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A LIOUVILLE THEOREM FOR F-HARMONIC MAPS WITH
FINITE F-ENERGY

M’HAMED KASSI

ABSTRACT. Let (M,g) be a m-dimensional complete Riemannian manifold
with a pole, and (N, h) a Riemannian manifold. Let F' : RT — R™ be a strictly
increasing C2 function such that F(0) = 0 and dp := sup(tF’(t)(F(t))~1) <
00. We show that if dp < m/2, then every F-harmonic map u: M — N with
finite F-energy (i.e a local extremal of Ep(u) := [, F((Jdu|?/2)dVy and Ep(u)
is finite) is a constant map provided that the radial curvature of M satisfies a
pinching condition depending to dp.

1. INTRODUCTION AND STATEMENT OF RESULT

Let (M, g) and (N, h) be two Riemannian manifolds and F be a given C? function
F:RT — R*t. Then, a map u : M — N of class C? is said to be F-harmonic if for
every compact K of M, the map u is extremal of F-energy:

Er(u) ::/KF(ld;I)dVg.

In a normal coordinate system, the tension field associated with Er(u) by the
Euler-Lagrange equations is

m u2 U2 ’LL2
TF(U) — Z(Ve7 (F’(%)du))el _ F/(%)T(u) —+ du{grad(F’(%))}

i=1
where 7(u) is the usual tension field of u defined by

nim auﬂ 8uﬂy
T(U)kZAMuk+ Z NF’;A/(u)g” - =1,...,n.
Py Ox; Ox;

Then, the map u is F-harmonic if 77(u) = 0. For further properties of F-harmonic
maps, we refer the reader to [I],[2]. For the particular case of F(t) = t, the Liouville
problem for harmonic maps with finite energy have been studied in [4l [6] [7], [8, [@].
While for F(t) = %tp/27 with p > 2, this is the problem of p-harmonic maps

with finite p-energy (corollary If F(t) = /142t — 1 corresponding to the
minimal graph (corollary . In this paper, we study the same problem for F-
harmonic maps with finite F-energy without condition on the curvature for the
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target manifold. We assume that F' is strictly increasing, F'(0) = 0, and dp =
=d

sup t?;g) < 00, “the degree of F”. For x in M, we set r(x) o(x, z0).

Theorem 1.1. Let (M,g) be a m-dimensional complete Riemannian manifold,
m > 2, with a pole xo, and let (N,h) be a Riemannian manifold. If dp < m/2,
then every F-harmonic map of M into N with finite F'-energy is constant provided
that the radial curvature K, of M satisfies one of the following two conditions:

(i) —a? <K, < —3? witha>0,83>0and 1+ (m—1)3—2dra >0

(i) —12%% < K, < 725 with a > 0 and B € [0, }] such that 2+ (m — 1)(1 +

Vv1—48) —2dp(1+v1+4a) > 0.
Furthermore, we have the following corollaries.

Corollary 1.2. Let (M,g) and (N,h) be as in the theorem. Then, every C? p-
harmonic map of M into N with finite p-energy, for p < m, is constant.

Corollary 1.3. Let (M,g) and (N,h) be as in the theorem. Then, for m > 2,
every C? map u of M into N, with finite energy, solution of

7(u)
V14 |dul?

+ du. {grad(

! -0
Wi

s constant.

For m = 2, the statement of the theorem is false in general. In fact, for the
case (i), there exist holomorphic maps of the hyperbolic disc with finite energy [9].
While for the case (ii) there exist holomorphic maps of C into P! with finite energy
[8].

2. PROOF OoF THEOREM [L.1]

Let X and Y be two vector fields on M. It is well-known [3] 6], that the stress-
energy for harmonic maps is
B |dul?
S22

Su : (X,Y), — (du(X),du(Y))s

and satisfies
(div S,)(X) = —(7(u), du(X))p.
Following [2], we define the stress-energy of F-harmonic maps by

|duf? |du/?
2

Spu(X,Y) 1= P )(X,Y)g = F/ (= )(du(X), du(Y))n -

When F(t) := t we have Sp, = S,. Also (divSr,)(X) = —(rp(u),du(X))s
thanks to the following lemma.

Lemma 2.1. For every vector field X on M, we have
(div Sp)(X) = — (7 (), du(X))s, (2.1)

div(F(M)X)
= div(F’(@)(du(X),du(ei)>hei) — (tr(u), du(X))n + [SFu, X],
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where

S X1 = S (PO 5, — 20 (e (e )0 ) (92X, 5).

ij=1
In particular, if u is F-harmonic and D CC M is a C* boundary domain, then we
have

Sru(X, l/)dO'g:‘/[Spvu,X]dvg

oD D

where v is the normal to OD.

Proof. Let x € M. Chose a normal coordinate system such that at z. g;;(z) = d;;
dg(x) = 0, where (ey,...,en) being a normal basis, we have V. e, = 0 for all j,k
and

(div SF)(X)
= Z {VeiSF,u(eiuX) - SF,u(€i>veiX) - SF,u(veiein)}

|dul?

d 2
& )en Ve X)

= > { Ve (P e x) — (B ydu(en), aux) - B

|dul?

Wdu(e;), du(Ve, X)) — Sru(Ve, e, X)}

= Z {vei (F(|d;| )<6iaX>)

IdUI

|dul?
Ydu(eq), du(X))) = F(==){es, Ve, X)

- vei (<F (

8 ufer), du(Ve, X)) — Spa(Verc x)}

m m

-2{( > r () (9. dute ). dute,) (e )

Ve (o1, X) — (o, (12

Jdu(ei)), du(X))

"(——){(du(e;), Ve, (du(X)))
){ei, Ve, X) +F’(%

)(du(e:), du(Ve, X))

— SF7u(veiei7X)}'
Thus
(v 500 = 30 {20y, (du(e). dutepyx,)

i,j=1
= du? du?
+Z{ |u| e 27)(>_’_}7(|u|

2

)(€i, Ve, X)

s
Il
_
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o ldul?
(2
d|2

o laul?
+ (2

- Z {F,(|d;\2

1,7=1

Z{ 2 (e 9. (du())

Jdu(ed). Ve, (du(X)) ~ P20 ¢, v, x)

Wdu(e;), du(Ve, X)) — Sp’u(Veith)}

J(XiVe, (duley)), dule;)) }

|dul®
et
+ F'( 5

|dul?
F
+ F( 5

J{du(e;), du(Ve, X)) +F(|du|

2
Jew Ve ) - F(120

L) du(en)). du(X)) = Si(Vee0n X0

Since V., e; = 0, with (V,,du)(X) = V,(du(X)) — du(V.,X) and by symmetry
(Ve,du)(X) = (Vxdu)(e;), we have

)<V8i6i7X>

)<ei7 veiX>

- <ve' (F/(

aiv(9e.)(X) = 3 { P9 due ) aute, )}

Z { |du‘ du 61) 1(du(X)) o du(Ve,X»

i=1

|du/?

— (Ve (F (155 )du(e)), du(X)) }.

Finally,
div(Spu)(X) = —(7r(u), du(X)).
Also

aiv(F(0) ) = v, (L) x),

R |dul|? |du|?
= (Ve (PCGDX.e) + (S

HVeX e}

<

jdul? |~ o lduf? |
xF( )+;F( 5 (Ve X ei).

Then, by straightforward computation, we obtain

) _ 1

VxF(——) = 2F’( 5 YV x {du(e;), du(e;))

™

©
Il
-

|du/?
2

|dul?
2

.MS

<
Il
-

F’( NV x (du(e;)), du(e;))

Ms

F'(—){(Vxdu)(e;) + du(Vxe;), du(e;))

1

<.
Il
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=2 () (9 (e, duter)

|dul?

F(—=){(Ve,du)(X), dulei)) - (by symmetry)

P”ﬂg i

<.
Il
_

|dul?

{(Veudu(x0), F (5= )du(er)

|
.MS

©
Il
-

7 (v, %), duen) )
Thus

|dul?

)= 2 { Ve ldu(X), P (55 du(en))

IdUI

- du(X) Ve, (F'(——)du(e:)))

du?
oL )du(e:)

+ <du(X)a _VEi (F,(

i @xdu(vem,du(em

Thus
U 2 m u 2
aiv(F( %0 x0) = 3 L (P (10 au( ), du(en)per) )

1
— {du(X), 7 (w)) + [Spu, X]

with
- |dul  ldul?
[SFu, X] = Z(F( 5 )0 — F'(—;

4,j=1

)du(e),due;)n ) (Ve, X, e5),q

because V¢, X = (V.,X,ej)e;. If D CC M is a C! boundary domain, we get by
the use of Stokes formula

[ s + / Sp. X]

m

_ / aiv(r (120 x / > ai () < gu(x), du(en) > )
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2 2
_ F(|du| |du]

b T)<X7V> - /SDF/(

Thus, if u is F-harmonic:

[ (A% -

This completes the proof. O

){(du(X), du(v)) .

[ (u(x), du(v))) = / (S X

D

Lemma 2.2. Letu: M — N be a F-harmonic with finite F-energy and X a vector
field on M such that | X| < ¢(r) for ¢ : RT — RT satisfying

—— = +0o0.
1 o)
Then there exists an increasing strictly sequence (R,,) such that

lim [Spu, X]dV, = 0.

oo B(szn)

Proof. Since tF'(t) < dpF(t) we have

[ sk
B(zo,R)
jdul?

<[ rdShewl+| [ e
9B(x0,R) 2 9B(x0,R)

dul? dul?
<[ e s [ pE
9B(wo,R)

9B(zo,R)
d 2
< (1+2dp)/ F(ldu
9B(z0,R) 2

|du/?

))du(X), du(v))

))du(X), du(v))]

)IX]-

By the Co-area formula and | X| < ¢(r(x)),

0 2 ) i
/0 ‘?5(113(/63(10,t) F(|d2| )‘Xl)dt:/M |X|(|TV) |F(‘d2| )

2
s/ P < o
M 2
dt

Since floc 2@ = there exists a increasing strictly sequence (R, ) such that

. dul?
lim,, o0 faB(IO,Rn)F(‘ ;I )| X| = 0. Hence

lim [Spu, X]dV, = 0.

n—oo B(onRn)
This completes the proof of Lemma[2:2] O
For the theorem, it suffices to choose X satisfying Lemma and the condition

[Sku, X] > cF(]dul?/2) where ¢ > 0 is a constant. For that we take X = rVr and
using the comparison theorem of the Hessian [5].

Theorem 2.3 (Comparison theorem). Let (M, g) be a complete Riemannian man-
ifold with a pole xo and ki, ko be two continuous functions on RY such that
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ko(r) < K, < ky(r), where K, is the radial curvature of M, i.e., the sectional cur-
vature of the tangent planes containing the radial vector Vr. Also, let J; (i =1,2)
be the solution of classical Jacobi equation

Then, if J1 > 0 on R, we have on M \ {zo}

=

Ji(r) 3(r)
I )(gfdr@)d?")gHess( r) < T

Case (i) of Theorem. With k1 (r) = —3% and ko(r) = —a?, we have
Beoth(Br)(g — dr ® dr) < Hess(r) < acoth(ar)(g — dr @ dr).

Case (ii) of Theorem With kq(r) = 7% and ky(r) = —%, and the fact that on
M \ {1’0}7

(g—dr®dr).

\/

o g B
<K, < <2
L+r2 = " = 1472 7 r2

S_

‘Ew‘ o

we have

(#)(g dr ® dr) < Hess(r) < (1+ 1+4a>(gfdr®dr).

Lemma 2.4. Under hypothesis of Theorem-, in case (1), we have
|dul®
)

(S, X] > (1+ (m —1)8 — 2dpa)F(

and in case (ii),

[SF,H,X]E%@JF( — 114+ +/1-48) —2dr(1 + V1 +4a)F(

Proof. First note that

S X) = 30 (P50, - (5 e dute ) < 9., Xoe,

dul?
II)

ij=1
where (e1,...,€m—1, %) with e, = %, being a normal basis on B(xg, R). Then,
since X = r%, it follows that VagX = % and so we get
0
Vo X, =1,
(Vg X, o), =
(Ve, X, €5)g = rHess( )(e“el), fori=1,...,m—1,
m—1
Ve, X = Z r Hess(r)(e;, ej)e;, fori=1,...,m—1.
j=1
Therefore,
d 2 m—1
[Spu, X] = | u| )(1+ Z r Hess(r)(e;, €;))

-y L) ) dule (P X

m 2
P D), au Dpiv . x, 0,
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du2 0
B Z F'( | | ar)’du(ej»h(V%Xaeﬁg

0

ST ) 9
Z F'( Y(du(e;), du(aT)>h<VeiX7 6‘r>g

|d’l_l,|2 m—1
)(1+ Z r Hess(r)(e;, €;))

- Z F’(‘d;| ){du(e;), du(e;))r Hess(r) (e, e;)
7, |dul|? 0 0
—F (Txd“(@)’du(@»

For the case (i), we have
2

du dul?
[SFu, X] > F(|T s

) + (m = 1)(Br) coth(6r) F(——)

w2
F’(M)|du|2(ar) coth(ar)
2

+F (|d ul )((ar) coth(ar) — )(du(aa) du(;»

|dU|2 |dul? 3 B

> F( 5 )+ F( 5 )((m — 1)(Br) coth(Br) — 2dp(ar) coth(ar))
ul? u|? coth(ar

F(|d2| )+ F(|d2| )rcoth(Br)((m —1)8 — 2dFaco‘EEEﬂr§)'

Since the function coth(z) is decreasing and, zcoth(z) is bounded below by a
positive constant in RT, we have

[Spu, X] > (1+ (m—1)p - 2dpa)F(

|du|?
5 )

For the case (ii), we have

|dul? |dul? IdUI
2

1S X] 2 FOE) a0~y (1220 2
+ 0= 0P (2, au )

> (1+ (m — 1)a — 2dpb)F( 'd;|2 ),

where we have set

O
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