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THE MAXIMUM PRINCIPLE FOR EQUATIONS WITH
COMPOSITE COEFFICIENTS

GARY M. LIEBERMAN

ABSTRACT. It is well-known that the maximum of the solution of a linear el-
liptic equation can be estimated in terms of the boundary data provided the
coefficient of the gradient term is either integrable to an appropriate power or
blows up like a small negative power of distance to the boundary. Apushkin-
skaya and Nazarov showed that a similar estimate holds if this term is a sum of
such functions provided the boundary of the domain is sufficiently smooth and
a Dirichlet condition is prescribed. We relax the smoothness of the bound-
ary and also consider non-Dirichlet boundary conditions using a variant of
the method of Apushkinskaya and Nazarov. In addition, we prove a Holder
estimate for solutions of oblique derivative problems for nonlinear equations
satisfying similar conditions.

INTRODUCTION

We are concerned here with various estimates for solutions of the linear elliptic
equation

aijDiju +b'Dju+cu=f
in some domain Q C R"™ under weak hypotheses on the coefficients a*/, b*, and
c. We always assume that [a%] is a positive-definite matrix-valued function with

minimum eigenvalue A and determinant D, and that ¢ < 0. It was shown in [1]
that, if v = 0 on 012, then u satisfies an estimate of the form

f

supu < Clon, /AL (@i ) | o6

n

On the other hand, if 002 is sufficiently smooth and the vector b grows like a
(sufficiently small, negative) power of the distance to 02, then a similar estimate
holds via the maximum principle. To state this estimate, let us use d to denote
distance to 0. If there are positive constants a < 1, By, and p such that 99 €
CHe |b| < BoAd®™ !, and |a%| < p), then

supu < C(n, o, Bo, i1, Q) sup | fd* ~*/\|.
Q Q
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(Although this precise form of the maximum principle does not seem to be stated
anywhere, we point out that its proof is contained in arguments that go back as
least as far as [3]; see also [6].) In [2], the authors showed that a composite condition
on b leads to an analogous maximum principle. Specifically, assume that there are
positive constants a, B, and p such that |a™| < p), b = by + by with

b1 b2(2)] [ i
—1| +su ") T*< B
A n zeQ A(.’ZJ) ( ) 0

and |2'| < R and =" > 0 in 2 for some R € (0,1). Then [2, Theorem 2.1'] states
that

supu < C(Bog,n,a, u)R Hi
Q A

n

(Actually, the proof of [2, Theorem 2.1'] seems to need a smallness condition on
By for the reasons discussed in Remark 3.3 of [5].) These estimates were used
in [2] to infer the regularity of solutions to the Dirichlet problem for nonlinear
elliptic equations with coeflicients satisfying similar composite conditions; parabolic
problems are also considered in [2].

Our goal here is to prove a maximum principle for problems with composite
coefficients under Dirichlet and non-Dirichlet boundary conditions. In addition, we
obtain various consequences of the maximum principle not used in [2]. We shall
apply these estimates, such as the Holder estimates (Corollaries 4.3 and 4.4 below),
to studying the smoothness of solutions to such problems in [11]. On the other
hand, we shall not discuss analogs of the boundary gradient estimates from [2].
Our approach is based on that in [2], but there are some technical differences which
we indicate below. In principle, our estimates could be proved by modifying the
method in [2], but our techniques are of independent interest.

We begin in Section 1 with a review of the relevant notation. Next, we con-
struct some supersolutions for the linear operator Ly = a/ D;; + by D; in Section
2. Similar supersolutions for the full operator L = a* D;; + b'D; were used in [2].
These supersolutions are used to derive our maximum principles for subsolutions
of elliptic equations with composite coefficients in Section 3. Harnack and Hélder
inequalities for solutions of such equations are stated in Section 4; we include them
for completeness, but their proofs from the maximum principles in the previous
section contain no new ingredients. Results for parabolic problems are given in
Section 5. We close with some remarks, mostly about comparing our results with
those in [5], in Section 6. Our investigation of this problem was heavily influenced
by that paper although the methods used here are quite different.

1. NOTATION

Although our notation is generally quite standard, we list here some elements
that may not be immediately apparent. The reader is also directed to [4] for further
information in the elliptic case and to [9] in the parabolic case.

First, we write € for a bounded domain in R™ and we write d for the function
defined by d(z) = inf{|z—y| : y € OQ}. Points in R" are written as x = (z!,...,2")
and we sometimes abbreviate ' = (z!,...,2""1). For zp € R"® and R > 0, we
define

Q[JIQ,R] = B(.IIQ,R) N Q, Z[Z‘Q,R] = B(Z‘Q,R) N 89,
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and we suppress zg from the notation when we assume that x( is the origin. Note
that, even when we refer to Q[R] rather than €2, d denotes the distance to 9.

We say that a vector @ is inward pointing at zo € 0N if there is a positive
constant ¢ such that zo +t3 € Q for t € [0,¢]. For zyp € 99, a vector 3 which
is inward pointing at xo, a constant k, and a function u € C°(Q), we say that
B Du(xzg) > k if

lim inf w(@o +16) — u(@o)
t—0+ t
Similar definitions apply to the conditions 8 - Du(zg) < k and - Du(zg) = k.
Moreover, if 3 is a vector field defined on (a portion of) 99, we say that 5-Du > g
for some function g if B(zg) - Du(xo) > g(zo) for each xg in (the portion of) 9N
with similar definitions for 8- Du < g and 8- Du = g.
We recall that a continuous, increasing function ¢, defined on [0, 1] is called Dinsi
if the function ¢ defined by ((s) = ¢(s)/s is in L'(0,1) and it is 1-decreasing if

s 0

> k.

for all s <o in (0,1). If ¢ is Dini, we define

/CdJ //gdtda

It follows from [13, Section 5] that J is continuous, increasing, and 1-decreasing
and that J(¢) < I(¢) < 2J(¢). We shall say that ¢ is a D; function if ¢ is Dini and
1-decreasing with (1) =

2. CONSTRUCTION OF SUPERSOLUTIONS

The major step is to show that, for any D; function ¢ and any p > 1, there is a
nonnegative function w such that a”’ D;;w < —A{(d/R)/d for any [a%] satisfying

la| < pA. (2.1)
It will be convenient to construct such a function locally first.

Lemma 2.1. Suppose that there are constants wy > 0 and R > 0 along with a
function w, defined for |2'| < R, such that

QR = {z: 2" > w(@), 2| <R}, |w(@’) —w(y)| Swola’ —y/|  (2.2)

for all ' and y' with |2'|,|y’| < R, let ¢ be a Dy function, and set k = (14 wg)'/2.
Then, for any p € (0,R/(2k)) and any p € (0,1], there is a nonnegative function
w € C?(Q[p]) such that

a Dijw < — AL~ (d/R) in Q[p] (2.3)
for any a' satisfying (2.1). In addition, there is a constant C(n, p,wo) such that
lw| < CI(C)(p/R)p, |Dw| < CI(C)(p/R) in Qp]. (2.4)

Proof. We note that [12, Theorem 3.7] shows that there are positive constants
a € (0,1) and C (both determined only by n, u, and wp) along with a function v
such that

a¥Dyjv < —\d*72, d* < v < Cd¥, |Dv| < Cd*!
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in Q[R]. Next, we define v; = J(¢)(R™!p'~?v) and abbreviate v = R~1pl~%.
Then
XCLZ]DU’IA ZJ(C)/(E)R_lpl_aa”Dij’U
+J(¢)"(®)R2p*2*a" D;uDjv
S _ J(g)/(ﬁ)R_lpl_ada_Q.

From the explicit form of J(¢)’, we see that {(s)/s > J(¢)'(s) > ¢((s)/(2s) for any
€ (0,1). Since R~1pt=*d* < < CR™1pt=2d*, it follows that
(B pade)
d? ’
|Duy| < CCR™1p12d%) [d, 0 < vy < CT(Q)(R™ p~a)

in Q[R]. Since (', s) € Q[R] for w(z’) < s < 2kp and |2'| < p, we can define W by

ClijDijU1 S -

2Kp

W(z) = /w v1(2', s) ds.

By construction W is nonnegative and W € C*(Qp]).
We now prove an upper bound for a* D;;W. We compute

2kp
D;W(x) = —6inv1 (2, 2kp) — Dy (2, s)ds.

A similar expression can be obtained for D;;W, and hence (noting that p <
d(2',2kp) < (2k + 1)p for |2'| < p)

2Kkp
a" Dy W = / a"' Djjvy (2, s) ds — Z a™™D;vy (2, 2kp)

i=1

2P ((R™1p'=2d(a’, 5)*) C(p/R)
< —)\/xn e ds + oA2PY ;

To estimate this integral, we first observe that

%(s —w(@) < d(a’,s) < s —w(2)

for any s. It follows that d(z’, s) > d(z)/k. In addition, d is Lipschitz with Lipschitz
constant 1 (see, for example, [4, Section 14.6]) and therefore d(z’, s) < d(z)+s—z™.
Because £ > 1, we also have 2kp > 2™ 4 d(x), so

C(R™'p'd(@,5)™) _ ((R™'p' ™ (d(w)/k)*) _ C(R™p'~“d(z)")
i@s?  ° [@d@rs—a? C° d@p
for s € [2™, 2™ + d(z)] and € = 1/(4k®). Therefore
(Rt d(a 5)%) T (R p (e 5))
[, gz [ @5

R ())
i@

S

It follows that
D < e SUER) | /)
d(x) p
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in Q[p] becasue p'~*d(x)® > d(z) there. In addition,
0 (R p (e, )

d(x',s)
0GR (s — w(a'))Y)
w(a") (8 —w(z'))

= CI(¢) <}% <2W%M>a> < CIQ)(%),

ds

ID'W| < c/

<C ds

and
|DpW| =1 < CI(Q)(R™'p'~*d(z)*) < CI(C)(p/R),

The proof is completed by taking w = W/e+ AI(()(p/R)(p? —|z|?)/p for a suitable
constant A. n

Let us note that we can prove a similar result more easily if we use the geometric
situation in [2]. Specifically, suppose 0 < 2" < R for all x € Q and @'/ only satisfies
the lower bound a¥¢;&; > A€|2. If we take v = (z")* (with « € (0,1) arbitrary)
and define v as in the proof of Lemma 2.1, then w given by

w(z) = 2/: (2, s)ds.

n

satisfies a D;jw < —A((z™/R)/z"™ in Q[p] as well as estimate (2.4).
For our local estimates including lower order terms, we can use a simple im-
provement of the preceding result.

Lemma 2.2. Suppose that there are constants wg > 0 and R > 0 along with a func-
tion w, defined for |z'| < R, such that (2.2) holds for all ' and y' with |2'|, |y’| < R,
and let ¢ be a Dy function. Then for any u > 1 and By > 0, there is a constant
po(n, i, wo, Bo, ¢) € (0,1) and a function © such that p < poR implies

d/R)

a¥ Dy + b'Dyw < — AL o (2.5)

in Q[p] for all [a] satisfying (2.1) and all b such that |b] < Bo¢(d/R)/d.

Proof. Take w = 2w, where w is the function from Lemma 2.1, and note that

). a7 i 7)) .75 # _
0" Dijio +¥'Di < sd (<24 CBol(Q) o/ R)

The proof is completed by taking pg so small that CByI({)(po) < 1. O

For global estimates, we use a more careful argument. We first quantify the
assumption that  is a Lipschitz domain by noting that there are constants N, R
and wg along with N points x1,...,zxy on 99 such that, after a translation and
rotation taking x; to 0, Q[z;, R] can be written in the form (2.2) and such that 92
can be covered by the N balls B(z;, R/(3k)), where x was defined in Lemma 2.1.
For simplicity, we call N, R, and wq the Lipschitz constants of €.

Lemma 2.3. Let Q C R"™ be Lipschitz with Lipschitz constants N, R, and wg, and
let ¢ be a Dy function. Then, for any p > 1 and By > 0, there is a nonnegative
function wy € C%(Q) such that

¢(d/ diam Q) .
e

aijDijwl + b’Dlwl < =)\ P

n Q (2.6)
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for any matriz-valued function [a%] satisfying (2.1) and any vector-valued function

b such that

¢(d/ diam )
7 .

In addition, there is a constant C determined only by N, (, Bs, p, wo, and

R/ diam Q) such that

b < BaA (2.7)

|wi] < Cdiam Q, |Dw;| < C. (2.8)
Proof. Let (1 be a Dy function to be further specified. From Lemma 2.1, there are
functions Wy, ..., Wy such that
¢1(d/ diam Q)
d
in Q[zk, R]. In addition, the function Wy = (diam Q)2 — |z — z;|? satisfies
aD;jWo < —2X in Q. Now set

a’ Di; Wy, < =X

2R
o= Qo =1,

let (nx) be a partition of unity on ' subordinate to the covering (Q[zy, R/(2k)]),

and set
N

wo = AWy + Z(nka)
k=1

with A a positive constant to be chosen. It follows that there is a constant C*,
determined only by N, u, wg, and R/ diam 2, such that

1, ¢1(d/ diam ) C*
Xa]Diij < S T 2A+ I I(¢1)(1)
in Q' and
LDy < —24+ < 1(c)(1)
)\Cl ij W0 = R 1

in 2\ Q. We now write d* for the infimum of d over Q \ Q' and note that d*/R

is bounded above and below by positive constants determined by n and wy. By

choosing A = (;(d*/R)/d* + C*I(¢1)(1)/R, we infer that

¢1(d/ diam )
d

in all of © for some constant Cy determined only by n, p, R/ diam Q, and wy.

Let us set K = CyBsy. Then there is a positive constant e1(n, i, wo, B2) such
that KI(¢)(s) <1/2 for all s < e;. Because ( is Dini, it follows that

liminf ¢(s)|Ins| = 0
iminf ((s)|In s| = 0,

a¥ Dijwy < —A , [Dwol < Col(C1)(1)

and hence there is a constant £y € (0, min{e,1/3}) such that
K{(eo)|Ineg| <1/8.
We now choose (7 as follows:
6K¢(s) if0<s<egg

G(8) = (1 - 6KC(e0))s + 6K C(0) — €0

ifeg<s<l1.
1—60
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It’s easy to check that (7 is a Dy function. A direct calculation shows that

6K ((g0)|Ineg| — €0
1—50

I(G1)(1) = 6KI(¢)(e0) +1 — 6K ((e0) + <5

and therefore

KI(G)1)(s) < 26i(s)
for s < g9, and hence
Bs|Dwo(z)|¢(d(z)/ diam Q) < (5/6)¢1(d(x)/ diam §2)

if d(z) < egdiam .
We now let g € C%([0, supwp]) be an increasing, concave function to be further
specified and we define w; = g(wp). Then

ClijDij’LUl + biDi’LU1 = g’(wo)[aijDijwo + biDiwo] + g”(wo)aijDiwoDjwo,

SO
y . d/ diam € d/ diam )
a Dijwy + b Dywy < Ag'(wo)[—% + BﬂDwM%]
¢1(d/ diam Q)
< =M\ (w)>—L——""~
< —Mg'(w) o
wherever d < ggdiam €. In addition,
aijDijwl + biDiwl < - /\9,7C1(d/ ;l;am Q)
Ci(€0) ¢(e0) ’ 2
A [— =" + Bs|Dwo| 2] + \¢"'|D
+Ag'[ 2diamQ+ 2| Dwo EQR]+ g" | Dwo|
wherever d > g9 diam 2. But
C(eo) _ Cieo) Gi(eo) | B 2
Bs|Dwg|>— = =222 |D < =" 4+ 1D
2l Dwol = = Georok PV = Sdiaman T Rl

where B = diam Q/(72C2eoR) since (; is 1-decreasing. It follows that

y . d/ diam Q Bg'
a'”Dijwl + bi-Diwl < _)\g/CI( / lam ) + A _g +gl/ |Dw0|2

2d R
wherever d > ggdiam ). We now note that there is a positive constant K, such
that Ko(; > 6¢ on the whole interval [0, 1], and we choose

R _ _
g(s) = KOE exp(Bsupwy/R)[1 — exp(—Bs/R)].
Then straightforward calculations show that (2.6) and (2.8) hold. O

3. THE ELLIPTIC COMPOSITE MAXIMUM PRINCIPLE

In order to prove our maximum principle for elliptic equations with composite
coefficients, we first prove an intermediate result which is a variant of the Aleksan-
droff maximum principle. Instead of the usual upper contact set (see [4, (9.5)]), for
a function u € C°(Q) and a constant ¢ € (0, 1), we introduce T'c(u), the set of all
y € Q such that u(y) > 0 and there is a vector p with |p| < esupu/(diam Q + Fy)
and u(z) < u(y) +p- (z —y) for all z € Q. We also have the normal mapping x
defined by

x(y) ={peR" :u(z) <u(y)+p- (z—y) for all z € Q}.
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Lemma 3.1. Let Q C R™ be a Lipschitz domain, and define the operators L and
M by

Lu = a" Djju + b'Dyu + cu, (3.1a)

Mu = —u+ (- Du, (3.1b)

with [a¥] a positive-definite matriz-value function and ¢ < 0. Suppose there are
constants By and By such that

< Bl, (32&)

EE
Dl/n n.

18] < fo- (3.2b)
Let u € W2"(Q) N C°Y) and suppose there is a nonpositive function f with

loc

/DY € L™(Q) such that Lu > f in Q and Mu > 0 on OQ. Then, there is
a constant C(n, By) such that, for any e € (0,1),

diamQ+ Gy || f
e Dl/n

. (3.3)
n,le(u)

supu < C

Proof. As in the proof of [4, Lemma 9.4] (see also [10, Proposition 2.1]), there is a
constant Ry with

RQ S C(Bl,n)

3.4
‘Dl/n n,lc(u) ( )
such that, for any § > 0, there is py € R™ \ x(Tz(u)) with |pg|] < Ry + 6. If
|po| < esupu/(diam Q + By), we proceed as in [7, Lemma 1.1] to see that

supu < (diam Q + Bo)|pol,
Q

which implies that supu = 0. On the other hand, if [pg| > e supu/(diamQ + Gy),
then

1
supu < E(RO +9)

for any § > 0. Combining these two cases and using (3.4) yields the desired estimate.
O

We are now ready to state and prove our main maximum estimate.

Theorem 3.2. Let Q C R™ be Lipschitz with Lipschitz constants N, R, and wy,
and define the operators L and M by (3.1) with [a¥] a positive-definite matriz-value
function and ¢ < 0. Suppose there is a constant By such that condition (3.2b) holds.
Suppose also that N € C%1 and that there is a constant p such that condition (2.1)
holds. Suppose finally that there are constants B1 and B, vector-valued functions
b1 and by, and a D1 function ¢ such that b = by + bs and

% < By, (3.5a)
iam
|ba| < BQA%;“) (3.5b)

Letu € W2’”(Q)OCO () and suppose there are nonpositive functions fi and fo with

loc
f1/DY" € L™(Q) and fod/(A(d/ diam Q)) € L>(Q) and a nonpositive constant g
such that Lu > f1+ fo in Q and Mu > g on 02. Then, there are constants C' and
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B*, determined only by n, u, Ba, N, R/ diam$), and wgy such that By < B* implies
that

. !
< Q
supu < [g] + C(diam 2 + o) HDl/n T A d/dlamﬂ
where
. sup u
' = Q: D Tiarn O L A
{z€Q:u(z) >0, | U|_d mQ_|_/BO+CH)\Cd/dIamQ H

Proof. We define the operators Ly, for k = 1,2 by Lyu = a* D;;u + b% Diu + cu,
and, for A > 0 and € € (0,1/2) constants to be determined, we set @ = u + g,
w1 = w1 + Bosup |[Dw|, and v = @ — Aw;. Next, we assume that B* < 1 and we
apply Lemma 3.1 to v using the operator L; in place of L. It follows that

CRo || (f*)”

supv < — | pim

, (3.8)

where we have used the abbreviations
f* = f1 + f2 — b;Dl’U — ALywq — Ab’iDiwl,
I =T.(v), and Ry = diam + By. To proceed, we obtain a lower bound for f*
using the abbreviation z = ((d/ diam Q).
First, we note that sup v < sup @ and hence
i Bs z

—b5D;v > )\7 supuR—Od

on I'. Then we set

f

-l

n,F’ Hx\( (d/ diam ) H
and note that
: BQ _ z
fo—b5Djv — ALowy > M(—Fy — — esupu+ A)=
Ro d
In addition, —Abt D;w; > —CA|by|. Taking A = F, + By sup @i/ Ry then yields
B
f* Z fl CF2|b1| — |b1| supu
Now we use this inequality and our choice of A along with (3.8) to see that
1 C
supv < C (1 + g) F>Ry + ?FlRo + CB1 By sup .

On the other hand,
supv > supu — CF5 diam ) — C'Bse sup .
By choosing B* = ¢ =1/(4 4+ 4CBs), we find that
supa < C(Fy + F») Ry,
and that
|Du| < |Dv| 4+ A|Dw;| < % sup @ + CFy

on I'. Combining these two inequalities and recalling our choice of € easily implies
(3.6) since @ < u. O
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Note that the smallness condition on B; can be modified. By paying more
attention to the values of the constants generically denoted by C' in this proof, we
see that (3.6) holds provided By and By satisfy the joint condition

Kl(Bl)KQ(BQ)BlBQ <1,

where K;(B;) is the constant from Lemma 3.1 and K>(B3) is the constant from
Lemma 2.3.

4. LOCAL ESTIMATES FOR ELLIPTIC PROBLEMS

Next, we discuss various local estimates for elliptic oblique derivative problems.
Our main concern is with a Holder estimate for u, which will be useful in applica-
tions, so we just sketch the major ideas. First, for a positive-definite matrix-valued
function A = [a¥] and a continuous increasing function ¢, we say that a measurable
function f is an (n, ¢, .A)-composite function if there is a decomposition f = f1 + f2
along with constants F; and Fy such that
(d/ R)

le/n”n a[r] < F1, |2/ < Fy

in Q[R]. We call (Fy, F5) the composite norm of f. In general, there will be more
than one such decomposition and hence this norm is not unique, so we shall choose
any convenient choice. In particular, if f is nonnegative or nonpositive, then we
shall assume that f; and fo are both nonnegative or nonpositive, respectively. We
also write

Fi(p) = | f1/PY™|nqip)

for p € (0, R). We use similar notation for the coefficients b and c.
Now suppose that there are positive constants € < 1, R, and wp such that

{z e R" : 2" > wo|z'|,|z| < R} C Q, (4.1a)
3] < 228 on SIR]. (4.1b)
wo

In addition, we suppose that there is a constant 6y € (0,7/2] such that, for each
point zg € X[R)], there is a cone with height R, semi-vertex angle 6y, and vertex
which does not intersect 2. It is easy to check that the basic estimate Lemma 3.1
from [10] continues to hold provided we replace each nonnegative L™ function (that
s, (Lu)*, |b], and |c|) by an (n,(,.A)-composite function. Specifically, we define
the operator M by

Mu = 3 - Du+ Bou, (4.2)
we set A = 21425c74¢ and for 1 € Q[R] and p € (0, R) and « € (0,1), we define

2 — x/1|2 . )(1+6)/2 N 2" — x?|2
LS § ERR Lt

E(z1,p) ={z € Q: < g (Awop)? <1} (4.3)

Finally, we use F7(p) to denote

fi
Dl/n

n,E(z1,p)
and similarly for B (p) and C5(p).
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Lemma 4.1. Let u be a nonnegative WIQOC”(Q[R]) N C°(QY) function, let ¢ be a Dy
function, define L by (3.1a) and suppose that b and c are (n,(, A)-composite func-
tions. Suppose there are a nonnegative (n,(, A)-composite function f and a non-
negative constant g such that

Lu < fin Q[R], Mu < gf" on X[R], (4.4)
let p€ (0,R), 1 = (0,27) € QR] and o € (0,1), and set
6= ut plF3 (p) + BIC)(o/R) + lal] (45)

In addition to conditions (4.1) and (2.1), suppose that ¢ < 0 in Q[R] and that there
is a positive constant ps such that 0 > (% > —paB™ on L[R]. Then there is a
positive constant ay(€) such that if

zt 2 (A — ar)wop, (4.6)

and E(z1,p) C Q[R], then for any positive constants 6 and &1 in (0,1), there are
positive constants K1 and (1 determined only by n, a, pCs, Ba, €, u, pap, 6, 01,
6o, and wo such that if pC5(p) + Bi(p) < (1 and

{z € E(z1,0p) - u(x) < h}| < ¢f'p" (4.7)
for some h > 0, then h < K14 in E(x1,d1p).

From this lemma, the argument of [10, Section 4] leads to the following weak
Harnack inequality.

Theorem 4.2. Let 0 € 9Q and suppose conditions (4.1) and (2.1) hold. Let ¢ be
a D; function, let p € (0,R/4) and suppose u € C°(Q[4p]) N Wlicn(Q[le]) satisfy
the inequalities

a" Diju < Avi|Dul?® + b|Du| + cu + f, u > 0 in Q[4p], (4.8a)
B Du < B"[p1u+ g] on 9Q[4p] (4.8b)
for nonnegative constants v1, g, and p1 and nonnegative (n,(, A)-composite func-

tions b, ¢, and f. Then there are constants Ks, €3, and k (determined only by n,
visupu, Ba, pCi(p), pCa, €, 1, pu1, 0o, and wy) such that By1(p) < 2 implies

1/k
(w [ u"da:) < Ko (jntut oRG) + PIQGIR +9)). (@49

From this weak Harnack inequality, a Holder estimate follows by standard meth-
ods.

Corollary 4.3. Suppose condition (2.2) holds, let [a¥] satisfy (2.1), and let 3 sat-

isfy (4.1b). Let p € (0, R/4), let ¢ be a Dy function, let u € CO(Qp]) NW2"(p)),

loc
and suppose that there are nonnegative functions b, ¢, and f satisfying the hypothe-

ses in Theorem 4.2 and a nonnegative constant vy such that
|a¥ Diju| < Avy|Dul? + b|Du| + clu| + f (4.10)
in Q[p]. Suppose also that there are nonnegative constants p1 and g such that

|6+ Du| < " [pa|ul + g] (4.11)
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on X[p]. Then there are constants C, 0, and €3 determined only by n, vy sup |ul,
wo, €, W, p1p, B2, and p(C1(p) + C2) such that if B1(p) < e3, then u satisfies the
estimate

osc u < Cr? <osc u+plg + Fi(p) + FQI(Q)(p/R)]> (4.12)
Q[7p] Qpl

In fact, we can relax the condition (2.2) to just (4.1a) by invoking the obvious
analog of the so-called “displaced” weak Harnack inequality [10, Theorem 3.4]; for
our intended applications, this improvement will not be important. On the other
hand, the use of the L™(2[p]) norm for f; in this Holder estimate will be important.

A similar argument along with the proof of [10, Corollary 8.4] shows that an
analogous Holder estimate is valid for mixed problems which we state in terms of
the sets

Oly,pl ={z € Q: |z —y| <p}, Oy, p] = {z € Oly,p] : || = lyl}
for a point y € ON[R] and p < R.

Corollary 4.4. Suppose condition (2.2) holds, let [a¥] satisfy (2.1), and let 3 sat-
isfy (4.1b). Let p € (0,R/4), let ¢ be a Dy function, let y € Z[R] with |y| = p, let
u e C%Oly, p) "W (Oly, p|) and suppose that there are (n, ¢, A)-composite non-
negative functions b, ¢, and f and a nonnegative constant v1 such that (4.10) holds
in Oly, p]. Suppose also that there are nonnegative constants p1 and g such that
(4.11) holds on E[p] N Oly, p]. Then, there are constants C, 6, and ey determined
only by v1sup |ul, wo, €, A/, Ba, and p(C1(p) + C2) such that if B1(p) < €q, then
u satisfies the estimate

osc u<C osc u
Oly,7p)] O™ y,27p]

(4.13)
407 ( g wtslg + 1A/ oty + I 0/ R)

We next point out that all the elliptic results in [10] have their analogs when the
coefficients b and ¢ (and f when it appears) are composite as in this paper. The
only result that requires some specific comment is the Harnack inequality. It is not
difficult to see that its proof applies if we can write b = by + be with b; € L9 for
some ¢ > n and |by| < Bd®~! for some « € (0,1).

We conclude this section with a maximum principle for mixed boundary value
problems in Q[p]. This maximum principle will be useful in studying gradient
estimates for oblique derivative problems; see [11].

Lemma 4.5. Let R > 0, and suppose conditions (2.1) and (2.2) are satisfied.
Let p € (0, R), let ¢ be a Dy function, let b and ¢ be (n,(, A)-composite function
with ¢ < 0, and define the operator L by (3.1a). Suppose (8 is an inward pointing
direction field defined on X[p] with |B] < u1B"™ for some constant py. Let u €

W2M(Q[p)) N C(Qlp]) and suppose there are nonnegative constants po and g along
with a nonpositive (n,(, A)-composite function f such that Lu > f in Q[p] and
B - Du > —gB™ on X[p]. Then there are positive constants 1 and py, determined
only by n, pu, and py such that By < 1 and p < poR imply that
supu < sup. ut + C(n, By, i, m)plg + Fi(p) + F21(G1)(p/R)), (4.14)
Qlp Et(p

where ET(p) = {z € Q: |z| = p}.
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Proof. We define v by

v(w) = exp(ea™ /p)(u(z) — sup u*),
E+(p)
and we define L by
_ . ) 2¢ .
Lu = a"D;ju+ <bZ - ;(Jf”) D;u + cu.

It’s easy to see that

_ b 2 nn
Lv > exp(ex™/p)f — <E|—p| +Z /?2 ) v

in Q[p]. Now we set 3 = (p3)/(6™(0)) and extend 3 to be zero on E*(p). Then
B-Dv—v > —(pg/e) on 9(Qp]).

We now assume that e; < B*, the constant from Theorem 3.2, and we apply
that theorem to v with L and 3 replacing L and [, respectively. In this way, we
obtain

supo < C(1+ Eo)elg + Fi(p)] + FoI(G) o/ R)

+C(e+p)(e1 + e+ B2I(p/R))supv.
Qlp]
The proof is completed by choosing ¢, €1, and pg sufficiently small and rewriting
the resulting inequality in terms of u. O

5. THE PARABOLIC COMPOSITE MAXIMUM PRINCIPLE

For parabolic problems, we modify our notation slightly. Let 2 be a bounded
domain in R™™! with parabolic boundary P and suppose Ry is so large that
|z| < Ry for all X = (2,t) € Q. Let u be a continuous function defined on Q \ PQ.
For constants 3y > 0 and € > 0, we define E. (u, 3) to be the set of all X € Q\ PQ
such that there is £ € R™ with w(Y) <u(X)+&-(x —y) for all Y € Q with s <,
u(X) > 0, and

Ry + 1

BotBo1e) < u(x) — -2 < S supu.
€ 2 Q

The rest of the notation from Section 1 is then modified in the obvious way.
Before presenting our main maximum principle, we begin with a simple variant

of an intermediate result.

Lemma 5.1. Suppose (3 is an inward pointing direction field on PQ with 3" =0
on PQ and B = 0 on BS). Suppose also that there is a constant By such that
18] < Bo on PQ Ifue W2, (Q)NC°%Q) and - Du > u on PQ, then

n+1;loc

n/(n+1) 1/(n+1)
supu < C(n) <M> / |us det D?u| dX : (5.1)
Q € Ee(u,80)

Proof. The proof is virtually identical to that of [9, Lemma 7.2] (which is modeled,
in turn, on that in [14]), so we only give a sketch. First, we assume that u €
C2(Q)NC°(Q) and we define the function ®: Q — Ry by &(X) = (Du(X), u(X)—
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x - Du(X)). Since the Jacobian determinant of this function is just u; det D?u, it
follows that

/ luy det D*u| dX > |®(E)|,
E

where we use F to abbreviate E.(u,8y). Next, we set M = supg, u and we define

Ry +/30

S={E=(,h) Ry : |§|<h<—}

The discussion on p. 107 of [9] shows that ¥ C <I>(E), S0

g det D2u| dX > |2| = C(n ( c > ML
[ urdet D2l ax = (5] = o) (=
and the desired result (for smooth u) follows from this one by simple algebra. The

hypothesis u € C? is relaxed to u € Wn+1 loc a8 in [9, Proposition 7.3]. O

In analogy to the elliptic definition for composite functions, for a positive-
definite matrix-valued function A = [a*] and a continuous increasing function
¢, we say that a measurable function f is an (n + 1,(,.A)-composite function if
there is a decomposition f = f; + fo along with constants F; and F5 such that
1 f1/DPY i1 i) < Fi and

1o/ < B R

in Q[R]. We call (Fy, F3) the composite norm of f.
Several different measures of regularity for PQ will be used to quantify the
dependence of the estimates on the domain. First, we refer to p. 76 of [9] for the

definition of PQ) € H; although we shall rewrite the definition to emphasize the
connection to 8. If PQ) € Hy, then there are positive constants N, R, Ty, and wq

along with points X7, ..., X in SQ such that, after a translation and rotation (in
the z-variables only) which takes X; to the origin, we have
QR ={X eR": |X|<R, 2" >w(X'), t>-To} (5.2)

for some function w (which will generally be different for each X;) satisfying
lw(x',t) —w(y, s)| < wo|X — Y| (5.3)

In addition, SQ is covered by the cylinders Q(X;, R/(3x)) with x = (1 + 2w?)'/2.
Next, a tusk is a set of the form

{(X:-T<t<0, |[x—(—t)"%x| < R(-1)"/?}

for some point zg € R™ and positive constants R and T. We then say (compare
with [8, p. 26]) that Q satisfies an exterior fp-tusk condition at X; € SQ (for
wo € (0,7/2)) if T' = o0, and

| X — X1|

_p\1/2 [ et 1|
(t1 —t)"* < tanfp |z — x1 21/2|a:0|

for X € 2. Note that §y can be determined explicitly in terms of R and |zo|.
We then have the following maximum principle for parabolic operators with
composite coefficients.
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Theorem 5.2. Let P € Hy with Hy constants N, R, Ty, and wg. Define the
operators L by

Lu = —u; + aijDiju +b'Dju+ cu (5.4)

and M by (3.1b) with [a¥] positive definite, c < 0, and 3 satisfying (3.2b). Suppose
there are positive constants Ao and Ao so that [a] satisfies

Molé]* < a&ig; < Mol¢f (5.5)

in Q, and suppose $ = 0 on BQ and BTt =0 on SO. Let ¢ be a D functzon

and suppose that b and ¢ are (n + 1,(, A)-composite functions. Let u € Wn;rl 1oc N

C%(Q) and suppose there are a nonpositive, (n + 1,¢, A)-composite function f and
a nonpositive constant g such that Lu > f in Q, Mu > g on PQ. If |z| < Ry in L,
then there is a constant C, determined only by Ba, n, N, R/Ry, Ty, Ao, Ao, and
wo such that

Supu < |g| + C(BIM" + Ry + By)™/ D) [le/(nﬂ) +F|, (56)
n+1,0* (u)
with T given by
I = {zeQ:u(z) >0, |Du| < Rsui"; L COR). (5.7)
o+ Bo

Proof. We first note that the proof of Lemma 2.3 can be modified to the parabolic
case. The only significant differences are that we use the remarks following Lemma
13.1 of [8] in place of [12, Theorem 3.7] and we replace diam 2 by Ro. We denote
the resulting function also by ws.

Next, we use the matrix inequality (det Adet B)"*! < (tr AB)/(n + 1), true
for any (n + 1) x (n + 1), positive semidefinite matrices A and B, and we set
v=u+g— A(w1 — By sup |Dw;|) to se that

Ro + o\ ™Y f*
< -4
Slépv < C(n) < c ) Dl/(n+1) 1 Ea
where f* = —v; + a¥ D;jv and E = E-(v,5). Some straightforward calculation

shows that

" €supq v
> f1i—C|Fhp+—"""—1|1b
ff>h {2+R0+ﬂ0}|1|

on E if A= F+ (eBysupgv)/(Ro + o), so

R n/(n+1) B
supv < C' <Lﬁ0> <F1 + Iy —|— supv) ,
Q € +60 o

and the proof is completed by taking e sufficiently small. O

Note that the form of the estimate (5.6) agrees with that in [14] and it improves
the form stated in [9, Theorem 7.1] (although the choice

p= (R4 [[o/D "+ Go) /D) £ /D%

in the proof of that theorem, on p. 159 of [9], does give this form). Of course, if we
replace the assumption ¢ < 0 by ¢ < K for some nonpositive constant K, then we
can apply this theorem to uexp(—Kt) to obtain an analogous estimate for u.

We leave the statements of the local estimates for parabolic equations to the
reader, mentioning [10, Section 7] as a source for the descriptions. In particular, we
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point out that the appropriate hypothesis for b; is that by / DY/ (7+1) should be in
the Morrey space M"™+11 and that 3 is assumed to satisfy condition (4.1b) under
the assumption that (5.3) is modified to

jw(@',t) = w(y', 8)| < wolz’ —y'| +wilt - s[|'/?

for some w;y.

6. ADDITIONAL REMARKS

Our method gives an alternative approach for some of the results in [5] which
were used in [2]. To illustrate this point, we consider the following result, which
is approximately the elliptic analog of [5, Lemma 1.2]. (See also Lemma 3.3 from
that paper.)

Lemma 6.1. Let Q C R™ and define the operator L by (3.1a) with ¢ < 0. If there
is a nonnegative function w such that Lw < —|b| and if u € Wfof N C°(Q) with
u <0 on 0N, then

; (6.1)

supu < C(n)(sup w + diam Q) H
n,Qt

Dl/n
where Q7T is the subset of 1 on which u > 0.

Proof. Set M = supg u and, with € € (0,1) to be determined, set v = u —eM/R
and f = Lu~. Then a”D;;v > f in I'.(v) and v < 0 on 01, so Lemma 3.1 with
By = Bp = 0 implies that

diam €2
<C
e SO=E 5],
and hence
diam ) f
M1 - < —||= .
( diam supw) < C(n) € H Dl/n nOt
The proof is completed by taking e = diam Q/(2(sup w + diam Q)). O

This result is weaker than Krylov’s in that he proves the pointwise inequality

u < C(n)(w + diam Q) H Din

n,Qt

On the other hand, our method considers situations in which we only have a su-
persolution to part of the operator; that is, we only need a function w (like wy in
Section 3) such that aijDijw + by Djw < —|by| with b = by + bo.

Via similar considerations, we can prove essentially all the results in [5] for
solutions of elliptic and parabolic equations. The main differences are that we only
obtain global estimates for u and we always assume that p = n. (Here, Krylov’s d
is the same as our n.) In a future work, we shall examine the case p > n.
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