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Spectrum of the linearized operator for the

Ginzburg-Landau equation ∗

Tai-Chia Lin

Abstract

We study the spectrum of the linearized operator for the Ginzburg-
Landau equation about a symmetric vortex solution with degree one. We
show that the smallest eigenvalue of the linearized operator has multiplic-
ity two, and then we describe its behavior as a small parameter approaches
zero. We also find a positive lower bound for all the other eigenvalues,
and find estimates of the first eigenfunction. Then using these results, we
give partial results on the dynamics of vortices in the nonlinear heat and
Schrödinger equations.

1 Introduction

We consider the steady state for the Ginzburg-Landau equation

∆u+
1

ε2
u(1− |u|2) = 0 for x ∈ R2 , (1.1)

where the solution u is a complex-valued function and ε is a small positive pa-
rameter. Symmetric vortex solution to (1.1) with degree one has been obtained
in [3, 10, 11]. The solution have the form

u(x) = U1(x) = f0(
r

ε
)eiθ ,

where (r, θ) denote the polar coordinates of x ∈ R2 and f0 = f0(s) is the solution
of

−f ′′ − f
′

s
+ 1
s2
f = f · (1− f2) for s > 0 ,

f(+∞) = 1, f(0) = 0, f ≥ 0 .
(1.2)

Moreover, f0(s) satisfies

f0(s) = s(A0 +

∞∑
k=1

P2k(A0)s
2k) for s > 0 , (1.3)

f0(s) = 1−
1

2s2
−
9

8s4
+ . . . as s→ +∞ , (1.4)
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where A0 and the P2k(A0) are constants with A0 positive. We consider a small
perturbation about U1 of the form

u(x) = U1(x) + εv(x),

where v is a smooth function, v(x) = 0 for x ∈ ∂B and B = B1(0) is the unit
disk in R2 centered at the origin. Then (1.1) and (1.2) imply

Lεv +N(v) = 0 for x ∈ B ,

v = 0 for x ∈ ∂B ,

where

Lεv = −∆v −
1
ε2 (1 − |U1|

2)v + 2
ε2 (U1 · v)U1,

U1 · v =
1
2 (Ū1v + U1v̄), (1.5)

N(v) = 1
ε [2(U1 · v)v + |v|

2U1] + |v|2v .

Here the operator Lε : H
1
0 (B;C) ∩H

2(B;C)→ L2(B;C) is the linearized oper-
ator of (1.1) about U1.
In this paper, we find estimates for the eigenvalues and the first eigenfunction

of the operator Lε. Since Lε is self-adjoint, then all eigenvalues of Lε must be
real. Hence the eigenvalue problem becomes

Lεw = λw, λ ∈ R, w ∈ H
1
0 (B;C) ∩H

2(B;C). (1.6)

Lieb and Loss [15] proved that the first eigenvalue on (1.6) is nonnegative. Later,
Mironescu [21] showed that

Theorem A: The first eigenvalue of Lε is positive.

In [19], we find quantitative estimates for (1.6), such as the following.

Theorem B: Let V1 = {a(r) + b(r)e2iθ ∈ H10 (B;C) ∩H
2(B;C)}. Then

(i) There exist positive constants c1, ε1 independent of ε such that

〈Lεw ,w〉 ≥ c1 > 0 for w ∈ V ⊥1 , ‖w‖L2(B) = 1 , 0 < ε ≤ ε1 ,

where V ⊥1 = {w ∈ H
1
0 (B;C)∩H

2(B;C) : 〈w, v〉 = 0 , ∀v ∈ V1} and 〈·, ·〉 is
the inner product in L2(B),

(ii) 0 < λ1 → 0 as ε→ 0+.

(iii) The first eigenfunction corresponding to the first eigenvalue λ1 has the
form aε(r) + bε(r)e

2iθ such that aε ≥ bε ≥ 0 for 0 ≤ r ≤ 1.

The proof of Theorem B(iii) can be found in [21]. Note that Theorem B esti-
mates many eigenvalues but not all eigenvalues. In addition, the multiplicity of
the first eigenvalue λ1 is still unknown. Furthermore, there is no estimate about
the first eigenfunction corresponding to the first eigenvalue λ1. We improve
Theorem B by our main results as follows.
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Theorem I:

(i) The eigenspace of the eigenvalue λ1 is only two-dimensional which is spanned
by two eigenfunctions aε(r)+ bε(r)e

2iθ and iaε(r)− ibε(r)e2iθ, where aε(r)
and bε(r) are real-valued.

(ii) There exist positive constants c1, ε1 independent of ε such that the second
eigenvalue λ2 satisfies λ2(ε) ≥ c1 for 0 < ε ≤ ε1.

(iii) 0 < λ1 = O((log
1
ε )
−1) as ε→ 0+.

¿From (1.5), Lεw = λ1w, λ1 ∈ R, w ∈ V1 if and only if w = α(a(r) +
b(r)e2iθ) + β(ic(r) + id(r)e2iθ), for all α, β ∈ R, where a, b, c, d are real-valued
constants. However, by (1.5), the eigenfunction in V1 cannot have the form
a(r)+ ib(r)e2iθ or ia(r)+b(r)e2iθ , where a, b are nonzero real-valued. Moreover,
by (1.5), w = a(r)+b(r)e2iθ ∈ V1, where a, b are real-valued satisfies Lεw = λ1w
if and only if w̃ = ia(r) − ib(r)e2iθ ∈ V1 also satisfies Lεw̃ = λ1w̃. Hence the
eigenfunctions of Lε in V1 can be generated by all functions with the specific
forms a(r) + b(r)e2iθ and ia(r) − ib(r)e2iθ, where a, b are real. Therefore the
first eigenfunction has the specific form in Theorem I(i).
Now we introduce the stretched variable X = x/ε. Then we transform the

operator Lε into another linear operator L̃ε defined by

L̃εṽ(X) = −∆X ṽ − (1 − |Ψ0|
2)ṽ + 2(Ψ0 · ṽ)Ψ0 (1.7)

for X ∈ B1/ε(0), ṽ = ṽ(X) ∈ H
1
0 (B1/ε(0)) ∩ H

2(B1/ε(0)), where Ψ0(X) =

f0(s)e
iθ , s = |X |, θ = argX and ∆ = ∂2X1 + ∂

2
X2
. Then L̃εṽ = ε

2λ1ṽ if and
only if Lεv = λ1v, where ṽ(X) = v(εX) for X ∈ B1/ε(0). Hence Theorem I(i)

implies that L̃ε has the first eigenvalue ε
2λ1 and the associated eigenfunctions

ẽ1(s, θ) = ãε(s) + b̃ε(s)e
2iθ , ẽ2(s, θ) = iãε(s)− ib̃ε(s)e

2iθ ,

where ãε(s) = aε(εs) and b̃ε(s) = bε(εs). We may assume that ‖ẽj‖L2 = 1 , j =
1, 2. Here ‖ · ‖L2 denotes the L

2 norm on B1/ε(0). The estimates of ẽj’s are
given as follows.

Proposition I: Let w̃j =
1

‖∂XjΨ0‖L2
∂XjΨ0, j = 1, 2. Assume that 〈w̃j , ẽj〉 >

0 for j = 1, 2. Then the eigenfunctions ẽj satisfy

ẽj = w̃j + νj ,ε and ‖νj ,ε‖L2 = O((log
1

ε
)−1/2) as ε→ + .

Theorem I and Proposition I are important tools for analyzing the vortex
solution of the Ginzburg-Landau equation

ε2∆u+ (1− |u|2)u = 0 in Ω , (1.8)

u = g on ∂Ω ,
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where Ω is a bounded smooth domain, u : Ω→ C is the solution and g : ∂Ω→ S1

is smooth with degree d ≥ 1. Some important results on the vortex solution of
(1.8) are presented in [1]; however, the structure of all vortex solutions in (1.8) is
still unknown. Basically, (1.8) is one of singular perturbation problems for which
by the Liapunov-Schmidt method, it is quite possible to obtain a smooth solution
of (1.8) with d degree-one vortices. One may use the symmetric vortex solution
U1 to set up an approximated solution with d degree-one vortices. However,
the spectrum of the linearized operator Lε is essential in the Liapunov-Schmidt
method. Therefore Theorem I and Proposition I become important for studying
the vortex solutions in (1.8).
This paper is organized as follows. In Section 2, we prove Theorem I and

Proposition I. In Section 3 and 4, we give a partial proof for the dynamics
of vortices in nonlinear heat and Schrödinger equations. This is an another
application of Theorem I and Proposition I.

2 Proof of Theorem I and Proposition I

¿From Theorem B(iii), we assume that wε = a1,ε(r) + b1,ε(r)e
2iθ is the first

eigenfunction of Lε, where a1,ε, b1,ε are real. Then Lεwε = λ1wε becomes the
system of ordinary differential equations as follows.

−a′′1,ε −
1
r a
′
1,ε =

1
ε2 (1− 2f

2
ε )a1,ε −

1
ε2 f

2
ε b1,ε + λ1a1,ε for r ∈ (0, 1) , (2.1)

−b′′1,ε −
1
r
b′1,ε +

4
r2
b1,ε =

1
ε2
(1− 2f2ε )b1,ε −

1
ε2
f2ε a1,ε + λ1b1,ε for r ∈ (0, 1) ,

a1,ε(1) = b1,ε(1) = 0 ,

where fε(r) = f0(
r
ε
). ¿From [20], a1,ε(r), b1,ε(r) are real analytic for 0 ≤ r ≤ 1.

Hence

a1,ε(r) =

∞∑
k=0

αkr
k , b1,ε(r) =

∞∑
k=0

βkr
k , for 0 ≤ r ≤ 1 , (2.2)

where αk, βk ∈ R are constants. By (1.3), we have

f2ε (r) = Ãεr
2 +

∞∑
k=1

P̃2k+2(Ãε)r
2k+2 (2.3)

for 0 ≤ r ≤ 1, where Ãε = (A0/ε)2 > 0 and P̃2k+2(Ãε)’s are constants depending
on Ãε.

Taking (2.2) and (2.3) into (2.1), and comparing the coefficients of rk’s, we
obtain that

α2k+1 = β2k+1 = 0 ,

α2k+2 = −
1
ε2
+ λ1

4(k + 1)2
α2k +

Ãε

4(k + 1)2
(2α2k−2 + β2k−2)
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+
1

4(k + 1)2

k−1∑
l=1

P̃2l+2(Ãε)(2α2(k−l−1) + β2(k−l−1)) ,

β2k+2 = −
1
ε2
+ λ1

4k(k + 2)
β2k +

Ãε

4k(k + 2)
(2β2k−2 + α2k−2)

+
1

4k(k + 2)

k−1∑
l=1

P̃2l+2(Ãε)(2β2(k−l−1) + α2(k−l−1)) .

Hence by induction, we have

a1,ε(r) = α0

∞∑
k=0

C2kr
2k + β2

∞∑
k=3

D2kr
2k , (2.4)

b1,ε(r) = α0

∞∑
k=2

E2kr
2k + β2

∞∑
k=1

F2kr
2k ,

for 0 ≤ r ≤ 1 , where C0 = 1, F2 = 1, E4 =
Ãε
12 , D6 =

Ãε
36 and all the other

C2k, D2k, E2k and F2k’s depend only on k, ε, λ1 and Ãε.
Now we show the eigenspace of λ1 is two dimensional. By (2.4) and a1,ε(1) =

b1,ε(1) = 0, we obtain that α0 and β2 must satisfy one of the following conditions:

(1) β2 = K1α0 and α0 is any real number, where K1 is a constant independent
of α0.

(2) α0 = 0, β2 is any real number.

(3) both α0 and β2 are any real numbers.

Suppose (2) or (3) holds. Setting α0 = 0, β2 = 1, then

|a1,ε| < |b1,ε| as r → 0 + . (2.5)

However, Theorem B(iii) implies that |a1,ε| ≥ |b1,ε| for 0 ≤ r ≤ 1. This is a
contradiction with (2.5). Hence only the case (1) holds. Thus the eigenfunction
wε = a1,ε(r) + b1,ε(r)e

2iθ satisfies

a1,ε(r) = α0(

∞∑
k=0

C2kr
2k +K1

∞∑
k=3

D2kr
2k) , (2.6)

b1,ε(r) = α0(
∞∑
k=2

E2kr
2k +K1

∞∑
k=1

F2kr
2k) .

¿From (1.5), it is easy to check that Lεŵε = λ1ŵε, where ŵε = ia1,ε(r) −
ib1,ε(r)e

2iθ . Therefore the eigenspace of λ1 is only two-dimensional, spanned
by a1,ε(r) + b1,ε(r)e

2iθ and ia1,ε(r) − ib1,ε(r)e2iθ , and we complete the proof of
theorem I(i).
Now we prove Theorem I(ii) by contradiction. Suppose the second eigenvalue

λ2 → 0 as ε → 0+. Let w2,ε be the eigenfunction associated with λ2. Then
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Theorem B implies that w2,ε ∈ V1. Hence by (1.5), Lεw2,ε = λ2w2,ε ∈ V1 and
λ2 ∈ R, we obtain that w2,ε must have the form w2,ε = a2,ε(r)+b2,ε(r)e2iθ , where
a2,ε, b2,ε are real-valued. Thus the equations Lεwε = λ1wε and Lεw2,ε = λ2w2,ε
become the systems of ordinary differntial equations as follows.

−a′′j,ε −
1
r
a′j,ε =

1
ε2
(1− 2f20 (

r
ε
))aj,ε −

1
ε2
f20 (

r
ε
)bj,ε + λjaj,ε ,

−b′′j,ε −
1
r
b′j,ε +

4
r2
bj,ε =

1
ε2
(1− 2f20 (

r
ε
))bj,ε −

1
ε2
f20 (

r
ε
)aj,ε + λjbj,ε ,

aj,ε(1) = bj,ε(1) = 0 , (2.7)

for r ∈ (0, 1] , j = 1, 2. Now we assume that r = εs, aj,ε(s) = aj,ε(εs) and
bj,ε(s) = bj,ε(εs) . For the notation convenience, we use the same aj ,ε and bj ,ε
after the scaling r = εs. Then (2.7) implies

−a′′j,ε −
1
sa
′
j,ε = (1− 2f

2
0 (s))aj,ε − f

2
0 (s)bj,ε + λjε

2aj,ε ,

−b′′j,ε −
1
sb
′
j,ε +

4
s2 bj,ε = (1 − 2f

2
0 (s))bj,ε − f

2
0 (s)aj,ε + λjε

2bj,ε ,

aj,ε(
1
ε
) = bj,ε(

1
ε
) = 0 , (2.8)

for s ∈ (0, 1
ε
] , j = 1, 2. By [20], we set

aj,ε(s) =

∞∑
k=0

αj,ks
k , bj,ε(s) =

∞∑
k=0

βj,ks
k , for 0 ≤ s ≤

1

ε
, j = 1, 2 ,

where αj,k’s and βj,k’s are constants. ¿From (1.3), f0(s) satisfies

f0(s) = A0s+

∞∑
k=1

P2k+1(A0)s
2k+1 , (2.9)

f20 (s) = Ã0s
2 +

∞∑
k=1

P̃2k+2(Ã0)s
2k+2 , (2.10)

for s > 0, where Ã0 = A
2
0 and P̃2k+2(Ã0)’s are constants depending on Ã0.

Moreover, (1.4) implies

f0(s) = 1−
1

2s2
−
9

8s4
+ . . . as s→ +∞ , (2.11)

f20 (s) = 1−
1

s2
−
2

s4
+ . . . as s→ +∞ . (2.12)

Then by (2.8) and (2.10), we obtain a similar formula to (2.4) as follows.

aj,ε(s) = αj,0

∞∑
k=0

Cj,2ks
2k + βj,2

∞∑
k=3

Dj,2ks
2k , (2.13)

bj,ε(s) = αj,0

∞∑
k=2

Ej,2ks
2k + βj,2

∞∑
k=1

Fj,2ks
2k , 0 ≤ s ≤

1

ε
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where Cj,0 = 1, Fj,2 = 1, Ej,4 =
Ã0
12 , Dj,6 =

Ã0
36 and all the other Cj,2k,

Dj,2k, Ej,2k and Fj,2k are depending only on ε, λj and Ã0. ¿From (2.6), we

have β1,2 = K̃1α1,0, where K̃1 is a constant independent of α1,0. Hence by
Theorem B(ii), (2.8), (2.13) and the standard ordinary differential equation
theorem, we have

a1,ε(s) = α1,0[(a0(s) + λ1ε
2â1,ε(s)) + K̃1(a1(s) + λ1ε

2ă1,ε(s))] ,

b1,ε(s) = α1,0[(b0(s) + λ1ε
2b̂1,ε(s)) + K̃1(b1(s) + λ1ε

2b̆1,ε(s))] ,
(2.14)

where a0(s) = O(1), â1,ε(s) = O(s
2), a1(s) = O(s

6), ă1,ε(s) = O(s
8), b0(s) =

O(s4), b̂1,ε(s) = O(s
6), b1(s) = O(s

2), b̆1,ε(s) = O(s
4) as s → 0+, and

(aj(s) , bj(s))’s are solutions of

−a′′ − 1sa
′ = (1− 2f20 (s))a− f

2
0 (s)b ,

−b′′ − 1
s
b′ + 4

s2
b = (1− 2f20 (s))b− f

2
0 (s)a for s > 0 .

(2.15)

By a2,ε(
1
ε ) = b2,ε(

1
ε ) = 0 and (2.13), we obtain that α2,0 and β2,2 satisfy one of

the following cases:

(a) β2,2 = K̃2α2,0 and α2,0 is any real number, where K̃2 is a constant inde-
pendent of α2,0.

(b) α2,0 = 0, β2,2 is any real number.

(c) Both α2,0 and β2,2 are any real numbers.

For the case (a), we utilize (2.8), (2.13), λ2 → 0 as ε → 0+ and the standard
ordinary differential equation theorem. Then we obtain that

a2,ε(s) = α2,0(a0(s) + λ2ε
2â2,ε(s)) + α2,0K̃2(a1(s) + λ2ε

2ă2,ε(s)) ,

b2,ε(s) = α2,0(b0(s) + λ2ε
2b̂2,ε(s)) + α2,0K̃2(b1(s) + λ2ε

2b̆2,ε(s)) ,
(2.16)

where â2,ε(s) = O(s
2), ă2,ε(s) = O(s

8), b̂2,ε(s) = O(s
6) and b̆2,ε(s) = O(s

4) as
s→ 0+. Moreover, for anyM > 0 (independent of ε), there exist ε1 = ε1(M) >
0 and κ = κ(M) > 0 such that

|âj ,ε(s)|, |b̂j ,ε(s)|, |ăj ,ε(s)|, |b̆j ,ε(s)| ≤ κ (2.17)

for 0 ≤ s ≤ M, 0 < ε ≤ ε1, j = 1, 2. Now we set α1,0 = α2,0 = 1. Then we
have

w2,ε − wε = αε(r) + βε(r)e2iθ ,
αε(r) = (K̃2 − K̃1)a1(

r
ε ) + ε

2[λ2(â2,ε + K̃2ă2,ε)− λ1(â1,ε + K̃1ă1,ε)](
r
ε ) ,

βε(r) = (K̃2 − K̃1)b1(
r
ε
) + ε2[λ2(b̂2,ε + K̃2b̆2,ε)− λ1(b̂1,ε + K̃1b̆1,ε)](

r
ε
) .
(2.18)

For (2.15), we have the following result.
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Lemma I Let (aj , bj), j = 2, . . . , 5 , be the fundamental solutions of (2.15).
Then

a2(s) =
f0

s
+ f ′0 , b2(s) = f

′
0 −
f0

s
for s > 0

and the asymptotic behaviors of (aj , bj), j = 3, 4, 5 are as follows.

a3(s) = e
−
√
2ss−1/2(

1

2
−

5

16
√
2s
+O(

1

s2
)) ,

b3(s) = e
−
√
2ss−1/2(

1

2
−

5

16
√
2s
+O(

1

s2
)) ,

a4(s) =
s

2
+O(

1

s
) , b4(s) = −

s

2
+O(

1

s
) ,

a5(s), b5(s) ≥
1

8
s2 as s→ +∞ .

We will prove Lemma I in the appendix. Now we claim that

∫ ∞
1

1

s
a21(s) ds = +∞ . (2.19)

We prove this by contradiction. Suppose

∫ ∞
1

1

s
a21(s) ds < +∞ .

Since (a1, b1) is a solution of (2.15), then by Lemma I, we have

(a1, b1) = α(a2, b2) + β(a3, b3) ,

where α, β ∈ R. Moreover, by a1(s) ∼ s6, b1(s) ∼ s2, a2(s) ∼ 1 and b2(s) ∼ s2

as s → 0+, then we obtain that β 6= 0 and β(a3, b3) = (a1, b1) − α(a2, b2) is
bounded as s → 0+. Hence (a3, b3) is a nontrivial bounded solution of (2.15).
From Lemma I, (a3, b3) decays exponentially to zero as s→ +∞. Thus (a3 , b3)
is an eigenfunction in L2(R2) × L2(R2) of L associated with the eigenvalue 0,
where L is the linear operator defined by

L(a, b) =

(
a′′ + 1

s
a′ + (1 − 2f20 )a− f

2
0 b

b′′ + 1
s
b′ − 4

s2
b+ (1− 2f20 )b− f

2
0a

)
,

for a = a(s), b = b(s), s > 0. This is a contradiction with Proposition 5.4 in
[24]. Therefore we obtain (2.19).
Now we use (2.19) to complete the proof of Theorem I(ii). By (2.18) and

Theorem I(i) in [19], we have

1

2π
〈Lε(w2,ε − wε) , w2,ε − wε〉

=

∫ 1
0

r[(α′ε)
2 + (β′ε)

2] +
4

r
β2ε −

r

ε2
(1− f20 (

r

ε
))(α2ε + β

2
ε ) dr
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+

∫ 1
0

r

ε2
f20 (
r

ε
)(αε + βε)

2 dr

=

∫ 1
0

r(α′ε)
2 +
1

r
α2ε −

r

ε2
(1− f20 (

r

ε
))α2ε dr

+

∫ 1
0

r(β′ε)
2 +
1

r
β2ε −

r

ε2
(1− f20 (

r

ε
))β2ε dr

+

∫ 1
0

3

r
β2ε −

1

r
α2ε +

r

ε2
f20 (
r

ε
)(αε + βε)

2 dr

≥
c

2π
‖w2,ε − wε‖

2
L2 +

∫ 1
0

3

r
β2ε −

1

r
α2ε +

r

ε2
f20 (
r

ε
)(αε + βε)

2 dr

=
c

2π
(‖w2,ε‖

2
L2 + ‖wε‖

2
L2)

+

∫ 1/ε
0

3

s
β2ε (εs)−

1

s
α2ε (εs) + sf

2
0 (s)(αε + βε)

2(εs) ds ,

where c > 0 is a constant independent of ε. Then

1
2π 〈Lε(w2,ε − wε), w2,ε − wε〉

≥ c
2π (‖w2,ε‖

2
L2 + ‖wε‖

2
L2) +

∫ 1/ε
0

3
s
β2ε (εs)−

1
s
α2ε (εs) + sf

2
0 (s)(αε + βε)

2(εs) ds ,
(2.20)

Setting βε = ταε, then we obtain

3

s
β2ε −

1

s
α2ε + sf

2
0 (s)(αε + βε)

2 = [
3

s
τ2 −

1

s
+ sf20 (s)(1 + τ)

2]α2ε .

It is easy to check that

3

s
τ2 −

1

s
+ sf20 (s)(1 + τ)

2 ≥ H0(s) for τ ∈ R , s > 0 ,

where H0(s) =
2s2f20 (s)−3
s(3+s2f20 (s))

. Hence (2.20) becomes

1

2π
〈Lε(w2,ε − wε) , w2,ε − wε〉 (2.21)

≥
c

2π
(‖wε‖

2
L2 + ‖w2,ε‖

2
L2) +

∫ 1/ε
0

H0(s)α
2
ε (εs) ds .

Note that (2.12) implies that H0(s) ≥
1
s as s → +∞. Thus by (2.19), we may

choose a large constant M > 0 independent of ε such that

∫ M
0

H0(s)a
2
1(s) ds > 0 and H0(s) > 0 for s ≥M . (2.22)

Therefore by (2.21), we have

1

2π
〈Lε(w2,ε − wε) , w2,ε − wε〉
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≥ cε2
∫ 1/ε
0

s

2∑
j=1

(a2j,ε + b
2
j,ε)(s) ds+

∫ 1/ε
0

H0(s)α
2
ε (εs) ds

=
c

2
ε2
∫ M
0

s

2∑
j=1

(a2j,ε + b
2
j,ε)(s) ds (2.23)

+
c

2
ε2
∫ M
0

s

2∑
j=1

(a2j,ε + b
2
j,ε)(s) ds+

∫ M
0

H0(s)α
2
ε (εs) ds

+cε2
∫ 1/ε
M

s

2∑
j=1

(a2j,ε + b
2
j,ε)(s) ds +

∫ 1/ε
M

H0(s)α
2
ε (εs) ds

Furthermore, by (2.18), we have∫ M
0

H0(s)α
2
ε (εs) ds

= (K̃2 − K̃1)
2

∫ M
0

H0(s)a
2
1(s) ds+ 2(K̃2 − K̃1)ε

2

∫ M
0

H0(s)a1(s)

×
[
λ2(â2,ε + K̃2ă2,ε)− λ1(â1,ε + K̃1ă1,ε)

]
(s) ds (2.24)

+ε4
∫ M
0

H0(s)[λ2(â2,ε + K̃2ă2,ε)− λ1(â1,ε + K̃1ă1,ε)]
2(s) ds

Hence by (2.14), (2.16), (2.17), (2.22), (2.24) and α1,0 = α2,0 = 1, λ1, λ2 → 0
as ε→ 0+, we have

c

2
ε2
∫ M
0

s

2∑
j=1

(a2j,ε + b
2
j,ε)(s) ds +

∫ M
0

H0(s)α
2
ε (εs) ds > 0 (2.25)

as 0 < ε ≤ ε1, where ε1 > 0 is a small constant. Thus by (2.22), (2.23) and
(2.25), we obtain

1

2π
〈Lε(w2,ε − wε) , w2,ε − wε〉 ≥

c

2
ε2
∫ 1/ε
0

s

2∑
j=1

(a2j,ε + b
2
j,ε)(s) ds

=
c

4π
(‖wε‖

2
L2 + ‖w2,ε‖

2
L2) ,

then

1

2π
〈Lε(w2,ε − wε) , w2,ε − wε〉 ≥

c

4π
(‖wε‖

2
L2 + ‖w2,ε‖

2
L2) . (2.26)

On the other hand, by the definition of wε and w2,ε, we have

1

2π
〈Lε(w2,ε − wε) , w2,ε − wε〉 =

1

2π
〈λ2w2,ε − λ1wε , w2,ε − wε〉

=
1

2π
(λ1‖wε‖

2
L2 + λ2‖w2,ε‖

2
L2)

≤
1

2π
λ2(‖wε‖

2
L2 + ‖w2,ε‖

2
L2)
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then

1

2π
〈Lε(w2,ε − wε) , w2,ε − wε〉 ≤

1

2π
λ2(‖wε‖

2
L2 + ‖w2,ε‖

2
L2) . (2.27)

Therefore (2.26) and (2.27) imply

λ2 ≥
c

2
≡ c1 > 0 for 0 < ε ≤ ε1 .

For cases (b) and (c), we set α2,0 = 0, β2,2 = 1 in (2.13). Then we obtain that

w2,ε = a2,ε(r) + b2,ε(r)e
2iθ ,

a2,ε = a1(
r
ε
) + ε2λ2ă2,ε(

r
ε
) ,

b2,ε = b1(
r
ε ) + ε

2λ2b̆2,ε(
r
ε ) .

(2.28)

Note that (2.28) has the similar form to (2.18). Hence we may apply the same
argument as (2.26) to derive that

1

2π
〈Lεw2,ε , w2,ε〉 ≥

c

4π
‖w2,ε‖

2
L2 .

i.e. λ2 ≥
c
2 ≡ c1 > 0. Therefore we complete the proof of Theorem I(ii).

For the proof of Theorem I(iii), we define the approximate eigenfunction
Ũε(s, θ) as follows.

Ũε(s, θ) = a(s) + b(s)e
2iθ ,

a(s) =

{
1
s
f0(s) + f

′
0(s) if 0 < s ≤ Rε ,

Bε(1− εs)3 if Rε ≤ s ≤
1
ε
,

b(s) =

{
f ′0(s)−

1
sf0(s) if 0 < s ≤ Rε ,

Dε(1− εs)3 if Rε ≤ s ≤
1
ε ,

where Rε =
1
ε
(1−N−1), N > 0 is a large constant independent of ε, and Bε, Dε

are defined by
Bε(1− εRε)3 =

1
Rε
f0(Rε) + f

′
0(Rε) ,

Dε(1− εRε)3 = f ′0(Rε)−
1
Rε
f0(Rε) .

(2.29)

Let

Uε(s , θ) = C
−1
ε Ũε(s , θ) , Cε = ‖Ũε‖L2 .

Then it is easy to check that Uε ∈ H10 (B1/ε) and L̃εUε = 0 for 0 < s < Rε. In

addition, Cε = (4π log
1
ε + O(1))

1/2. Hence by (1.2), (2.11) and integration by
parts, we have

〈L̃εUε , Uε〉 =
∫
B1/ε
|∇XUε|2 − (1− f20 )|Uε|

2 + 2(Ψ0 · Uε)2 dX

= 2πC−2ε
∫ 1/ε
0
s[(a′)2 + (b′)2] + 4

s
b2

−s(1− f20 )(a
2 + b2) + sf20 (a+ b)

2 ds
= O(ε2(log 1ε )

−1) ,

(2.30)
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where 〈·, ·〉 is the product of H−1(B1/ε) and H
1
0 (B1/ε). Moreover,

‖w̃1 − Uε‖L2 = O((log
1

ε
)−1/2) . (2.31)

By the standard scaling method, we obtain

λ1ε
2 ≤ 〈L̃εUε , Uε〉 .

Hence by (2.30), we have λ1 = O((log
1
ε
)−1) as ε→ 0+. Thus we complete the

proof of theorem I(iii).

Now we prove Proposition I. By the definition of Uε and ẽ1, there exist
γε ∈ R and νε ∈ H10 (B1/ε(0)) such that

Uε = γεẽ1 + νε , νε⊥ẽ1 in L
2(B1/ε(0)) and γε = 〈Uε, ẽ1〉. (2.32)

Hence by Theorem I(ii), we obtain

〈L̃εUε , Uε〉 = 〈L̃ε(γεẽ1 + νε) , γεẽ1 + νε〉
= γ2ε ε

2λ1 + 〈L̃ενε , νε〉
≥ c1ε

2‖νε‖2L2 ,

then
〈L̃εUε , Uε〉 ≥ c1ε

2‖νε‖
2
L2 , (2.33)

where c1 > 0 is a constant independent of ε. Thus by (2.30) and (2.33), we have

‖νε‖L2 = O((log
1

ε
)−1/2) . (2.34)

¿From (2.32) and the definition of Uε, we obtain

‖Uε‖
2
L2 = γ

2
ε + ‖νε‖

2
L2 = 1 .

Therefore by (2.34), we have γ2ε = 1 + O((log
1
ε )
−1). Since 〈w̃1, ẽ1〉 > 0 and by

(2.32), then γε > 0. Hence

γε = (1 +O((log
1

ε
)−1))1/2 . (2.35)

By (2.31) and (2.35), we obtain

‖
1

γε
Uε − w̃1‖L2 = O((log

1

ε
)−1/2) (2.36)

From (2.32) and (2.35), we have

ẽ1 =
1

γε
(Uε − νε) = w̃1 + ν1,ε ,

where ν1 ,ε =
1
γε
(Uε − νε)− w̃1. By (2.34), (2.35) and (2.36), we obtain that

‖ν1 ,ε‖L2 = O((log
1

ε
)−1/2) .

Similarly, we have

ẽ2 = w̃2 + ν2 ,ε , ‖ν2 ,ε‖L2 = O((log
1

ε
)−1/2) .

Therefore we complete the proof of Proposition I.
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3 Vortex dynamics in nonlinear heat equations

In this Section, we consider the system of nonlinear heat equations

ut = ∆u+
1
ε2
u(1− |u|2) for x ∈ R2, t > 0,

u|t=0 = u0(x) for x ∈ R2.
(3.1)

The equation (3.1) is the simplified Ginzburg-Landau equation which is from
the Ginzburg-Landau theory of superconductivity. As ε is small, the Ginzburg-
Landau theory predicted the existence of vortex state. The vortex state consists
of many normal filaments embedded in a superconducting matrix. Each of these
filaments carries with it a quantized amount of magnetic flux, and is circled by
a vortex of superconducting current. The vortex structures are set in motion by
a variety of mechanism, including thermal fluctuations and applied voltages and
currents. Unfortunately, such vortex motion in an applied magnetic field induces
an effective resistance in the material, and thus a loss of superconductivity.
Therefore, it is crucial to understand the dynamics of these vortices in order to
pin vortices at a fixed location, i.e. prevent their motion. Hereafter, vortices are
so called point vortices which come from the cross section of vortex filaments.
For the dynamics of vortices, E [5] used the formal asymptotic analysis

to derive the dynamic laws of vortices. In this Section, we will give a more
general proof of the dynamics of vortices. The idea of the proof is to use the
generalized asymptotic expansion (3.5), Theorem I and Proposition I. Assume
that x = qε(t) ∈ R2 is the vortex trajectory, qε is smooth in t, qε(0) = 0,
and B1(qε(t)) is the vortex core which moves along with the vortex trajectory
x = qε(t). Here we assume that the solution u has only one vortex center at
qε(t). Now we focus on the vortex core B1(qε(t)) and consider the following
system of equations

ut = ∆u+
1
ε2
u(1− |u|2) for x ∈ B1(qε(t)), t > 0,

u|t=0 = u0(x) for x ∈ B1(0) .
(3.2)

Assume that

X =
x− qε(t)

ε
, Ψ(X , t , ε) = u(x , t , ε) (3.3)

for x ∈ B1(qε(t)) , i.e.X ∈ B1/ε(0) , t ≥ 0 . Then we have

ε2Ψt = εq̇ε · ∇XΨ+∆XΨ+Ψ(1− |Ψ|2) for X ∈ B1/ε(0), t > 0,
Ψ|t=0 = u0 for X ∈ B1/ε(0) ,

(3.4)

where Ψt =
∂
∂t
Ψ(·, t, ε). We take an expansion form of Ψ as follows.

Ψ(X, t, ε) = Ψ0(X)e
iH + εΨ1(X, t, ε)e

iH , (3.5)

where Ψ0(X) = f0(s)e
iφ, s = |X |, φ = arg(X). Note that (3.6) is a more

general form than the inner expansion form in [22] and [5]. Here we assume
that H = H(x, t, ε) is a smooth real-valued function and satisfies

∆xH = 0 , |∇xH | , |Ht| , |∇xHt| ≤ K in B1(qε(t)) , (3.6)
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whereHt =
∂
∂t
H andK > 0 is a constant. We will derive the governing equation

of the vortex trajectory x = qε(t) as follows.

q̇ε =
1

log 1ε+O(1)
[2J∇xH(qε , t , ε)− cεJ∇xHt(qε , t , ε) + oε(1)]

= 1
log 1ε+O(1)

[−2∇xH̃(qε , t , ε) + cε∇xH̃t(qε , t , ε) + oε(1)] ,
(3.7)

where cε = ε
2
∫ 1/ε
0 sf20 (s) ds, J =

( 0 1
−1 0

)
, andH, H̃ are harmonic conjugate.

Here we denote oε(1) as a small quantity, independent of time t, and tending to
zero as ε→ 0+. ¿From (3.7), it is remarkable that the velocity q̇ε of the vortex
trajectory x = qε(t) can be nonzero and of order O((log

1
ε )
−1) if the function H

is nonconstant. We require that Ψ1 satisfies the ”small” perturbation condition
as follows.

‖∇XΨ1‖L2(B 1
ε
) ≤ Kε

−β , 0 < β < 1 ,

‖Ψ1‖L6(B 1
ε
) ≤ Kε

−γ , 0 < γ < 1
3 ,

‖Ψ1 ,t‖L2(B 1
ε
) ≤ Kε

−δ , 0 < δ < 2 ,

(3.8)

|〈Ψ1 , ẽj〉| = oε(ε−2(log
1
ε )
1/2) , j = 1, 2 ,∑∞

k=2

∑J(k)
j=1 ε

2λk|〈Ψ1 , ẽj ,k〉| = oε(1) ,
(3.9)

|
∫
∂B1/ε

Ψ1 · ∂~nẽj| = oε((log
1
ε
)−1/2) , j = 1, 2 ,∑∞

k=2

∑J(k)
j=1 |

∫
∂B1/ε

Ψ1 · ∂~nẽj ,k| = oε(1) ,
(3.10)

where J(k) is the multiplicity of the eigenvalue λk, K > 0 is a constant and
∂~n is the normal derivative. Here ẽj’s and ẽj ,k’s are the eigenfunctions in

Ṽ1 = {a(s) + b(s)e2iφ ∈ H10 (B1/ε;C)} of L̃ε corresponding to the eigenvalues
ε2λ1 and ε

2λk’s respectively. We require them to have unit norm in L
2(B1/ε).

In addition 〈· , ·〉 is the inner product in L2. Note that the upper bound of
(3.8) and the first term of (3.9) tend to infinity as ε goes to zero. ¿From [9],
the equation (3.2) is well posed. Then Ψ1 is smooth in both space and time
variables. Hence (3.8), (3.9) and (3.10) can be fulfilled in a short time when
Ψ1|t=0 satisfies the following assumption.

Assumption I: Ψ1 = Ψ1(X, t, ε) satisfies the following:

(1) Ψ1(·, 0, ε) has sufficiently small C1 norm on the vortex core {X : |X | ≤
2
ε}

at t = 0

(2) ‖∂tΨ1(·, 0, ε)‖L2(B 2
ε
) = O(ε

−δ), 0 < δ < 2.

By the suitable choice of initial data u0, we obtain Assumption I(1). Assump-
tion I(2) preserves the vortex structure on the vortex core when the associated
vortex point begins to move at the time t = 0. Note that the upper bound of
Assumption I(2) is ∼ ε−δ, with 0 < δ < 2 which tends to infinity as ε goes to
zero. We observe that Assumption I is a local perturbation condition on the
vortex core which is different from the global assumption in [16] and [17].
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In Neu [22] and E [5]’s works, they used a specific asymptotic expansion for-
mula and a pointwise matching condition to derive the dynamic laws of vortices.
Basically, they require some pointwise matching condition on the boundary of
vortex cores to derive the dynamic laws of vortices. However, (3.8), (3.9) and
(3.10) are not pointwise. This is a kind of generalization for the results of Neu
and E.
Now we prove (3.7) as follows. By (3.5) and (3.6), (3.4) becomes

q̇ε · (∇XΨ0 + ε∇XΨ1)− iεΨ0Ht − iε
2Ψ1Ht − ε

2Ψ1,t (3.11)

= εΨ0|∇xH |
2 − 2i(∇XΨ0 · ∇xH) + L̃εΨ1 + N̂ε(Ψ1)

for X ∈ B1/ε(0) and t > 0, where

−L̃εΨ1 = ∆XΨ1 + (1 − |Ψ0|2)Ψ1 − 2(Ψ0 ·Ψ1)Ψ0 ,
N̂ε(Ψ1) = ε2Ψ1|∇xH |2 − 2iε(∇XΨ1 · ∇xH) + ε2|Ψ1|2Ψ1

+ε[2(Ψ0 ·Ψ1)Ψ1 + |Ψ1|2Ψ0] ,
(3.12)

and Ψ1,t =
∂
∂tΨ1(·, t, ε). Assume that

w̃j =
1

Γεj
∂XjΨ0 , Γεj = ‖∂XjΨ0‖L2 = (π log

1

ε
+O(1))1/2 , j = 1, 2 . (3.13)

Hereafter, we use Xj to denote the components of X = (X1, X2). Then (3.11)
implies

q̇ε,1(∂X1Ψ0 + ε∂X1Ψ1) + q̇ε,2(∂X2Ψ0 + ε∂X2Ψ1)− iεΨ0Ht − iε
2Ψ1Ht − ε

2Ψ1,t

= εΨ0|∇xH |
2 − 2i(∂X1Ψ0∂x1H + ∂X2Ψ0∂x2H) + L̃εΨ1 + N̂ε(Ψ1) (3.14)

for X ∈ B1/ε(0) and t > 0. Making the inner product with (3.14) and w̃j ,
j = 1, 2, we have

q̇ε,1[〈∂X1Ψ0, w̃j〉+ ε〈∂X1Ψ1, w̃j〉] + q̇ε,2[〈∂X2Ψ0, w̃j〉+ ε〈∂X2Ψ1, w̃j〉]
= ε2(〈Ψ1,t , w̃j〉+ 〈iΨ1Ht , w̃j〉) + 〈N̂ε(Ψ1), w̃j〉+ Γj + 〈L̃εΨ1, w̃j〉 ,

(3.15)
for j = 1, 2, where 〈·, ·〉 is the inner product in L2(B1/ε(0);C), and

Γj = −2〈i∂X1Ψ0∂x1H , w̃j〉 − 2〈i∂X2Ψ0∂x2H , w̃j〉
+ε〈Ψ0|∇xH |2 , w̃j〉+ ε〈iΨ0Ht , w̃j〉 .

(3.16)

Since the eigenfunctions ẽj , ẽj ,k’s dense in Λ1 = {w(X) = a(s) + b(s)e2iφ ∈
L2(B1/ε(0);C)} and w̃l ∈ Λ1, l = 1, 2, then

w̃l =

2∑
j=1

〈w̃l , ẽj〉ẽj +
∞∑
k=1

J(k)∑
j=1

〈w̃l , ẽj ,k〉ẽj ,k . (3.17)

Using integration by parts, we have

〈L̃εΨ1 , ẽj〉 =
∫
∂B1/ε

Ψ1 · ∂~nẽj + ε2λ1〈Ψ1 , ẽj〉 ,

〈L̃εΨ1 , ẽj ,k〉 =
∫
∂B1/ε

Ψ1 · ∂~nẽj ,k + ε2λk〈Ψ1 , ẽj ,k〉 .
(3.18)
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Hence by Proposition I, (3.9), (3.10), (3.17) and (3.18), we obtain

〈L̃εΨ1 , w̃l〉 =
∑2
j=1(ε

2λ1〈Ψ1 , ẽj〉+
∫
∂B1/ε

Ψ1 · ∂~nẽj)〈ẽj , w̃l〉

+
∑∞
k=2

∑J(k)
j=1 (ε

2λk〈Ψ1 , ẽj ,k〉+
∫
∂B1/ε

Ψ1 · ∂~nẽj ,k)〈ẽj ,k , w̃l〉

= oε((log
1
ε
)−1/2) , l = 1, 2 .

(3.19)
It is easy to check that

∂X1Ψ0 = 1
2 (
1
s
f0 + f

′
0) +

1
2 (f

′
0 −

1
s
f0)e

2iφ ,

∂X2Ψ0 = i
2 (
1
s
f0 + f

′
0) +

i
2 (
1
s
f0 − f ′0)e

2iφ .
(3.20)

Hence 〈∂X1Ψ0, w̃2〉 = 〈∂X2Ψ0, w̃1〉 = 0 . Thus (3.15) and (3.19) imply that

q̇ε,1(α∗ + εα1) + εq̇ε,2β1 = γ1 ,
εq̇ε,1β2 + q̇ε,2(α∗ + εα2) = γ2 ,

(3.21)

where

α∗ = Γεj = ‖∂XjΨ0‖L2 , αj = 〈∂XjΨ1, w̃j〉 ,
β1 = 〈∂X2Ψ1, w̃1〉, β2 = 〈∂X1Ψ1, w̃2〉, ηj = 〈N̂ε(Ψ1) , w̃j〉 ,

and

γj = Γj + ε
2(〈Ψ1,t , w̃j〉+ 〈iΨ1Ht , w̃j〉) + ηj + oε((log

1

ε
)−1/2) ,

for j = 1, 2. By (3.6), (3.8) and Hölder inequality, we have

ε|αj | ≤ Kε1−β , ε|βj| ≤ Kε1−β , 0 < β < 1 ,
|ηj | = oε((log

1
ε
)−1/2) , γj = Γj + oε((log

1
ε
)−1/2) , j = 1, 2 .

(3.22)

Moreover, (3.21) implies

q̇ε,1 =
1

γ
[(α∗ + εα2)γ1 − εβ1γ2] , q̇ε,2 =

1

γ
[(α∗ + εα1)γ2 − εβ2γ1] , (3.23)

where γ = α2∗ + εα∗(α1 + α2) + ε
2(α1α2 − β1β2). Furthermore by (3.6), (3.20),

and the mean-value theorem of harmonic functions, we have

〈i∂XjΨ0∂xjH , w̃j〉 = 0 , j = 1, 2 ,
〈i∂X1Ψ0∂x1H , w̃2〉 =

π
Γε2
∂x1H(qε , t , ε)f

2
0 (
1
ε
) ,

〈i∂X2Ψ0∂x2H , w̃1〉 = −
π
Γε1
∂x2H(qε, t, ε)f

2
0 (
1
ε
) ,

|ε〈Ψ0|∇xH |2 , w̃j〉| ≤
εC
Γεj
, C = 2πK2 sup0<ε<1

∫ 1/ε
0
sf0f

′
0 ds > 0 ,

ε〈iΨ0Ht , w̃1〉 = −
π
Γε1
(ε2
∫ 1/ε
0 sf20 ds)∂x2Ht(qε , t , ε) ,

ε〈iΨ0Ht , w̃2〉 =
π
Γε2
(ε2
∫ 1/ε
0 sf20 ds)∂x1Ht(qε , t , ε) .

(3.24)

Hence by (1.3), (1.4), (3.16), and (3.24), we obtain

Γ1 = π
Γε1
(2∂x2H(qε , t , ε)− cε∂x2Ht(qε , t , ε)) +O(ε(log

1
ε
)−1/2) ,

Γ2 = − π
Γε2
(2∂x1H(qε , t , ε)− cε∂x1Ht(qε , t , ε)) +O(ε(log

1
ε )
−1/2) ,

(3.25)
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where cε = ε
2
∫ 1/ε
0 sf20 ds > 0. Note that by (1.3) and (1.4), cε ∼ 1/2 as ε→ 0+ .

Thus by (3.13), (3.22), (3.23), and (3.25), we complete the proof of (3.7).
For the motion of d-vortices, we restrict (3.1) on the vortex cores B1(qjε)’s

and we consider the following system of equations.

ut = ∆u+
1
ε2
u(1− |u|2) for x ∈ B1(qjε(t)), t > 0,

u|t=0 = uj0(x) for x ∈ B1(qjε(0)) ,

where x = qjε(t) is the j-th vortex trajectory, qjε is smooth in t, |qjε − qkε| > 2
for j 6= k, and B1(qjε(t)) is the j-th vortex core which moves along with the
j-th vortex trajectory x = qjε(t), j = 1, . . . , d. Now we assume that

Xj =
x− qjε(t)

ε
, Ψ(Xj, t, ε) = u(x, t, ε) (3.26)

for x ∈ B1(qjε(t)) i.e. Xj ∈ B1/ε(0) , j = 1, . . . , d . Like (3.5), we take a similar
expansion form of Ψ on each vortex core as follows.

Ψ(Xj, t, ε) = Ψ0(X
j)eiHj + εΨ1(X

j , t, ε)eiHj for Xj ∈ B1/ε(0) , (3.27)

where

Ψ0(X
j) = f0(sj)e

iφj , sj = |X
j|, φj = argX

j .

Here we assume that

Hj =
∑
k 6=j φk +H ,∆xH = 0 in B1(qjε(t)) ,

|∇xH | , |Ht| , |∇xHt| ≤ K in B1(qjε(t)) .
(3.28)

By the same argument as (3.7), we obtain the equations of qjε as follows.

q̇jε =
1

log 1ε+O(1)
[2J∇xHj(qjε , t , ε)− cεJ∇x∂tHj(qjε , t , ε) + oε(1)] ,

= 1
log 1ε+O(1)

[−2∇xH̃j(qjε , t , ε) + cε∇x∂tH̃j(qjε , t , ε) + oε(1)] ,

(3.29)
where Hj , H̃

′
js are harmonic conjugates. Here we require that Ψ1 satisfies the

”small” perturbation conditions on each vortex core |Xj| ≤ 1
ε
, j = 1, . . . , d as

follows.
‖∇XjΨ1‖L2(B 1

ε
) ≤ Kε

−β , 0 < β < 1 ,

‖Ψ1‖L6(B 1
ε
) ≤ Kε

−γ , 0 < γ < 1
3 ,

‖Ψ1 ,t‖L2(B 1
ε
) ≤ Kε

−δ , 0 < δ < 2 ,

(3.30)

|〈Ψ1 , ẽm〉| = oε(ε−2(log
1
ε )
1/2) , m = 1, 2 ,∑∞

k=2

∑J(k)
j=1 ε

2λk|〈Ψ1 , ẽm,k〉| = oε(1) ,
(3.31)

|
∫
∂B1/ε

Ψ1 · ∂~nẽm| = oε((log
1
ε
)−1/2) , m = 1, 2 ,∑∞

k=2

∑J(k)
m=1 |

∫
∂B1/ε

Ψ1 · ∂~nẽm,k| = oε(1) ,
(3.32)
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where J(k) is the mutliplicity of the eigenvalue λk and K > 0 is a constant. In
particular, suppose H ≡ 0. Then (3.28) and (3.29) imply that

q̇jε =
−2

log 1ε
∇xH̃j(qjε , t , ε) + oε(1) . (3.33)

Note that the equation (3.33) is consistent with the governing equation in [5]
and [18].

4 Vortex dynamics in nonlinear Schrödinger equa-

tions

The other application of Theorem I and Proposition I is for the dynamics
of vortices in the nonlinear Schrödinger equation. The system of nonlinear
Schrödinger equations is as follows.

−iut = ∆u+
1
ε2u(1− |u|

2) for x ∈ R2, t > 0,
u|t=0 = u0(x) for x ∈ R2 .

(4.1)

The equation (4.1) is a fundamental equation for understanding superfluids, see
Ginzburg and Pitaevskii [8], Landau and Lifschitz [14], Donnelly [4], Frisch,
Pomeau and Rica [7], Josserand and Pomeau [13], and many others.
For the vortex dynamics in a superfluid, we prove rigorously the asymptotic

motion equation of a vortex from a solution of (4.1) with some specific condi-
tions. The method of our proof is more generalized than the formal asymptotic
analysis in the dynamics of fluid dynamic vortices (cf. [22]). Fortunately, the
asymptotic motion equation has the same leading order term (up to a time
scaling) as Neu [22]’s result.
In [2], superfluid 4He has a much larger Reynolds number than the Reynolds

numbers of water and air. Moreover, the helium liquids have kinematic viscosi-
ties which are much smaller than those of water. It is well known that the
high Reynolds number may cause the turbulent flow (cf. [6]). However, up to
now, it is often tacitly assumed that the laminar analysis of [5] and [22] may
carry over to turbulent vortex cores, but no theoretical corroboration of that
assumption had been available. In this paper, we provide a more generalized
and rigorous argument to derive the vortex dynamics in a superfluid. In par-
ticular, the constraints imposed concern only global norms of the perturbations
from the leading order steady state structure. Hence certain classes of highly
unsteady fluctuations are allowed for the constraints. This is an important step
to investigate the dynamics of fluid dynamic vortices with turbulent cores.
Assume that x = qε(t) = (qε,1(t), qε,2(t)) is the vortex trajectory and qε(0) =

0. In addition, we assume that in the vortex core B1(qε(t)), the classical solution
u(x, t) has only one vortex center at qε(t). Now we focus on the vortex core
B1(qε(t)) and we consider the following equations

−iut = ∆u+
1
ε2
u(1− |u|2) for x ∈ B1(qε(t)), t > 0,

u|t=0 = u0(x) for x ∈ B1(0),
(4.2)
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Like (3.3) and (3.5), we take the same expansion form of the solution u as
follows.

u(x, t, ε) = Ψ(X, t, ε) = Ψ0(X)e
iH + εΨ1(X, t, ε)e

iH , (4.3)

where X = x−qε(t)
ε , Ψ0(X) = f0(s)e

iφ, s = |X |, φ = arg(X), and H satisfies
(3.6).
We use Theorem I and Proposition I to derive the equation

q̇ε = 2∇xH(qε , t , ε) + oε(1) ,
= 2J∇xH̃(qε , t , ε) + oε(1) ,

(4.4)

provided that the same ”small” perturbation conditions (3.8), (3.9) and (3.10)
hold. In [23] p. 17, we learned that the equation (4.1) is well posed. Then Ψ1 is
smooth in both space and time variables. Hence (3.8), (3.9) and (3.10) can be
fulfilled in a short time as Ψ1|t=0 satisfies Assumption I in Section 3. By (4.3)
and (3.6), (4.2) becomes

−iq̇ε · (∇XΨ0 + ε∇XΨ1)− εΨ0Ht − ε
2Ψ1Ht + iε

2Ψ1,t

= εΨ0|∇xH |
2 − 2i(∇XΨ0 · ∇xH) + L̃εΨ1 + N̂ε(Ψ1) (4.5)

for X ∈ B1/ε(0) and t > 0, where L̃ε and N̂ε are defined in (3.12). Making the
inner product with (4.5) and w̃j , j = 1, 2 and using (3.19), we have

−q̇ε,1[〈i∂X1Ψ0, w̃j〉+ ε〈i∂X1Ψ1 , w̃j〉]

−q̇ε,2[〈i∂X2Ψ0, w̃j〉+ ε〈i∂X2Ψ1 , w̃j〉] (4.6)

= Γ̂j + ε
2(〈iΨ1,t , w̃j〉+ 〈Ψ1Ht , w̃j〉) + 〈N̂ε(Ψ1) , w̃j〉+ oε((log

1

ε
)−1/2) ,

where
Γ̂j = −2〈i∂X1Ψ0∂x1H, w̃j〉 − 2〈i∂X2Ψ0∂x2H , w̃j〉

+ε〈Ψ0|∇xH |2, w̃j〉+ ε〈Ψ0Ht , w̃j〉 .
(4.7)

By (3.13) and (3.20), we have 〈i∂X1Ψ0 , w̃1〉 = 〈i∂X2Ψ0 , w̃2〉 = 0. Hence (4.6)
becomes

εq̇ε,1α̂12 + q̇ε,2(α̂11 + εβ̂1) = −γ1 ,

q̇ε,1(α̂21 + εβ̂2) + εq̇ε,2α̂22 = −γ2
(4.8)

where

α̂11 = 〈i∂X2Ψ0 , w̃1〉 , α̂21 = 〈i∂X1Ψ0 , w̃2〉 , α̂j2 = 〈i∂XjΨ1 , w̃j〉 ,

β̂1 = 〈i∂X2Ψ1 , w̃1〉 , β̂2 = 〈i∂X1Ψ1 , w̃2〉 , ηj = 〈N̂ε(Ψ1), w̃j〉 ,

and

γj = Γ̂j + ε
2(〈Ψ1Ht, w̃j〉+ 〈iΨ1,t, w̃j〉) + ηj + oε((log

1

ε
)−1/2) .

By (3.6), (3.8) and (3.20), we have

α̂11 = −π/Γε1 , α̂21 = π/Γε2 ,
ε|α̂j2| ≤ Kε1−β , ε|β̂j| ≤ Kε1−β , 0 < β < 1 ,

|ηj | = oε((log
1
ε )
−1/2) , γj = Γ̂j + oε((log

1
ε )
−1/2) , j = 1, 2 .

(4.9)
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Furthermore, (4.8) implies

q̇ε,1(t) = −
1

γ̂
[(α̂11 + εβ̂1)γ2 − εα̂22γ1] , q̇ε,2(t) = −

1

γ̂
[(α̂21 + εβ̂2)γ1 − εα̂12γ2] ,

(4.10)

where γ̂ = (α̂11 + εβ̂1)(α̂21 + εβ̂2) − ε2α̂12α̂22. Moreover, by (3.6), (3.20) and
the Mean Value Theorem of harmonic functions, we have

ε〈Ψ0Ht , w̃j〉 =
πε2

Γεj
(

∫ 1/ε
0

s2f0f
′
0 ds)∂xjHt(qε , t , ε) . (4.11)

¿From (1.3) and (1.4), we obtain that

∫ 1/ε
0

s2f0f
′
0 ds = log

1

ε
+O(1) . (4.12)

Hence by (4.7), (4.11), (4.12) and (3.24), we obtain

Γ̂1 = π
Γε1
[2∂x2H(qε , t , ε) + ε

2(log 1
ε
+O(1))∂x1Ht(qε , t , ε)]

+O(ε(log 1ε )
−1/2) ,

Γ̂2 = π
Γε2
[−2∂x1H(qε , t , ε) + ε

2(log 1
ε
+O(1))∂x2Ht(qε , t , ε)]

+O(ε(log 1
ε
)−1/2) ,

(4.13)

Thus by (3.6), (4.9), (4.10) and (4.13), we complete the proof of (4.4).
For the motion of d-vortices, we restrict (4.1) on the vortex cores B1(qjε)’s

and we consider

−iut = ∆u+
1
ε2
u(1− |u|2) for x ∈ B1(qjε(t)), t > 0 ,

u|t=0 = uj0(x) for x ∈ B1(qjε(0)) ,
(4.14)

where x = qjε(t) is the j-th vortex trajectory, qjε is smooth to t, |qjε − qkε| > 2
for j 6= k, and B1(qjε(t)) is the j-th vortex core which moves along with the
j-th vortex trajectory x = qjε(t), j = 1, . . . , d . By the same argument as (4.4)
for each vortex core, we obtain the equations of qjε as follows.

q̇jε = 2J∇xH̃j(qjε , t , ε) + oε(1) , j = 1, . . . , d , (4.15)

provided that the same “small” perturbation conditions (3.30), (3.31) and (3.32)
hold. Note that both (4.4) and (4.15) are consistent with the governing equa-
tions in [22] and [17].

Appendix: Proof of Lemma I

It is easy to check that a2(s) =
f0
s
+ f ′0 , b2(s) = f

′
0 −

f0
s
is a solution of (2.15).

To obtain (a3 , b3), we let

a(s) = e−
√
2ss−1/2η1(s) , b(s) = e

−
√
2ss−1/2η2(s)
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be the solution of (2.15). Then η1 and η2 satisfy

η′′1 − 2
√
2η′1 + (3 +

1
4s2 − 2f

2
0 )η1 − f

2
0η2 = 0 ,

η′′2 − 2
√
2η′2 + (3−

15
4s2 − 2f

2
0 )η2 − f

2
0η1 = 0 .

(4.1)

Let u = η1 + η2 and v = η1 − η2 . Then by (2.12) and (4.1), we have

u′′ − 2
√
2u′ + 2

s2 v + β1(s)u = 0 ,

v′′ − 2
√
2v′ + 2v + 2

s2 u+ β2(s)v = 0 ,
(4.2)

where

β1(s) = 3− 7
4s2 − 3f

2
0 =

5
4s2 +

6
s4 + . . . ,

β2(s) = 1− 7
4s2 − f

2
0 = −

3
4s2 +

2
s4
+ . . . as s→ +∞ .

Now we transform (4.2) into the following integral equations

u(s) = 1 +
∫∞
s
β1(ζ)K(s, ζ)u(ζ) +

2
ζ2
K(s, ζ)v(ζ) dζ ,

v(s) =
∫∞
s
β2(ζ)K̃(s, ζ)v(ζ) +

2
ζ2 K̃(s, ζ)u(ζ) dζ ,

where

K(s, ζ) =
1− e−2

√
2(ζ−s)

−2
√
2

, K̃(s, ζ) = (s− ζ)e−
√
2(ζ−s) ,

By the iteration method (cf. [12] p.199-209), we set

u0(s) ≡ 1 , v0(s) ≡ 0 ,

um+1(s) = 1 +
∫∞
0 β1(ζ)K(s , ζ)um(ζ) +

2
ζ2K(s , ζ)vm(ζ) dζ ,

vm+1(s) =
∫∞
0 β2(ζ)K̃(s , ζ)vm(ζ) +

2
ζ2 K̃(s , ζ)um(ζ) dζ ,

for m = 0, 1, 2, . . .. Note that∫∞
s
K(s , ζ)ζ−m dζ = O(s1−m) , for m ≥ 2 ,∫∞

s
K̃(s , ζ)ζ−m dζ = O(s−m) , for m ≥ 2 .

Then it is easy to deduce that um, vm converge to u, v respectively as m→∞.
Moreover, (u, v) is a solution of (4.2), and it satisfies

u(s) = 1−
5

8
√
2s
+
α̃32

s2
+ . . . ,

v(s) = −
1

s2
+
β̃33

s3
+ . . . as s→ +∞ ,

where α̃jk, β̃jk’s are constants. Thus

η1 =
1

2
−

5

16
√
2s
+
α32

s2
+ . . . ,

η2 =
1

2
−

5

16
√
2s
+
β32

s2
+ . . . as s→ +∞ ,
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where αjk, βjk are constants. Therefore. we obtain the solution (a3, b3).
To obtain (a4, b4), we set

sη3 = a(s) + b(s) , sη4 = a(s)− b(s) ,

where (a, b) is the solution of (2.15). Then (η3, η4) satisfies

η′′3 − 2η3 +
3
sη
′
3 +

2
s2 η4 + β3(s)η3 = 0 ,

η′′4 +
3
sη
′
4 +

2
s2 η3 + β4(s)η4 = 0 ,

where
β3(s) = 3− 3f20 −

1
s2
= 2
s2
+ 6
s4
+ . . . ,

β4(s) = 1− f20 −
1
s2
= 2
s4
+ . . . as s→ +∞ .

This is equivalent to the following integral equations

η3(s) = −3
∫∞
s
(1t K̃t(s, t)−

1
t2 K̃(s, t))η3(t) dt

+
∫∞
s
[ 2
t2
η4(t) + β3(t)η3(t)]K̃(s, t) dt ,

η4(s) = 1 + 12
∫∞
s
(t−2 − s−2)t2[β4(t)η4(t) +

2
t2 η3(t)] dt ,

where

K̃(s, t) = (s− t)e−
√
2(t−s) , K̃t(s, t) = −[

√
2(s− t) + 1]e−

√
2(t−s) .

By the iteration method, we set

η3 ,0(s) ≡ 0 , η4 ,0(s) ≡ 1 ,

η3 ,m+1(s) = −3
∫∞
s
(1
t
K̃t(s, t)−

1
t2
K̃(s, t))η3 ,m(t) dt

+
∫∞
s
[ 2t2 η4 ,m(t) + β3(t)η3 ,m(t)]K̃(s, t) dt ,

η4 ,m+1(s) = 1 + 12
∫∞
s
(t−2 − s−2)t2[β4(t)η4 ,m(t) +

2
t2
η3 ,m+1(t)] dt ,

for m = 0, 1, 2, . . ..
Now we claim that (η3 ,m , η4 ,m) converges to the solution (η3 , η4). For

(u, v) = (u(s), v(s)), let T (u, v)(s) =
(
Tu(s)
Tv(s)

)
, where

Tu(s) = −3
∫∞
s
(1t K̃t(s, t)−

1
t2 K̃(s, t))u(t) dt

+
∫∞
s
[ 2
t2
v(t) + β3(t)u(t)]K̃(s, t) dt ,

T v(s) = 1 + 12
∫∞
s
(t−2 − s−2)t2[β4(t)v(t) +

2
t2 Tu(t)] dt ,

Then we have
(
η3 ,m+1
η4 ,m+1

)
=
(
0
1

)
+ T (η3 ,m , η4 ,m);

i.e.,
(
η3 ,m
η4 ,m

)
= (I + T + T 2 + . . .+ Tm)(0, 1). Hence it is easy to check that

∫∞
s
(s−2 − t−2)t2−m dt = 2

(m−2)2−1s
1−m , for m ≥ 4 ,∫∞

s
K̃t(s , t)t

−m dt = O(s−(m+1)) , for m ≥ 2 ,∫∞
s
K̃(s , t)t−m dt = O(s−m) , for m ≥ 2 .
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Thus we obtain that

T (0, 1) =
(
O(s−2)
O(s−3)

)
, T 2(0, 1) =

(
O(s−4)
O(s−5)

)
,

T 3(0, 1) =
(
O(s−6)
O(s−7)

)
, T 4(0, 1) =

(
O(s−8)
O(s−9)

)
, . . . .

Thus
|Tm(0, 1)| ≤ C2S

−m
0 for m ≥ 1 , s ≥ S0 ,

whereC2 > 0 is a constant and S0 > 0 is a large constant. Therefore (η3 ,m, η4 ,m)
converges to the solution (η3, η4) as m→∞. Moreover

η3 = O(
1

s2
) , η4 = 1 +O(

1

s2
) as s→∞ ,

and we obtain the solution (a4, b4) = (
1
2s(η3 + η4) ,

1
2s(η3 − η4)).

To obtain (a5, b5), we use the change of variable s = e
t and let â(t) =

a(et), b̂(t) = b(et). Then (2.15) becomes

â′′ = e2t(2f20 (e
t)− 1)â+ e2tf20 (e

t)b̂ ,

b̂′′ = e2tf20 (e
t)â+ [e2t(2f20 (e

t)− 1) + 4]b̂ .
(4.3)

By (2.12), there exists a large constant T0 > 0 such that

2f20 (e
t)− 1 > 0 for t ≥ T0 .

Let (â5, b̂5) be the solution of (4.3) with initial data

(â5, â
′
5, b̂5, b̂

′
5)(T0) = (1, 1, 1, 1) .

Then (4.3) implies that â5, b̂5 are positive and increasing for t ≥ T0. Moreover
by (2.12) and (4.3), we have

â′′5 (t) ≥ e
2t for t ≥ T1 ,

where T1 ≥ T0 is a large constant. Similarly b̂′′5(t) ≥ e
2t for t ≥ T1. Hence

â5(t) , b̂5(t) ≥
1

8
e2t as t→ +∞ .

Thus

a5(s) = â5(ln s), b5(s) = b̂5(ln s) ≥
1

8
s2 as s→ +∞ .

Therefore we complete the proof of lemma I.
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