and thus, RMR prediction equations are commonly used.  Research on RMR 

prediction equations has been investigated since the beginning of the 20th century. Upon 

review of this research, these prediction equations fell into one of two main categories: 

predictions based on body weight or predictions based on body composition.  

The prediction equations based on body weight either include prediction of RMR 

using body weight as an independent variable or body weight in combination with other 
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anthropometric or demographic variables. Anthropometric variables such as body weight 

and height, and demographic variables such as sex and age, are easily obtainable 

measures that do not require expensive equipment or trained personnel to collect. This 

makes body-weight prediction equations desirable in most settings. However, body 

weight does not account for specific changes in body composition, therefore, RMR 

prediction equations based on body weight may result in a decrease in accuracy of 

prediction when compared to equations that use body composition to predict RMR.  

RMR prediction equations based on body composition include FFM, FM, or both 

FFM and FM. The main advantage of using body composition-based equations to predict 

RMR is that with varying amounts of metabolically active tissue from person to person, 

differences observed in energy expenditure can be accounted for between individuals of 

the same body weight but with different chemical compositions. However, accurate 

measures of body composition can be difficult to obtain and require costly equipment, 

and thus, in most settings, body-weight based equations are preferred.  

In summary, the relationship between RMR and several variables were studied to 

determine the most accurate predictors of RMR. FFM and body weight were found to be 

highly correlated with RMR, and thus, significant predictors of RMR. While, in some 

cases, prediction equations using body composition were shown to be more accurate than 

equations using body weight, especially in obese cohorts, not all settings are equipped to 

obtain accurate body composition measurements to utilize these equations. Regardless of 

the prediction equation used, health professionals need to be aware of the under- or 

overprediction of selected RMR prediction equations, and account for this when 

prescribing energy intakes. Further studies are needed to investigate the accuracy of using 
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easily obtainable measures (e.g., waist and/or hip circumference) to first, predict body 

composition and second, RMR.  

Purpose 

Therefore, the purpose of the present study is to develop an equation which uses 

measures that are easily obtained but also highly correlated with body composition (i.e., 

waist circumference (WC), hip circumference (HC), waist-to-height ratio (WHR), and 

waist-to-hip ratio (WHtR)) to more accurately predict RMR in normal weight and 

overweight/obese individuals than previously developed equations.  

Limitations  

Limitations presented in this study include the test subjects self-report of adhering 

to the strict testing protocols. There is also a chance for human measurement error during 

the circumference measurements, although this error will be minimized by taking 

duplicate measures at each site and retesting if these measurements are not within 5 mm. 

Also, the same researcher will take all measurements. Additionally, the limitations of 

RMR prediction equations, in general, need to be considered. RMR predictions are 

limited to the study population in which the equation was derived from. Therefore, when 

determining the appropriate prediction equation to use, the population the equation will 

be applied to should be considered. Also, the accuracy of the equation should be noted 

and adjustments for prescription of energy intake should be made according to the 

specific metabolic reactions of the individual. RMR prediction equations can only 

provide estimates of RMR and, thus, for precise determination of RMR, direct metabolic 

measurement via indirect calorimetry should be used.  
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Delimitations 

 Delimitations presented in this study include the exclusion of children and adults 

aged  70 years. These populations were chosen to be excluded due to the significant 

changes in resting metabolic rate that occur with growth and development in children and 

aging in older adults. Similarly, people with diagnosed diseases were chosen to be 

excluded due to the varying effects that diseases have on resting metabolic rate. 

Operational Definitions 

 In this study, subjects will be defined as underweight if BMI < 18.5 kg/m2, 

normal weight (lean) if BMI 18.5-24.9 kg/m2, overweight if BMI 25.0-29.9 kg/m2, and 

obese if BMI ≥30.0 kg/m2. Additionally, the line of best fit is a trend line that best 

represents the estimated RMR from the predictive model and the line of identity is a line 

where y = x, or the predictive model perfectly estimates the measured RMR from indirect 

calorimetry. Further, standard error of estimation (SEE) is the average amount of error 

around the line of best fit and total error is the average amount of error around the line of 

identity. 
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II. THE INFLUENCE OF BODY CIRCUMFERENCE MEASUREMENTS AND 

BODY COMPOSITION ON ESTIMATING RESTING METABOLIC RATE IN 

HEALTHY ADULTS 

 More than two-thirds (70.7%) of adults in the United States are overweight or 

obese (Centers for Disease Control and Prevention, 2016). Obesity is a complex 

condition and is influenced by many factors including genetics, inactivity, diet, social and 

economic issues, and metabolic diseases (Hernandez & Blazer, 2006). In light of this, a 

substantial amount of research is currently being directed towards the education and 

treatment of obesity. Unfortunately, to date, there has been little evidence of success in 

resolving this severe public health crisis. However, one lifestyle treatment strategy, in 

particular, that has been successful is the prescription of daily energy intakes with 

consideration of daily energy expenditures to create appropriate caloric deficits for safe 

and optimal weight loss (Jensen et al., 2014).  

 Daily energy expenditure is comprised of three components: basal metabolic rate 

(BMR), thermic effect of feeding, and energy expenditure during physical activity 

(McArdle et al., 2015). Of these, the largest component, accounting for 60 to 80%, is 

BMR (Madden et al., 2016). BMR is the minimal amount of energy required to withstand 

vital life-sustaining functions, such as respiration, blood circulation, temperature control, 

and cellular growth (McArdle et al., 2015). Measurement of BMR, however, involves a 

fairly stringent testing protocol requiring a 12 to 18-hour fast prior to testing (McArdle et 

al., 2015) as well as an overnight stay on bedrest to eliminate the effect of physical 

exertion on metabolic expenditure. Thus, a well-accepted alternative to BMR is resting 
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metabolic rate (RMR). The protocol for measuring RMR is less stringent, more practical 

for the general population, and may be more suitable for clinical testing purposes, as it 

requires only a 3 to 4-hour fast prior to testing and produces only slightly higher values 

(Haugen et al., 2003; McArdle et al., 2015). Specifically, RMR values are approximately 

3-6% higher than BMR values (Kopelman, 2000). Therefore, RMR and BMR are often 

considered to be physiologically similar (Cunningham, 1991; McArdle et al., 2015) and, 

herein, RMR will be used.   

RMR can be accurately and reliably measured using indirect calorimetry systems, 

including whole-room calorimeters, doubly labeled water, and metabolic carts (Conway 

et al., 2002; King et al., 1999; Nieman et al., 2003; Phang et al., 1990; Sun & Hill, 1993; 

Tissot et al., 1995). Measurement of RMR using these systems, however, is time 

consuming and requires expensive equipment and trained personnel to operate. In 

addition, the testing environment must be well-controlled and the test subject must adhere 

to stringent testing protocols (i.e., ≥12-hour fast and ≥24-hour abstention from physical 

activity, alcohol, and caffeine) for accurate measurement (Horner et al., 2001). Thus, 

estimating RMR using prediction equations is more practical and often preferred over 

measuring, especially in settings with limited resources such as clinics and fitness 

centers. Additionally, health professionals including personal trainers, coaches, dietitians, 

physicians, and exercise physiologists benefit from these prediction equations as they 

offer a quick and inexpensive method of estimating RMR which can then be accounted 

for when prescribing appropriate caloric deficits for weight loss programs.  

Predicting RMR has been investigated since the early 1900s (Harris & Benedict, 

1918) and is still an active area of research today. To date, many different RMR 
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prediction equations exist, and though they differ in number and type of variables used, 

they all include some measure of body size or composition (fat mass (FM), and/or fat-

free mass (FFM)). Research is discordant on whether body weight-based or body 

composition-based RMR prediction equations are more accurate. For instance, Owen 

(1988) and Mifflin et al. (1990) investigated the accuracy of RMR prediction equations 

that used body weight alone, as well as equations that used body composition variables. 

While both studies found FFM to be the most highly correlated with RMR, they also 

agreed that body weight was highly correlated and a more easily obtainable measure. 

Therefore, authors concluded that when compared to body composition-based equations, 

body weight-based equations display a fair level of accuracy and are more practical for 

use in many different settings. 

 Body-composition based RMR equations also present a challenge in diverse 

populations due to the increase in measurement error exhibited in overweight/obese 

individuals (Bottaro, Heyward, Bezerra, & Wagner, 2002; Burton & Cameron, 2009; 

Mifflin et al., 1990). Due to the reduced accuracy presented in commonly used body 

composition assessments (i.e., skinfold measurements) in the obese population, more 

credible measures of body composition, such as dual-energy x-ray absorptiometry or air 

displacement plethysmography, are suggested for use with overweight and/or obese 

populations. However, the equipment required for these measures is not available in all 

settings and can be difficult for facilities to acquire. Thus, one more economic, easily 

administered and accessible method of measuring body composition is bioelectrical 

impedance analysis (BIA), which sends a low electrical current throughout the body to 

estimate total body fat (Yacoob Aldosky, Yildiz, & Hussein, 2018). The present study 
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will evaluate the ability to use a BIA device to estimate percent body fat and, therefore, 

aid in a simple and easy prediction of RMR with a body-composition based equation. 

Another inexpensive and simple method to estimate body fat is through simple 

anthropometric measurements. Specifically, waist circumference (WC) has been found to 

be closely associated with visceral adipose tissue and central adiposity (Turcato et al., 

2000) and measures of body mass index (BMI) and WC (Lee, 2016), waist-to-hip ratio 

(WHR; Pimenta et al., 2016) and waist-to-height ratio (WHtR; Swainson, Batterham, 

Tsakirides, Rutherford, & Hind, 2017) have been examined for use of surrogates to body 

fat percentage. If simple anthropometric measurements can be used as surrogates for 

body fat percentage when predicting RMR, this will eliminate the need for invasive 

methods (e.g., computed tomography or dual-energy X-ray absorptiometry [DXA] 

scans), expensive equipment (e.g., DXA or BOD POD), and trained personnel, and allow 

for more accurate predictions of RMR in diverse populations. 

Very few studies have examined the effect of body circumference measurements 

in estimating RMR (Karhunen et al., 1997; Khalaj Hedayati & Dittmar, 2011; Rodríguez 

et al., 2002). Karhunen et al. (1997) studied a population of obese, non-diabetic, 

Caucasian women and did not find waist and hip circumferences to be significant 

predictors of RMR. Consequently, Rodríguez et al. (2002) studied a population of 

Caucasian children and adolescents and found that WC accounted for additional 

significant variance in RMR in the obese children and adolescents, but only by 2.5%. 

Only one study, to our knowledge, found abdomen and hip circumferences to be 

signficiant predictors of RMR and included these measures in derived RMR prediction 

equations (Khalaj Hedayati & Dittmar, 2011). A limitation presented in Khalaj & 
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Dittmar’s (2011) study, however, is the sample of elderly participants (aged  60 years) 

of German origin in which the equations were derived from. This population, limited in 

both age and ethnicity, presents a challenge in the reliability of the derived equations to 

predict RMR in more diverse populations.  

In lieu of the observed limitations presented in previous research regarding body 

circumferences and RMR, there is a need to further investigate the effects of 

circumference measurements in estimating RMR in a more reflective population of the 

U.S. containing a wide variety of ages and ethnicities. Therefore, the primary purpose of 

the present study is to develop an equation which uses measures that are easily obtained 

but also highly correlated with body composition, such as WC, HC, WHR, and/or WHtR, 

to more accurately predict RMR in normal weight and overweight/obese individuals than 

previously developed equations. If RMR can be predicted with an equation in which the 

most complex measures require the use of an inexpensive and easily accessible tape 

measure, practitioners and various health professionals will be able to offer this 

estimation to patients quickly and easily with no additional burden. This quick and easy 

estimation could eliminate a barrier for many individuals who need an accurate 

estimation of RMR for the calculation of an appropriate energy balance but may not have 

the time or money to have this measurement obtained. Additionally, if physicians 

routinely include an estimation of RMR to patients, an opportunity will be presented for 

patients to ask questions and physicians to provide education on proper weight loss or 

weight management strategies. The addition of routine health counseling in physical 

exams, if needed, might be a step towards reducing current and/or preventing increasing 

obesity rates in the U.S.  
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Previously published RMR prediction equations focused on in this study were 

developed by Harris & Benedict (1918), Mifflin et al. (1990), Owen et al. (1986), Owen 

et al. (1987), Nelson et al. (1992), and Lazzer et al. (2010). These equations were chosen 

based on the diverse populations studied (i.e., nonobese and obese) as well as a 

combination of different variables used in the prediction equations (i.e., weight alone, 

weight with age and sex, weight with age, sex, and height, FFM alone, and FFM with 

FM). One common limitation presented in all of these studies was the lack of a cross-

validation within their own respective studies to determine the accuracy and reliability of 

predicting RMR with the developed models in an independent, random sample. Thus, a 

secondary purpose of the present study is to determine the accuracy of the derived model 

by cross-validating the predicted RMR values with the measured RMR values obtained 

from indirect calorimetry from the cross-validation sample. The predicted RMR values 

from the derived model will also be compared to the predicted RMR values from several 

previously published models in order to determine which model presents the least amount 

of total error, therefore, representing the most accurate and least biased equation. The 

equations evaluated are presented in Table 1.  

Methods 

Participants 

 Prior to initial data collection, a pilot study was conducted on eight participants. 

Overall, data was collected from 163 participants. After excluding participants from the 

pilot study and those who did not reach the steady-state criteria for RMR, 140 

participants were included in this study.  Participants included instructors, students, and 

employees recruited from Texas State University as well as residents in the greater part of 
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the San Marcos, TX area. Descriptive characteristics of the participants can be found in 

Tables 2 and 3. The population studied included 51 men and 89 women, ranging in age 

from 19 to 65 years (32.02 ± 1.05, mean ± SE). One individual was classified as 

underweight (BMI <18.5 kg/m2), 70 classified as normal weight (BMI 18.5-24.9 kg/m2), 

44 classified as overweight (BMI 25.0-29.9 kg/m2) and 25 classified as obese (BMI ≥ 30 

kg/m2). Additionally, ethnicity was identified by participants as follows: 80 Caucasian 

(57%), 29 Hispanic (21%), 18 African American (13%), 6 Asian (4%), and 7 Other (5%).  

Participants were screened for eligibility and excluded if <18 or >70 years of age; 

had experienced significant weight loss (>11 kg) in the past 3 months; were currently ill; 

or diagnosed with any major metabolic or organ disease (e.g., diabetes, cancer, heart 

disease, chronic respiratory diseases, autoimmune diseases, neurological diseases, stroke, 

thyroid dysfunction), and/or any other health issues that may influence RMR.  

  The Texas State University Institutional Review Board approved the research 

protocol for this study prior to subject recruitment and data collection. An electronic 

comprehensive medical health appraisal was completed prior to the visit and sent via 

email to the test administrator for review of inclusion and exclusion criteria to determine 

study eligibility. Pre-test instructions were also sent with these forms to be followed by 

the subjects including: ≥2-hour abstention from nicotine, ≥12-hour fast (water acceptable 

until 3 hours before scheduled time of visit), ≥24-hour abstention from physical activity, 

caffeine, and alcohol consumption, avoiding applying any lotions or skin creams before 

testing, and obtaining ≥6 hours of sleep the night before the test. Subjects were also 

encouraged to eat a well-balanced meal (i.e., a meal including carbohydrates, fats and 

protein) around 6-8 p.m. the evening before the study and bring a snack (e.g., a granola 
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bar or sandwich) with them to consume after the tests. On the day of the visit to the 

laboratory, procedures were verbally explained to the participant and any 

questions/concerns were discussed. If the participant wished to participate, then he/she 

signed the consent form. Additionally, participants signed a document stating they 

adhered to study pre-test instructions, and all participants in the study reported adherence 

to the instructions. Measurements obtained in the Exercise Physiology Laboratory, in 

chronological order, were as followed: height and weight; indirect calorimetry (oxygen 

consumption (VO2), carbon dioxide production (VCO2), and respiratory quotient (RQ)); 

body composition; and waist and hip circumference. Anthropometric measures (i.e., 

height, total body weight, fat percentage, lean percentage, weight of body fat, weight of 

fat-free mass, waist and hip circumference) and measured RMR (kcal/day) were provided 

to the participants after the visit for their own personal records. 

Height and Weight 

Participants were instructed to remove their shoes and both height and weight 

were measured on a digital scale with an integrated stadiometer (Seca 703 S Wireless 

Column Scale with Integrated Stadiometer, Seca GmbH & Co. KG, Hamburg, Germany). 

Height was measured to the nearest 0.1 cm and weight to the nearest 0.5 kg. The body 

weight (kg) and height (cm) obtained from the scale were used to calculate the 

participant’s body mass index (BMI) in kg/m2 and then categorize population based on 

health risk (American College of Sports Medicine (ACSM), 2018).  

Oxygen Consumption, Carbon Dioxide Production, and Respiratory Quotient.  

 RMR was measured using an open-circuit indirect calorimetry system 

(ParvoMedics TrueOne® 2400, Sandy, UT). A gas and flow calibration were performed 
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every 4 hours during testing, as recommended by the manufacturer (ParvoMedics 

TrueOne® 2400, Sandy, UT). The testing room was isolated aside from the participant 

and administrator. Additionally, the temperature of the room was controlled at 20-25℃, 

the noise level was kept to a minimum, and the room was dimly lit. Upon the 

participant’s arrival to the lab, the equipment and procedures were explained, and any 

questions regarding the test were answered. After signing the consent form, the 

participant was fitted with a facemask (7450 Series Reusable V2 Oro-Nasal Mask, Hans-

Rudolph Inc., Shawnee, KS) that covered their mouth and nose. The participant was 

required to wear the facemask for the duration of the resting metabolic rate measurement. 

While wearing the facemask, the participant was instructed to lie motionless in a 

comfortable supine position on a padded table. Further, the participant was instructed to 

relax as much as possible while remaining awake and was given a pillow and/or blanket 

if needed.  

The resting measurement was approximately 40 minutes in duration and the 

facemask was worn the entire time. Because the participants walked to the testing site 

from the parking lot, the first 30 minutes were used as a rest period to allow adequate 

recovery from physical activity. Following the 30-minute rest period, VO2 and VCO2 

were measured and recorded for 10 minutes with the final 5 minutes of data used for 

steady-state analysis. Steady-state was reflected as achievement of a 5-minute period with 

≤10% coefficient of variation (CV) for VO2 and VCO2, in accordance with recommended 

protocol (Compher, Frankenfield, Keim, & Roth-Yousey, 2006). CV was calculated as: 

CV= [(Standard Deviation of collected VO2/Mean) x 100]. If the CV was >10% after 5 

minutes, then another minute was added until a 5-minute continuous period with ≤10% 
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CV for VO2 and VCO2 was achieved.  

During the measurement, the metabolic cart recorded averages of variables (VO2, 

VCO2, and RQ) and displayed these averages on the computer display screen every 30 

seconds. During data collection, the test administrator entered the recorded VO2, VCO2, 

and RQ into an Excel sheet every 30 seconds to determine the CV. RMR was calculated 

from the average 5-minute steady-state VO2 and caloric equivalent (determined by the 

average 5-minute steady-state RQ) and then extrapolated to 24-hour RMR using the 

following equation: RMR = (average VO2 x average caloric equivalent x 1440 min/day). 

Test results were then printed and the RMR was recorded by the administrator for later 

analysis.  

Body Composition 

 Determination of Body Composition by Air Displacement Plethysmography. 

Body composition was assessed via air displacement plethysmograph (BOD POD® 

Express, COSMED USA, Inc., Concord, CA). The air displacement plethysmograph 

requires an extensive calibration process which was completed within 24 hours of testing 

a participant and the integrated digital scale was calibrated at least once a week. 

Additionally, participants were instructed to wear proper attire for the body composition 

testing: For men, either, a form-fitting swim suit or single-layer compression shorts 

without padding and, for women, either a form-fitting swim suit, or single-layer 

compression shorts without padding and a single-layer jog bra without padding. The 

participant also wore a swim cap during testing to compress the hair on the head. Before 

the measurements were taken, a short volume calibration was performed by placing a 

company-issued, certified 50-Liter cylinder in the air displacement plethysmograph. 
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After the volume calibration, one of the five two-compartment density models was 

selected by the test administrator. Determination of the selected model was based on the 

participant’s ethnicity, sex, and/or BMI (Table 4). Next, the participant’s sex, age (years), 

and height (feet and inches) was entered into the BOD POD kiosk. The participant was 

instructed to change into the proper attire, remove any glasses, jewelry, and shoes, and 

step on the scale to be weighed. After obtaining the weight measurement, the participant 

was instructed to enter the air displacement plethysmograph for three, 40-second volume 

measurements. If for any reason the participant wanted to end the test early, the 

participant was made aware of the emergency stop button that would immediately open 

the chamber door and terminate the test. While inside the chamber, the participant was to 

limit movement as much as possible, breathe normally, and sit back comfortably. The test 

administrator opened and closed the air displacement plethysmograph door between each 

test, but the participant remained inside the chamber the entire time. After the three 

measurements were taken, the participant was then able to exit the air displacement 

plethysmograph, gather belongings, and change into his/her preferred attire. 

Measurements recorded and used for analysis included percent body fat, FFM in pounds, 

and FM in pounds.  

Determination of Body Composition by Bioelectrical Impedance Analysis (BIA). 

Body composition was also measured using a bioelectrical impedance analysis monitor 

(Fat Loss Monitor, HBF-306C, OMRON Healthcare Inc., Bannockburn, IL). Prior to 

testing, the participant was asked if they had a pacemaker or other implanted device and 

if so, the participant did not participate in BIA, as recommended by the manufacturer. For 

all participating subjects, the athletic level on the monitor was set to normal. The test 
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administrator manually entered the participant’s measured height (cm) and weight (kg) 

along with their age (years), and sex into the monitor. The participant then placed both 

hands on the monitor by holding the grip electrodes, stood with both feet slightly apart, 

and held their arms straight out at a 90-degree angle to their torso. The administrator then 

pressed the start button on the monitor. Within approximately 10 seconds, the body fat 

percentage was displayed on the monitor screen and the body fat percentage was 

recorded by the administrator.  

Waist and Hip Circumference 

 During the waist measurement, the participant stood with arms at their sides, feet 

together and abdomen relaxed (i.e., avoiding sucking in the abdominal wall). A 

horizontal measure was taken at the narrowest part of the torso (above the umbilicus and 

below the xiphoid process). During the hip measurement, the participant stood with their 

feet together and a horizontal measure was taken at the maximal circumference of the 

buttocks (ACSM, 2018). Both measurements were taken according to ACSM’s protocol: 

The tape was placed directly over the skin surface for the waist and over the spandex-like 

material for the hip, without compressing the subcutaneous adipose tissue; A Gulick-type 

spring-loaded tape measure (Gulick II Tape Measure Model 67020, FitnessMart, Gays 

Mills, WI) was used for both measurements with the handle extended to the same mark, 

indicating proper tension, each trial; Duplicate measures were taken at each site and 

retested if these measurements were not within 5 mm; The measurement sites were 

rotated through to allow time for skin to regain normal texture (ACSM, 2018). Test 

results were recorded by the administrator. 
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Statistical Analysis 

 This study developed a model to estimate RMR (kcal/day). Observations were 

randomly divided into two samples: a validation (n = 70) and cross-validation (n = 70) 

sample. Prior to initial data collection, a pilot study was conducted in order to determine 

the test-retest reliability of the RMR measures. This pilot study also examined the time 

constraints and likelihood of undue participant discomfort or stress during the testing 

measurements. Based on the pilot study data from eight participants, the Chronbach 

Alpha coefficient for the RMR measures was 0.96 for two trials. Using the Spearman-

Brown formula, the estimated test-retest reliability for one trial is 0.92. Using a criteria of 

0.80 to define high reliability, it was determined that one measure of RMR would be 

highly reliable; consequently, each subsequent participant’s RMR was measured only 

once. The eight participants tested during the pilot study were not included as participants 

in either the derivation or cross-validation samples. 

The validation sample was used to develop the prediction models for estimating 

RMR. The models were then applied to the cross-validation sample to determine the 

prediction accuracy. Other published models for estimating RMR were also applied to the 

cross-validation sample to compare the accuracy of the models derived in this study with 

those of previous investigations. The derived models and raw data were compared to the 

models in Table 1. All models were also compared to the measured values obtained via 

indirect calorimetry.  

 Statistical analyses were performed using Stata Software, version 15.0 (StataCorp 

LLC, College Station, TX). Multiple regression utilizing a step-down ordering of 

variables was used to develop generalized equations for predicting RMR, which was the 
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dependent variable. The independent variables were: weight (kg), height (cm), BMI 

(kg/m2), age (yr), sex, ethnicity, WC (cm), HC (cm), WHR (WC/HC), WHtR 

(WC/height), measurements from the BOD POD including FFM (kg), FM (kg), and 

percent body fat, and percent body fat estimated from BIA. Homogeneity of intercept and 

slope between men and women were also examined. Additionally, a multivariate analysis 

of variance (MANOVA) indicated no significant mean differences between the two 

samples for the dependent or independent variables.  

 Variables added to the model that prove to be significant predictors (p < 0.05) 

remained in the model as the other variables were tested. Analysis of partial F-tests for 

testing full and restricted models was used to determine the contribution and significance 

of each variable and second-order partial correlations were calculated for the final 

predictors included in the derived equation. Data are reported as mean  SE and 

statistical significance set at p ≤ 0.05.  

Results 

The first stage of the analysis was to divide the 140 participants tested into two 

randomly selected samples of 70 participants each. Participants were assigned a random 

number for sorting, then assigned another random number for selection into either the 

derivation sample or cross-validation sample. MANOVA indicated no significant mean 

differences between the two samples for the dependent or independent variables, Wilk’s 

Lambda = 0.89, F(12, 125) = 1.35, p = 0.20.  The descriptive characteristics of the two 

samples are summarized in Tables 2 and 3. In addition, based on BMI, approximately 

50% of participants were normal weight, 31.4% were overweight, 17.9% were obese, and 

0.7% were underweight. Two of the participants did not undergo BIA testing to estimate 
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percent body fat, as recommended by the manufacturer, due to having a pacemaker or 

implanted device.   

 Since each participant was assigned to one and only one sample, all variables met 

the assumption of independence. In the derivation sample, the Shapiro-Wilk test for 

normality indicated that the distribution of the measures of the dependent variable, RMR, 

was not significantly different from normal, z = 0.77, p = 0.22, indicating that RMR met 

the assumption of normality. The Pearson Product-Moment correlations between RMR 

and the independent variables are reported in Table 5. To develop the derived model for 

estimating RMR, the regression analysis began with FFM, as this was the predictor 

variable with the highest correlation with RMR (r = 0.77), and the remaining variables 

were added to the model separately. Each variable was added or deleted from the model 

based on its separate contribution in accounting for significant additional variation in 

RMR. 

 FFM (kg) was a significant predictor of RMR, F(1, 68) = 100.91, p < 0.0001, R2 

=  0.60, standard error of estimation (SEE) = 191.4 kcal/day. Body weight (kg) was also a 

significant additional predictor, t(67) = 2.20, p = 0.031.  With both FFM and body weight 

as predictors, the model R2 increased to 0.62 and SEE decreased to 186.2 kcal/day. To 

test for homogeneity of intercepts between men and women, sex was added to the model, 

and accounted for significant additional variation in RMR, t(66) = 2.42, p = 0.018. 

However, when sex was added as a predictor, FFM no longer accounted for significant 

additional variation in RMR, t(66) = 1.12, p = 0.27; consequently, FFM was removed as 

a predictor variable. With body weight and sex as the two predictors, the model R2 

increased to 0.65 and SEE decreased to 180.1 kcal/day. To test for homogeneity of slopes 
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between men and women, the interaction between body weight and sex was added to the 

model. This predictor did not account for significant additional variation in RMR, t(66) = 

0.70, p = 0.486, and was dropped from the model. This analysis indicates that body 

weight is a significant predictor of RMR, but FFM does not account for additional 

variation in RMR after sex is added to the model. Further, the addition of sex to the 

model indicates that men and women have significantly different estimates of RMR, but 

the slopes of the lines-of-best-fit between males and females do not significantly differ. 

 In the next stage of the analysis, after body weight and sex were included in the 

model, WC (cm) was added as the next predictor, and accounted for significant additional 

variation in RMR, t(66) = 2.05, p = 0.044. With body weight, sex, and WC as predictors, 

the model R2 increased to 0.66 and SEE decreased to 176.0 kcal/day. After these three 

predictors were included in the model, the following variables were added separately, but 

failed to account for significant additional variation: height (cm), t(65) = 0.85, p = 0.400, 

BMI (kg/m2), t(65) = 0.84, p = 0.404, HC (cm), t(65) = 0.20, p = 0.839, WHR (cm), t(65) 

= 0.12, p = 0.903, WHtR (cm), t(65) = 0.71, p = 0.477, FM (kg), t(65) = 0.40, p = 0.689, 

percent body fat estimated from BOD POD analysis, t(65) = 0.03, p = 0.976, percent 

body fat estimated from BIA, t(65) = 1.64, p = 0.106, and ethnicity t(65) = 0.89, p = 

0.377. 

 The last predictor to be added to the model and tested was age (years). Age 

accounted for significant additional variation in RMR after body weight, sex, and WC 

were in the model, t(65) = 2.57, p = 0.012. In addition, after age was added as a predictor, 

WC no longer accounted for significant additional variation, t(65) = 1.01, p = 0.317, and 

was dropped from the model. The addition of age as a predictor, along with body weight 
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and sex, increased R2 to 0.68 and SEE decreased to 173.0 kcal/day. To test for the 

homogeneity of slopes between men and women based on the relationship between age 

and RMR, the interaction between age and sex was added to the model. This predictor 

did not account for significant additional variation in RMR, t(65) = 1.59, p = 0.116, and 

was dropped from the model. Also, a test for a quadratic relationship between RMR and 

body weight indicated that the relationship between these two variables is linear and not 

quadratic t(65) = 0.45, p =  0.651. Lastly, a test for a quadratic relationship between RMR 

and age indicated that the relationship between these two variables is also linear and not 

quadratic t(65) = 1.14, p =  0.258. 

 The generalized prediction equation that resulted from the preceding analysis is: 

RMR (kCal/day) = 843.11 + (8.77 x body weight, kg) + (228.54 x sex, male = 1; female 

= 0) - (4.23 x age, years). The regression coefficient for sex indicates that for any persons 

with the same body weight and age, men have an average RMR 228.54 kcal/day higher 

than women. Similarly, the regression coefficient for age indicates that for any persons 

with the same body weight and sex, RMR will decrease by an average of 4.23 kcal/day 

per year. Further, the sex (male = 1, female = 0) can be combined with the coefficients to 

simplify the equation and yield different coefficients for men and women: 

For men: RMR (kCal/day) = 1071.65 + 8.77 (wt) - 4.23 (age) 

For women: RMR (kCal/day) = 843.11 + 8.77 (wt) - 4.23 (age) 

 To demonstrate the contribution of each predictor within the derived equation, 

second-order partial correlations were calculated for the variables in the equation. These 

correlations represent the association between each predictor and RMR, controlling for 

the relationship between RMR and other predictors. The second-order correlation for 
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body weight was 0.70 (p < 0.001), sex was 0.51 (p < 0.001), and age was -0.30 (p = 

0.012). This result indicates that body weight was the most substantial independent 

predictor of RMR, while sex was more substantial than age.  

In the last stage of the analysis, the derived model was applied to the cross-

validation sample to test for accuracy and validity. In the cross-validation sample, RMR 

estimated from the derived model was moderately related to measured RMR, with R2 = 

0.54, SEE = 199.1 kcal/day, and total error = 198.0 kcal/day. This relationship is 

illustrated in Figure 1. The predicted values from the newly derived equation and 

previously published RMR prediction equations by Nelson et al. (1992), Harris & 

Benedict (1918), Owen et al. (1986), Owen et al. (1987), Mifflin et al. (1990), and Lazzer 

et al. (2010) were also compared to the measured values obtained in the cross-validation 

group via indirect calorimetry to determine the prediction accuracy of each model. 

Nelson et al. (1992) published two equations which were evaluated: one equation 

includes only FFM and we have labeled this equation Nelson et al. (1), and the other 

equation includes both FFM and FM and we have labeled this equation Nelson et al. (2). 

Additionally, the Owen et al. equation examined includes the Owen et al. (1986) RMR 

prediction equation for women as well as the Owen et al. (1987) RMR prediction 

equation for men. The relationship between measured and estimated RMR from these 

equations are illustrated in Figures 2 through 7. A comparison of the cross-validation 

statistics from all models evaluated is presented in Table 6. Cross-validation of the other 

published models for estimating RMR were similar to those of the derived model in the 

current study, with R2 ranging from 0.47 to 0.57, and SEE ranging from 192 to 213 

kcal/day; however, the total error in the derived equation (198 kcal/day) was lower than 
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any of the other published models, which ranged from 212 to 1311 kcal/day. 

Additionally, several of the other published models considerably over-estimated RMR, 

and the error increased as RMR increased.  

Discussion 

 In the present study, the derivation sample was used to develop a new RMR 

prediction equation which was then validated using the cross-validation sample. The 

newly derived equation includes simple anthropometric and demographic measures (body 

weight, age and sex), is applicable to a diverse population, and exhibited less total error 

than previously published models.  Variables collected for the derivation of the new 

equation included: body weight, height, age, sex, ethnicity, BMI, WC, HC, WHR, WHtR, 

measurements from the BOD POD including FFM, FM, and percent body fat, and 

percent body fat estimated from BIA. After analysis, predictors that accounted for 

significant variation in RMR were body weight (R2 = 0.70), sex (R2 = 0.51), and age (R2 

= -0.30). Initially, simple anthropometric measurements such as WC, HC, WHR, and 

WHtR were collected with the intent to be used as surrogates for body fat percentage 

when predicting RMR. However, these findings suggest that FFM was a significant 

predictor of RMR as a sole variable (R2= 0.60), but when body weight and sex were 

included in the prediction, FFM no longer accounted for significant additional variation. 

In lieu of these data, body composition measurements are unnecessary for accurate 

predictions of RMR and, thus, collection of simple measures of WC and HC and/or more 

complex measures (e.g., body fat percentage via dual-energy X-ray absorptiometry or air 

displacement plethysmography) might not be as useful as body weight and sex when 

predicting RMR.  
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The elimination of body composition measurements when predicting RMR also 

reduces the concern for accurate measures of body composition for this purpose, 

especially in the overweight/obese populations. Further, the inclusion of simple and 

commonly collected anthropometric and demographic variables (i.e., body weight, sex, 

and age) enhances the feasibility to accurately predict RMR in not only clinical settings, 

but also by practitioners in the field. Expensive equipment and trained personnel are not 

required for these simple measurements and, thus, personal trainers, coaches, dietitians, 

physicians, exercise physiologists, and other health professionals can effortlessly and 

accurately predict RMR with the use of a scale using the newly derived equation. 

The equations derived by Mifflin St.-Jeor (1990) had the highest coefficient of 

determination observed (R2 = 0.57) and a smaller SEE than the derived equation, but 

greater total error compared to the derived equation. This result indicates greater 

systematic error than the derived model, and as seen in Figure 2, the estimated values 

from this equation included noticeable overestimation of RMR. This overestimation 

could possibly be due to some demographic differences between the sample in the 

Mifflin et al. (1990) study and the sample in the present study. The mean age in the 

Mifflin et al. (1990) sample (44.5 ± 14.1) was more than ten years older than the cross-

validation sample in the present study (32.02 ± 12.41). Studies have shown significant 

declines in RMR with increasing age (Bosy-Westphal et al., 2003; Luhrmann, Edelmann-

Schafer, & Neuhäuser-Berthold, 2010) and, thus, the derivation of the Mifflin St-Jeor 

equations from an older study population could explain why those equations 

overestimated RMR in younger participants from the cross-validation sample. 
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As seen in Figure 2, the equation derived by Harris & Benedict (1918) had a 

similar correlation to the derived equation (R2 = 0.55) and smaller SEE, but greater total 

error. In agreement with previous research (Daly et al., 1985; Frankenfield, 2013; Mifflin 

et al., 1990; Owen et al., 1987; Willis et al., 2016), estimation of RMR from the Harris-

Benedict equation resulted in considerable overestimation of RMR. Additionally, the line 

of best fit for this model suggests the higher the measured RMR, the greater the 

overprediction. A possible explanation for this widely observed overprediction is the 

significant increase in the obesity rates (Hales, Carroll, Fryar, & Ogden, 2017) and life 

expectancy of humans in the U.S. adult population observed from the 1900s to present 

(Arias, Heron, & Xu, 2017). In lieu of this, the Harris-Benedict equation is not reflective 

of the current U.S. population and, therefore, it is difficult to generalize the Harris-

Benedict equation to this population.  

The Owen et al. equation had the lowest coefficient of determination compared to 

the derived equation (R2 = 0.47) and greater SEE and total error. This indicates greater 

systematic error in the Owen et al. equation. As seen in Figure 5, the Owen et al. equation 

mostly underestimated lower measured RMR values and mostly overestimated higher 

measured RMR values. So, although the Owen et al. equations use only body weight, and 

thus, are simpler than the proposed equation, caution should be used when predicting 

RMR in individuals on either extreme end of the weight spectrum due to the increased 

error in the prediction model.  

The Nelson et al. equations produced almost identical correlation values and SEE 

to the derived equation, but they both exhibited greater total error. Although the 

difference in total error is only approximately 32 kcal/day, the derived equation exhibits 
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an advantage over the Nelson et al. equations because of the simple variables included 

(body weight, age, and sex), whereas, the Nelson et al. equations include more complex, 

body composition variables (FFM and/or FM). Additionally, the Nelson et al. (2) 

equation seemed to have a similar trend as the Owen et al. equation and underestimates 

lower RMR values and overestimates higher RMR values.  

The Lazzer et al. equation had an almost identical coefficient of determination (R2 

= 0.54) and SEE (198.2 kcal/day) with the derived equation, however, the total error was 

inappropriate for accurate estimation (1311.2 kcal/day). As seen in Figure 6, the Lazzer et 

al. equation overestimated RMR in almost 100% of the participants. This large systematic 

error could be due to the severely obese (BMI  30 kg/m2) sample from which that 

equation was derived. Additionally, the method in which body composition was 

measured could also have an effect on the results. Lazzer et al. (2010) measured body 

composition via BIA and estimated the participant’s FFM via prediction equations. 

Previous research has suggested that BIA fail to work properly in obese participants due 

to the increased amount of total body water and extracellular water present in obese 

individuals (Coppini, Waitzberg, & Campos, 2005) and, thus, this may present a 

limitation in the Lazzer et al. equation which uses FFM estimated from BIA.   

In summary, the predictive value of the derived equations was very similar in 

some ways when compared to the six previously published equations, however, the 

derived equation had the lowest total error, thus, representing the most accurate and least 

biased equation. One strength of the newly developed equation was the sample studied, 

which included a wide variety of ages (19 to 65 years) and BMI (50% normal weight, 

31.4% overweight, and 17.9% obese), thus reflecting a diverse population and allowing 
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for generalizability of the model. Further, the assessment of the predictive performance of 

the derived model using cross-validation on an independent, random sample (the cross-

validation sample) confirmed the derived equation can be generalized to an independent 

data set. The previously published models examined did not report cross-validation and, 

therefore, there is no published data on how accurate the equations would predict RMR in 

a random, independent sample. Lastly, the simple demographic (sex and age) and 

anthropometric (body weight) variables included in the derived equation are currently 

routinely collected in both field and clinical settings and, thus, present no additional 

challenge for physicians or personal trainers to obtain.  

Limitations  

The limitations of this study must also be considered. Prediction equations offer a quick 

and easy approximation of energy expenditure, but direct metabolic measurement via 

indirect calorimetry is the preferred method for precise and accurate measures of RMR. 

Additionally, the derived equation resulted in an R2 of 0.54, indicating that only 54% of 

the variance in RMR can be accounted for by the variables included in the newly derived 

equation. Consequently, 46% of the variability in RMR is unaccounted for and cannot be 

explained by the variables examined in this study. Future studies might consider 

examining additional variables, such as diet, fitness/physical activity level, and/or aerobic 

capacity, to determine if those variables may account for some of the unexplained 

variability presented in RMR in this study. Also, our sample population was mainly 

Caucasian (57%) so future studies might consider the effect of race/ethnicity on energy 

expenditure and collect data from a more racially diverse sample. 
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Tables 

Table 1    

    

Resting Metabolic Rate (kcal/day) Prediction Equations Evaluated     

Reference  Population Tested Sex Prediction Equation 

Derived Equation Men (n = 27) and women (n = 43) Men 

Women 

1071.65 + 8.77 (wt) - 4.23 (age) 

843.11 + 8.77 (wt) - 4.23 (age) 
    

Lazzer et al. (FFM) (2010) Obese (n = 7, 368) Men 20 (FFM) - 2 (age) + 830 

  Women 20 (FFM) - 2 (age) + 841 

    
Nelson et al. (FFM) (1992) Nonobese (n = 81) and obese (n = 132)  Men/Women 1265 + 93.3 (FFM)* 

    
Nelson et al. (FFM & FM) 

(1992) 

Nonobese (n = 81) and obese (n = 132)  Men/Women 108 (FFM) + 16.9 (FM)* 

    

Mifflin-St. Jeor (1990) Normal weight (n = 264) Men 10 (wt) + 6.25 (h) - 5 (age) + 5 

 and obese (n = 234) Women 10 (wt) + 6.25 (h) - 5 (age) - 161 

    

Owen et al. (1987) Lean and obese (n = 60) Men 879 + 10.2 (wt) 
    

Owen et al. (1986) Lean and obese (n = 44) Women 795 + 7.18 (wt) 

    
Harris & Benedict (1918) Men (n = 136) and women (n = 103) Men 

Women 

66.5 + 13.75 (wt) + 5.0033 (h) - 6.76 (age) 

655 + 9.56 (wt) + 1.85 (h) - 4.68 (age) 

Note. Wt= weight (kg); h= height (cm); age (yr); FFM= fat-free mass; FM= fat mass. 

*Indicated result converted from kJ/day to kcal/day using 4.184 equivalency.   
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Table 2       

       

Anthropometric Data and Resting Metabolic Rate from Indirect Calorimetry     

  All (n = 140) Derivation Group (n = 70) Cross-Validation Group  (n = 70) 

Age (yr) 32.02 ± 1.05 33.8 ± 1.52 [19 - 65] 30.24 ± 1.43 [19 - 64] 

Height (cm) 169.19 ± 0.81 167.82 ± 1.18 [150.6 - 193] 170.57 ± 1.10 [151.6 - 193] 

Weight (kg) 75.34 ± 1.53 75.8 ± 2.43 [44.4 - 164] 74.88 ± 1.86 [47.55 - 123.1] 

WHtR (cm) 0.46 ± 0.01 0.47 ± 0.01 [0.36 - 0.75] 0.45 ± 0.01 [0.37 - 0.68] 

BMI (kg/m2) 26.15 ± 0.43 26.72 ± 0.72 [18.26 - 54.42] 25.59 ± 0.47 [19.05 - 37.58] 

WC (cm) 78.14 ± 1.05 78.94 ± 1.65 [56.4 - 130.65] 77.34 ± 1.29 [60.65 - 122.8] 

HC (cm) 101.34 ± 0.79 101.59 ± 1.32 [81.3 - 151.75] 101.10 ± 0.89 [88.45 - 119.6] 

WHR (cm) 0.77 ± 0.01 0.77 ± 0.01 [0.64 - 0.96] 0.76 ± 0.01 [0.65 - 1.09] 

%BFADP 27.89 ± 0.80 29.30 ± 1.12 [11.1 - 49.7] 26.48 ± 1.14 [3.9 - 43.9] 

%BFBIA 25.05 ± 0.76a 26.49 ± 1.09 [8.1 - 49.5] 23.56 ± 1.03 [5.7 - 38.8]b 

FM (kg) 21.47 ± 0.92 23.04 ± 1.48 [7.5 - 81.7] 19.89 ± 1.08 [2.9 - 46.6] 

FFM (kg) 53.88 ± 1.07 52.89 ± 1.49 [33.9 - 82.7] 54.88 ± 1.54 [32.2 - 85] 

RMRM (kCal/day) 1462.81 ± 24.93 1443.11± 35.78 [623.61 - 2091.2] 1482.506 ± 34.81 [882.46 ± 2331.07] 

Note. MANOVA indicated no significant mean differences between the two samples for the dependent or independent  

variables. Values are mean ± SE [minimum - maximum values]. WHtR = waist-to-height ratio; BMI = body mass index; 

WC = waist circumference; HC = hip circumference; WHR = waist-to-hip ratio; %BFADP = percentage  

body fat measured from air displacement plethysmography; %BFBIA =  percentage body fat measured 

from bioelectrical impedance analysis; FM =  fat mass; FFM = fat free mass; RMRM = measured 

resting metabolic rate. 

       

aBIA data was not collected for two participants due to implanted devices and, therefore, n = 138. b n = 68.  
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Table 3     

     

Anthropometric Data and Resting Metabolic Rate from Indirect Calorimetry for Men and Women in Different Groups 

  Derivation Group Cross-Validation Group  

 
Men (n = 24) Women (n = 46) Men (n = 27) Women (n = 43) 

Age (yr) 32.79 ± 1.98 34.33 ± 2.07 29.63 ± 2.09 30.63 ± 1.94 

Height (cm) 177.25 ± 1.41 162.89 ± 1.07 179.98 ± 1.01 164.66 ± 0.83 

Weight (kg) 86.05 ± 2.87 70.45 ± 3.12 86.96 ± 2.92 67.30 ± 1.54 

WHtR (cm) 0.48 ± 0.01 0.47 ± 0.01 0.47 ± 0.01 0.44 ± 0.01 

BMI (kg/m2) 27.45 ± 0.94 26.34 ± 0.98 26.83 ± 0.87 24.80 ± 0.52 

WC (cm) 84.25 ± 2.08 76.16 ± 2.17 84.20 ± 2.42 73.03 ± 1.03 

HC (cm) 101.72 ± 1.59 101.52 ± 1.84 101.59 ± 1.45 100.80 ± 1.13 

WHR (cm) 0.83 ± 0.01 0.75 ± 0.01 0.83 ± 0.02 0.72 ± 0.01 

%BFADP 23.70 ± 1.49 32.22 ± 1.33 19.69 ± 1.73 30.74 ± 1.08 

%BFBIA 19.83 ± 1.37 29.97 ± 1.22 17.33 ± 1.56 27.67 ± 0.95a 

FM (kg) 20.99 ± 1.89 24.11 ± 2.02 18.01 ± 2.15 21.08 ± 1.12 

  64.88 ± 1.67 46.63 ± 1.37 68.69 ± 1.56 46.21 ± 0.87 

RMRM (kCal/day) 1687.41 ± 42.94 1315.65 ± 37.99 1706.55 ± 52.81 1341.83 ± 30.58 

Note. MANOVA indicated no significant mean differences between the two samples for the dependent or independent  

variables. Values are mean ± SE. WHtR = waist-to-height ratio; BMI = body mass index; WC = waist  

circumference; HC = hip circumference; WHR = waist-to-hip ratio; %BFADP = percent body fat  
measured from air displacement plethysmography; %BFBIA = percent body fat measured from   
bioelectrical impedance analysis; FM = fat mass; FFM = fat free mass; RMRM = measured resting 

metabolic rate.          
aBIA data was not collected for two participants due to implanted devices and, therefore, n = 41. 
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Table 4   

   

Two-compartment Body Density Models Used for BOD POD® Assessment 

Name Percent Body Fat Equation Population 

Siri %fat = (4.95/Db - 4.50)*100 General Populationa 

   

Schutte % fat= (4.374/Db - 3.928)*100 African American Males 

   

Ortiz %fat = (4.83/Db - 4.37)*100 African American Females 

   

Brozek %fat = (4.57/Db - 4.142)*100 Lean and Obese Individualsb 

Note. Db= body density. aGeneral population includes underweight individuals (BMI 

< 18.5 kg/m2) and overweight individuals (BMI 25.0-29.9 kg/m2) who are non-African 

American. bLean defined as BMI 18.5-24.9 kg/m2 and obese defined as BMI ≥ 30 

kg/m2. 
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Table 5              

              

Pearson Correlations Between Resting Metabolic Rate and Independent Variables           

Variables 

RMRM  

(kcal/day) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(1) Height (cm) 0.63* 1.00            

(2) Weight (kg) 0.72* 0.55* 1.00           

(3) BMI (kg/m2) 0.55* 0.15 0.90* 1.00          

(4) WC (cm) 0.58* 0.33* 0.91* 0.92* 1.00         

(5) HC (cm) 0.52* 0.27* 0.88* 0.91* 0.81* 1.00        

(6) WHR (cm) 0.41* 0.27* 0.57* 0.55* 0.79* 0.29* 1.00       

(7) FM (kg) 0.41* 0.13 0.82* 0.90* 0.86* 0.90* 0.47 1.00      

(8) FFM (kg) 0.77* 0.78* 0.81* 0.57* 0.62* 0.54* 0.45* 0.34* 1.00     

(9) %BFADP 0.03 -0.24 0.43* 0.64* 0.60* 0.65* 0.32* 0.84 -0.15 1.00    

(10) %BFBIA -0.07 -0.34* 0.40* 0.65* 0.56* 0.64* 0.25 0.77* -0.13 0.90* 1.00   

(11) Age -0.18 -0.13 0.03 0.11 0.22 0.01 0.37* 0.18 -0.15 0.31* 0.45* 1.00  

(12) WHtR (cm) 0.39* -0.02 0.76* 0.92* 0.94* 0.76* 0.75* 0.86* 0.38* 0.72* 0.71* 0.29* 1.00 

Note. BMI = body mass index; WC = waist circumference; HC = hip circumference; WHR = waist-to-hip ratio; FM = fat mass; FFM =  

fat-free mass; %BFADP = percentage body fat measured from air displacement plethysmography; %BFBIA = percentage body fat estimated 

from bioelectrical impedance analysis; RMRM = resting metabolic rate measured by indirect calorimetry; WHtR = waist-to-height ratio. 

              
*p < 0.05              



 

  

5
4
 

 

Table 6    

    

Cross-Validation Statistics for the Compared Models  

Model  R2 

SEE  

(kCal/day) 

Total 

Error  

(kCal/day) 

Derived Equation 0.54 199.1 198 

    

Harris & Benedict (1918) 0.55 196.4 268.1 

    

Owen et al. (1988) 0.47 212.7 219.4 

    

Mifflin et al. (1990) 0.57 192.0 212.3 

    

Lazzer et al. (2010) 0.54 198.2 1311.2 

    

Nelson et al. (1) (1990) 0.54 199.6 229.8 

    

Nelson et al. (2) (1990) 0.54 199.6 230.5 
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Figures 

 

Figure 1. Relationship Between Measured Resting Metabolic 

Rate (RMR) and Estimated RMR from Derived Model. RMR 

was measured using indirect calorimetry and predicted using the 

newly derived equation: For men: RMR (kCal/day) = 1071.65 + 

8.77 (weight) - 4.23 (age). For women: RMR (kCal/day) = 

843.11 + 8.77 (weight) - 4.23 (age). 
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Figure 2. Relationship Between Measured Resting Metabolic 

Rate (RMR) and Estimated RMR from Mifflin-St. Jeor Equation. 

RMR was measured using indirect calorimetry and predicted 

using the Mifflin St-Jeor equation: For men, RMR (kcal/day) = 

10(weight) + 6.25(height) – 5(age) + 5.  For women, RMR 

(kcal/day) = 10(weight) + 6.25(height) – 5(age) + 161. 
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Figure 3. Relationship Between Measured Resting Metabolic 

Rate (RMR) and Estimated RMR from Harris & Benedict 

Equation. RMR was measured using indirect calorimetry and 

predicted using the Harris & Benedict equation: For men, 

RMR (kcal/day) = 66.5 + 13.75(weight) + 5.0033(height) – 

6.76(age). For women, RMR (kcal/day) = 655 + 9.56(weight) 

+ 1.85(height) – 4.68(age).  

 



 

 58 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relationship Between Measured Resting Metabolic 

Rate (RMR) and Estimated RMR from Nelson et. al (1) 

Equation. RMR was measured using indirect calorimetry and 

predicted using the Nelson et al. (1) equation: RMR (kcal/day) 

= 1265 + 93.3(FFM).  
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Figure 5. Relationship Between Measured Resting Metabolic 

Rate (RMR) and Estimated RMR from Nelson et. al (2) 

Equation. RMR was measured using indirect calorimetry and 

predicted using the Nelson et al. (2) equation: RMR (kcal/day) 

= 108(FFM) + 16.9(FM). 
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Figure 6. Relationship Between Measured Resting Metabolic 

Rate (RMR) and Estimated RMR from Owen et. al Equation. 

RMR was measured using indirect calorimetry and predicted 

using the Owen et al. equations: For men, RMR (kcal/day) 

= 879 + 10.2(weight). For women, RMR (kcal/day) = 795 + 

7.18(weight). 

 



 

 61 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Relationship Between Measured Resting Metabolic Rate 

(RMR) and Estimated RMR from Lazzer et. al Equation. RMR 

was measured using indirect calorimetry and predicted using 

the Lazzer et al. equation: For men, RMR (kcal/day) = 20(FFM) – 

2(age) + 830.  For women, RMR (kcal/day) = 20(FFM) – 2(age) + 

841 
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APPENDIX A: DATA COLLECTION SHEET 

 

Date: _______________ 

 

Age: _______________                               Sex: _______________ 

  

Race/Ethnicity:       Caucasian 

                                 Hispanic 

                                 Other: ________________ 

 

 African American 

 Asian 

 

 

 

_____________________________________________________________________________ 

 

 

For administrator use only 

 

IC: RMR (kcal/day): ________________ 

 

 

 

Subject # _______ 

  

Digital scale: Height (cm): _________ 

                        Height (ft) ______ (in) ________ 

 

BMI (kg/m2): ___________ 

 

Body weight (kg): _________ 

Body weight (lb): _________ 

 

BMI Classification: ______________ 

Body density model: _____________________ 

 

Tape measure: WC- Trial 1 (cm): _________ 

                            WC- Trial 2 (cm): _________ 

                            WC- Trial 3 (cm): _________ 

 

WC- Average (cm): _________ 

 

 

 

HC- Trial 1 (cm): _________ 

HC- Trial 2 (cm): _________ 

HC- Trial 3 (cm): _________ 

 

HC- Average (cm): _________ 

  

Bod Pod: BF %: _________ 

 

Lean %: _________ 

Fat mass (lb): _________ 

 

Fat-free mass (lb): _________ 

Total body weight (lb): _________ 

 

 

Est. RMR (kcal/day): ________ 

BIA: BF%: ________  
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APPENDIX B: RESULTS SHEET 

 

Name: ___________________________________________      Date: ________________ 

 

Indirect Calorimetry:  

 

Resting Metabolic Rate (kcal/day): ____________ 

 

 

Digital scale:  

 

Height (cm): _________ 

 

Body weight (kg): _________ 

 

 

 

BMI (kg/m2): ___________ 

*Classification on information sheet 

 

 

Tape measure:  

 

Waist circumference (cm): _________ 

*Classification on information sheet 

 

Hip circumference (cm): _________ 

 

 

 

  

Bod Pod:  

 

Body Fat Percentage: _________ 

*Classification on information sheet 

 

 

 

Lean Fat Percentage: _________ 

Fat mass (lb): _________ 

*weight of fat 

 

Total body weight (lb): ___________ 

 

 

Fat-free mass (lb): _________ 

*weight of muscles, bones, organs, etc. 

 

Handheld Fat Loss Monitor (Bioelectrical Impedance Analysis):  

 

Body Fat Percentage: ________ 

 

  Note: Research has shown the Bod Pod to be considered the gold standard for   

  measurement of body composition; range of measurement error=  1 to 2.7%.  
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APPENDIX C: INFORMATION HANDOUT 

Information on Resting Metabolic Rate (RMR) 

Resting Metabolic Rate (RMR) is the measure of resting energy 

expenditure in our body (in Calories/day). Resting metabolic rate refers to 

the amount of energy (in the form of calories) used by the body in a given 

period of time when the body is at complete rest. This energy is merely 

used to maintain the basic body functions like keeping the heart beating, 

lungs breathing, and maintaining a normal body temperature.  

Information on Body Composition 

Body Fat: A certain amount of fat is necessary for good health. Fat plays 

an important role in protecting internal organs, providing energy, and 

regulating hormones. The minimal amount of “essential fat” is 

approximately 3-5% for men, and 12-15% for women. When we drop below 

the minimal recommended levels of essential fat, we negatively affect the 

delivery of vitamins to the organs, the ability of the reproductive system to 

function, and overall well-being. However, if too much fat accumulates 

over time, health may be compromised (see table below). Thus, a body 

composition within the recommended range suggests you have less risk 

of developing obesity-related diseases such as diabetes, high blood 

pressure, and even some cancers (American College of Sports Medicine, 

2016).  

 

Fat Free Mass: Fat free mass is everything except fat. It includes muscle, 

water, bones, and internal organs. Muscle is the “metabolic engine” of the 

body that burns calories (fat) and plays an important role in maintaining 

strength and energy. Healthy levels of fat-free mass contribute to physical 

fitness and may prevent conditions such as osteoporosis.  
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ACSM Body Composition (% Body Fat) for Men and Women 

Male AGE 

Fitness Category 20-29 30-39 40-49 50-59 60+ 

Essential Fat 2- 5 2- 5 2- 5 2- 5 2- 5 

Excellent 7.1 - 9.3 11.3 - 13.8 13.6 - 16.2 15.3 - 17.8 15.3 - 18.3 

Good 9.4 - 14 13.9 - 17.4 16.3 - 19.5 17.9 - 21.2 18.4 - 21.9 

Average 14.1 - 17.5 17.5 - 20.4 19.6 - 22.4 21.3 - 24 22 - 25 

Below Average 17.4 - 22.5 20.5 - 24.1 22.5 - 26 24.1 - 27.4 25 - 28.4 

Poor >22.4 >24.2 >26.1 >27.5 >28.5 

Female AGE 

Fitness Category 20-29 30-39 40-49 50-59 60+ 

Essential Fat 10 - 13 10 - 13 10 - 13 10 - 13 10 - 13 

Excellent 14.5 - 17 15.5 - 17.9 18.5 - 21.2 21.6 - 24.9 21.1 - 25 

Good 17.1 - 20.5 18 - 21.5 21.3 - 24.8 25 - 28.4 25.1 - 29.2 

Average 20.6 - 23.6 21.6 - 24.8 24.9 - 28 28.5 - 31.5 29.3 - 32.4 

Below Average 23.7 - 27.6 24.9 - 29.2 28.1 - 32 31.6 - 35.5 32.5 - 36.5 

Poor >27.7 >29.3 >32.1 >35.6 >36.6 
Taken from ACSM’S Health-Related Physical Fitness Assessment Manual, 
Second Ed. 2008. pg 59.  
 
 
 

What Can You Do with Your Results? The results from your body 

composition assessment can be used to identify risks, personalize your 

exercise program or evaluate how well your current exercise and nutrition 

program is working for you. If you find that you are within a healthy range, 

continue your exercise and dietary behaviors. If you find that your body 

composition has room for improvement, take a closer look at what you can 

do to make positive changes to your current level of activity and diet. Use 

more than just the scale to assess body composition. Remember, it is 

possible for the number on the scale to remain constant but experience 

changes in fat mass and lean mass. Changes in body composition take 

time and a dedicated effort, but the positive impact on health and quality 

of life is worth the effort. Participation in regular exercise and physical 

activity along with a healthy balanced diet are the key to reaching and 

maintaining a healthy body composition.  
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Information on Waist Circumference 

According to the American College of Sports Medicine (2016), the 

measurement of waist circumference provides insight to increased risk of 

obesity-related illness due to the location of excess fat. Waist 

circumference should be at or below 102 cm (or 40 in) for men and 88 cm 

(or 35 inches) for women. Android obesity, classified as excess weight 

located in the trunk area, places an individual at greater risk for high 

blood pressure, metabolic syndrome, type 2 diabetes, high cholesterol, 

coronary artery disease and premature death (see table below). 

 

Risk Criteria for Waist Circumference in Adults 

                                    Waist circumference (cm) 

Risk Category Women Men 

Very low <70 cm <80 cm 

Low 70-89 cm 80-99 cm 

High 90-110 cm 100-120 cm 

Very high >110 cm >120 cm 
                             Taken from ACSM’S Guidelines for Exercise Testing and  
                             Prescription, Tenth Ed. 2018. Pg 73.  

Information on Body Mass Index (BMI) 

BMI is used to assess weight relative to height and is calculated by 

dividing weight in kilograms (kg) by height in meters squared (kg m-2). A 

BMI of 25 or higher is classified as overweight while a BMI of 30 or greater 

is classified as obese (see table below). While BMI may give an individual a 

general idea of increased risk for obesity-related health problems, it fails 

to distinguish the composition of that weight. 

 

Classification of Disease Risk Based on BMI                                     

                                       BMI (kg/m2) 

Underweight <18.5 

Normal 18.5-24.9 

Overweight 25.0-29.9 

Obesity class  I 30.0-34.9 

Obesity class II 35.0-39.9 

Obesity class III 40.0 
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APPENDIX D: COMPREHENSIVE MEDICAL HEALTH APPRAISAL 

 

HEALTH HISTORY SCREEN INFORMATION 

 

Participant Full Name:     Date information obtained:   

 

 

Age:          Occupation:  

 

 

Email:      Phone Number:  

 

 

Race/Ethnicity (choose/highlight one):  Caucasian  African American 

 

   Hispanic  Asian  Other: ________________ 

  

    

 

Answer questions below. Highlight Y or N and type in answer if needed.  

 

Y 

 

 

Y 

 

    

   Y 

 

 

   Y 

 

N 

 

 

N 

 

 

N 

 

 

N 

 

Are you currently ill?  

 

 

Have you ever experienced claustrophobia (i.e., fear of confined/tight spaces)? 

 

 

Have you experienced significant weight loss (>24 lb) in the past 3 months? 

 

 

Do you have a pacemaker? 
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Do you have any other medical conditions? 

 

 Yes No 

Diabetes   

Chronic Respiratory diseases   

Autoimmune conditions   

Stroke   

Seizures   

Other neurological conditions   

Kidney or liver disease   

Heart Disease   

Thyroid condition   

Cancer in the last 5 years   

Other medical conditions not 

already addressed  

  

 

If yes, describe other medical conditions: 

________________________________________________________________________ 

________________________________________________________________________ 

 

 

What prescription medications do you take, if any? 

 

Medication: Dosage: For: 

 

 

 

 

 

    

 

 

 

If you don’t qualify for this study, would you be interested in participating in other 

studies as they become available?     Yes      No 

 

 

Additional Comments: 
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APPENDIX E: PRE-TEST INSTRUCTIONS FOR VISIT 

Pre-test Instructions for Laboratory Testing 

Before you participate in this study, you need to first be made aware of what to expect, 

what to do before testing, and what to wear to the test. 

*Note- the health appraisal form must be completed and sent back to Kristi Chase at 

klc280@txstate.edu to evaluate if you meet the criteria for participation in this study 

before scheduling the lab visit. When you arrive to the lab, the consent form will be 

reviewed with you and any questions you have will be answered. After, if you wish to 

participate in the study, you will sign the consent form and be given a copy.   

 

What to expect? 

When you arrive, you will be introduced to the primary investigator, Kristi Chase, who 

will explain the equipment and answer any questions that you may have. If you have no 

further questions and wish to participate, you will then sign the consent form. After that 

the following measurements, in chronological order, will be obtained: how much oxygen 

you are consuming and how much carbon dioxide you are producing will be measured 

through a facemask that will cover your nose and mouth; height, weight, waist and hip 

circumference will be measured; and body composition (i.e., body fat percentage, fat-free 

mass, and fat mass) will be measured. The visit should last approximately one hour. At 

the end of the visit, all body measures recorded (i.e., height, body weight, fat percentage, 

lean percentage, weight of body fat, weight of fat-free mass, waist and hip circumference) 

and measured resting metabolic rate (i.e., a measure of the minimum number of calories 

required for your body to survive while at rest) will be provided to you to keep for your 

own personal records.  

 

What to do before testing? 

Prior to the visit to the laboratory, we ask that you: 

1. Avoid physical activity, caffeine, and alcohol 24 hours before the test.  

2. Fast for at least 12 hours before the test (i.e., do not eat food or drink anything 

other than plain water – no coffee).  

3. Eat a well-balanced meal (i.e., a meal including carbs, fats, and protein) around 6-

8 pm the evening before the study.  

4. Drink plenty of water up until 3 hours before the test (i.e., drink plenty 

of water during the 21-hour period before the test, but you should 

not drink any fluids 3 hours before testing).  

5. Avoid nicotine for at least 2 hours before the test.  

6. Get at least 6 hours of sleep the night before the test.  

 

 

 

 

 

 

 

mailto:klc280@txstate.edu
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Measuring body composition requires the subject to: 

7. Avoid applying any lotions or skin creams before testing. 

8. Wear proper clothes (note- regular clothes can be worn during the RMR 

measurement portion of the visit, therefore, the clothing listed below can either be 

worn under your regular clothes or brought with and changed into before the body 

composition test): 

• Women should wear a form-fitting Speedo® or other 

Lycra®/spandex-type swimsuit or single-layer compression shorts and 

sport bra (with padding removed). 

• Men should wear a form fitting Speedo® or other Lycra®/spandex-

type swimsuit or single layer compression shorts (with padding 

removed). 

 

What to bring? 

1. We encourage you to bring a snack! After the lab visit, we recommend that you 

eat something (i.e., a granola bar, sandwich, etc.) before you leave the lab.  

 

If you have any questions, please email Kristi Chase at klc280@txstate.edu or call 512-

245-1915.  

  

mailto:klc280@txstate.edu
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APPENDIX F: COMPARISON OF BIA AND BOD POD 

 
Error Distribution of Bioelectrical Impedance Analysis (BIA) Device When 

Estimating Percent Body Fat. The error distributions of BIA when estimating 

percent body fat can be seen here. The BOD POD was used as the criterion 

measure to which BIA was compared. From the entire sample of 140 participants, 

the correlation between the measured percent body fat values from the BOD 

POD and those estimated from the BIA was 0.90. The accuracy of the BIA 

measures can be summarized as: R2 = .80, SEE = 4.25 percent, and Total Error = 

5.09 percent.  
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