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THE MAXIMUM PRINCIPLE FOR EQUATIONS WITH

COMPOSITE COEFFICIENTS

GARY M. LIEBERMAN

Abstract. It is well-known that the maximum of the solution of a linear el-
liptic equation can be estimated in terms of the boundary data provided the
coefficient of the gradient term is either integrable to an appropriate power or
blows up like a small negative power of distance to the boundary. Apushkin-
skaya and Nazarov showed that a similar estimate holds if this term is a sum of
such functions provided the boundary of the domain is sufficiently smooth and
a Dirichlet condition is prescribed. We relax the smoothness of the bound-
ary and also consider non-Dirichlet boundary conditions using a variant of
the method of Apushkinskaya and Nazarov. In addition, we prove a Holder
estimate for solutions of oblique derivative problems for nonlinear equations
satisfying similar conditions.

Introduction

We are concerned here with various estimates for solutions of the linear elliptic
equation

aijDiju+ b
iDiu+ cu = f

in some domain Ω ⊂ Rn under weak hypotheses on the coefficients aij , bi, and
c. We always assume that [aij ] is a positive-definite matrix-valued function with
minimum eigenvalue λ and determinant D, and that c ≤ 0. It was shown in [1]
that, if u = 0 on ∂Ω, then u satisfies an estimate of the form

sup
Ω
u ≤ C(n, ‖b/λ‖n)(diamΩ)

∥∥∥∥ f

D1/n

∥∥∥∥
n

.

On the other hand, if ∂Ω is sufficiently smooth and the vector b grows like a
(sufficiently small, negative) power of the distance to ∂Ω, then a similar estimate
holds via the maximum principle. To state this estimate, let us use d to denote
distance to ∂Ω. If there are positive constants α < 1, B0, and µ such that ∂Ω ∈
C1,α, |b| ≤ B0λdα−1, and |aij | ≤ µλ, then

sup
Ω
u ≤ C(n, α,B0, µ,Ω) sup

Ω
|fd1−α/λ|.
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(Although this precise form of the maximum principle does not seem to be stated
anywhere, we point out that its proof is contained in arguments that go back as
least as far as [3]; see also [6].) In [2], the authors showed that a composite condition
on b leads to an analogous maximum principle. Specifically, assume that there are
positive constants α, B0, and µ such that |aij | ≤ µλ, b = b1 + b2 with∥∥∥∥b1λ

∥∥∥∥
n

+ sup
x∈Ω

|b2(x)|

λ(x)
(xn)1−α ≤ B0

and |x′| < R and xn > 0 in Ω for some R ∈ (0, 1). Then [2, Theorem 2.1′] states
that

sup
Ω
u ≤ C(B0, n, α, µ)R

∥∥∥∥fλ
∥∥∥∥
n

.

(Actually, the proof of [2, Theorem 2.1′] seems to need a smallness condition on
B0 for the reasons discussed in Remark 3.3 of [5].) These estimates were used
in [2] to infer the regularity of solutions to the Dirichlet problem for nonlinear
elliptic equations with coefficients satisfying similar composite conditions; parabolic
problems are also considered in [2].
Our goal here is to prove a maximum principle for problems with composite

coefficients under Dirichlet and non-Dirichlet boundary conditions. In addition, we
obtain various consequences of the maximum principle not used in [2]. We shall
apply these estimates, such as the Hölder estimates (Corollaries 4.3 and 4.4 below),
to studying the smoothness of solutions to such problems in [11]. On the other
hand, we shall not discuss analogs of the boundary gradient estimates from [2].
Our approach is based on that in [2], but there are some technical differences which
we indicate below. In principle, our estimates could be proved by modifying the
method in [2], but our techniques are of independent interest.
We begin in Section 1 with a review of the relevant notation. Next, we con-

struct some supersolutions for the linear operator L2 = a
ijDij + b

i
2Di in Section

2. Similar supersolutions for the full operator L = aijDij + b
iDi were used in [2].

These supersolutions are used to derive our maximum principles for subsolutions
of elliptic equations with composite coefficients in Section 3. Harnack and Hölder
inequalities for solutions of such equations are stated in Section 4; we include them
for completeness, but their proofs from the maximum principles in the previous
section contain no new ingredients. Results for parabolic problems are given in
Section 5. We close with some remarks, mostly about comparing our results with
those in [5], in Section 6. Our investigation of this problem was heavily influenced
by that paper although the methods used here are quite different.

1. Notation

Although our notation is generally quite standard, we list here some elements
that may not be immediately apparent. The reader is also directed to [4] for further
information in the elliptic case and to [9] in the parabolic case.
First, we write Ω for a bounded domain in Rn and we write d for the function

defined by d(x) = inf{|x−y| : y ∈ ∂Ω}. Points in Rn are written as x = (x1, . . . , xn)
and we sometimes abbreviate x′ = (x1, . . . , xn−1). For x0 ∈ Rn and R > 0, we
define

Ω[x0, R] = B(x0, R) ∩ Ω, Σ[x0, R] = B(x0, R) ∩ ∂Ω,
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and we suppress x0 from the notation when we assume that x0 is the origin. Note
that, even when we refer to Ω[R] rather than Ω, d denotes the distance to ∂Ω.
We say that a vector β is inward pointing at x0 ∈ ∂Ω if there is a positive

constant ε such that x0 + tβ ∈ Ω for t ∈ [0, ε]. For x0 ∈ ∂Ω, a vector β which
is inward pointing at x0, a constant k, and a function u ∈ C0(Ω), we say that
β ·Du(x0) ≥ k if

lim inf
t→0+

u(x0 + tβ)− u(x0)

t
≥ k.

Similar definitions apply to the conditions β · Du(x0) ≤ k and β · Du(x0) = k.
Moreover, if β is a vector field defined on (a portion of) ∂Ω, we say that β ·Du ≥ g
for some function g if β(x0) · Du(x0) ≥ g(x0) for each x0 in (the portion of) ∂Ω
with similar definitions for β ·Du ≤ g and β ·Du = g.
We recall that a continuous, increasing function ζ, defined on [0, 1] is called Dini

if the function ζ̄ defined by ζ̄(s) = ζ(s)/s is in L1(0, 1) and it is 1-decreasing if

ζ(s)

s
≥
ζ(σ)

σ

for all s ≤ σ in (0, 1). If ζ is Dini, we define

I(ζ)(s) =

∫ s
0

ζ(σ)

σ
dσ, J(ζ)(s) =

∫ s
0

1

σ2

∫ σ
0

ζ(t) dt dσ.

It follows from [13, Section 5] that J is continuous, increasing, and 1-decreasing
and that J(ζ) ≤ I(ζ) ≤ 2J(ζ). We shall say that ζ is a D1 function if ζ is Dini and
1-decreasing with ζ(1) = 1.

2. Construction of supersolutions

The major step is to show that, for any D1 function ζ and any µ ≥ 1, there is a
nonnegative function w such that aijDijw ≤ −λζ(d/R)/d for any [aij ] satisfying

|aij | ≤ µλ. (2.1)

It will be convenient to construct such a function locally first.

Lemma 2.1. Suppose that there are constants ω0 ≥ 0 and R > 0 along with a
function ω, defined for |x′| < R, such that

Ω[R] = {x : xn > ω(x′), |x| < R}, |ω(x′)− ω(y′)| ≤ ω0|x
′ − y′| (2.2)

for all x′ and y′ with |x′|, |y′| < R, let ζ be a D1 function, and set κ = (1+ω20)
1/2.

Then, for any ρ ∈ (0, R/(2κ)) and any µ ∈ (0, 1], there is a nonnegative function
w ∈ C2(Ω[ρ]) such that

aijDijw ≤ −λ
ζ(d/R)

d
in Ω[ρ] (2.3)

for any aij satisfying (2.1). In addition, there is a constant C(n, µ, ω0) such that

|w| ≤ CI(ζ)(ρ/R)ρ, |Dw| ≤ CI(ζ)(ρ/R) in Ω[ρ]. (2.4)

Proof. We note that [12, Theorem 3.7] shows that there are positive constants
α ∈ (0, 1) and C (both determined only by n, µ, and ω0) along with a function v
such that

aijDijv ≤ −λd
α−2, dα ≤ v ≤ Cdα, |Dv| ≤ Cdα−1
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in Ω[R]. Next, we define v1 = J(ζ)(R
−1ρ1−αv) and abbreviate v̄ = R−1ρ1−αv.

Then

1

λ
aijDijv1 =J(ζ)

′(v̄)R−1ρ1−αaijDijv

+ J(ζ)′′(v̄)R−2ρ2−2αaijDivDjv

≤− J(ζ)′(v̄)R−1ρ1−αdα−2.

From the explicit form of J(ζ)′, we see that ζ(s)/s ≥ J(ζ)′(s) ≥ ζ(s)/(2s) for any
s ∈ (0, 1). Since R−1ρ1−αdα ≤ v̄ ≤ CR−1ρ1−αdα, it follows that

aijDijv1 ≤ −λ
ζ(R−1ρ1−αdα)

d2
,

|Dv1| ≤ Cζ(R
−1ρ1−αdα)/d, 0 ≤ v1 ≤ CI(ζ)(R

−1ρ1−αdα)

in Ω[R]. Since (x′, s) ∈ Ω[R] for ω(x′) < s ≤ 2κρ and |x′| ≤ ρ, we can define W by

W (x) =

∫ 2κρ
xn
v1(x

′, s) ds.

By construction W is nonnegative and W ∈ C2(Ω[ρ]).
We now prove an upper bound for aijDijW . We compute

DiW (x) = −δinv1(x
′, 2κρ)−

∫ 2κρ
xn
Div1(x

′, s) ds.

A similar expression can be obtained for DijW , and hence (noting that ρ ≤
d(x′, 2κρ) ≤ (2κ+ 1)ρ for |x′| ≤ ρ)

aijDijW =

∫ 2κρ
xn
aijDijv1(x

′, s) ds−
n∑
i=1

ainDiv1(x
′, 2κρ)

≤ −λ

∫ 2κρ
xn

ζ(R−1ρ1−αd(x′, s)α)

d(x′, s)2
ds+ Cλ

ζ(ρ/R)

ρ
.

To estimate this integral, we first observe that

1

κ
(s− ω(x′)) ≤ d(x′, s) ≤ s− ω(x′)

for any s. It follows that d(x′, s) ≥ d(x)/κ. In addition, d is Lipschitz with Lipschitz
constant 1 (see, for example, [4, Section 14.6]) and therefore d(x′, s) ≤ d(x)+s−xn.
Because κ ≥ 1, we also have 2κρ ≥ xn + d(x), so

ζ(R−1ρ1−αd(x′, s)α)

d(x′, s)2
≥
ζ(R−1ρ1−α(d(x)/κ)α)

(d(x) + s− xn)2
≥ ε
ζ(R−1ρ1−αd(x)α)

d(x)2

for s ∈ [xn, xn + d(x)] and ε = 1/(4κα). Therefore∫ 2κρ
xn

ζ(R−1ρ1−αd(x′, s)α)

d(x′, s)2
ds ≥

∫ xn+d(x)
xn

ζ(R−1ρ1−αd(x′, s)α)

d(x′, s)2
ds

≥ ε
ζ(R−1ρ1−αd(x)α)

d(x)
.

It follows that

aijDijW ≤ −λε
ζ(d(x)/R)

d(x)
+ Cλ

ζ(ρ/R)

ρ
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in Ω[ρ] becasue ρ1−αd(x)α ≥ d(x) there. In addition,

|D′W | ≤ C

∫ 2κρ
xn

ζ(R−1ρ1−αd(x′, s))

d(x′, s)
ds

≤ C

∫ 2κρ
ω(x′)

ζ(R−1ρ1−α(s− ω(x′))α)

(s− ω(x′))
ds

= CI(ζ)

(
ρ

R

(
2κρ− ω(x′)

ρ

)α)
≤ CI(ζ)(

ρ

R
),

and

|DnW | = v1 ≤ CI(ζ)(R
−1ρ1−αd(x)α) ≤ CI(ζ)(ρ/R),

The proof is completed by taking w =W/ε+AI(ζ)(ρ/R)(ρ2−|x|2)/ρ for a suitable
constant A.

Let us note that we can prove a similar result more easily if we use the geometric
situation in [2]. Specifically, suppose 0 < xn < R for all x ∈ Ω and aij only satisfies
the lower bound aijξiξj ≥ λ|ξ|2. If we take v = (xn)α (with α ∈ (0, 1) arbitrary)
and define v1 as in the proof of Lemma 2.1, then w given by

w(x) = 2

∫ ρ
xn
v1(x

′, s) ds.

satisfies aijDijw ≤ −λζ(xn/R)/xn in Ω[ρ] as well as estimate (2.4).
For our local estimates including lower order terms, we can use a simple im-

provement of the preceding result.

Lemma 2.2. Suppose that there are constants ω0 ≥ 0 and R > 0 along with a func-
tion ω, defined for |x′| < R, such that (2.2) holds for all x′ and y′ with |x′|, |y′| < R,
and let ζ be a D1 function. Then for any µ ≥ 1 and B0 ≥ 0, there is a constant
ρ0(n, µ, ω0, B0, ζ) ∈ (0, 1) and a function w̄ such that ρ ≤ ρ0R implies

aijDijw̄ + b
iDiw̄ ≤ −λ

ζ(d/R)

d
(2.5)

in Ω[ρ] for all [aij ] satisfying (2.1) and all b such that |b| ≤ B0ζ(d/R)/d.

Proof. Take w̄ = 2w, where w is the function from Lemma 2.1, and note that

aijDijw̄ + b
iDiw̄ ≤

λ

ζ(d/R)
d (−2 + CB0I(ζ)(ρ/R)) .

The proof is completed by taking ρ0 so small that CB0I(ζ)(ρ0) ≤ 1.

For global estimates, we use a more careful argument. We first quantify the
assumption that Ω is a Lipschitz domain by noting that there are constants N , R
and ω0 along with N points x1, . . . , xN on ∂Ω such that, after a translation and
rotation taking xj to 0, Ω[xj , R] can be written in the form (2.2) and such that ∂Ω
can be covered by the N balls B(xj , R/(3κ)), where κ was defined in Lemma 2.1.
For simplicity, we call N , R, and ω0 the Lipschitz constants of Ω.

Lemma 2.3. Let Ω ⊂ Rn be Lipschitz with Lipschitz constants N , R, and ω0, and
let ζ be a D1 function. Then, for any µ ≥ 1 and B2 ≥ 0, there is a nonnegative
function w1 ∈ C2(Ω) such that

aijDijw1 + b
iDiw1 ≤ −λ

ζ(d/ diamΩ)

d
in Ω (2.6)
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for any matrix-valued function [aij ] satisfying (2.1) and any vector-valued function
b such that

|b| ≤ B2λ
ζ(d/ diamΩ)

d
. (2.7)

In addition, there is a constant C determined only by N , ζ, B2, µ, ω0, and
R/ diamΩ such that

|w1| ≤ C diamΩ, |Dw1| ≤ C. (2.8)

Proof. Let ζ1 be a D1 function to be further specified. From Lemma 2.1, there are
functions W1, . . . ,WN such that

aijDijWk ≤ −λ
ζ1(d/ diamΩ)

d

in Ω[xk, R]. In addition, the function W0 = (diamΩ)
2 − |x− x1|2 satisfies

aijDijW0 ≤ −2λ in Ω. Now set

Ω′ =
N⋃
k=1

Ω[xk,
2R

5κ
],

let (ηk) be a partition of unity on Ω
′ subordinate to the covering (Ω[xk, R/(2κ)]),

and set

w0 = AW0 +

N∑
k=1

(ηkWk)

with A a positive constant to be chosen. It follows that there is a constant C∗,
determined only by N , µ, ω0, and R/ diamΩ, such that

1

λ
aijDijw0 ≤ −

ζ1(d/ diamΩ)

d
− 2A+

C∗

R
I(ζ1)(1)

in Ω′ and
1

λ
aijDijw0 ≤ −2A+

C∗

R
I(ζ1)(1)

in Ω \ Ω′. We now write d∗ for the infimum of d over Ω \ Ω′ and note that d∗/R
is bounded above and below by positive constants determined by n and ω0. By
choosing A = ζ1(d

∗/R)/d∗ + C∗I(ζ1)(1)/R, we infer that

aijDijw0 ≤ −λ
ζ1(d/ diamΩ)

d
, |Dw0| ≤ C0I(ζ1)(1)

in all of Ω for some constant C0 determined only by n, µ, R/ diamΩ, and ω0.
Let us set K = C0B2. Then there is a positive constant ε1(n, µ, ω0, B2) such

that KI(ζ)(s) ≤ 1/2 for all s ≤ ε1. Because ζ is Dini, it follows that

lim inf
s→0+

ζ(s)| ln s| = 0,

and hence there is a constant ε0 ∈ (0,min{ε1, 1/3}) such that

Kζ(ε0)| ln ε0| ≤ 1/8.

We now choose ζ1 as follows:

ζ1(s) =



6Kζ(s) if 0 ≤ s ≤ ε0

(1− 6Kζ(ε0))s+ 6Kζ(ε0)− ε0
1− ε0

if ε0 < s ≤ 1.
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It’s easy to check that ζ1 is a D1 function. A direct calculation shows that

I(ζ1)(1) = 6KI(ζ)(ε0) + 1− 6Kζ(ε0) +
6Kζ(ε0)| ln ε0| − ε0

1− ε0
≤ 5

and therefore

KI(ζ1)(1)ζ(s) ≤
5

6
ζ1(s)

for s ≤ ε0, and hence

B2|Dw0(x)|ζ(d(x)/ diamΩ) ≤ (5/6)ζ1(d(x)/ diamΩ)

if d(x) ≤ ε0 diamΩ.
We now let g ∈ C2([0, supw0]) be an increasing, concave function to be further

specified and we define w1 = g(w0). Then

aijDijw1 + b
iDiw1 = g

′(w0)[a
ijDijw0 + b

iDiw0] + g
′′(w0)a

ijDiw0Djw0,

so

aijDijw1 + b
iDiw1 ≤ λg

′(w0)[−
ζ1(d/ diamΩ)

d
+B2|Dw0|

ζ(d/ diamΩ)

d
]

≤ −λg′(w)
ζ1(d/ diamΩ)

6d

wherever d ≤ ε0 diamΩ. In addition,

aijDijw1 + b
iDiw1 ≤− λg

′ ζ1(d/ diamΩ)

2d

+ λg′[−
ζ1(ε0)

2 diamΩ
+B2|Dw0|

ζ(ε0)

ε0R
] + λg′′|Dw0|

2

wherever d > ε0 diamΩ. But

B2|Dw0|
ζ(ε0)

ε0R
=
ζ1(ε0)

6C0ε0R
|Dw0| ≤

ζ1(ε0)

2 diamΩ
+
B̄

R
|Dw0|

2,

where B̄ = diamΩ/(72C20ε0R) since ζ1 is 1-decreasing. It follows that

aijDijw1 + b
iDiw1 ≤ −λg

′ ζ1(d/ diamΩ)

2d
+ λ

[
B̄g′

R
+ g′′

]
|Dw0|

2

wherever d > ε0 diamΩ. We now note that there is a positive constant K0 such
that K0ζ1 ≥ 6ζ on the whole interval [0, 1], and we choose

g(s) = K0
R

B̄
exp(B̄ supw0/R)[1− exp(−B̄s/R)].

Then straightforward calculations show that (2.6) and (2.8) hold.

3. The elliptic composite maximum principle

In order to prove our maximum principle for elliptic equations with composite
coefficients, we first prove an intermediate result which is a variant of the Aleksan-
droff maximum principle. Instead of the usual upper contact set (see [4, (9.5)]), for
a function u ∈ C0(Ω) and a constant ε ∈ (0, 1), we introduce Γε(u), the set of all
y ∈ Ω such that u(y) ≥ 0 and there is a vector p with |p| ≤ ε supu/(diamΩ + β0)
and u(x) ≤ u(y) + p · (x − y) for all x ∈ Ω. We also have the normal mapping χ
defined by

χ(y) =
{
p ∈ Rn : u(x) ≤ u(y) + p · (x− y) for all x ∈ Ω

}
.
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Lemma 3.1. Let Ω ⊂ Rn be a Lipschitz domain, and define the operators L and
M by

Lu = aijDiju+ b
iDiu+ cu, (3.1a)

Mu = −u+ β ·Du, (3.1b)

with [aij ] a positive-definite matrix-value function and c ≤ 0. Suppose there are
constants B1 and β0 such that ∥∥∥∥ b

D1/n

∥∥∥∥
n,Ω

≤ B1, (3.2a)

|β| ≤ β0. (3.2b)

Let u ∈ W 2,nloc (Ω) ∩ C
0(Ω) and suppose there is a nonpositive function f with

f/D1/n ∈ Ln(Ω) such that Lu ≥ f in Ω and Mu ≥ 0 on ∂Ω. Then, there is
a constant C(n,B1) such that, for any ε ∈ (0, 1),

supu ≤ C
diamΩ+ β0

ε

∥∥∥∥ f

D1/n

∥∥∥∥
n,Γε(u)

. (3.3)

Proof. As in the proof of [4, Lemma 9.4] (see also [10, Proposition 2.1]), there is a
constant R0 with

R0 ≤ C(B1, n)

∥∥∥∥ f

D1/n

∥∥∥∥
n,Γε(u)

. (3.4)

such that, for any δ > 0, there is p0 ∈ Rn \ χ(Γε(u)) with |p0| ≤ R0 + δ. If
|p0| ≤ ε supu/(diamΩ+ β0), we proceed as in [7, Lemma 1.1] to see that

sup
Ω
u ≤ (diamΩ + β0)|p0|,

which implies that supu = 0. On the other hand, if |p0| > ε supu/(diamΩ + β0),
then

supu ≤
1

ε
(R0 + δ)

for any δ > 0. Combining these two cases and using (3.4) yields the desired estimate.

We are now ready to state and prove our main maximum estimate.

Theorem 3.2. Let Ω ⊂ Rn be Lipschitz with Lipschitz constants N , R, and ω0,
and define the operators L andM by (3.1) with [aij ] a positive-definite matrix-value
function and c ≤ 0. Suppose there is a constant β0 such that condition (3.2b) holds.
Suppose also that ∂Ω ∈ C0,1 and that there is a constant µ such that condition (2.1)
holds. Suppose finally that there are constants B1 and B2, vector-valued functions
b1 and b2, and a D1 function ζ such that b = b1 + b2 and∥∥∥∥ b1D1/n

∥∥∥∥ ≤ B1, (3.5a)

|b2| ≤ B2λ
ζ(d/ diamΩ)

d
(3.5b)

Let u ∈W 2,nloc (Ω)∩C
0(Ω) and suppose there are nonpositive functions f1 and f2 with

f1/D1/n ∈ Ln(Ω) and f2d/(λζ(d/ diamΩ)) ∈ L∞(Ω) and a nonpositive constant g
such that Lu ≥ f1+ f2 in Ω andMu ≥ g on ∂Ω. Then, there are constants C and
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B∗, determined only by n, µ, B2, N , R/ diamΩ, and ω0 such that B1 ≤ B∗ implies
that

supu ≤ |g|+ C(diamΩ + β0)

[∥∥∥∥ f1D1/n
∥∥∥∥
n,Γ∗(u)

+

∥∥∥∥ f2d

λζ(d/ diamΩ)

∥∥∥∥
∞

]
, (3.6)

where

Γ∗ = {x ∈ Ω : u(x) > 0, |Du| ≤
supu

diamΩ+ β0
+ C

∥∥∥∥ f2d

λζ(d/ diamΩ)

∥∥∥∥
∞

}. (3.7)

Proof. We define the operators Lk for k = 1, 2 by Lku = a
ijDiju + b

i
kDiu + cu,

and, for A ≥ 0 and ε ∈ (0, 1/2) constants to be determined, we set ū = u + g,
w̄1 = w1 + β0 sup |Dw1|, and v = ū − Aw̄1. Next, we assume that B∗ ≤ 1 and we
apply Lemma 3.1 to v using the operator L1 in place of L. It follows that

sup v ≤
CR0

ε

∥∥∥∥ (f∗)−D1/n

∥∥∥∥
n,Γ

, (3.8)

where we have used the abbreviations

f∗ = f1 + f2 − b
i
2Div −AL2w1 −Ab

i
1Diw1,

Γ = Γε(v), and R0 = diamΩ + β0. To proceed, we obtain a lower bound for f
∗

using the abbreviation z = ζ(d/ diamΩ).
First, we note that sup v ≤ sup ū and hence

−bi2Div ≥ −λ
B2

2
sup ū

z

R0d

on Γ. Then we set

F1 =

∥∥∥∥ fD1/n
∥∥∥∥
n,Γ

, F2 =

∥∥∥∥ f2d

λζ(d/ diamΩ)

∥∥∥∥
∞

,

and note that

f2 − b
i
2Div −AL2w1 ≥ λ(−F2 −

B2

R 0
ε sup ū+A)

z

d
.

In addition, −Abi1Diw1 ≥ −CA|b1|. Taking A = F2 + εB2 sup ū/R0 then yields

f∗ ≥ f1 − CF2|b1| − C
B2

2R0
|b1| sup ū

Now we use this inequality and our choice of A along with (3.8) to see that

sup v ≤ C

(
1 +
1

ε

)
F2R0 +

C

ε
F1R0 + CB1B0 sup ū.

On the other hand,

sup v ≥ sup ū− CF2 diamΩ− CB2ε sup ū.

By choosing B∗ = ε = 1/(4 + 4CB2), we find that

sup ū ≤ C(F1 + F2)R0,

and that

|Du| ≤ |Dv|+A|Dw1| ≤
(1 +B2)ε

R0
sup ū+ CF2

on Γ. Combining these two inequalities and recalling our choice of ε easily implies
(3.6) since ū ≤ u.



10 GARY M. LIEBERMAN EJDE–2000/17

Note that the smallness condition on B1 can be modified. By paying more
attention to the values of the constants generically denoted by C in this proof, we
see that (3.6) holds provided B1 and B2 satisfy the joint condition

K1(B1)K2(B2)B1B2 < 1,

where K1(B1) is the constant from Lemma 3.1 and K2(B2) is the constant from
Lemma 2.3.

4. Local estimates for elliptic problems

Next, we discuss various local estimates for elliptic oblique derivative problems.
Our main concern is with a Hölder estimate for u, which will be useful in applica-
tions, so we just sketch the major ideas. First, for a positive-definite matrix-valued
function A = [aij ] and a continuous increasing function ζ, we say that a measurable
function f is an (n, ζ,A)-composite function if there is a decomposition f = f1+f2
along with constants F1 and F2 such that

‖
f1

D1/n
‖n,Ω[R] ≤ F1, |f2/λ| ≤ F2

ζ(d/R)

d

in Ω[R]. We call (F1, F2) the composite norm of f . In general, there will be more
than one such decomposition and hence this norm is not unique, so we shall choose
any convenient choice. In particular, if f is nonnegative or nonpositive, then we
shall assume that f1 and f2 are both nonnegative or nonpositive, respectively. We
also write

F1(ρ) = ‖f1/D
1/n‖n,Ω[ρ]

for ρ ∈ (0, R). We use similar notation for the coefficients b and c.
Now suppose that there are positive constants ε < 1, R, and ω0 such that

{x ∈ Rn : xn > ω0|x
′|, |x| < R} ⊂ Ω, (4.1a)

|β′| ≤
1− ε

ω0
βn on Σ[R]. (4.1b)

In addition, we suppose that there is a constant θ0 ∈ (0, π/2] such that, for each
point x0 ∈ Σ[R], there is a cone with height R, semi-vertex angle θ0, and vertex x0
which does not intersect Ω. It is easy to check that the basic estimate Lemma 3.1
from [10] continues to hold provided we replace each nonnegative Ln function (that
is, (Lu)+, |b|, and |c|) by an (n, ζ,A)-composite function. Specifically, we define
the operator M by

Mu = β ·Du+ β0u, (4.2)

we set A = 21+2εε−4ε and for x1 ∈ Ω[R] and ρ ∈ (0, R) and α ∈ (0, 1), we define

E(x1, ρ) = {x ∈ Ω :

(
|x′ − x′1|

2

ρ2
+ α

)(1+ε)/2
+
|xn − xn1 |

2

(Aω0ρ)2
< 1}. (4.3)

Finally, we use F ∗1 (ρ) to denote ∥∥∥∥ f1D1/n
∥∥∥∥
n,E(x1,ρ)

and similarly for B∗1(ρ) and C
∗
1 (ρ).
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Lemma 4.1. Let u be a nonnegative W 2,nloc (Ω[R]) ∩ C
0(Ω) function, let ζ be a D1

function, define L by (3.1a) and suppose that b and c are (n, ζ,A)-composite func-
tions. Suppose there are a nonnegative (n, ζ,A)-composite function f and a non-
negative constant g such that

Lu ≤ f in Ω[R], Mu ≤ gβn on Σ[R], (4.4)

let ρ ∈ (0, R), x1 = (0, xn1 ) ∈ Ω[R] and α ∈ (0, 1), and set

ū = u+ ρ[F ∗1 (ρ) + F2I(ζ)(ρ/R) + |g|]. (4.5)

In addition to conditions (4.1) and (2.1), suppose that c ≤ 0 in Ω[R] and that there
is a positive constant µ2 such that 0 ≥ β0 ≥ −µ2βn on Σ[R]. Then there is a
positive constant α1(ε) such that if

xn1 ≥ (A− α1)ω0ρ, (4.6)

and E(x1, ρ) ⊂ Ω[R], then for any positive constants δ and δ1 in (0, 1), there are
positive constants K1 and ζ1 determined only by n, α, ρC2, B2, ε, µ, µ2ρ, δ, δ1,
θ0, and ω0 such that if ρC

∗
1 (ρ) +B

∗
1 (ρ) ≤ ζ1 and

|{x ∈ E(x1, δρ) : ū(x) < h}| ≤ ζ
n
1 ρ
n (4.7)

for some h ≥ 0, then h ≤ K1ū in E(x1, δ1ρ).

From this lemma, the argument of [10, Section 4] leads to the following weak
Harnack inequality.

Theorem 4.2. Let 0 ∈ ∂Ω and suppose conditions (4.1) and (2.1) hold. Let ζ be
a D1 function, let ρ ∈ (0, R/4) and suppose u ∈ C0(Ω[4ρ]) ∩W

2,n
loc (Ω[4ρ]) satisfy

the inequalities

aijDiju ≤ λν1|Du|
2 + b|Du|+ cu+ f, u ≥ 0 in Ω[4ρ], (4.8a)

β ·Du ≤ βn[µ1u+ g] on ∂Ω[4ρ] (4.8b)

for nonnegative constants ν1, g, and µ1 and nonnegative (n, ζ,A)-composite func-
tions b, c, and f . Then there are constants K2, ε2, and κ (determined only by n,
ν1 supu, B2, ρC1(ρ), ρC2, ε, µ, ρµ1, θ0, and ω0) such that B1(ρ) ≤ ε2 implies(

ρ−n
∫
Ω[ρ]

uκ dx

)1/κ
≤ K2

(
inf
Ω[ρ]
u+ ρ(F1(ρ) + F2I(ζ)(ρ/R) + g)

)
. (4.9)

From this weak Harnack inequality, a Hölder estimate follows by standard meth-
ods.

Corollary 4.3. Suppose condition (2.2) holds, let [aij ] satisfy (2.1), and let β sat-

isfy (4.1b). Let ρ ∈ (0, R/4), let ζ be a D1 function, let u ∈ C0(Ω[ρ])∩W
2,n
loc (Ω[ρ]),

and suppose that there are nonnegative functions b, c, and f satisfying the hypothe-
ses in Theorem 4.2 and a nonnegative constant ν1 such that

|aijDiju| ≤ λν1|Du|
2 + b|Du|+ c|u|+ f (4.10)

in Ω[ρ]. Suppose also that there are nonnegative constants µ1 and g such that

|β ·Du| ≤ βn[µ1|u|+ g] (4.11)



12 GARY M. LIEBERMAN EJDE–2000/17

on Σ[ρ]. Then there are constants C, θ, and ε3 determined only by n, ν1 sup |u|,
ω0, ε, µ, µ1ρ, B2, and ρ(C1(ρ) + C2) such that if B1(ρ) ≤ ε3, then u satisfies the
estimate

osc
Ω[τρ]

u ≤ Cτθ
(
osc
Ω[ρ]
u+ ρ[g + F1(ρ) + F2I(ζ)(ρ/R)]

)
(4.12)

In fact, we can relax the condition (2.2) to just (4.1a) by invoking the obvious
analog of the so-called “displaced” weak Harnack inequality [10, Theorem 3.4]; for
our intended applications, this improvement will not be important. On the other
hand, the use of the Ln(Ω[ρ]) norm for f1 in this Hölder estimate will be important.
A similar argument along with the proof of [10, Corollary 8.4] shows that an

analogous Hölder estimate is valid for mixed problems which we state in terms of
the sets

O[y, ρ] = {x ∈ Ω : |x− y| < ρ}, O+[y, ρ] = {x ∈ O[y, ρ] : |x| = |y|}

for a point y ∈ ∂Ω[R] and ρ ≤ R.

Corollary 4.4. Suppose condition (2.2) holds, let [aij ] satisfy (2.1), and let β sat-
isfy (4.1b). Let ρ ∈ (0, R/4), let ζ be a D1 function, let y ∈ Σ[R] with |y| = ρ, let
u ∈ C0(O[y, ρ])∩W 2,nloc (O[y, ρ]) and suppose that there are (n, ζ,A)-composite non-
negative functions b, c, and f and a nonnegative constant ν1 such that (4.10) holds
in O[y, ρ]. Suppose also that there are nonnegative constants µ1 and g such that

(4.11) holds on Σ[ρ] ∩ O[y, ρ]. Then, there are constants C, θ, and ε0 determined
only by ν1 sup |u|, ω0, ε, Λ/λ, B2, and ρ(C1(ρ) +C2) such that if B1(ρ) ≤ ε0, then
u satisfies the estimate

osc
O[y,τρ]

u ≤ C osc
O+[y,2τρ]

u

+ Cτθ
(
osc
O[y,ρ]

u+ ρ[g + ‖f1/D
1/n‖n,O[y,ρ] + F2I(ζ1)(ρ/R)]

)
.

(4.13)

We next point out that all the elliptic results in [10] have their analogs when the
coefficients b and c (and f when it appears) are composite as in this paper. The
only result that requires some specific comment is the Harnack inequality. It is not
difficult to see that its proof applies if we can write b = b1 + b2 with b1 ∈ Lq for
some q > n and |b2| ≤ B2dα−1 for some α ∈ (0, 1).
We conclude this section with a maximum principle for mixed boundary value

problems in Ω[ρ]. This maximum principle will be useful in studying gradient
estimates for oblique derivative problems; see [11].

Lemma 4.5. Let R > 0, and suppose conditions (2.1) and (2.2) are satisfied.
Let ρ ∈ (0, R), let ζ be a D1 function, let b and c be (n, ζ,A)-composite function
with c ≤ 0, and define the operator L by (3.1a). Suppose β is an inward pointing
direction field defined on Σ[ρ] with |β| ≤ µ1βn for some constant µ1. Let u ∈
W 2,nloc (Ω[ρ]) ∩ C(Ω[ρ]) and suppose there are nonnegative constants µ0 and g along
with a nonpositive (n, ζ,A)-composite function f such that Lu ≥ f in Ω[ρ] and
β ·Du ≥ −gβn on Σ[ρ]. Then there are positive constants ε1 and ρ0, determined
only by n, µ, and µ1 such that B1 ≤ ε1 and ρ ≤ ρ0R imply that

sup
Ω[ρ]

u ≤ sup
E+(ρ)

u+ + C(n,B2, µ, µ1)ρ[g + F1(ρ) + F2I(ζ1)(ρ/R)], (4.14)

where E+(ρ) = {x ∈ Ω : |x| = ρ}.
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Proof. We define v by

v(x) = exp(εxn/ρ)(u(x)− sup
E+(ρ)

u+),

and we define L̄ by

L̄u = aijDiju+

(
bi −

2ε

ρ
ain
)
Diu+ cu.

It’s easy to see that

L̄v ≥ exp(εxn/ρ)f −

(
ε
|b|

ρ
+
ε2ann

ρ2

)
v

in Ω[ρ]. Now we set β̄ = (ρβ)/(εβn(0)) and extend β̄ to be zero on E+(ρ). Then
β̄ ·Dv − v ≥ −(ρg/ε) on ∂(Ω[ρ]).
We now assume that ε1 ≤ B∗, the constant from Theorem 3.2, and we apply

that theorem to v with L̄ and β̄ replacing L and β, respectively. In this way, we
obtain

sup
Ω[ρ]

v ≤ C(1 +
µ1

ε
)ρ[g + F1(ρ)] + F2I(ζ1)(ρ/R)

+ C(ε+ µ1)(ε1 + ε+B2I(ρ/R)) sup
Ω[ρ]

v.

The proof is completed by choosing ε, ε1, and ρ0 sufficiently small and rewriting
the resulting inequality in terms of u.

5. The parabolic composite maximum principle

For parabolic problems, we modify our notation slightly. Let Ω be a bounded
domain in Rn+1 with parabolic boundary PΩ and suppose R0 is so large that
|x| ≤ R0 for all X = (x, t) ∈ Ω. Let u be a continuous function defined on Ω \ PΩ.
For constants β0 ≥ 0 and ε > 0, we define Eε(u, β0) to be the set of all X ∈ Ω \PΩ
such that there is ξ ∈ Rn with u(Y ) ≤ u(X) + ξ · (x − y) for all Y ∈ Ω with s ≤ t,
u(X) > 0, and

R0 + β0
ε

|ξ| ≤ u(X)− ξ · x <
1

2
sup
Ω
u.

The rest of the notation from Section 1 is then modified in the obvious way.
Before presenting our main maximum principle, we begin with a simple variant

of an intermediate result.

Lemma 5.1. Suppose β is an inward pointing direction field on PΩ with βn+1 ≡ 0
on PΩ and β ≡ 0 on BΩ. Suppose also that there is a constant β0 such that
|β| ≤ β0 on PΩ. If u ∈ W

2,1
n+1;loc(Ω) ∩C

0(Ω) and β ·Du ≥ u on PΩ, then

sup
Ω
u ≤ C(n)

(
R0 + β0
ε

)n/(n+1)(∫
Eε(u,β0)

|ut detD
2u| dX

)1/(n+1)
. (5.1)

Proof. The proof is virtually identical to that of [9, Lemma 7.2] (which is modeled,
in turn, on that in [14]), so we only give a sketch. First, we assume that u ∈
C2(Ω)∩C0(Ω) and we define the function Φ: Ω→ Rn+10 by Φ(X) = (Du(X), u(X)−
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x ·Du(X)). Since the Jacobian determinant of this function is just ut detD2u, it
follows that ∫

E

|ut detD
2u| dX ≥ |Φ(E)|,

where we use E to abbreviate Eε(u, β0). Next, we set M = supΩ u and we define

Σ = {Ξ = (ξ, h) ∈ Rn+10 :
R0 + β0
ε

|ξ| < h <
M

2
}.

The discussion on p. 107 of [9] shows that Σ ⊂ Φ(E), so∫
E

|ut detD
2u| dX ≥ |Σ| = C(n)

(
ε

R0 + β0

)n
Mn+1,

and the desired result (for smooth u) follows from this one by simple algebra. The

hypothesis u ∈ C2 is relaxed to u ∈W 2,1n+1;loc as in [9, Proposition 7.3].

In analogy to the elliptic definition for composite functions, for a positive-
definite matrix-valued function A = [aij ] and a continuous increasing function
ζ, we say that a measurable function f is an (n + 1, ζ,A)-composite function if
there is a decomposition f = f1 + f2 along with constants F1 and F2 such that
‖f1/D1/(n+1)‖n+1,Ω[R] ≤ F1 and

|f2/λ| ≤ F2
ζ(d/R)

d

in Ω[R]. We call (F1, F2) the composite norm of f .
Several different measures of regularity for PΩ will be used to quantify the

dependence of the estimates on the domain. First, we refer to p. 76 of [9] for the
definition of PΩ ∈ H1 although we shall rewrite the definition to emphasize the
connection to β. If PΩ ∈ H1, then there are positive constants N , R, T0, and ω0
along with points X1, . . . , XN in SΩ such that, after a translation and rotation (in
the x-variables only) which takes Xi to the origin, we have

Ω[R] = {X ∈ Rn : |X | < R, xn > ω(X ′), t > −T0} (5.2)

for some function ω (which will generally be different for each Xi) satisfying

|ω(x′, t)− ω(y′, s)| ≤ ω0|X
′ − Y ′|. (5.3)

In addition, SΩ is covered by the cylinders Q(Xi, R/(3κ)) with κ = (1 + 2ω
2
0)
1/2.

Next, a tusk is a set of the form

{X : −T < t < 0, |x− (−t)1/2x0| < R(−t)
1/2}

for some point x0 ∈ Rn and positive constants R and T . We then say (compare
with [8, p. 26]) that Ω satisfies an exterior θ0-tusk condition at X1 ∈ SΩ (for
ω0 ∈ (0, π/2)) if T =∞, and

(t1 − t)
1/2 < tan θ0

∣∣∣∣x− x1 − |X −X1|21/2|x0|
x0

∣∣∣∣
for X ∈ Ω. Note that θ0 can be determined explicitly in terms of R and |x0|.
We then have the following maximum principle for parabolic operators with

composite coefficients.
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Theorem 5.2. Let PΩ ∈ H1 with H1 constants N , R, T0, and ω0. Define the
operators L by

Lu = −ut + a
ijDiju+ b

iDiu+ cu (5.4)

andM by (3.1b) with [aij ] positive definite, c ≤ 0, and β satisfying (3.2b). Suppose
there are positive constants λ0 and Λ0 so that [a

ij ] satisfies

λ0|ξ|
2 ≤ aijξiξj ≤ Λ0|ξ|

2 (5.5)

in Ω, and suppose β ≡ 0 on BΩ and βn+1 ≡ 0 on SΩ. Let ζ be a D1 function
and suppose that b and c are (n+ 1, ζ,A)-composite functions. Let u ∈ W 2,1n+1,loc ∩

C0(Ω) and suppose there are a nonpositive, (n+ 1, ζ,A)-composite function f and
a nonpositive constant g such that Lu ≥ f in Ω,Mu ≥ g on PΩ. If |x| < R0 in Ω,
then there is a constant C, determined only by B2, n, N , R/R0, T0, λ0, Λ0, and
ω0 such that

sup
Ω
u ≤ |g|+ C(Bn+11 +R0 + β0)

n/(n+1)

[∥∥∥∥ f1

D1/(n+1)

∥∥∥∥
n+1,Γ∗(u)

+ F2

]
, (5.6)

with Γ∗ given by

Γ∗ = {x ∈ Ω : u(x) ≥ 0, |Du| ≤
supu

R0 + β0
+ CF2}. (5.7)

Proof. We first note that the proof of Lemma 2.3 can be modified to the parabolic
case. The only significant differences are that we use the remarks following Lemma
13.1 of [8] in place of [12, Theorem 3.7] and we replace diamΩ by R0. We denote
the resulting function also by w1.
Next, we use the matrix inequality (detAdetB)n+1 ≤ (trAB)/(n + 1), true

for any (n + 1) × (n + 1), positive semidefinite matrices A and B, and we set
v = u+ g −A(w1 − β0 sup |Dw1|) to se that

sup
Ω
v ≤ C(n)

(
R0 + β0
ε

)n/(n+1) ∥∥∥∥ f∗

D1/(n+1)

∥∥∥∥
n+1,E

,

where f∗ = −vt + aijDijv and E = Eε(v, β0). Some straightforward calculation
shows that

f∗ ≥ f1 − C

[
F2 +

ε supΩ v

R0 + β0

]
|b1|

on E if A = F2 + (εB2 supΩ v)/(R0 + β0), so

sup
Ω
v ≤ C

(
R0 + β0
ε

)n/(n+1)(
F1 + F2 +

B1ε

R0 + β0
sup
Ω
v

)
,

and the proof is completed by taking ε sufficiently small.

Note that the form of the estimate (5.6) agrees with that in [14] and it improves
the form stated in [9, Theorem 7.1] (although the choice

µ = (R+ ‖b/D∗‖n+1 + β0)
−1/(n+1)‖f−/D∗‖

in the proof of that theorem, on p. 159 of [9], does give this form). Of course, if we
replace the assumption c ≤ 0 by c ≤ K for some nonpositive constant K, then we
can apply this theorem to u exp(−Kt) to obtain an analogous estimate for u.
We leave the statements of the local estimates for parabolic equations to the

reader, mentioning [10, Section 7] as a source for the descriptions. In particular, we
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point out that the appropriate hypothesis for b1 is that b1/D1/(n+1) should be in
the Morrey space Mn+1,1 and that β is assumed to satisfy condition (4.1b) under
the assumption that (5.3) is modified to

|ω(x′, t)− ω(y′, s)| ≤ ω0|x
′ − y′|+ ω1|t− s||

1/2

for some ω1.

6. Additional remarks

Our method gives an alternative approach for some of the results in [5] which
were used in [2]. To illustrate this point, we consider the following result, which
is approximately the elliptic analog of [5, Lemma 1.2]. (See also Lemma 3.3 from
that paper.)

Lemma 6.1. Let Ω ⊂ Rn and define the operator L by (3.1a) with c ≤ 0. If there
is a nonnegative function w such that Lw ≤ −|b| and if u ∈ W 2,nloc ∩ C

0(Ω) with
u ≤ 0 on ∂Ω, then

sup
Ω
u ≤ C(n)(supw + diamΩ)

∥∥∥∥ (Lu)−D1/n

∥∥∥∥
n,Ω+

, (6.1)

where Ω+ is the subset of Ω on which u ≥ 0.

Proof. Set M = supΩ u and, with ε ∈ (0, 1) to be determined, set v = u − εM/R
and f = Lu−. Then aijDijv ≥ f in Γε(v) and v ≤ 0 on ∂Ω, so Lemma 3.1 with
B0 = β0 = 0 implies that

sup
Ω
v ≤ C(n)

diamΩ

ε

∥∥∥∥ fD1/n
∥∥∥∥
n,Ω+

,

and hence

M(1−
ε

diamΩ
supw) ≤ C(n)

diamΩ

ε

∥∥∥∥ f

D1/n

∥∥∥∥
n,Ω+

.

The proof is completed by taking ε = diamΩ/(2(supw + diamΩ)).

This result is weaker than Krylov’s in that he proves the pointwise inequality

u ≤ C(n)(w + diamΩ)

∥∥∥∥ (Lu)−D1/n

∥∥∥∥
n,Ω+

.

On the other hand, our method considers situations in which we only have a su-
persolution to part of the operator; that is, we only need a function w (like w1 in
Section 3) such that aijDijw + b

i
2Diw ≤ −|b2| with b = b1 + b2.

Via similar considerations, we can prove essentially all the results in [5] for
solutions of elliptic and parabolic equations. The main differences are that we only
obtain global estimates for u and we always assume that p = n. (Here, Krylov’s d
is the same as our n.) In a future work, we shall examine the case p > n.
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