
DEVELOPING A SPEECH EMOTION RECOGNITION SOLUTION USING

ENSEMBLE LEARNING FOR CHILDREN WITH AUTISM SPECTRUM

DISORDER TO HELP IDENTIFY HUMAN EMOTIONS

by

Rezwan Matin, B.S.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Engineering

December 2020

Committee Members:

 Damian Valles, Chair

 Vishu Viswanathan, Co-chair

 Maria Resendiz

COPYRIGHT

by

Rezwan Matin

2020

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Rezwan Matin, authorize duplication of this work,

in whole or in part, for educational or scholarly purposes only.

DEDICATION

To my father, who inspired me to become an engineer and make this world a better place.

v

ACKNOWLEDGEMENTS

 The work accomplished in this thesis would not have been possible without the

help of my mentors. At first, I would like to thank my research advisor Dr. Damian

Valles, who introduced me to machine learning and allowed me to pursue this area of

research. Without his support, I would not have been able to overcome the hurdles I have

faced throughout my work. Next, I would like to thank Dr. Vishu Viswanathan, my Co-

advisor. Because of Dr. Viswanathan’s guidance I was able to learn a lot of speech signal

processing concepts within a short period of time. I would also like to thank Dr. Maria

Resendiz, whose passion for this research motivated me to give my best effort. Dr.

Resendiz made me realize the importance of my research and how it can impact the lives

of others.

 Finally, I would like to mention Md Inzamam Ul Haque, Abdullah Al Bashit, and

Vidya Thanda Setty, three Texas State alumni from whom I have asked for advice from

time to time regarding my work. My work builds up on Inzamam’s thesis, so he knew

about the application of my research. Abdullah has had experience implementing

machine learning with audio signal processing. Vidya has had experience with noise

addition to clean speech.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

ABSTRACT .. xv

CHAPTER

I. INTRODUCTION ... 1

Literature Review.. 4

II. AUDIO FEATURES .. 7

Recording Audio ... 7
Audio Preprocessing ... 9

Features in Speech Emotion Recognition ... 11

Feature Set 1: Custom ... 13
Feature Set 2: Partial GeMAPS .. 14

III. DATASETS .. 17

Ryerson Audio-Visual Database of Emotional Speech and Songs 18
Toronto Emotional Speech Set .. 19
Crowd-sourced Emotional Multimodal Actors Dataset 20
Noise Addition .. 22

IV. MACHINE LEARNING ALGORITHMS ... 26

Support Vector Machine ... 27
Multilayer Perceptron ... 32

The Perceptron .. 32

Feedwork Artificial Neural Network .. 34
Activation Function .. 36
Optimization ... 37

vii

Backpropagation ... 38
Recurrent Neural Network .. 41

Sequences .. 41

Structure of an RNN ... 41
Learning Challenges of RNNs .. 43
Long Short-Term Memory .. 44

V. RESEARCH METHODOLOGY ... 49

Experimental Procedure .. 49
Performance Metrics ... 52

Training, Validation and Test Accuracy ... 52

Precision and Recall .. 54

Learning Curves .. 55

Accuracy Curves ... 57

Loss Curves ... 57

Confusion Matrix .. 58

K-fold Cross-validation .. 59

Methodology ... 61
Computational Resources ... 64

Programming... 64

Hardware ... 65

VI. RESULTS AND DISCUSSION ... 67

Experiements with Custom Feature Set .. 68

SVM Model with Custom Feature Set .. 68

MLP Model with Custom Feature Set .. 71

RNN Model with Custom Feature Set .. 76

Experiements with Partial GeMAPS Feature Set ... 81

SVM Model with Partial GeMAPS Feature Set 82

MLP Model with Partial GeMAPS Feature Set .. 84

RNN Model with Partial GeMAPS Feature Set 87

Comparing Custom Feature Set Models ... 91

Comparing Partial GeMAPS Feature Set Models .. 94

Comparing Models from Both Feature Sets ... 96

Creating a Multimodal Emotion Recognition System 99

VII. CONCLUSION ... 104

Future Work .. 106

viii

REFERENCES ... 107

ix

LIST OF TABLES

Table Page

1. List of audio features used in the custom feature set .. 14

2. List of audio features used in the partial GeMAPS set ... 16

3. Summary of all three speech emotion corpora ... 21

4. Summary of the final dataset .. 25

5. Dataset naming convention followed in this research .. 51

6. Pyhton libraries used in this research.. 64

7. Specifications of the LEAP cluster ... 65

8. Specifications of the HiPE servers .. 66

9. Result summary for the SVM model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 70

10. Result summary for the MLP model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 75

11. Result summary for the RNN model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 79

12. Result summary for the SVM model trained on the Complete_Clean_Noise corpus,

using the partial GeMAPS feature set ... 83

13. Result summary for the MLP model trained on the Complete_Clean_Noise corpus,

using the partial GeMAPS feature set ... 86

14. Result summary for the RNN model trained on the Complete_Clean_Noise corpus,

using the partial GeMAPS feature set ... 89

15. Comparing the performance of the SVM model created using the custom feature set

on different datasets .. 92

x

16. Comparing the performance of the MLP model created using the custom feature set

on different datasets .. 92

17. Comparing the performance of the RNN model created using the custom feature set

on different datasets .. 93

18. Comparing the performance of the SVM model created using the partial GeMAPS

feature set on different datasets... 94

19. Comparing the performance of the MLP model created using the partial GeMAPS

feature set on different datasets... 95

20. Comparing the performance of the RNN model created using the partial GeMAPS

feature set on different datasets... 95

21. Comparing the models created using the two different feature sets, for the

Complete_Clean_Noise corpus ... 97

22. Test accuracies of the three individual classifier models and the ensemble learning

model... 101

xi

LIST OF FIGURES

Figure Page

1. The Circumplex Model – a dimensional model for emotions .. 2

2. A list of every medical condition that is classified as autism spectrum disorder 3

3. Increasing the sampling rate of an audio signal, where the analog continuous-time

signal is shown on the left-hand side of the equal sign... 7

4. An analog signal (shown in red) is sampled at a bit depth of 4 bits per sample 8

5. Framing an audio signal .. 9

6. Using a window function on a sinusoid .. 10

7. Applying a mel-filterbank to the power spectrum of an audio frame 12

8. Waveforms of a RAVDESS utterance (top), a noise sample (middle), and their

combination (bottom).. 23

9. Plots showing the working principle of the support vector machine algorithm 27

10. A visual representation of mapping input features x1 and x2 to a higher-dimensional

space, allowing the kernel SVM to produce the hyperplane required to separate

the two classes... 30

11. The structure of a biological neuron ... 32

12. The perceptron learning rule ... 34

13. Structure of a typical multilayer perceptron ... 35

14. One-hot encoding of integer labels ... 36

15. Minimizing the cost function using gradient descent ... 37

16. Cost function plot of an artificial neural network ... 38

xii

17. Error moving from right to left in backpropagation ... 40

18. Comparing architectures of an MLP and an RNN with one hidden layer 42

19. Single layer RNN and multilayer RNN .. 43

20. Unfolded LSTM cell ... 45

21. Splitting a dataset into the training set, the validation set, and the test set 52

22. Learning curves showing (a) underfitting, (b) overfitting, and (c) good bias-variance

trade-off... 56

23. Accuracy curves, showing the training and validation accuracies against the number

of epochs ... 57

24. Loss curves, showing the case of an overfitted model.. 58

25. A confusion matrix for a dataset with seven classes... 59

26. Partitioning the training set for 10-fold cross-validation .. 60

27. Flow diagram showing the steps of model training and hyperparameter tuning 62

28. The 48 different experiments conducted for building the speech emotion

classifier .. 62

29. Learning curves for the SVM model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 69

30. Confusion matrix for the SVM model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 69

31. Architecture of the MLP used with the custom feature set ... 72

32. Accuracy curves for the MLP model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 73

33. Loss curves for the MLP model trained on the Complete_Clean_Noise corpus, using

the custom feature set.. 74

xiii

34. Confusion matrix for the MLP model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 74

35. Architecture of the RNN used with the custom feature set. 77

36. Accuracy curves for the RNN model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 78

37. Loss curves for the RNN model trained on the Complete_Clean_Noise corpus, using

the custom feature set.. 78

38. Confusion matrix for the RNN model trained on the Complete_Clean_Noise corpus,

using the custom feature set .. 79

39. Learning curves for the SVM model trained on the Complete_Clean_Noise corpus,

using the partial GeMAPS feature set ... 82

40. Confusion matrix for the SVM model trained on the Complete_Clean_Noise corpus,

using the partial GeMAPS feature set ... 83

41. Accuracy curves for the MLP model trained on the Complete_Clean_Noise corpus,

using the GeMAPS feature set .. 85

42. Loss curves for the MLP model trained on the Complete_Clean_Noise corpus, using

the GeMAPS feature set.. 85

43. Confusion matrix for the MLP model trained on the Complete_Clean_Noise corpus,

using the GeMAPS feature set .. 86

44. Accuracy curves for the RNN model trained on the Complete_Clean_Noise corpus,

using the GeMAPS feature set .. 88

45. Loss curves for the RNN model trained on the Complete_Clean_Noise corpus, using

the GeMAPS feature set.. 88

46. Confusion matrix for the RNN model trained on the Complete_Clean_Noise corpus,

using the GeMAPS feature set .. 89

47. 10-fold cross-validation results on the Complete_Clean_Noise corpus for the models

listed on the vertical axis... 97

xiv

48. Flow chart of the multimodal emotion recognition system 102

49. Schematic of the multimodal emotion recognition system 103

xv

ABSTRACT

In this thesis work, a robust speech emotion recognition system has been

developed to be used by children with autism spectrum disorder (ASD). Children with

ASD have difficulty identifying human emotions during social interactions, and the goal

of this work was to develop a tool that could be used by these children to better

understand the emotions of people around them. The speech emotion recognition solution

was created using machine learning and deep learning techniques. A novel approach was

taken, which involves joining multiple machine learning algorithms using ensemble

learning to classify speech recordings in real-time. A support vector machine (SVM), a

multilayer perceptron (MLP), and a recurrent neural network model were trained on the

Ryerson Audio-Visual Database of Emotional Speech and Songs (RAVDESS), the

Toronto Emotional Speech Set (TESS), the Crowd-sourced Emotional Multimodal Actors

Dataset (CREMA-D), and a custom dataset which contains utterances from the three

datasets with added background noise. Two separate audio feature sets were used, and

their performances were compared. One of them was a custom feature set created

specifically for this study and the other contained features from a popular speech emotion

feature set. Furthermore, once the speech emotion recognizer was developed, it was

joined with a facial expression recognition model to create a robust, multimodal emotion

recognition system. The purpose was to get more accurate predictions of emotions by

processing data from the audio and video mode.

1

I. INTRODUCTION

Human beings are social creatures. The concept of interdependence has been deeply

rooted in society for centuries, and communication is the foundation of any community.

It is through communication that valuable information is exchanged, and thoughts and

feelings are shared with others. Emotional valence is a quantity that categorizes the

different types of human emotions. Valence is measured over a spectrum, where

emotions such as happiness and excitement are labeled as emotions with positive valence,

while emotions like sadness and fear are considered emotions with negative valence. By

detecting the emotional valence in a social interaction, the listener can take appropriate

actions [1]. Like valence, arousal is another quantity that is used when categorizing

emotions. The arousal measures an emotion's intensity, so emotions such as calm and

boredom have a low arousal, while emotions like nervousness and excitement have high

arousal. Valence and arousal form the two dimensions of emotion classification in a

dimensional model, such as the one shown in Figure 1. Researchers who agree with the

dimensional model of emotions believe that every emotion falls somewhere in this two-

dimensional space. They believe that a standard neurophysiological system is responsible

for creating all emotions. Other psychologists disagree with this categorization and think

that every emotion is generated from a different neural system. In this work, this discrete

categorization of emotions is used, which, by definition, excludes the measurement of

valence and arousal.

2

Figure 1. The Circumplex Model – a dimensional model for emotions [2].

Human interactions can be either verbal or non-verbal. Non-verbal communication

has two subcategories – communication through facial expressions and communication

through body language. In the year 1971, Albert Mehrabian described the 7-38-55 rule of

personal communication [3]. According to this rule, in any social interaction, 7 % of the

information being conveyed comes from the spoken words, 38 % comes from the vocal

tone, and 55 % comes from the speakers' body language. In that same year, the work in

[4] published about the six universally recognized emotions observed throughout all

cultures around the world. These emotions are happiness, sadness, surprise, anger, fear,

and disgust. For the research conducted in this work, seven affective states were

considered, the six emotions listed in [4] along with the neutral emotion.

The National Institute of Mental Health (NIMH) has described autism spectrum

disorder (ASD) as “a development disorder that affects communication and behavior”

[5]. For most people, understanding a person’s emotions in a conversation is a simple

task. However, children who fall on the autism spectrum have difficulty identifying these

emotional cues - the reason is still unclear [6]. ASD can be diagnosed within the first two

3

years of a child’s life, and doctors rely on the child’s behavior to diagnose since there are

no medical tests that can be used to detect ASD as of now. Figure 2 shows all the medical

conditions that are part of ASD.

Figure 2 A list of every medical condition that is classified as autism spectrum disorder [7].

4

Literature Review

 Speech signal processing has made significant technological advancements. Some

of its applications include speaker recognition [8], automatic speech recognition [9],

language recognition [10], and mental stress detection [11]. Another huge area of

application is speech emotion recognition (SER). A speech emotion recognition system

can be used in call centers in order to assess customer satisfaction [12], or it can be used

to improve the learning experience of users in e-learning platforms [13], or it can even be

used in assistive robots to make them more empathetic towards humans [14].

Machine learning techniques in speech processing have become increasingly

common, thanks to massive improvements in computational power over the past three

decades. A few different machine learning and deep learning classifiers have proven to

yield great results for emotion speech recognition. The three most common techniques

include the support vector machine (SVM), the multilayer perceptron (MLP), and the

recurrent neural network (RNN). The authors in [15] used three layers of binary SVM

models for the multi-class emotion recognition task. Each model was trained on one

emotion and classified that emotion against the other emotions in a one-versus-all (OVA)

fashion. The Interactive Emotional Dyadic Motion Capture (IEMOCAP) was used as the

dataset, and features such as energy, pitch, mel-frequency cepstral coefficients (MFCC),

perceptual linear predictive (PLP), filter bank, and first and second derivatives of all

features were extracted as a frame-based feature using the Kaldi toolkit.

In [16], a multilayer perceptron (MLP) was trained on the Emotional Prosody Speech

and Transcripts (EPST), an English speech emotion corpus, and KSUEmotions, an

Arabic speech emotion corpus, to create a multi-lingual speech emotion classifier. Audio

5

features used include pitch, intensity, formants, jitter, shimmer, and speech rate. These

features were extracted using the PRAAT software package, and different combinations

of these audio features were tested and compared.

The work in [17] used RECOLA, a speech emotion dataset in the French language,

along with a cascaded deep learning architecture that consisted of a convolutional neural

network (CNN) followed by recurrent long short-term memory (LSTM) layers. The CNN

learned the audio features from raw utterances, which avoided the need for traditional

hand-engineered feature extraction – a process dubbed “end-to-end speech emotion

recognition.”

The authors in [18] also implemented a cascaded system by studying various

combinations of a support vector regression (SVR) model and a bidirectional long short-

term memory deep recurrent neural network (BLSTM-DRNN). One implementation,

dubbed “dependent training,” used the first model's prediction output to be fed to the

second model’s features, along with the other audio features. The other implementation,

“independent training,” involved training the models separately but adding Gaussian

white noise to the data used for training the first model to modify the true labels and

create pseudo predictions. These pseudo predictions were then used as features for the

second model along with the other audio features.

In [19], the authors used six SVM classifiers in an OVA binary classification method.

All SVM classifiers used the radial basis function (RBF) kernel, and each one gave

confidence of an input utterance being the emotion it was trained upon with the input

samples. The final prediction came from the SVM classifier that gave the highest

6

confidence. The LDC speech emotion corpus was used, and the final model performance

was compared with naïve human coders.

The authors in [20] created a virtual game for children with ASD. The goal was to

teach these children how to recognize and express emotions in a game scenario through

facial expressions, tone-of-voice and body gestures. The results of the study indicated

that there was an improvement in the emotion recognition and socialization skills of the

participating children.

In this thesis, a speech emotion recognition system was developed using ensemble

learning. Three machine learning algorithms – a SVM, an MLP, and a RNN were trained

separately and combined using majority voting to give the final emotion class prediction.

The datasets they were trained on include the Ryerson Audio-Visual Database of

Emotional Speech and Songs (RAVDESS), the Toronto Emotional Speech Set (TESS),

and the Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D).

Additionally, a noise file was generated and added to the final pool of data samples used

to train and evaluate the speech emotion recognition system for each clean speech

utterance of the three datasets. The idea was to create a speech emotion classifier that

would be impervious to environmental background noise that is present during

conversations. After the speech emotion recognition model was evaluated, it was used to

make predictions on speech recordings in real-time. Finally, the speech emotion

recognition system was combined with a facial expression recognition system to create a

multimodal emotion recognition solution for children with ASD.

7

II. AUDIO FEATURES

Recording Audio

Any sound is created by an object's vibration, which causes local air molecules to

oscillate and produce a sound wave. Sound waves are a type of mechanical wave that

requires a medium to transfer energy from one point to another. For sound waves, this

medium is air. Sound waves that exist in nature are analog, continuous-time signals. It

needs to be converted into a digital, discrete-time signal to record and store sound. The

conversion is done by sampling the audio amplitudes at discrete points in time. The

number of audio samples taken per second is defined as the sampling rate. Figure 3

shows the result of using different sampling rates.

Figure 3. Increasing the sampling rate of an audio signal, where the analog continuous-time signal is

shown on the left-hand side of the equal sign [21].

8

Even though increasing the sampling rate allows for a better approximation of the

actual analog signal, it also increases data being recorded. A sampling rate of 16 kHz

(16,000 samples/second) is usually used for most audio signal processing applications.

Furthermore, since analog audio signals can have an infinite number of possible

amplitude values, the amplitude needs to be discretized when converting into a digital

signal. The bit depth is the number of possible amplitude values for a single sample of a

discrete-time audio signal. Figure 4 shows an analog signal sampled at a bit depth of 4

bits per sample, which gives a total of 24 or 16 possible amplitude values for each audio

sample. Like the sampling rate, the higher the bit depth, the higher the discrete-time

audio signal's resolution. Most audio recordings today are 16-bit audio, with 216 = 65,536

possible amplitude values.

Figure 4. An analog signal (shown in red) is sampled at a bit depth of 4 bits per sample [22].

9

Audio Preprocessing

 A speech signal is a result of a non-stationary process and therefore creates non-

stationary data. This means that the statistical properties of the data, such as mean

amplitude, standard deviation, and other metrics, change over time. The speech signal is

divided into multiple overlapping audio segments called frames to make the data

statistically stationary in each frame so that fast Fourier transform (FFT) can be applied

for spectral analysis. A typical audio frame is somewhere between 20 to 40 milliseconds

long. Figure 5 shows an example of framing a continuous-time signal.

Figure 5. Framing an audio signal [23].

 When FFT is applied to any signal, it is assumed that the signal is periodic.

Speech signals are non-periodic by nature, and since they do not drop to zero amplitude

at the end of each audio frame, the FFT will create high-frequency artifacts at these

places. A window function is applied to the audio frames to avoid this issue. This

technique is called windowing. A window function is a mathematical function that has an

amplitude of zero outside some defined interval. When a window function is multiplied

with the speech segment in an audio frame, the resulting speech segment will have an

amplitude of zero outside the interval defined in the window function. This essentially

smoothens out the edges of the signal in each audio frame. The overlapping regions in

audio frames, which are around ten milliseconds long, ensure no audio segment is lost

during preprocessing. Figure 6 shows an example of windowing.

10

Figure 6. Using a window function on a sinusoid [24].

11

Features in Speech Emotion Recognition

Audio features are essential in any audio classification task, whether it be speech

emotion recognition, speaker recognition, automatic speech recognition, or mental stress

detection. In machine learning, features are properties of data that help a machine learn to

differentiate between data classes. Researchers have used a wide variety of audio features

to classify emotions in speech. In this thesis, two feature sets have been studied. Some of

the common low-level descriptors used in emotion speech recognition will be briefly

described in the following paragraphs.

 The mel-frequency cepstral coefficients (MFCCs) were first introduced in [25].

The first step in calculating the MFCCs is to frame the audio signal into small

overlapping audio frames of length 25-40 ms. For a sampling rate of 16 kHz and a frame

length of 32 ms, this results in a total of 16x32 = 512 audio samples per frame. Moreover,

if the frame step size (hop length) is 16 ms, it results in 16x16 = 256 audio samples in the

overlapping regions. Next, the periodogram estimate of the power spectrum is calculated

for each audio frame. Then, the spectrum's powers are mapped onto the mel-scale using a

mel-filterbank that contains a set of 20-40 triangular overlapping filters, as shown in

Figure 7. These filters are spaced according to the mel-scale and give the filterbank

energies when applied to the power spectrum. After getting the filterbank energies, the

logarithm function is applied to them. This is done because human beings do not hear

loudness on a linear scale. The log operation compresses the features so that they match

more closely to what humans hear. The final step is to perform a discrete cosine

transform (DCT) on the log mel-filterbank energies, which gives the mel-frequency

cepstral coefficients.

12

Figure 7. Applying a mel-filterbank to the power spectrum of an audio frame [26].

The pitch of a sound is the perceived fundamental frequency F0, the frequency at

which vocal cords vibrate in voiced sounds. Even though the pitch is a qualitative

measure, for speech analysis purposes, it is considered to be equal to the logarithmic F0

[27]. Just like pitch, loudness is another qualitative measure. Loudness is the perceived

intensity of any sound [28].

Formants are specific peak frequencies of vocal tract resonance. They determine

the quality of vowels in speech. The first three formant frequencies are labeled F1, F2,

and F3. Formants usually occur at 1,000 Hz intervals [29]. Harmonics-to-noise ratio

(HNR) is a measure that relates the energy in the periodic part of speech (harmonics) to

the energy in the noise section measured in decibels (dB) [30].

13

Jitter and shimmer are standard perturbation measures in speech analysis. Jitter is

a measure of the instability of the fundamental frequency, while shimmer is a measure of

amplitude instability in dB [31].

Feature Set 1: Custom

 The first feature set used in this study is a custom feature set which was created

specifically for this work. A trial-and-error method was used on a group of

unconventional audio features. The result was a collection of 36 low-level descriptors.

They are:

• MFCCs: The first 26 MFCCs were extracted for each audio frame using the HTK

implementation [32].

• Spectral contrast: It represents the relative spectral distribution [33]. Seven spectral

contrast values were extracted per audio frame.

• Polynomial coefficients: Coefficients of fitting an nth-order polynomial to the

columns of a spectrogram. Two polynomial coefficients were extracted per audio

frame for a polynomial of order one [34].

• RMS energy: The root-mean-square energy of each audio frame. One RMS energy

was extracted per audio frame.

 All 36 low-level descriptors mentioned above were extracted from speech data

using Librosa, a Python library for music and audio analysis [35]. The Python library

does all of the audio processing, including framing and windowing. For the final speech

emotion recognition model, a sampling rate of 16 kHz was used along with a frame

length of 32 ms (512 samples) and a step size of 16 ms (256 samples). For performing

14

FFT, 512 samples were considered per audio frame. Librosa is a reliable tool for audio

feature extraction and has been used by researchers for various audio classification tasks.

[36][37][38][39].

 Functionals are functions that are applied to a vector. Examples include the mean,

standard deviation, maximum, minimum, median, mode, and other metrics. Since each

low-level descriptor is extracted for each audio frame, applying functionals provides

feature values for the entire audio signal. For the MFCCs, the mean and the standard

deviation functionals were used. The mean functional was used for the spectral contrast,

polynomial coefficients, and RMS energy. This resulted in a total of 62 audio features in

the custom feature set, as listed in Table 1.

Table 1. List of audio features used in the custom feature set.

Low-level Descriptors Functionals Audio Features

26 MFCCs Mean, standard deviation 52

7 Spectral Contrasts Mean 7

2 Polynomial Coefficients Mean 3

1 RMS Energy Mean 1

Feature Set 2: Partial GeMAPS

 In [40], the authors proposed the Geneva Minimalistic Acoustic Parameter Set

(GeMAPS) for affective computing. They state that there should be a standardized set of

features used in speech emotion detection so that results from different publications can

be compared. They also claim that large, “brute-force” feature sets lead to over-

adaptation of machine learning classifiers to the training data, as the high-dimensional

feature sets may cause overfitting, which leads to lower generalization capability in

15

classification. The GeMAPS feature set contains a total of 62 audio features (including

functionals of low-level descriptors). The extended GeMAPS feature set (eGeMAPS)

contains an additional 26 audio features. The authors have compared the performance of

the GeMAPS and eGEMAPS feature sets with other much larger feature sets, such as the

one used in the INTERSPEECH Computational Paralinguistics Challenges (ComParE)

[41] and found that the performances were very much comparable.

 The GeMAPS feature set can be extracted using the OpenSMILE toolkit [42].

Since the speech emotion recognition model in this study will be deployed in the Python

environment, and since there are currently no Python libraries that allow users to access

the features of OpenSMILE, the GeMAPS feature set was not used in this study.

However, some of the GeMAPS feature set's audio features were extracted using a

Python library called Parselmouth [43]. It allows users to implement PRAAT features, a

well-known computer software package among speech researchers [44]. By using

Parselmouth, the following fifteen low-level descriptors were obtained from data:

MFCCs: The first four mel-frequency cepstral coefficients were extracted per audio

frame.

Pitch: One pitch (log F0) value was extracted per audio frame.

Loudness: One loudness (intensity) value was extracted per audio frame.

Formants: The first three formant (F1, F2, and F3) frequencies were extracted per audio

frame.

Formant Bandwidths: The first three formant bandwidths were extracted per audio frame.

HNR: One harmonics-to-noise ratio was extracted per audio frame.

Jitter: One local absolute jitter value was computed for an entire audio file.

16

Shimmer: One local shimmer value was computed for an entire audio file.

For pitch and loudness, the functionals used were the mean, the standard

deviation, the 20th percentile, the 50th percentile, the 80th percentile, and the range of 20th

to 80th percentile. For MFCCs, formant frequencies, formant bandwidths, and HNR, the

mean and standard deviations were considered. This resulted in a total of 36 audio

features in this partial GeMAPS feature set, as shows in Table 2. All previously

mentioned settings were used for audio processing - sampling rate of 16 kHz, frame

length of 32 ms (512 samples), step size of 16 ms (256 samples), and FFT of size 512

samples per audio frame.

Table 2. List of audio features used in the partial GeMAPS feature set.

Low-level Descriptors Functionals Audio Features

1 Pitch Mean, standard deviation, 20th, 50th, 80th percentile,

range of 20th to 80th percentile

6

1 Loudness Mean, standard deviation, 20th, 50th, 80th percentile,

range of 20th to 80th percentile

6

4 MFCCs Mean, standard deviation 8

3 Formants Mean, standard deviation 6

3 Formants BWs Mean, standard deviation 6

1 HNR Mean, standard deviation 2

1 Jitter Mean 1

1 Shimmer Mean 1

17

III. DATASETS

For this research work, three separate speech corpora were selected. They are the

Ryerson Audio-Visual Database of Emotional Speech and Songs (RAVDESS), the

Toronto Emotional Speech Set (TESS), and the Crowd-sourced Emotional Multimodal

Actors Dataset (CREMA-D). All three datasets are available online to be used by

researchers, free of cost. These datasets were designed and created specifically for speech

emotion recognition and were evaluated and validated by multiple individuals. There are

two main types of speech datasets that are used by researchers in this field. The first type

contains recordings of people who express genuine emotions by being subjected to

external influence, such as image, video, and audio; the second type contains recordings

of professional actors reading outlines from a script while acting out the emotions. The

former type of dataset is known in the literature as a spontaneous dataset, and the latter is

known as a simulated dataset. Researchers usually use simulated speech data for speech

emotion recognition task because they are accurately labeled, and actors are very good at

expressing each emotion with reasonable accuracy. Also, most spontaneous datasets are

limited in terms of the number of emotion classes.

Out of the three speech corpora used, the RAVDESS and CREMA-D corpora

contain multi-modal audio and video data. The thesis objective is to develop an emotion

classifier for children who are North American English speakers, and all three datasets

selected for this work contain recordings of actors for whom English is the first language.

Furthermore, the datasets chosen had to include the same seven emotion classes used by

that model as the final speech model is to be integrated with the High-Performance

Engineering (HiPE) research group’s facial expression recognition model [45].

18

Ryerson Audio-Visual Database of Emotional Speech and Songs

 The Ryerson Audio-Visual Database of Emotional Speech and Songs

(RAVDESS) was released in 2018 by researchers of the SMART lab at Ryerson

University in Toronto, Ontario, Canada. It is a simulated, multi-modal dataset that

contains both video data and audio data. For the audio data, the actors recorded the

sentences both as normal speech and as songs. The song data was not considered for this

thesis. The audio files were recorded at 16 bits per sample, at a sampling rate of 48 kHz,

and in WAV audio format. A total of 24 actors of age range 21-33 years had taken part in

creating this dataset, where half of the samples contain male actors and the other half are

female actors. Each actor recorded two lexically matched sentences in eight different

emotions. The two sentences are “Kids are talking by the door” and “Dogs are sitting by

the door.” Moreover, the eight emotions are neutral, calm, happy, sad, anger, fear,

disgust, and surprise. The emotion labels are included in the WAV audio file names. Out

of the eight emotions, seven of them were recorded twice per sentence – once with

normal intensity and the other time with stronger intensity. There was only one recording

per sentence for the neutral emotion since there is no strong intensity for this emotion.

Since the HiPE group’s facial expression recognition model was not trained on any calm

emotion data, this class was excluded from the study. This gives a total of 1,440

recording samples, with 24 actors x 2 sentences x 8 emotions x 2 repetitions x 2

emotional intensity with the exception of the neutral emotion. Thus, seven emotions have

192 data samples, and the neutral class has 96 data samples. Data resampling was used to

match the neutral class count to the rest of the classes [46]. The RAVDESS speech

corpus can be downloaded from [47].

19

Toronto Emotional Speech Set

 The second speech corpus used for this study was the Toronto Emotional Speech

Set (TESS). This simulated dataset was created in 2010 by researchers from the

University of Toronto Psychology Department. It contains recordings from two actors,

both females. The younger actor was 26 years old at the time of recording, while the

older actor was 64 years old. They have recorded 2,800 sentences in seven different

emotions – anger, disgust, fear, happy, surprise, sad, and neutral. Unlike RAVDESS, this

is a balanced dataset with each emotion class having 400 data samples. However, just like

RAVDESS, the sentences spoken by the actors are lexically similar. Each actor recorded

the phrase “Say the word___” followed by one of 200 different target words in each

affective state. All audio files were recorded at 16-bits per sample, at a sampling rate of

24,414 Hz, and saved in WAV audio file format. The emotion labels were extracted from

the file names [48]. The TESS dataset can be downloaded from [49].

20

Crowd-sourced Emotional Multimodal Actors Dataset

 The Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D) was the

third speech emotion dataset used to develop the speech model in this thesis. Just like

RAVDESS and TESS, this is also a simulated speech corpus. It was released in 2014 as a

collaboration between researchers from the University of Pennsylvania, Ursinus College

and the University of Illinois at Chicago. Actors who participated had ages ranging from

20 to 74 years old. There were 48 male actors and 43 female actors with a total of 91, and

even though they came from different ethnic backgrounds, they were all English

speakers. Like RAVDESS, it is also a multimodal dataset. The speech recordings were

done at 16-bits per sample, at a sampling rate of 16 kHz, and saved in the WAV audio

format. The actors recorded twelve different emotionally neutral sentences in six different

emotions of anger, disgust, fear, happy, neutral, and sad, at four different intensity levels

of low, medium, high, and unspecified. Examples phrases include “Don’t forget a

jacket,” “I think I’ve seen this before,” “I think I have a doctor’s appointment.” Each

emotion class has 1,271 data samples, except for the neutral class, which has 1,087 data

samples. Resampling was used to create a balanced dataset [50]. The CREMA-D dataset

can be accessed from [51]. Table 3 gives a summary of the three datasets used for this

thesis work.

21

Table 3. Summary of all three speech emotion corpora

Corpus Age of

participants

No. of

sentences

No. of

participants

Emotions Samples

per class

(balanced)

Total

(balanced)

RAVDESS 21-33

years old

2

(with 2

repetitions

&

intensities)

24

(12 Males,

12 Females)

8

(calm excluded)

192 1,344

(192 x 7)

TESS 26 and 64

years old

200

(3 common

words, 1

changing)

2

(0 Males,

2 Females)

7 400 2,800

(400 x 7)

CREMA-D 20-74

years old

12

(four

intensities)

91

(48 Males,

43 Females)

6

(surprise missing)

1,271 7,626

(1,271 x 6)

22

Noise Addition

 All speech recordings in the above-mentioned datasets were done in the absence

of background noise, in a “noiseless” environment. The only noise that is audible in these

recordings is a combination of the inherent static noise created by the recording

equipment, and the echoes coming from the surroundings. In real-world applications,

however, conversations in a “noiseless” environment are very rare because there is

always some noise around people during a conversation in different environments.

Therefore, it was important to take these background noises into consideration when

constructing the final speech emotion recognition model.

 The problem with training a machine learning model with “noiseless” data, or

clean speech data, is that it trains and performs well when tested. However, in real-world

applications, it will struggle to identify the emotions accurately because of undesired

contributions of surrounding noises to the recorded audio. A new set of data was created

from the clean speech recordings by introducing some background noise to them to

address the background noises. Figure 8 shows the noise addition process, where a city

center noise recording was added to a clean speech recording from the RAVDESS

dataset. The RAVDESS recording is of actor ID:22 saying “Dogs are sitting by the door”

with strong surprise emotion.

23

Figure 8. Waveforms of a RAVDESS utterance (top), a noise sample (middle), and their combination

(bottom).

 It is impossible to consider all possible types of background noises when creating

the new dataset with added background noise. Therefore, three noise samples were

selected for the purpose of this study. All three audio files were downloaded from the

same website [52]. The first noise sample is a recording of children playing in a

playground titled “Small Crowd”, the second noise sample is a recording of a shopping

mall titled “Shopping Mall Ambiance”, and the third noise sample is a recording of cars

passing by on the streets titled “Street”. The playground noise sample and the street noise

sample were listed under an attribution 3.0 license, while the shopping mall noise sample

was listed under a public domain license. The reason behind selecting these specific noise

samples was to cover some of the general properties of common background noises. For

example, the playground background noise is a variation of the cocktail party noise where

the noise created is from people talking in the background. Also, as the speech emotion

classifier is being built for children with ASD, it is expected that they will be in the

24

presence of other children in a similar setting. The shopping mall noise was selected

because it has an echo effect created by the high ceilings which is also observed in some

other environments such as airports and churches. Finally, the street noise was selected

because the sound of cars is a common background noise outdoors.

 After these three noise samples were selected, three signal-to-noise ratios (SNRs)

were selected: 0 dB, 5 dB, and 10 dB. These SNRs were used to add the noise samples to

the clean speech data. Noise was added to all data samples in all three datasets using the

three noise types and three SNR values, as follows. This noise addition procedure was

carried out using MATLAB. By randomly picking an SNR value out of the three and

randomly picking a noise type out of the three, the noise was added to each data sample.

To prevent the machine from learning the noise features, two precautions were taken.

First, each noise sample is more than fifteen seconds long, with the shopping mall noise

16-seconds long, playground noise 19-seconds long, and street noise 49 seconds long.

The clean speech samples were roughly three to five seconds long for all datasets. The

MATLAB code randomly took chunks of noise audio samples the size of the clean

speech samples and added both together to create the noise-added samples. This ensured

that the same part of the noise samples was not being added to the clean speech data.

Second, also, for each clean speech sample, only one noise-added sample was generated,

where noise type and SNR were randomly chosen as discussed above. Thus, the final

dataset contained the same amounts of clean speech and noise-added samples.

 Combining all three datasets without balancing the classes with utterances of

1,248 from RAVDESS, 2,800 from TESS, and 7,442 from CREMA-D, 11,490 more data

samples were created by noise addition. The resultant final dataset contains 22,980 audio

25

data samples. However, the final count of the dataset after resampling the neutral and

surprise emotion classes from RAVDESS and CREMA-D is 26,082. Table 4 summarizes

the details of the final dataset.

Table 4. Summary of the final dataset

Corpus Data Samples

RAVDESS 1,248

TESS 2,800

CREMA-D 7,442

Combined (RAVDESS + TESS + CREMA-D) 11,490

Noise-added (RAVDESS + TESS + CREMA-D) 11,490

Final (Combined + Noise-added) 22,980

Final (balanced) 26,082

26

IV. MACHINE LEARNING ALGORITHMS

 Machine learning is the science of teaching computer algorithms on how to make

decisions without human’s involvement. It falls under the broader field that is artificial

intelligence. In supervised machine learning, a learning algorithm is exposed to labeled

data and learns the different data categories by matching the features to the labeled data

samples. Once the algorithm has been trained on the data, it can make predictions on

new, unseen data. The term ‘machine’ in machine learning refers to the computer that

contains the learning algorithm. Deep learning is a subsection of machine learning that

refers to the use of advanced neural network architectures with multiple layers of

neurons. Classification and regression are the two branches of supervised learning.

Classification is performed on discrete data, while regression is performed on continuous

data. There are several types of learning algorithms in supervised learning. Each of these

algorithms is applied to different types of data. For instance, the convolutional neural

network (CNN) is designed to work like the human brain's visual cortex and is therefore

solely used in image processing applications. A few algorithms have shown great

performances with audio signal processing, more specifically, in speech emotion

recognition tasks. In this work, three of these algorithms will be studied – the support

vector machine (SVM), the multilayer perceptron (MLP), and the recurrent neural

network (RNN). All three supervised learning algorithms have been used in this thesis to

perform the classification of seven discrete affective states.

27

Support Vector Machine

The support vector machine (SVM) is a supervised machine learning algorithm

created by V. N. Vapnik and his colleagues at AT&T Bell Laboratories [53]. It can be

considered as an extension to the perceptron learning algorithm. Figure 9 shows how an

SVM classifies data samples in a binary classification problem.

Figure 9. Plots showing the working principle of the support vector machine algorithm [54].

In the plots, the crosses and circle signs represent the data samples of two

different outcome classes. The dotted line separating the data samples is called a

hyperplane, and the data samples closest to the hyperplane are called the support vectors.

Even though there are many possible ways to linearly separate the classes, as shown in

the left-hand plot of Figure 9, the SVM algorithm creates a maximum-margin hyperplane,

such that it maximizes the margin between the support vectors. This margin is the

distance between the two parallel hyperplanes shown as solid lines in the right-hand plot

of Figure 9. One is the positive hyperplane and the other is the negative hyperplane. The

equations for these hyperplanes are given below.

𝑤0 + 𝒘𝑇𝒙𝒑𝒐𝒔 = 1 (1)

𝑤0 + 𝒘𝑇𝒙𝒏𝒆𝒈 = −1 (2)

28

In Equations (1) and (2), the term w0 is the weight of the bias term, the term wT

indicates the transposed weight vector. Assuming that the two classes have labels +1 for

the positive class, shown as “+”, and -1 for the negative class, shown as “o” in Figure 9.

The xpos and xneg are the input feature vectors of the positive class and the negative class,

respectively. The bold terms represent the vector dot product operation. Subtracting

Equation (2) from (1) gives,

𝒘𝑇(𝒙𝒑𝒐𝒔 − 𝒙𝒏𝒆𝒈) = 2 (3)

The length of the vector w can be calculated as,

||𝒘|| = √∑ 𝑤𝑗
2𝑚

𝑗=1 (4)

Normalizing Equation (3) by dividing both sides by ||w|| yields the following equation,

𝒘𝑇(𝒙𝒑𝒐𝒔−𝒙𝒏𝒆𝒈)

||𝒘||
=

2

||𝒘||
 (5)

The left side of Equation (5) can be interpreted as the margin or distance between

the positive and negative hyperplane. This margin will be maximum if the term on the

right of the equal sign of Equation (5) is maximum. This maximization must be

performed while correctly classifying the data samples. Therefore, for i = 0…N, where N

is the total number of samples in the dataset,

𝑤0 + 𝒘𝑇𝒙(𝑖) ≥ 1 𝑖𝑓 𝑦(𝑖) = 1 (6)

𝑤0 + 𝒘𝑇𝒙(𝑖) ≤ −1 𝑖𝑓 𝑦(𝑖) = −1 (7)

29

Equation (6) means that if the true label y(i) of a data sample is +1 (the positive

class), it must fall above the positive hyperplane. Similarly, Equation (7) means that if the

true label y(i) of a data sample is -1 (the negative class), it must fall below the negative

hyperplane. The hyperplane right at the middle of the two parallel hyperplanes, shown as

a dotted line in the right-hand plot of Figure 9, is the optimal, maximum-margin

hyperplane calculated by the SVM algorithm under the constraints defined by Equations.

(6) and (7). Maximizing the margin is the objective function of the SVM algorithm. In

practice, instead of maximizing the term 2/||w|| of Equation (5), it is more convenient to

minimize its reciprocal ½*||w||2.

Vapnik came up with the soft-margin classification to relax the linear constraints

defined in Equations (6) and (7) for nonlinearly separable data. He introduced a slack

variable ξ, which can be added to Equations (6) and (7),

𝑤0 + 𝒘𝑇𝒙(𝑖) ≥ 1 − 𝜉(𝑖) 𝑖𝑓 𝑦(𝑖) = 1 (8)

𝑤0 + 𝒘𝑇𝒙(𝑖) ≤ −1 + 𝜉(𝑖) 𝑖𝑓 𝑦(𝑖) = −1 (9)

Now, the following term needs to be minimized to maximize the margin,

1

2
||𝒘||

2
+ 𝐶(∑ 𝜉(𝑖)

𝑖) (10)

Here, the C parameter is the penalty variable which the users can tweak.

Increasing the value of C means increasing the error penalty, while decreasing its value

means being more lenient when punishing the model for misclassification error.

There are some problems where the classes are not linearly separable. In cases

non-linearity solutions, the SVM can be kernelized and add dimensionality for the proper

30

hyperplane utilize supporting vectors for maximum separation. The basic idea of kernel

SVM is to create nonlinear combination of the input features x to project the features

onto a higher-dimensional space. This in turn allows for the data samples to be linearly

separable by defining a hyperplane using the linear SVM algorithm. A mapping function

ϕ is used to create higher-dimensional features from the input features. Figure 10 depicts

the so-called “kernel trick” by using a mapping transformation to generate the hyperplane

boundary and inverse transform to represent the classification boundary to the original

sample space.

Figure 10. A visual representation of mapping input features x1 and x2 to a higher-

dimensional space, allowing the kernel SVM to produce the hyperplane required to separate the two

classes [54].

The radial basis function (RBF) is a very popular kernel function, and it is

represented by,

𝜅(𝒙(𝑖), 𝒙(𝑗)) = exp (−𝛾 ||𝒙(𝑖) − 𝒙(𝑗)||
2

) (11)

31

The SVM is one of the most widely used classifiers in machine learning due to its

ability to work with multiple classes. It has also been extensively used in the field of

emotion speech recognition and has yielded great results. That is why the SVM was

selected as one of the machine learning classifiers in this study. In Equation (11), the

term γ (gamma) is a free parameter that can be optimized by the user. For this thesis

work, the C parameter and the γ parameter were tuned for the RBF kernel SVM.

32

Multilayer Perceptron

The Perceptron

Artificial neurons were inspired by the real biological neurons of the human body.

Neurons, or nerve cells, are the building blocks of the human nervous system. Figure 11

shows the body of a typical neuron. The dendrites collect electrical and chemical signals,

synapses, from other neurons, which are combined at the nucleus. If the aggregate signal

exceeds a threshold, the neuron fires a synapse through its axon to other neurons.

Figure 11. The structure of a biological neuron [55].

In 1943, Warren McCulloch and Walter Pitts came up with the concept of the

McCulloch-Pitts (MCP) neuron [56]. They described the MCP neuron to be a simple

logic gate with a binary output. Just a few years later based on the same original concept,

Frank Rosenblatt published about the perceptron learning algorithm [57]. According to

Rosenblatt, the perceptron would automatically learn the optimal weights and then

multiply them with their respective input features. It would then add the numbers and

determine if the outcome reaches a threshold level to fire the neuron or not. This logical

process mechanism is used in supervised learning to predict either one of more classes.

For a binary classification problem, supervised learning, where the two classes are

labeled +1 for the positive class or -1 for the negative class, there will be a set of input

33

features. Since each input feature xi has a corresponding weight coefficient wi so there

will be two vectors, as shown below,

𝒘 = [𝑤1 … . 𝑤𝑚] (12)

𝒙 = [𝑥1 … . 𝑥𝑚] (13)

 For classification, if the net input of a data sample x(i) is bigger than a threshold θ,

the sample is classified as the positive class (+1); otherwise, the sample is predicted to be

from the negative class (-1). This decision is made by the decision function, ϕ(), which is

defined in Equation (14).

𝜙(𝑧) = {
1 𝑖𝑓 𝑧 ≥ 𝜃

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14)

Bringing the threshold θ to the left side of the equal sign for simplifying Equation (14)

creates an additional term w0x0, where w0 = -θ and x0 = 1. Thus, Equation (14) becomes:

𝜙(𝑧) = {
1 𝑖𝑓 𝑧 ≥ 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (15)

One of the vectors needs to be transposed to calculate the net input of a data

sample, which is a vector dot product between w and x. Transposing w gives wT.

Therefore, the net input can be expressed as,

𝑧 = 𝑤0𝑥0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑚𝑥𝑚 = 𝒘𝑇𝒙 (16)

The perceptron learning rule is quite simple. At first, the feature weights are

initialized to either random values or simply zeroes. Then, for each input training sample

the output is calculated. Then, based on the error calculated, all the weights are updated

34

simultaneously before the next training sample is fed to the perceptron. The weight vector

can be written as,

𝑤𝑗 ∶= 𝑤𝑗 + 𝛥𝑤𝑗 (17)

The term Δwj is the weight update and is determined by:

𝛥𝑤𝑗 = 𝜂(𝑦(𝑖) − 𝑦̂(𝑖))𝑥𝑗
(𝑖)

 (18)

In Equation (18), y(i) is the true label of the ith training sample, 𝒚̂(i) is the predicted

label, and η is the learning rate that has a floating-point number between 0.0 and 1.0. The

learning rate determines how fast the algorithm learns the features of the training data. A

high learning rate might cause the model to overshoot the global minimum of the loss

function, while a low learning rate might take a long time to converge to a minimum loss.

Figure 12 summarizes the idea behind the perceptron learning rule.

Figure 12. The perceptron learning rule [54].

Feedforward Artificial Neural Networks

The multilayer perceptron (MLP) is a feedforward artificial neural network

consisting of multiple artificial neurons arranged into an input layer, one or more hidden

layers, and an output layer. Figure 13 shows the architecture of a single hidden-layered

35

MLP. It shows a network with one input layer, one hidden layer, and one output layer.

Neurons in each layer, shown as circles, are fully connected to the ones in the next layer

by weight coefficients. Each neuron is an activation unit with an activation function,

where ai
(in) refers to the ith value in the input layer. The units a0

(in) and a0
(h) are the bias

units set to 1. The weight coefficient w0,1
(h) connects the 0th unit of the h layer, or the 1st

hidden layer, to the 1st unit of the h+1 layer, or the 2nd hidden layer.

Figure 13. Structure of a typical multilayer perceptron [54].

An MLP has three main steps to its learning procedure. From the input layer, the

patterns of the training data are moved forward, forward propagation, until an output is

calculated by the network. Then, the error is calculated using a cost function. The output

labels need to be one-hot encoded, which essentially converts the labels into a binary

representation using zeros and ones, creating a vector for each label. Without one-hot

encoding, the machine will assume that the integer classes have a natural order

(hierarchy). Figure 14 shows how class labels are one-hot encoded. The final step is to

propagate the error through the weights in the network and calculating its derivative with

respect to each weight and updating the model.

36

Figure 14. One-hot encoding of integer labels.

The net output of the first hidden layer of Figure 13 can be calculated by using

Equation (19).

𝑧1
(ℎ)

= 𝑎0
(𝑖𝑛)

𝑤0,1
(ℎ)

+ 𝑎1
(𝑖𝑛)

𝑤1,1
(ℎ)

+ ⋯ + 𝑎𝑚
(𝑖𝑛)

𝑤𝑚,1
(ℎ)

 (19)

, where,

𝑎(𝑖𝑛) = [𝑎0
(𝑖𝑛)

𝑎1
(𝑖𝑛)

… 𝑎𝑚
(𝑖𝑛)

] = [1 𝑥1
(𝑖𝑛)

… 𝑥𝑚
(𝑖𝑛)

](20)

Thus, the first activation unit of the first hidden layer can be calculated as,

𝑎1
(ℎ)

= 𝜙(𝑧1
(ℎ)

)(21)

Activation Function

The function ϕ() is the notation for the activation function. It must be

differentiable to learn the weights using gradient descent. A non-linear activation

function is used to solve complex problems, such as the sigmoid function, tanh function,

exponential function, or other potential functions. The Rectified Linear Unit (ReLU) is a

non-linear activation function that is often used in deep neural networks. Any network

37

with two or more hidden layers is called a deep neural network. The ReLU activation has

the following equation,

(22)

Optimization

 The gradient descent is an optimization technique used in machine learning.

Optimization is the process of framing a problem in order to maximize/minimize some

goal or objective. In this case, the objective, or objective function, to be minimized is the

cost function, or loss function J(w), where w is the weight vector. Figure 15 illustrates the

process of gradient descent. The goal is to reach the minimum point of the curve, which

represents the weight value with the lowest cost.

Figure 15. Minimizing the cost function using gradient descent [54].

The new weight is calculated by subtracting the step size from the old weight

(weights are percentages). This is done for each individual weight of the network. The

step size is given as,

𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 × 𝜂 (23)

38

The error gradient is the sum of the partial derivatives of the cost function with

respect to each weight. The error gradient becomes smaller and smaller the more layers

are added to a network. For some non-linear activation functions, such as the tanh

function, it might cause the error gradient to become very close to zero resulting in a slow

learning process during training. This is known as the “vanishing gradient” problem.

Using ReLU bypasses this issue since the derivative of ReLU with respect to its input is

always 1 for positive input values.

Backpropagation

Backpropagation is the optimization technique used in artificial neural networks.

For artificial neural networks, the cost function does not have a smooth convex shape as

shown in Figure 16, but rather a rough surface with bumps, as shown in Figure 16. The

goal is to avoid the local minimum and reach the global minimum.

Figure 16. Cost function plot of an artificial neural network [54].

The network output is calculated using forward propagation through the dot-

product calculations and predictions decision by the Activation function. The

39

backpropagation technique is used to move the computed error backwards – from right to

left of the neural network. The first step is to calculate the error vector,

𝜹(𝑜𝑢𝑡) = 𝒂(𝑜𝑢𝑡) − 𝒚(24)

Here, y is the vector containing true labels. Then, the error term of the hidden layer is

calculated. The operator in Equation (25) indicates element-wise multiplication, and the

term to the right of the operator is the derivative of the activation function.

𝜹(ℎ) = 𝜹(𝑜𝑢𝑡)(𝑾(𝑜𝑢𝑡))
𝑇

⊙
𝜕𝜙(𝑧(ℎ))

𝜕𝑧(ℎ) (25)

Next, the derivatives of the cost function with respect to the weights are calculated for

every node of each layer.

𝜕

𝜕𝑤𝑖,𝑗
(𝑜𝑢𝑡) 𝐽(𝑾) = 𝑎𝑗

(ℎ)
𝛿𝑖

(𝑜𝑢𝑡)
 (26)

𝜕

𝜕𝑤𝑖,𝑗
(ℎ) 𝐽(𝑾) = 𝑎𝑗

(𝑖𝑛)
𝛿𝑖

(ℎ)
 (27)

The partial derivate for each node and the error of the node in the next layer is

aggregated. This gives the error gradient since the gradient is the sum of all partial

derivatives.

Δ(ℎ) = 𝛥(ℎ) + (𝑨(𝑖𝑛))
𝑇

𝛿(ℎ) (28)

Δ(𝑜𝑢𝑡) = 𝛥(𝑜𝑢𝑡) + (𝑨(ℎ))
𝑇

𝛿(𝑜𝑢𝑡) (29)

Then, the regularization term is added to the error gradient for layer l.

Δ(𝑖) ∶= 𝛥(𝑖) + 𝜆(𝑖)(𝑒𝑥𝑐𝑒𝑝𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚) (30)

40

Finally, the weights are updated by taking an opposite step towards the gradient for each

layer l.

𝑾(𝑖) ∶= 𝑾(𝑖) − 𝜂𝛥(𝑖) (31)

The entire backpropagation method is depicted in Figure 17. The neurons with 1’s are the

bias units.

Figure 17. Error moving from right to left in backpropagation [54].

For this thesis, a variety of hyperparameters of the MLP were experimented and

tested for accuracy performance and evaluation. The list includes the network

architecture in the number of neurons and layers, activation unit, optimizer, cost or loss

function, epochs, batch size, learning rates, regularization, and dropout.

41

Recurrent Neural Network

Sequences

Recurrent neural networks (RNNs) are a special class of artificial neural networks

that are used with sequential data. RNN is a type of deep learning algorithm. The data

used in the training process is assumed to be independent and identically distributed

(IID), meaning that the order in which they are fed to the algorithm under the supervised

learning approach is not relevant. However, the order of the input data matters for

sequential data, or sequences.

Standard neural network models such as the multilayer perceptron (MLP) or the

convolutional neural network (CNN) cannot process ordered input data samples since

these networks do not take past information into consideration during training RNNs are

designed specifically for sequences because the technique can remember information

from the previous data samples and learn the sequential patterns of the data. One

common example of sequences is a time-series data, where each data sample x(t) belongs

to a specific time t.

Structure of an RNN

 In a feedforward neural network like an MLP, the flow of information is from the

input layer to the hidden layer(s), and then finally to the output layer for the calculated

predicted values. In RNNs, the input to a hidden layer comes from both the input layer

and the hidden layer from the previous time step. A simplified representation is

demonstrated in Figure 18.

42

Figure 18. Comparing architectures of an MLP and an RNN with one hidden layer [54].

In Figure 18, x represents the input layer, h represents the hidden layer, and y

represents the output layer. The looped arrow in the hidden layer h for the RNN structure

is called the recurrent edge. It represents the flow of information in the hidden layer,

from the previous time step t-1 to the current time step t. The units, artificial neurons, in

each layer are not shown, but it is assumed that each layer is a vector of multiple neurons.

Figure 19 shows the inner workings of a single layer RNN and a multilayer RNN. In both

cases, each hidden layer receives two inputs – the pre-activation, z-input, from the input

layer, and the activation of the same hidden layer but from the previous time step t-1.

43

Figure 19. Single layer RNN and multilayer RNN [54].

Learning Challenges of RNNs

 RNNs learn using a technique described in [54] called backpropagation through

time (BPTT). The loss L is defined as the sum of all the loss functions at times t=1 through

t=T, where T is the last time step.

𝐿 = ∑ 𝐿(𝑡)𝑇
𝑡=1 (32)

The loss at time 1:t depends on the hidden units of all previous time steps, 1:t because

there are long-range dependencies associated with sequences. The gradient of the loss is

computed as follows,

𝜕𝐿(𝑡)

𝜕𝑾ℎℎ
=

𝜕𝐿(𝑡)

𝜕𝒚(𝑡) ×
𝜕𝒚(𝑡)

𝜕𝒉(𝑡) × (∑
𝜕𝒉(𝑡)

𝜕𝒉(𝑘)
𝑡
𝑘=1 ×

𝜕𝒉(𝑘)

𝜕𝑾ℎℎ
) (33)

44

, where the multiplicative factor ∂h(t)/∂h(k) in Equation (33) is computed as a

multiplication of adjacent time steps and has t-k multiplications. Thus, multiplying the

weight t-k times results in wt-k. As a result, if |whh|<1, wt-k becomes very small when t-k is

large.

This causes the vanishing gradient problem. This creates the exploding gradient

problem when |whh|>1, wt-k becomes very large when t-k is large. Therefore, these

problems can be avoided if |whh|=1. In practice, the long short-term memory (LSTM)

network is the most popular technique to avoid the vanishing gradient problem.

Long Short-Term Memory

 LSTMs were first introduced in 1997 [58]. The LSTM is made up of memory

cells that are equivalent to hidden layer units. Each memory cell has a recurrent edge with

weight |w|=1, which prevents the vanishing gradient and exploding gradient problem. The

value associated with this recurrent edge is called the cell state Ck. Thus, along with a

hidden state, hk, each LSTM cell maintains a cell state Ck. And unlike standard RNN cells

which have one activation unit per cell, the LSTM has four activation units per cell.

Figure 20 shows the structure of an LSTM cell.

45

Figure 20. Unfolded LSTM cell [54].

 The cell state in the current time step C(t) is calculated by modifying the cell state

from the previous time step C(t-1) without multiplying with any weight factors. In Figure

20, x(t) is the input at time t, and h(t-1) represents the hidden units at time t-1. The four

yellow boxes contain an activation function along with a set of weights. The boxes with

the sigmoid activation function (σ) are called gates. In an LSTM cell, there are three

types of gates:

1. The forget gate (ft) suppresses irrelevant information while letting useful information

go through. This allows the cell to reset its state to zero without growing indefinitely.

Equation (34) shows how the forget gate vector, ft, is calculated for an entire LSTM

layer. The input weight vector of the forget gate, Wxf, is multiplied with the current input

vector, x(t), and the hidden weight vector of the forget gate, Whf, is multiplied with the

previous hidden state vector, h(t-1). Then, the results are added with the bias vector of the

46

forget gate, bf, and the summation is passed through a sigmoid activation function, σ, in

order to get the output vector of the forget gate, ft.

𝒇𝑡 = 𝜎(𝑾𝑥𝑓𝒙(𝑡) + 𝑾ℎ𝑓𝒉(𝑡−1) + 𝒃𝑓) (34)

2. The input gate (it) and the input node (gt) work together and update the cell state.

Equation (35) shows how the input gate vector, it, is calculated for an entire LSTM layer,

and Equation (36) shows how the input node vector, gt, is calculated for an entire LSTM

layer. The input weight vector of the input gate, Wxi, is multiplied with the current input

vector, x(t), and the hidden weight vector of the input gate, Whi, is multiplied with the

previous hidden state vector, h(t-1). Then, the results are added with the bias vector of the

input gate, bi, and the summation is passed through a sigmoid activation function, σ, in

order to get the output vector of the input gate, it. Similarly, the input weight vector of the

input node, Wxg, is multiplied with the current input vector, x(t), and the hidden weight

vector of the input node, Whg, is multiplied with the previous hidden state vector, h(t-1).

Then, the results are added with the bias vector of the input node, bg, and the summation

is passed through a hyperbolic tangent activation function, tanh, in order to get output

vector of the input node, gt.

𝒊𝑡 = 𝜎(𝑾𝑥𝑖𝒙
(𝑡) + 𝑾ℎ𝑖𝒉

(𝑡−1) + 𝒃𝑖) (35)

𝒈𝑡 = tanh(𝑾𝑥𝑔𝒙(𝑡) + 𝑾ℎ𝑔𝒉(𝑡−1) + 𝒃𝑔)(36)

, C(t), the current cell state vector for the entire LSTM layer is computed as shown in

Equation (37). An element-wise multiplication is performed between the previous cell

state vector, C(t-1), and the output vector of the forget gate, ft. Another element-wise

47

multiplication is performed between the output vector of the input gate, it, and the output

vector of the input node, gt. The resulting vector elements are added by an element-wise

summation operation.

𝑪(𝑡) = (𝑪(𝑡−1) ⊙ 𝒇𝑡) ⊕ (𝒊𝑡 ⊙ 𝒈𝑡)(37)

3. The output gate (ot) updates the values of the hidden units. The output gate vector, ot,

for an entire LSTM layer is calculated as shown in Equation (38). The input weight

vector of the output gate, Wxo, is multiplied with the current input vector, x(t), and the

hidden weight vector of the output gate, Who, is multiplied with the previous hidden state

vector, h(t-1). Then, the results are added with the bias vector of the output gate, bo, and

the summation is passed through a sigmoid activation function, σ, in order to get the

output vector of the output gate, ot.

𝒐𝑡 = 𝜎(𝑾𝑥𝑜𝒙(𝑡) + 𝑾ℎ𝑜𝒉(𝑡−1) + 𝒃𝑜) (38)

, h(t), the hidden state vector at the current time steps for an entire LSTM layer is

calculated as shown in Equation (39). The current cell state vector, C(t), is passed through

a hyperbolic tangent activation function, tanh. The resulting vector is multiplied with the

output vector of the output gate, ot, by an element-wise multiplication operation.

𝒉(𝑡) = 𝒐𝑡 ⊙ tanh(𝑪(𝑡)) (39)

 Just like the MLP model, a list of different RNN hyperparameters were tuned for

getting the best results. The list includes the network architecture for the number of

48

neurons and layers, activation unit, optimizer, cost or loss function, batch size, learning

rates, regularization, and dropout.

49

V. RESEARCH METHODOLOGY

Experimental Procedure

Three speech emotion corpora were collected from the internet - the Ryerson

Audio-Visual Database of Emotional Speech and Songs (RAVDESS), the Toronto

Emotional Speech Set (TESS), the Crowd-sourced Emotional Multimodal Actors Dataset

(CREMA-D) to create the speech emotion recognition system. At first, the RAVDESS

corpus was selected for training and optimizing the support vector machine (SVM), the

multilayer perceptron (MLP), and the recurrent neural network (RNN) model. The

RAVDESS dataset contains data from all the seven emotion classes used in this work,

and there is an equal number of male and female actors. Also, the recording quality in

RAVDESS is better compared to CREMA-D. Furthermore, training the models on a

single dataset was faster than training them on all three. All these factors made

RAVDESS an excellent first choice. However, after using the RAVDESS

hyperparameter settings on the other two datasets, the results were inferior. This was

because the RAVDESS dataset had very few data, and so the machine had low

generalization capability when tested on other datasets. For this reason, the model tuning

strategy was changed to a new strategy described below.

Three different noise samples were used in order to modify all three speech

emotion corpora. This was done to train the models on speech data in the presence of

noise. Most everyday conversations happen with some noise in the background. The

characteristics of the background noise depend on the surrounding environment of the

speakers. If the speech emotion system is only trained on clean speech data, it will not

perform well in real-world applications because the system will pick up noise along with

50

the speech signal and try to process the audio with the added noise. The audio features

extracted from the audio will be misleading as they will contain components of the noise.

This will eventually lead to low classification accuracies. Therefore, the models were

trained and evaluated with datasets containing background noise to create a robust speech

emotion recognizer. The three background noises selected are the sound of children

playing in a playground, the ambiance in a shopping mall, and the sound of cars passing

by on the streets. These three noise samples represent three completely different

scenarios. Three different SNR values were selected for adding these noise samples to the

clean speech – 0 dB, 5 dB, and 10 dB – which introduces a lot more variety to the

original clean speech datasets. Different sections of the noise files were added to different

clean speech files to avoid teaching the background noise's machine features during

training. From RAVDESS, TESS, and CREMA-D, each clean speech file was combined

with one of the three noise samples in one of the three SNRs to create a noise-added file.

Thus, instead of training the three machine learning algorithms (SVM, MLP, and

RNN) on only the RAVDESS dataset, they were trained on a bigger dataset that contains

the RAVDESS recordings (clean speech), the TESS recordings (clean speech), and the

CREMA-D recordings (clean speech), along with the noise-added versions of these

clean-speech files. A special naming convention is used from this point forward to

simplify referencing these different datasets. This naming convention is explained in

Table 5. The neutral class in RAVDESS and CREMA-D had fewer data samples than the

other classes, so it was resampled to match the other classes. The surprise class was

missing in CREMA-D, so it was resampled when all three datasets were combined.

51

Table 5. Dataset naming convention followed in this research.

Name Description Data Samples (balanced)

RAVDESS_Clean Original RAVDESS corpus 1,344

RAVDESS_Clean_Noise Original RAVDESS corpus

along with the noise-added

versions

2,688

TESS_Clean Original TESS corpus 2,800

TESS_Clean_Noise Original TESS corpus along

with the noise-added versions

5,600

CREMA-D_Clean Original CREMA-D corpus 7,626

CREMA-D_Clean_Noise Original CREMA-D corpus

along with the noise-added

versions

15,252

Complete_Clean Original RAVDESS, TESS,

and CREMA-D corpora

13,041

Complete_Clean_Noise Original RAVDESS, TESS,

and CREMA-D corpora along

with the noise-added versions

26,082

52

Performance Metrics

Individual performance metrics have been selected to assess the results of the

experiments conducted in this research. They are listed below.

Training, Validation, and Test Accuracy

In machine learning, the dataset for the problem being worked on is initially split

into two parts – the training set and the test set. The training set is the part of the dataset

used for training the machine learning algorithm, while the test set is the part of the

dataset used to get an unbiased evaluation of the model performance. The test set is

separated from the model during the training process. There is another partition of the

dataset that comes from the training set. It is called the validation set, and like the test set,

it is also separated from the model during training. Figure 21 shows how data partitioning

is done in machine learning. Common ratios for the partitions (training : validation : test)

are 70:10:20, 75:10:15, and 80:10:10. For this thesis, all datasets were split in the

80:10:10 ratio, with a 80% of data being reserved for training while the remaining 20%

being equally split for the validation and test set. This was done to use most of the data

for training. Also, all three splits were stratified, meaning that there were equal number

of data samples per emotion class within a split.

Figure 21. Splitting a dataset into the training set, the validation set, and the test set.

The formula for calculating the training accuracy is given in Equation 40. The

true labels are the ground truths, i.e., the actual labels of data classes included in the

53

dataset. The machine's number of correct predictions is simply calculated by comparing

the predicted labels to the true labels. The training accuracy measures how well the

machine performed when predicting samples from the training set. For computing the

training accuracy, the machine makes predictions on the data it was trained on; the

training accuracy is usually the highest among the three classification accuracies.

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐴𝑐𝑐. (%) =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡
× 100(40)

The validation accuracy is computed using Equation (41). It measures the model

performance on previously unseen data by dividing the total number of correct

predictions made on the validation set data with the data samples' total number in the

validation set.

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐. (%) =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡
× 100 (41)

The test accuracy is given by Equation (42). Just like the validation accuracy, it

measures how the model performs on previously unseen data. The main difference

between the test accuracy and the validation accuracy is that after getting the validation

accuracy score, the model can be re-tuned if the score is low or a big gap between

training accuracy and validation accuracy (overfitting). On the other hand, the test

accuracy is only computed once, after all the model parameters have been finalized. If a

model is constantly re-tuned using the test accuracy instead of the validation accuracy, it

will cause that model to overfit to the test data. The test accuracy is therefore, an

unbiased representation of model performance.

𝑇𝑒𝑠𝑡 𝐴𝑐𝑐. (%) =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡
× 100 (42)

54

These three classification accuracies are the most popular performance metrics for

machine learning and deep learning. A good machine learning model has high scores for

all three classification accuracies, indicating a strong prediction capability. Furthermore,

the model has almost similar validation and test accuracies and does not have a large gap

between the training accuracy and validation accuracy.

Precision and Recall

Even though the classification accuracy gives an idea of how well the model

performs, it does not indicate how the model is performing when classifying individual

classes. The metrics of precision and recall become relevant in evaluating different

classification rates. The average precision score is calculated by dividing the sum of true

positives across all classes by the sum of true positives and false positives. For example,

when classifying the happy emotion, the true positives are the data samples that were

correctly classified as “happy.” The false positives are the data samples classified as

“happy,” but were, in fact, one of the other six emotions. The false negatives are the

“happy” data samples that were misclassified as other emotions. Finally, the true

negatives are the data samples that were correctly classified as other emotions. Equation

43 shows the average precision score base on the true positive predictions over the

aggregate of the true and false positive sample space.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (43)

55

The average recall score is calculated by dividing the sum of true positives by the sum of

true positives and false negatives across all classes. Equation 44 summarizes this

computation of the recall statistical metric.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (44)

Therefore, the precision quantifies the number of correct predictions made on the

test set out of all the predictions labeled by the machine as “true,” while the recall

quantifies the number of correct predictions made on the test set out of all the actual

“true” instances. These two metrics are beneficial for classification problems, especially

when the classes are not balanced. In this work, the average precision and recall scores

were calculated for models making predictions on the test set.

Learning Curves

In learning curves, the training accuracy and validation accuracy are plotted

against the number of training samples. Figure 22 shows some examples of learning

curves. The vertical axis (y-axis) represents the classification accuracy, while the

horizontal axis (x-axis) represents the number of training samples used for training the

model. Learning curves provide a visual cue for whether a model is underfitting or

overfitting. In machine learning, the bias error is the error caused by the learning

algorithm's wrong assumptions, and the variance error is the error caused by the model

being over-sensitive to the small changes in the training set [59]. If a model is not

complex enough to learn the data's properties, it is said to have high bias and will fail to

correctly classify the inputs, which will result in inadequate training and validation

56

accuracy. This condition is called underfitting and can be rectified by increasing the

number of parameters used in the model or decreasing the degree of regularization (error

penalty). Figure 22(a) shows an example of an underfitted model.

In contrast, if too many parameters are being used in training a model, that model

will overly complicate the learning process and adapt to the training set. This results in

high variance, and the model fails to generalize when introduced to previously unseen

data from the validation set. This condition is called overfitting, and it can be corrected

by either using more training data, reducing the number of parameters, or increasing the

strength of regularization used. Overfitting is depicted in Figure 22(b). Figure 22(c)

shows learning curves with a good balance between bias and variance.

Figure 22. Learning curves showing (a) underfitting, (b) overfitting, and (c) good bias-variance

trade-off [54].

57

Accuracy Curves

Another group of plots used to detect underfitting and overfitting are accuracy

curves. They are very similar to learning curves, with the only difference being the

quantity represented on the horizontal axis (x-axis). For accuracy curves, the horizontal

axis shows the number of epochs, i.e., the number of passes over the training set. For

example, if a model is trained over the entire training set ten times, the model is trained

with ten epochs. Since artificial neural networks are trained using multiple epochs, these

types of curves are useful for the MLP and RNN models used in this work. Figure 23.

shows an example of accuracy curves for a well-performing model.

Figure 23. Accuracy curves, showing the training and validation accuracies against the number of

epochs.

Loss Curves

Loss curves are plots of the training and validation losses against the number of

epochs used in model training. Like accuracy curves, loss curves are used to evaluate the

MLP and RNN models' performance in this study. If the validation loss keeps increasing

58

with the number of epochs instead of decreasing, as seen in Figure 24, it indicates

overfitting. The categorical cross-entropy loss is a loss function used in multiclass

classification problems. This loss function calculates the cross-entropy loss between the

class labels and the predictions made by the machine. In this work, the categorical cross-

entropy loss is the cost function that was minimized for both the MLP and the RNN

model.

Figure 24. Loss curves, showing the case of an overfitted model.

Confusion Matrix

A confusion matrix is a two-dimensional array of numbers. One of its axes

represents the true labels of the validation data, while the other axis represents the

predicted labels of the same data samples. Figure 25 demonstrates a typical confusion

matrix. In this example, the vertical axis is for the true labels, and the horizontal axis is

for the predicted labels. All seven classes are labeled on both axes. The diagonal numbers

(from the top left corner to bottom right corner) represent the two axes’ labels. These

59

numbers represent the number of data samples that the machine was able to correctly

classify because, for these numbers, the predicted labels match the true labels. All other

numbers outside this diagonal represent the number of data samples misclassified by the

machine. The total number of data samples belonging to any class in the validation set

can be found by adding all the numbers on a straight line corresponding to that label on

the true label axis (in this case, all numbers in a row). The confusion matrix gives an idea

of how well the machine is predicting data from each class.

Figure 25. A confusion matrix for a dataset with seven classes.

K-fold Cross-validation

In this study, all model hyperparameters were tuned by using the same data

shuffle. This was done by setting the random_state variable in Python to zero. Doing this

was to get the same output scores for running the same program multiple times. This

way, when tuning a certain hyperparameter, different values of that hyperparameter were

easily compared to see which gave the best results for the same data samples. Shuffling

the data for each different value of the hyperparameter would have made the comparison

60

invalid since each model would have been trained, validated, and tested on different data

samples. Another way of tuning hyperparameters is by using k-fold cross-validation [54].

In this technique, the training data is split into k folds (or sections), where k-1 folds are

used as the training set while the remaining fold is used as the validation set. The model

is trained and validated a total of k times, each using a different fold for the validation set.

Figure 26 shows the concept of a 10-fold cross-validation. The final performance score,

depicted as E in Figure 26, is the average score for all ten experiments.

Figure 26. Partitioning the training set for 10-fold cross-validation [54].

K-fold cross-validation provides a useful model performance estimate. However,

due to the large number of experiments performed in this study and the large number of

hyperparameters tuned for each model, it would drastically increase the computation time

in hyperparameter tuning. The only sets of experiments in this thesis where k-fold cross-

validation was used was when the SVM models' learning curves were computed and

when the classification accuracy was calculated for the final models.

61

Methodology

The flow diagram shown in Figure 27 explains how the model hyperparameters

were tuned during the training phase of a model. At first, a speech emotion corpus was

selected. Then framing and windowing were applied in data preprocessing. After that, the

low-level descriptors were extracted from the audio files, and functionals, such as mean

and standard deviations were computed across all audio frames. This resulted in the audio

features that were then scaled using standardization. Standardization is performed by

subtracting the mean of a feature from that feature value and then dividing it by the

feature’s standard deviation. This ensures that the feature values have a mean of zero and

has a standard deviation of one. Machine learning algorithms like SVM are sensitive to

unscaled data. The next step was to partition the data into the training set, the validation

set, and the test set. After that, the initial hyperparameter values were set, and the

machine learning algorithm was trained on the training set. Once training was done, the

model performance was evaluated on validation data. If the performance metrics

indicated a case of either overfitting or underfitting, the hyperparameters were re-tuned,

and the machine learning algorithm was trained again using the new hyperparameter

values. This process was repeated until a fair bias-variance tradeoff was achieved. Once

the model was finalized, an unbiased performance evaluation was obtained using the test

set. The performance metrics from this final evaluation indicate of how the model will

perform when exposed to previously unseen data.

62

Figure 27. Flow diagram showing the steps of model training and hyperparameter tuning.

The hyperparameter tuning experiments were conducted on the

Complete_Clean_Noise dataset using only the custom feature set. These hyperparameter

values were also used when the algorithms were trained on all other datasets listed in

Figure 28. Therefore, after the hyperparameter tuning experiments were completed, 48

experiments were conducted to create the speech emotion recognition system – two

feature sets by three machine learning classifiers by eight speech emotion datasets. All

these combinations are shown in Figure 28.

Figure 28. The 48 different experiments conducted for building the speech emotion classifier.

63

Once all 48 experiments were completed, one model was selected from each type

of machine learning classifier. These were combined using ensemble learning. In

supervised machine learning, ensemble learning is the procedure of combining multiple

machine learning algorithms to classify the same data. There are different forms of

ensemble learning. The one used in this study is called voting. In voting, each machine

learning model's predictions are considered, and the final prediction of the system is the

class, which occurs the most among the predictions. Once the speech emotion recognition

system was finalized using ensemble learning, another round of ensemble learning was

performed. This time, the facial expression recognition system created in [45] was

combined with the speech emotion recognition system developed in this work to create a

robust, multi-modal emotion recognition solution.

64

Computational Resources

Programming

For this thesis, the Python version 3.7.4 was used for the development of the

machine learning models. MATLAB version R2018b was used for background noise

addition and verification of results. Table 6 lists all the Python libraries used, along with

their versions. The Python projects are susceptible to package versions due to the

dependencies among packages. One way to avoid this is to create separate Python

environments, i.e., install separate Python versions, for each project.

Table 6. Python libraries used in this research.

Library name Version

scikit-learn 0.23.2

joblib 0.14.1

tensorflow 2.1.0

tensorflow-estimator 2.1.0

h5py 2.10.0

numpy 1.18.5

pandas 1.1.1

matplotlib 3.1.3

praat-parselmouth 0.3.3

librosa 0.8.0

numba 0.48.0

65

Hardware

Besides personal workstations, Texas State University’s LEAP cluster and HiPE

research group’s servers were used to run the experiments in this study. The majority of

the experiments were run on the LEAP cluster. A cluster is a group of servers, and a

server is a single workstation computer with high computational capabilities. Each server

in LEAP has 28 processing cores, and there are 123 servers available for use. The

specifications of the LEAP cluster are given in Table 7.

Table 7. Specifications of the LEAP cluster [60].

CPU type Intel Xeon E5-2680v4

Processor cores 3,532

CPU speed 2.4 GHz

Peak performance 135 TFlops

CPU cores per node 28 (per compute-node)

Nodes 123

Memory 18 TB

Memory per core 4.5 GB (compute)

Disk 48 TB

Operating system Linux (Cent OS)

Batch system SLURM

 The HiPE servers were used for running some of the experiments. These servers

are accessible only to the HiPE research group members and proven to be very useful,

mostly when the LEAP cluster was busy. One advantage of the HiPE servers over the

LEAP servers is that the HiPE servers have graphics processing units (GPUs) equipped.

This additional hardware accelerates model training when deep learning packages such as

66

TensorFlow are used. TensorFlow is optimized to run on NVIDIA GPUs, making full

use of NVIDIA’s CUDA cores. Table 8 summarizes the specifications of the HiPE

servers.

Table 8. Specifications of the HiPE servers [61].

 PowerEdge C4130 Rack Servers PowerEdge R740 Server

CPU type Dual Intel Xeon E5-2640 v4 /

2.4GHz / 25M Cache

Dual Intel Xeon Gold / 2.3GHz /

24.75M Cache

CPU cores 20 Cores / 40 Threads 18 Cores / 36 Threads

Memory 16 GB RDIMM x8 Data Width

(128GB)

16 GB RDIMM x12 Data Width

(192GB)

Disk Dual 800 GB Solid State Drive

uSATA

Dual 1.2TB Solid State Drive SATA

Operating System Linux (CentOS 7) Linux (CentOS 7)

Accelerator NVIDIA Tesla V100 for PCIe (x2) NVIDIA Tesla V100 for PCIe (x2)

67

VI. RESULTS AND DISCUSSION

 The Complete_Clean dataset is comprised of all the original clean speech

utterances of the Ryerson Audio-Visual Database of Emotional Speech and Songs

(RAVDESS), the Toronto Emotional Speech Set (TESS), and the Crowd-sourced

Emotional Multimodal Actors Dataset (CREMA-D). The Complete_Clean_Noise dataset

was created by adding three noise samples in three different SNR values to the

Complete_Clean dataset. The three noise samples used for background inclusion in the

samples are a recording of children playing in a playground, a recording of a shopping

mall, and a recording of cars passing by on the streets. SNRs values used are 0 dB, 5 dB,

and 10 dB. The noise samples were added to the clean speech utterances using

MATLAB, and for each clean speech, a noise sample, an SNR value, and a specific

section of the noise file were randomly picked by the MATLAB code. Since the

Complete_Clean_Noise corpora had class imbalance, the minority classes were

resampled (with replacement) to match the sample count of the majority classes. The

neutral class samples were lower in both RAVDESS and CREMA-D, and the surprise

class was missing from CREMA-D. The hyperparameters of all the models discussed in

this section were tuned while being trained on the Complete_Clean_Noise dataset. The

data split of 80:10:10 was used, where 80% of the dataset was used in training the

models, while 10% was used for validation and the other 10% was used for testing. Each

data split was stratified, meaning that there were equal number of data samples per

emotion class in each of the three data splits (training, validation, and test).

68

Experiments with Custom Feature Set

 Python’s Librosa library was used to extract the custom feature set from all the data

samples. The customization included 36 low-level audio descriptors - the Mel-frequency

cepstral coefficients (MFCCs), the root-mean-square (RMS) energy, the spectral contrast,

and the polynomial coefficients. Among these low-level descriptors, the MFCCs and the

RMS energy were used in most of the prior speech emotion recognition related work. The

other descriptors were mainly used in music classification tasks. However, they have

shown to yield good classification accuracies when applied to emotion classification task

in this work. A total of 62 audio features were created using the four low-level audio

descriptors of the custom feature set for the SVM and MLP models. They are 26 mean

values of first 26 MFCCs across all audio frames, 26 standard deviations of first 26 MFCCs

across all audio frames, one mean RMS energy across all audio frames, seven mean values

of spectral contrast across all audio frames, and two mean values of polynomial coefficients

across all audio frames. No functionals were applied for the RNN model since the low-

level descriptors extracted per frame are the sequences that the RNN learns from. The low-

level descriptors were directly used as the audio features for the RNN.

SVM Model with Custom Feature Set

 In Figure 29, the learning curves were plotted for the SVM model trained on the

Complete_Clean_Noise dataset using the custom feature set. Figure 30 shows the

confusion matrix for this model, and Table 9 gives a summary of the results. For this

model, the radial basis function (RBF) kernel was used, with C=10.0 and γ=0.01. The

Scikit-learn library was utilized to develop the SVM model in Python.

69

Figure 29. Learning curves for the SVM model trained on the Complete_Clean_Noise corpus, using

the custom feature set.

Figure 30. Confusion matrix for the SVM model trained on the Complete_Clean_Noise corpus, using

the custom feature set.

70

Table 9. Result summary for the SVM model trained on the Complete_Clean_Noise corpus, using the

custom feature set.

Data samples in corpus 26,082

(3,726 samples * 7 emotion classes)

Training : validation : test 80:10:10

Model training time (LEAP) 1 minute and 13 seconds

Training accuracy 75.0 %

Validation accuracy 65.2 %

Test accuracy 66.1 %

Precision 66.4 %

Recall 66.1 %

The learning curves of this model show that the validation accuracy closely follows

the training accuracy. This is due to the values picked for the C and γ parameters, which

ensured that the model did not overfit the training data. In the confusion matrix of the

experiment, if all numbers across a row are added, it gives the total number of data samples

in the test set for the emotion label mentioned in that row’s name. Since the test set was

equal to 10 % of the entire dataset, it contained a total of 2,604 data samples. For the

stratified test set with seven emotion classes, this resulted in 2,604/7 = 372 data samples

per emotion class, each is equal to the sum of the numbers in each row of the confusion

matrix. From the confusion matrix, it can be seen that the surprise emotion was the most

accurately detected emotion, followed by anger, sadness, and neutral. The time taken to

train the SVM model on the LEAP server was only 1 minute and 13 seconds.

71

MLP Model with Custom Feature Set

 The number of artificial neuron units used in an artificial neural network and the

number of layers are hyperparameters that can be tuned for getting high accuracies. There

is no golden rule for selecting the number of neurons or layers. Researchers usually

experiment with these parameters and select values that provide the highest performance.

A common convention among computer scientists is to use log BASE-2 number, like 64,

128, and 256 [62]. Another convention is to use increments of 50 or hundred, like 50, 100,

and 200 [63]. The number of input-layer neurons is equal to the number of input features,

and the number of output-layer neurons is equal to the number of classes in the dataset.

Even though there is no rule for selecting the number of neurons in the hidden layer(s),

there are some rules-of-thumb that can be followed, according to [64]. To design the MLP

architecture of this model, number of neurons, such as 10, 50, 100, 200, and 500, were

selected for each layer. The rules-of-thumb described in [64] were used to select the final

number of neurons and layers for the high-performing architectures. The architecture for

the MLP model that used the custom feature set is shown in Figure 31. There are 62 units

in the input layer, which correspond to the number of input features in the custom feature

set. The first hidden layer has 105 units, which is 170% of the number of input units used.

The second hidden layer has 62 units, which is equal to the number of input neurons.

Finally, the output layer has seven units, corresponding to the seven emotion classes used

in this work.

72

Figure 31. Architecture of the MLP used with the custom feature set.

 The Adam optimizer was used in order to minimize the loss function, which in

this case is the categorical cross-entropy loss for the MLP model. The rectified linear unit

(ReLU) activation function was used and for the output units, the Softmax activation

function was used, which provides the prediction accuracies for each class for the hidden

layer units. Instead of using a fixed learning rate, a learning rate scheduler was used to

change the learning rate as the training progressed. An inverse time decay function was

used as the learning rate schedule, with an initial learning rate of 0.01, 1000 decay steps,

and a decay rate of 80%. The training, validation, and testing data were each divided into

batches of size sixteen, and 50 epochs were used during training. Dropout is a

regularization technique where a fraction of the connections between the hidden layer

neurons are randomly dropped during training. This ensures that the model is not

overfitting to the training data. During the validation and testing phases, however, all the

neurons are connected, i.e., no dropout is used. After trying out different dropouts at

different positions, the best combination was used. A dropout of 30% was used between

73

the two hidden layers, and a 10 % dropout was used between the second hidden layer and

the output layer. The accuracy curves for the MLP model are plotted in Figure 32 while

the loss curves are plotted in Figure 33. Figure 34 shows the confusion matrix of this

model. The result summary is given in Table 10. The model was created using the Keras

API from the TensorFlow library in Python.

Figure 32. Accuracy curves for the MLP model trained on the Complete_Clean_Noise corpus, using

the custom feature set.

74

Figure 33. Loss curves for the MLP model trained on the Complete_Clean_Noise corpus, using the

custom feature set.

Figure 34. Confusion matrix for the MLP model trained on the Complete_Clean_Noise corpus, using

the custom feature set.

75

Table 10. Result summary for the MLP model trained on the Complete_Clean_Noise corpus, using

the custom feature set.

Data samples in corpus 26,082

(3,726 samples * 7 emotion classes)

Training : validation : test 80:10:10

Model training time (LEAP) 1 minute and 29 seconds

Training accuracy 68.1 %

Validation accuracy 65.9 %

Test accuracy 65.7 %

Precision 83.3 %

Recall 50.2 %

 For this MLP model, the accuracy curves are very close, and the same can be

observed for the loss curves. This is a sign of a properly tuned neural network. During the

first round of experiments, the model was trained without any regularization. The resulting

curves and classification scores indicated a huge overfitting issue. After introducing

dropout between the layers, the gap between the validation accuracy and the training

accuracy was reduced. Also, the learning rate was kept constant during the first few

experiments. The problem with that was the optimizer kept overshooting the minimum loss

due to the fixed learning rate being unnecessarily high at that stage of the training. This

was visible from the rising loss curves. After using a learning rate scheduler, which slowly

reduced the learning rate as training progressed, the losses seemed to decrease consistently.

The test accuracy of this model was about one percent less than that of the SVM model.

However, the precision score was higher in this model. The training of this MLP model

was halted after 50 epochs because the validation loss was almost steady after the 50th

76

epoch. Again, the surprise emotion was the most accurately classified emotion, followed

by anger and sadness, looking at the confusion matrix. The training time of this model was

similar to that of the SVM.

RNN Model with Custom Feature Set

 The RNN layers created using Keras requires a tensor as the input, compared to

the 2D-structured inputs in MLP (batch, features). A tensor is a three-dimensional array

of numbers. For RNNs, the three dimensions are the number of data samples, the number

of features, and the number of time steps (batch, time steps, features). The audio frames

were used as the time steps, while the features were the low-level descriptors extracted

per frame to process the sequential data. For this reason, all the low-level descriptors

extracted using the custom feature set were used as the audio features. In this case, each

low-level descriptor value is extracted for each audio frame, which forms a sequence of

data suitable to be processed by an RNN. The audio frames represent the time steps of the

input data. Meaning, once the current audio frame has been processed, with all the low-

level descriptors extracted and fed to the network, the next audio frame is processed.

Using a sampling rate of 16 kHz and a frame length of 512 samples (32 ms), around 150

audio frames were processed per audio file. The technique used to determine the number

of neurons in each layer was similar to the one used in the MLP model trained on the

Complete_Clean_Noise dataset using the custom feature set. However, since LSTM

layers are used instead of standard RNN layers, each hidden recurrent unit is an LSTM

cell. Figure 7 shows the architecture for the RNN network used in this model. The input

layer has 36 units, corresponding to the 36 low-level descriptors of the custom feature set.

77

The first LSTM has 36 cells, and the second LSTM layer has 12 cells. The output layer

has seven units. Figure 35 shows the architecture of the RNN model. The LSTM cells are

represented by a recurrent edge on the units.

Figure 35. Architecture of the RNN used with the custom feature set.

 The Adam optimizer was used along with the categorical cross-entropy loss

function. The hyperbolic tangent (tanh) function was the activation function for the

LSTM cells, and the sigmoid (σ) function was the recurrent activation function. The

Softmax function was used as the activation for the output units. The inverse time decay

function is the learning rate scheduler, with 0.01 as the initial learning rate, 1,000 as the

decay steps, and 80% as the decay rate. A batch size of sixteen was used, and the total

number of epochs used during training was 50. A 30% dropout was placed between the

two LSTM layers and a 30% dropout between the second LSTM layer and the output. A

20% recurrent dropout was placed for the LSTM cells in the first layer. Figure 36 shows

the accuracy curves of the RNN model, and Figure 37 shows the loss curves. The

78

confusion matrix for this model is shown in Figure 38. Table 11 gives the result

summary.

Figure 36. Accuracy curves for the RNN model trained on the Complete_Clean_Noise corpus, using

the custom feature set.

Figure 37. Loss curves for the RNN model trained on the Complete_Clean_Noise corpus, using the

custom feature set.

79

Figure 38. Confusion matrix for the RNN model trained on the Complete_Clean_Noise corpus, using

the custom feature set.

Table 11. Result summary for the RNN model trained on the Complete_Clean_Noise corpus, using

the custom feature set.

Data samples in corpus 26,082

(3,726 samples * 7 emotion classes)

Training : validation : test 80:10:10

Model training time (LEAP) 46 minute and 37 seconds

Training accuracy 67.9 %

Validation accuracy 64.9 %

Test accuracy 63.7 %

Precision 75.3 %

Recall 53.7 %

80

 Just as it was for the MLP model, the validation loss for the RNN model stopped

decreasing after the 50th epoch, which is why the training was stopped at that point. Using

more epochs would overexpose the model to the training data, resulting in a higher training

accuracy but lower generalizing ability to previously unseen data. The RNN model took

over 46 minutes to train, which is the longest training time among all three models. The

average precision of this model was higher than that for the SVM model. Compared to the

MLP model, the classification accuracies and precision score were slightly lower in this

model – the RNN model had a higher average recall. Like the SVM model, the top four

most accurately predicted emotions for this model were surprise, anger, sad, and neutral.

81

Experiments with Partial GeMAPS Feature Set

 The Geneva Minimalist Acoustic Parameter Set (GeMAPS) contains a total of 62

audio features. An extended version of the feature set, extended GeMAPS (eGeMAPS),

contains 88 audio features. The GeMAPS features can be extracted using the OpenSMILE

toolkit. The use of any external toolkits was avoided for feature extraction since this

study aimed to build a speech emotion recognition system using Python. Even if it is

possible to use both OpenSMILE and Python to predict real-time emotions, the cross-

platform implementation would likely increase the computation time. Just like

OpenSMILE, PRAAT is another useful software package that allows users to perform

various types of audio processing. The Parselmouth library in Python allows the users to

use PRAAT's functionality in Python scripts directly. This library was used to extract the

features from this feature set. Since it was not possible to extract all the features of

GeMAPS using Parselmouth, a total of 36 audio features were selected from the

eGeMAPS feature set and used in this work – hence the reason for calling it the “partial”

GeMAPS feature set. These 36 features were obtained using functionals on fifteen low-

level descriptors – pitch (log F0), loudness (intensity), the first three formants frequencies

(F1, F2, and F3), the bandwidths of the first three formants, the first four MFCCs,

harmonics-to-noise ratio (HNR), jitter, and shimmer. For the SVM and MLP models, 36

features were used to train the algorithms. These 36 features include the mean, the

standard deviation, the 20th percentile, the 50th percentile, the 80th percentile, and the

range of 20th to 80th percentile of the pitch and loudness, and the mean and standard

deviations for the MFCCs, formant frequencies, formant bandwidths, and HNR, and local

82

absolute jitter, and local shimmer. For the RNN model, the fifteen low-level descriptors,

extracted per audio frame, were used as the audio features.

SVM Model with Partial GeMAPS Feature Set

 In Figure 39, the learning curves were plotted for the support vector machine

(SVM) model trained on the Complete_Clean_Noise dataset using the partial GeMAPS

set. Figure 40 shows the confusion matrix for this model, and Table 12 summarizes the

results. This model, just like the SVM model created using the custom feature set, uses

the RBF kernel, with C=10.0 and γ=0.01. Using these hyperparameter values yielded the

best bias-variance tradeoff out of all values used.

Figure 39. Learning curves for the SVM model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

83

Figure 40. Confusion matrix for the SVM model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

Table 12. Result summary for the SVM model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

Data samples in corpus 26,082

(3,726 samples * 7 emotion classes)

Training : validation : test 80:10:10

Model training time (LEAP) 55 seconds

Training accuracy 68.0 %

Validation accuracy 58.7 %

Test accuracy 58.7 %

Precision 58.2 %

Recall 58.7 %

84

The SVM model trained using the partial GeMAPS feature set showed an overall

lower performance than the SVM model trained using the custom feature set. However,

despite being around half the custom feature set's size, the differences in the two feature

set models' performance metrics were only about ten percent. This validates the usefulness

of the partial GeMAPS features in speech emotion recognition. The lower training time is

due to the lower number of features used during training. Furthermore, just like the

previous SVM model, this model could predict the surprise emotion samples with the

highest accuracy, followed by anger, sad, and neutral. The learning curves show no signs

of overfitting.

MLP Model with Partial GeMAPS Feature Set

 For the MLP model, the network’s architecture was constructed similarly to the

one constructed for the MLP model that used the custom feature set. The network was

scaled down to account for the lower number of input features. The input layer had 36

units. The first hidden layer had 61 units, and the second hidden layer had 36 units. The

output layer had seven units. All other hyperparameter values were kept the same from

the MLP model that used the custom feature set, as this gave the best bias-variance

tradeoff. The accuracy curves for this MLP model are plotted in Figure 41, while the loss

curves are plotted in Figure 42. Figure 43 shows the confusion matrix of this model. The

result summary is given in Table 13. It can be noticed that the validation loss is lower

than the training loss. This can be attributed to the use of dropout during training.

85

Figure 41. Accuracy curves for the MLP model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

Figure 42. Loss curves for the MLP model trained on the Complete_Clean_Noise corpus, using the

partial GeMAPS feature set.

86

Figure 43. Confusion matrix for the MLP model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

Table 13. Result summary for the MLP model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

Data samples in corpus 26,082

(3,726 samples * 7 emotion classes)

Training : validation : test 80:10:10

Model training time (LEAP) 1 minute and 23 seconds

Training accuracy 58.3 %

Validation accuracy 58.2 %

Test accuracy 57.9 %

Precision 79.5 %

Recall 38.2 %

87

Comparing this model with the SVM model created using the partial GeMAPS

feature set, it can be seen that the model performs better overall. The top four correctly

classified emotions remain to be surprise, anger, sad, and neutral. However, the anger class

was more correctly classified than the surprise class, and the neutral class was more

correctly classified than the sad class. For this model, the accuracy curves are very similar,

indicating a well-tuned model, although most of the hyperparameter values were imported

from the MLP model trained using the custom feature set. Moreover, even though the

performance scores of this MLP model were lower than the performance scores of the MLP

model trained using the custom feature set, the average precision value of this model is

very close to the other MLP model. The MLP model trained using the partial GeMAPS

could predict more neutral class samples than the MLP model trained using the custom

feature set.

RNN Model with Partial GeMAPS Feature Set

 The RNN model developed using partial GeMAPS features on the

Complete_Clean_Noise had fifteen input neurons, corresponding to the fifteen low-level

descriptors extracted per audio frame (time step). The first LSTM layer had fifteen cells,

and the second LSTM layer had twelve cells. The output layer had seven units. The

dropouts were reduced from the previous RNN model to 20 %. All other hyperparameter

values were imported from the RNN model that used the custom feature set. The

accuracy curves for this RNN model are shown in Figure 44, and the loss curves are

shown in Figure 45. Figure 46 shows the confusion matrix, and Table 14 shows list the

result summary.

88

Figure 44. Accuracy curves for the RNN model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

Figure 45. Loss curves for the RNN model trained on the Complete_Clean_Noise corpus, using the

partial GeMAPS feature set.

89

Figure 46. Confusion matrix for the RNN model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

Table 14. Result summary for the RNN model trained on the Complete_Clean_Noise corpus, using

the partial GeMAPS feature set.

Data samples in corpus 26,082

(3,726 samples * 7 emotion classes)

Training : validation : test 80:10:10

Model training time (LEAP) 16 minutes

Training accuracy 60.2 %

Validation accuracy 59.9 %

Test accuracy 57.9 %

Precision 75.7 %

Recall 41.9 %

90

 Two interesting occurrences can be seen for the performance measures of this RNN

model. The first is that this model had a higher average precision score than the RNN model

trained using the custom feature set. Secondly, the validation and test accuracies are only

5 % lower than for the RNN model trained using the custom feature set.

91

Comparing Custom Feature Set Models

 The SVM model created using the custom feature set was tested on the other

datasets used in this work. The results are given in Table 15. Similarly, the performances

of the MLP and RNN models using a custom feature set was also compared in Tables 16

and 17, respectively. It can be observed from these tables that the MLP models had the

highest precision score, while the SVM models showed the lowest precision score. The

SVM, MLP, and RNN models performed extraordinarily well with the TESS dataset. The

TESS dataset had only two female participants who recorded 200 similar-sounding

sentences in all seven emotions, with no intensity change. This lack of variation did not

pose the models quickly picked up any problems for the models during prediction as to

the data samples' features. All models had the lowest performance metrics for the

CREMA-D dataset. This speech emotion corpus had the highest number of participants -

a total of 91 actors. Furthermore, each recording was done in four different emotional

intensities. The models struggled to learn all the variations in the data.

Also, some of the models were overfitting to the training data. This is mainly

because the hyperparameters were tuned on the Complete_Clean_Noise dataset and were

not specifically tuned to other datasets. Tuning the hyperparameters for each speech

corpus would make the comparison between the models invalid.

92

Table 15. Comparing the performance of the SVM model created using the custom feature set on

different datasets.

Corpus Training % Valid. % Test % Precision Recall

RAVDESS_Clean 99.0 % 85.8 % 80.6 % 81.8 % 80.6 %

RAVDESS_Clean_Noise 87.0 % 61.6 % 58.2 % 58.9 % 58.2 %

TESS_Clean 100 % 99.6% 100 % 100 % 100 %

TESS_Clean_Noise 99.0 % 98.6 % 97.7 % 97.7 % 97.7 %

CREMA-D_Clean 86.0 % 54.9 % 57.6 % 57.7 % 57.6 %

CREMA-D_Clean_Noise 79.0 % 51.1 % 52.1 % 51.9 % 52.1 %

Complete_Clean 81.0 % 71.9 % 73.0 % 74.3 % 73.0 %

Complete_Clean_Noise 75.0 % 65.2 % 66.1 % 66.4 % 66.1 %

Table 16. Comparing the performance of the MLP model created using the custom feature set on

different datasets.

Corpus Training % Valid. % Test % Precision Recall

RAVDESS_Clean 94.5 % 82.8 % 77.6 % 77.9 % 76.1 %

RAVDESS_Clean_Noise 80.6 % 64.2 % 56.7 % 66.3 % 50.0 %

TESS_Clean 99.9 % 100.0 % 100.0 % 100.0 % 100.0 %

TESS_Clean_Noise 99.5 % 98.0 % 98.8 % 98.8 % 98.8 %

CREMA-D_Clean 72.7 % 54.5 % 54.7 % 61.5 % 44.5 %

CREMA-D_Clean_Noise 60.7 % 51.9 % 54.5 % 65.7 % 36.2 %

Complete_Clean 75.9 % 70.8 % 69.5 % 80.5 % 60.0 %

Complete_Clean_Noise 68.1 % 65.9 % 65.7 % 83.3 % 50.3 %

93

Table 17. Comparing the performance of the RNN model created using the custom feature set on

different datasets.

Corpus Training % Valid. % Test % Precision Recall

RAVDESS_Clean 94.6 % 76.1 % 61.2 % 61.2 % 59.0 %

RAVDESS_Clean_Noise 85.0 % 59.3 % 51.5 % 55.9 % 49.6 %

TESS_Clean 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

TESS_Clean_Noise 99.8 % 99.3 % 99.6 % 99.6 % 99.6 %

CREMA-D_Clean 67.7 % 49.0 % 55.0 % 58.3 % 47.1 %

CREMA-D_Clean_Noise 59.9 % 51.2 % 51.0 % 58.7 % 40.5 %

Complete_Clean 74.3 % 66.5 % 64.5 % 72.1 % 57.3 %

Complete_Clean_Noise 67.9 % 64.9 % 63.7 % 75.4 % 53.7 %

94

Comparing Partial GeMAPS Feature Set Models

 The performances of the SVM, MLP, and RNN models created using the partial

GeMAPS feature set were compared when used with other datasets used in this work.

The results are given in Tables 18, 19, and 20, respectively. The results obtained from

these models were similar to those obtained from the models trained using the custom

feature set, except that the classification accuracies were lower. The SVM models had the

worst precision scores, and the MLP models had the highest precision scores. The SVM,

MLP, and RNN models performed best on the TESS corpus and struggled the most on

the CREMA-D corpus.

Table 18. Comparing the performance of the SVM model created using the partial GeMAPS feature

set on different datasets.

Corpus Training % Valid. % Test % Precision Recall

RAVDESS_Clean 90.0 % 66.4 % 56.7 % 57.7 % 56.7 %

RAVDESS_Clean_Noise 76.0 % 52.2 % 52.6 % 54.3 % 52.6 %

TESS_Clean 99.0 % 97.1 % 99.3 % 99.3 % 99.3 %

TESS_Clean_Noise 97.0 % 91.4 % 94.5 % 94.5 % 94.5 %

CREMA-D_Clean 69.0 % 52.1 % 54.2 % 53.4 % 54.2 %

CREMA-D_Clean_Noise 61.0 % 50.5 % 49.6 % 49.4 % 49.6 %

Complete_Clean 76.0 % 62.7 % 65.2 % 65.9 % 65.2 %

Complete_Clean_Noise 68.0 % 58.7 % 58.7 % 58.2 % 58.7 %

95

Table 19. Comparing the performance of the MLP model created using the partial GeMAPS feature

set on different datasets.

Corpus Training % Valid. % Test % Precision Recall

RAVDESS_Clean 80.7 % 68.7 % 55.2 % 59.8 % 50.0 %

RAVDESS_Clean_Noise 64.9 % 52.2 % 52.6 % 65.8 % 50.0 %

TESS_Clean 99.5 % 98.6 % 98.6 % 98.6 % 98.6 %

TESS_Clean_Noise 94.8 % 92.9 % 94.5 % 94.8 % 93.9 %

CREMA-D_Clean 59.6 % 53.0 % 54.9 % 64.4 % 36.4 %

CREMA-D_Clean_Noise 52.1 % 49.3 % 49.1 % 61.3 % 25.8 %

Complete_Clean 67.6 % 62.3 % 62.2 % 79.9 % 48.1 %

Complete_Clean_Noise 58.3 % 58.2 % 57.9 % 79.5% 38.2 %

Table 20. Comparing the performance of the RNN model created using the partial GeMAPS feature

set on different datasets.

Corpus Training % Valid. % Test % Precision Recall

RAVDESS_Clean 86.5 % 50.8 % 47.0 % 50.0 % 43.3 %

RAVDESS_Clean_Noise 72.6 % 50.0 % 39.2 % 44.7 % 34.3 %

TESS_Clean 99.7 % 98.2 % 99.3 % 99.3 % 99.3 %

TESS_Clean_Noise 99.8 % 98.4 % 98.8 % 98.8 % 98.8 %

CREMA-D_Clean 61.1 % 48.2 % 45.7 % 52.4 % 36.4 %

CREMA-D_Clean_Noise 52.9 % 45.3 % 46.0 % 55.2 % 26.8 %

Complete_Clean 67.3 % 61.3 % 59.3 % 70.0 % 48.0 %

Complete_Clean_Noise 60.2 % 59.9 % 57.9 % 75.7 % 41.9 %

96

Comparing Models from Both Feature Sets

 Table 21 shows the performance metrics for the models created using the custom

feature set and the models created using the partial GeMAPS feature set. The models

listed in this table were trained and evaluated on the Complete_Clean_Noise dataset.

From Table 21, it can be seen that the custom feature set models have outperformed the

partial GeMAPS feature set in all metrics. This can be attributed to the significantly

lower number of features in the partial GeMAPS feature set since the lower number of

features could not capture the variations in the training data. The model that showed the

best performance among all the models studied in this work was the MLP model trained

on the Complete_Clean_Noise dataset using the custom feature set. It showed the highest

classification accuracies and good average precision and average recall scores as well.

Figure 47 shows the results of stratified 10-fold cross-validation for the models on the

Complete_Clean_Noise dataset. After separating the test set from the training set, the

training set was split into ten equal parts or folds. The model evaluation was performed

ten times, and each time one out of the ten parts was used as the validation set while the

remaining nine parts were used for the test set. Each time, a different fold was selected

for validation split, and the training and validation accuracy were calculated for the ten

experiments. The accuracy scores shown in the bar plot of Figure 47 were calculated by

computing the mean of all the classification accuracies over the ten experiments.

97

Table 21. Comparing the models created using the two different feature sets, for the

Complete_Clean_Noise corpus.

Classifier Feature Set Training % Valid. % Test % Precision Recall

SVM Custom 75.0 % 65.2 % 66.1 % 66.4 % 66.1 %

SVM P.GeMAPS 68.0 % 58.7 % 58.7 % 58.2 % 58.7 %

MLP Custom 68.1 % 65.9 % 65.7 % 83.3 % 50.3 %

MLP P.GeMAPS 58.3 % 58.2 % 57.9 % 79.5% 38.2 %

RNN Custom 67.9 % 64.9 % 63.7 % 75.4 % 53.7 %

RNN P.GeMAPS 60.2 % 59.9 % 57.9 % 75.7 % 41.9 %

Figure 47. 10-fold cross-validation results on the Complete_Clean_Noise corpus for the models listed

on the vertical axis.

When comparing the confusion matrices for the models trained on the

Complete_Clean_Noise dataset, it can be seen that the surprise emotion was the class that

was most accurately predicted. This can be due to the fact that the surprise class was

missing from the CREMA-D dataset, and when the three datasets were joined to create

the Complete_Clean_Noise dataset, this class was heavily resampled from RAVDESS

75.08%

68.08%

68.23%

58.50%

67.88%

60.16%

65.78%

58.85%

64.45%

58.04%

64.01%

58.17%

SVM_Custom

SVM_P.GeMAPS

MLP_Custom

MLP_P.GeMAPS

RNN_Custom

RNN_P.GeMAPS

ACCURACY

Training

Validation

98

and TESS. Also, the neutral class samples were lower in the RAVDESS and CREMA-D

datasets, so it was also resampled when all three datasets were joined. However,

resampling was done after the training, validation, and test samples were separated,

which prevented the repetition of minority data samples in the three splits. Besides

surprise and neutral emotions, the top two most accurately classified emotions were sad

emotions and anger. For the RAVDESS dataset, the surprise emotion was the most

accurately predicted class. For the CREMA-D dataset, the anger emotion was the most

accurately predicted class. For TESS, the neutral emotion was the most accurately

predicted class. For all models, the two most challenging emotions to classify were the

happy and the fear emotion.

Overall, the models developed in this work yielded classification performances

typical of speech emotion recognition models in the literature. For example, authors in

[65] used the Logistic Model Tree (LMT) classifier and the lower thirteen MFCCs as

features and achieved a classification accuracy of 67.14% when using the RAVDESS

dataset to train and test their model. Similarly, authors in [66] managed to get a

classification accuracy of 64.48% on the RAVDESS corpus using the GResNet classifier

and spectrogram images. The models used in this work did not learn the emotions well

enough to have a higher classification score. It could be because the models were trained

only on 20,866 training samples. It could also be because of the low number of features

used in both feature sets – a potential underfitting case. Using only Python for this thesis

limited the number of features extracted from the audio data since there are very few

Python libraries available for audio processing, and the available ones are not very rich in

terms of functionality.

99

Creating a Multimodal Emotion Recognition System

 Once all the analysis was done, the SVM, MLP, and RNN models created using

the custom feature set, and the Complete_Clean_Noise corpus were saved to being used

for real-time speech emotion recognition. A second model was saved, containing the

SVM, MLP, and RNN models created using the custom feature set and the

Complete_Clean corpus. This was done so that the first model can be used in outdoor

settings, while the second model can be used indoors. If the speech emotion recognition

system is implemented in a mobile application, it will allow the user to pick either of the

two models based on their surrounding environment.

 Ensemble learning is a branch of machine learning that refers to combining

multiple machine learning algorithms to make a prediction. There are several methods of

ensemble learning. The voting technique was applied to join the SVM, MLP, and RNN

models. In voting, the input data is fed to all the classifiers, and predictions are made

separately. The class, which was predicted the most, is selected as the final prediction of

the system.

Along with the three machine learning models, the means and standard deviations of

all the features were also saved. These parameters were then used for scaling the features

of the input. When an utterance is recorded, the system first performs feature extraction

by extracting the low-level descriptors. It then applies the required functionals to create

the audio features. All audio features are standardized using the means and standard

deviations of the features from training. After that, the scaled low-level descriptors are

fed to the RNN model, while the scaled audio features are fed to the SVM and MLP

algorithms. Once the models have made the predictions, the most common class among

100

the three predictions is classified as the input’s final emotion label. If all three models

predict different classes, the MLP model’s performance is selected as the final prediction

since it had the highest precision score. The Python program is written so that three-

second audio is recorded continuously and fed to the speech emotion recognition system

when it is running. The user can stop the code anytime by pressing a keyboard interrupt.

The pseudo-code for the speech emotion recognition system is given below:

Run a loop indefinitely until user presses keyboard interrupt:

Record microphone audio for three seconds

Extract low-level descriptors from audio

Apply functionals to low-level descriptors

Standardize low-level descriptors with mean and standard deviation from training

Standardize output of functionals with mean and standard deviation from training

Feed low-level descriptors to RNN

Feed output of functionals to SVM and MLP

Get predictions from all three models

Compute mode of all three prediction labels

If no mode available:

Display emoji corresponding to the predicted label of MLP model

If mode exists:

Display emoji corresponding to the mode of the three predicted labels

Repeat

101

Table 22 compares the ensemble learning model with the individual classifier models

trained on the Complete_Clean_Noise dataset using the custom feature set. The same test

set was used. It can be seen that the ensemble model achieved 0.8 % higher accuracy than

the MLP model, which had the best overall scores. This 0.8 % increase translates to

twenty more accurately classified samples out of the 2,607 test samples.

Table 22. Test accuracies of the three individual classifier models and the ensemble learning

model. All models were trained on the Complete_Clean_Noise dataset using the custom feature set.

Model Test Accuracy

SVM 66.1 %

MLP 65.7 %

RNN 63.7 %

Ensemble 66.5 %

The final step to completing this thesis work was integrating the speech emotion

recognition system with a facial expression recognition system. The pre-trained facial

expression recognition model was imported into the Python program that contained the

speech emotion recognition model. The facial expression recognition model uses the

computer’s webcam to get the image data from the user. The Python script was written so

that majority voting was used to predict the facial expression recognition model, and the

predictions made by the SVM, MLP, and RNN models trained on the

Complete_Clean_Noise and custom feature dataset to decide the final prediction of the

model. This process is shown in the flow diagram of Figure 48.

102

Figure 48. Flow diagram of the multi-modal emotion recognition system.

If this multimodal emotion recognition system is implemented on a mobile

application, the user can choose which modality to use. The user can wish to use both

models at once, which will improve predictions’ confidence. The user can also choose

either one of the two models. For example, the facial expression recognition model might

perform better when the communication partner is not audible due to excessive

background noise. The speech emotion recognition model might be a better choice when

the communication partner is not visible due to poor lighting conditions. Figure 49 shows

the schematic of the approach that was taken to implement the multi-modal system.

103

Figure 49. Schematic of the multimodal emotion recognition system.

104

VII. CONCLUSION

In this thesis, a speech emotion recognition solution was created for helping children

with autism spectrum disorder (ASD) identify emotions in social interactions. Children

with ASD have difficulty identifying emotional cues in social interactions. The objective

was to develop a tool that could help these children better detect emotions when

conversing with people around them. The speech emotion recognizer was developed in

Python using ensemble learning, a technique used to combine multiple machine learning

algorithms to get a more accurate prediction.

Three machine learning algorithms were used – a support vector machine (SVM), a

multilayer perceptron (MLP), and a recurrent neural network (RNN). The datasets used to

train these algorithms include the Ryerson Audio-Visual Database of Emotional Speech

and Songs (RAVDESS), the Toronto Emotional Speech Set (TESS), the Crowd-sourced

Emotional Multimodal Actors Dataset (CREMA-D), and the noise-added versions of the

three datasets. Three noise samples were selected - a noise file containing a recording of

children playing in the background, a noise file containing a recording of shopping mall

ambiance, and a noise file containing a recording of cars passing by on the streets. Each

clean speech utterance was added to one of the three types of noise files using MATLAB,

in one of three SNR values – 0 dB, 5 dB, or 10 dB.

The final dataset contained an equal number of clean speech and noise-added files.

Two separate audio feature sets were studied in this work. One feature set comprised of

audio features that were handpicked based on their performances on the RAVDESS

dataset, and the other feature set contained some of the features from the Geneva

Minimalist Acoustic Parameter Set (GeMAPS). The performances of the models created

105

using these two different feature sets were compared. The models developed using the

custom feature set outperformed the models developed using the partial GeMAPS feature

set. Therefore, the customer feature set models were used in order to construct the speech

emotion recognition solution.

Two separate speech emotion recognition models were developed – one to be used

indoors and the other to be used outdoors. The model created for indoor use was trained

on only clean speech data from all three datasets, and the model created to be used

outdoors was trained on the final dataset, which included clean speech and noise-added

files from all three datasets. This was done so that if the speech emotion model was

implemented on a mobile application, users could select the model they want to use based

on their environment. Finally, a multimodal emotion classifier was created by joining the

speech emotion recognition model with a facial expression recognition model. This

produced four emotion recognition classifiers – three speech emotion recognition

classifiers and one facial expression recognition classifier. The Python program was

written so that if predictions from the four classifiers are unique, the facial expression

recognition solution's prediction would be used, as it had better classification accuracy

than the speech emotion recognition models.

106

Future Work

 There are specific techniques that could be used to improve the speech emotion

recognition system's performance. The most effective technique is to gather more data.

The more data is used in training a machine learning model, the more variations in data

samples are experienced and learned by the machine. However, it is essential to collect

properly labeled data, as data that are wrongly labeled can worsen the model

performance. The three datasets used in this work were easily accessible to the public,

free of cost. However, most speech emotion corpus is not easily accessible, as they

require permission from the creators or some fee. Plus, there is a limited number of North

American speech emotion recognition datasets. Therefore, gathering more data is a

challenging task. This work did not include any speech corpora containing recordings of

children; such datasets could be used to train the speech emotion recognition system.

Another way to get better prediction accuracies is to utilize more features for the design,

development, and training of the deep learning model. In most of the models used in this

work, the classification accuracies did not exceed 70%. Using more features will increase

the machine's learning capability and improve the classification accuracy, given that the

current features are incapable of learning all the complexities of the data. However, there

is a risk of overfitting the model to the training data when using more features. Thus,

more features should be added with caution.

 Lastly, the speech emotion recognition system and the multimodal emotion

recognition system can be implemented in mobile applications. The application will

allow parents of children with ASD to download and use these applications on their

favorite portable devices.

107

REFERENCES

[1] N. H. Frijda, The Emotions, Cambridge, England, UK: CUP, 1986.

[2] O. Korn, L. Stamm, and G. Moeckel, “Designing authentic emotions for non-human

characters. A study evaluating virtual affective behavior”, Designing Interactive

Systems, pp. 477-487, Jun 2017.

[3] A. Mehrabian, Silent Messages, Belmont, CA, USA: Wadsworth Pub. Co, 1971.

[4] P. Ekman and W. V. Friesen, “Constants across cultures in the face and emotion”,

Journal of Personality and Social Psychology, vol. 17, no. 2, pp. 124–129, Feb

1971.

[5] “Autism Spectrum Disorder,” [Online] Available:

https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd/index.shtml.

[Accessed: 18-Oct-2020].

[6] S. Schelinski and K. V. Kriegstein, “The relation between vocal pitch and vocal

emotion recognition abilities in people with autism spectrum disorder and typical

development,” Journal of Autism and Developmental Disorders, vol. 49, pp. 68-82,

Jul 2018.

[7] “Autism Spectrum Disorder,” [Online] Available:

https://www.claytonbehavioral.com/autism-spectrum-disorder. [Accessed: 18-Oct-

2020].

[8] V. T. Setty, “Speaker recognition using deep neural networks with reduced

complexity”, Master’s Thesis, Engineering, Texas State University, San Marcos,

TX, USA, 2018.

[9] S. Sadhu, R. Li, and H. Hermansky, “M-vectors: sub-band based energy modulation

features for multi-stream automatic speech recognition,” 2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6545- 6549,

May 2019.

[10] W. Liu et al., “State-time-alignment phone clustering based language-independent

phone recognizer front-end for phonotactic language recognition,” 14th Int. Conf.

on Computer Science & Education, pp. 863-867, Aug 2019.

[11] G. Shanmugasundaram, S. Yazhini, E. Hemapratha, and S. Nithya, “A

comprehensive review on stress detection techniques,” International Conference on

System, Computation, Automation and Networking, pp. 1-6, Mar 2019.

[12] L. Vidrascu and L. Devillers, “Detection of real-life emotions in call centers,” 9th

European Conf. on Speech Communication and Technology, pp. 1841-1844, 2005.

[13] A. K. Oryina and A. O. Adedolapo, “Emotion recognition for user centred e-

learning,” 40th Annual International Computer Software and Applications

Conference, vol. 2, pp. 509-514, 2016

[14] X. Huahu, G. Jue, and Y. Jian, “Application of speech emotion recognition in

intelligent household robot,” International Conference on Artificial Intelligence and

Computational Intelligence, vol. 1, pp. 537-541, 2010.

108

[15] N. Kurpukdee, S. Kasuriya, V. Chunwijitra, C. Wutiwiwatchai and P. Lamsrichan,

“A study of support vector machines for emotional speech recognition,” 2017 8th

International Conference of Information and Communication Technology for

Embedded Systems (IC-ICTES), pp. 1-6, 2017.

[16] A. Meftah, Y. Alotaibi and S. Selouani, “Emotional speech recognition: A

multilingual perspective,” 2016 International Conference on Bio-engineering for

Smart Technologies (BioSMART), pp. 1-4, 2016.

[17] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou, B. Schuller

and S. Zafeiriou, “Adieu features? End-to-end speech emotion recognition using a

deep convolutional recurrent network,” 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 5200-5204, 2016.

[18] J. Han, Z. Zhang, F. Ringeval and B. Schuller, “Prediction-based learning for

continuous emotion recognition in speech,” 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 5005-5009, 2017.

[19] S. E. Eskimez, K. Imade, N. Yang, M. Sturge-Apple, Z. Duan and W. Heinzelman,

"Emotion classification: How does an automated system compare to Naive human

coders?," 2016 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 2274-2278, 2016.

[20] B. Schuller, E. Marchi, S. Baron-Cohen, A. Lassalle, H. O’Reilly, D. Pigat, P.

Robinson, I. Davies, T. Baltrusaitis and M. Mahmoud, “Recent developments and

results of ASC-Inclusion: An Integrated Internet-Based Environment for Social

Inclusion of Children with Autism Spectrum Conditions,” IDGEI, 2015 (No

pagination provided).

[21] “Digital Audio Basics: Sample Rate and Bit Depth,” [Online] Available:

https://www.izotope.com/en/learn/digital-audio-basics-sample-rate-and-bit-

depth.html. [Accessed: 18-Oct-2020].

[22] “Audio bit depth,” [Online] Available:

https://en.wikipedia.org/wiki/Audio_bit_depth. [Accessed: 18-Oct-2020].

[23] “How do i calculated the number of overlapping frames an given audio file has?”

[Online] Available: https://math.stackexchange.com/questions/2249977/how-do-i-

compute-thenumber-of-overlapping-frames-an-given-audio-file-has. [Accessed: 18-

Oct-2020].

[24] “3. Signal Windowing,” [Online] Available:

http://www.atx7006.com/articles/dynamic_analysis/windowing. [Accessed: 18-Oct-

2020].

[25] S. B. Davis and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences”, IEEE

Transactions on Acoustic, Speech and Signal Processing, vol. 28, pp. 357–366,

1980.

[26] “Mel Frequency Cepstral Coefficient (MFCC) tutorial,” [Online] Available:

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-

frequency-cepstral-coefficients-mfccs/. [Accessed: 18-Oct-2020].

109

[27] “Fundamental Frequency, Pitch, F0,” [Online] Available:

https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-73003-5_775.

[Accessed: 18-Oct-2020].

[28] “Sound Intensity and Loudness,” [Online] Available:

https://www.nps.gov/teachers/classrooms/sound-intensity-and-loudness.htm.

[Accessed: 18-Oct-2020].

[29] “What are formants?” [Online] Available:

https://person2.sol.lu.se/SidneyWood/praate/whatform.html. [Accessed: 18-Oct-

2020].

[30] “Harmonicity,”, [Online] Available:

https://www.fon.hum.uva.nl/praat/manual/Harmonicity.html. [Accessed: 18-Oct-

2020].

[31] M. Farrús, J. Hernando and P. Ejarque, “Jitter and shimmer measurements for

speaker recognition,” 8th Annual Conference of the International Speech

Communication Association, Interspeech, vol. 2, pp. 778-781, 2007.

[32] “What is HTK?” [Online] Available: http://htk.eng.cam.ac.uk/ [Accessed: 09-

Nov-2020].

[33] D. Jiang, L. Lu, H. Zhang, J. Tao and L. Cai, "Music type classification by spectral

contrast feature," Proceedings. IEEE International Conference on Multimedia and

Expo, vol. 1, pp. 113-116, 2002.

[34] O. Agcaoglu, B. Santhanam and M. Hayat, “Improved spectrograms using the

discrete Fractional Fourier transform,” IEEE Digital Signal Processing and Signal

Processing Education Meeting (DSP/SPE), pp. 80-85, 2013.

[35] “librosa,” [Online] Available: https://librosa.org/doc/latest/index.html. [Accessed:

18-Oct-2020].

[36] A. A. Bashit, “A comprehensive solar powered remote monitoring and identification

of Houston Toad call automatic recognizing device system design”, Master’s

Thesis, Engineering, Texas State University, San Marcos, TX, USA, 2019.

[37] A. A. Bashit and D. Valles, "A mel-filterbank and MFCC-based neural network

approach to train the Houston Toad call detection system design," 2018 IEEE 9th

Annual Information Technology, Electronics and Mobile Communication

Conference (IEMCON), pp. 438-443, 2018.

[38] A. A. Bashit and D. Valles, "MFCC-based Houston Toad call detection using

LSTM," 2019 IEEE International Symposium on Measurement and Control in

Robotics (ISMCR), pp. 1-6, 2019.

[39] A. A. Bashit and D. Valles, "A solar powered raspberry pi Houston Toad call

detection system using neural network model," 2018 International Conference on

Computational Science and Computational Intelligence (CSCI), pp. 1024-1027,

2018.

110

[40] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. Andre, C. Busso, L. Y.

Devillers, J. Epps, P. Laukka, S. S. Narayanan and K. P. Truong, “The Geneva

minimalistic acoustic arameter set (GeMAPS) for voice research and affective

computing,” IEEE Transactions on Affective Computing, vol. 7, pp. 190-202, 2016.

[41] B. Schuller, K. Scherer, M. Mortillaro, A. Batliner, F. Weninger, F. Eyben, E.

Marchi, S. Steidl, A. Vinciarelli, H. Salamin, A. Polychroniou, F. Valente, S. Kim,

F. Ringeval and M. Chetouani, “The INTERSPEECH 2013 computational

paralinguistics challenge: Social signal, conflict, emotion, autism,” 14th Annual

Conference of the International Speech Communication Association, pp. 148-152,

2013.

[42] “openSMILE audio feature extraction,” [Online] Available:

https://www.audeering.com/opensmile/. [Accessed: 18-Oct-2020].

[43] Y. Jadoul, B. Thompson and B. de Boer, “Introducing Parselmouth: A Python

interface to Praat.” Journal of Phonetics, vol. 71, pp. 1–15, 2018.

[44] “Praat: doing phonetics by computer,” [Online] Available:

https://www.fon.hum.uva.nl/praat/. [Accessed: 18-Oct-2020].

[45] M. I. Haque, “A facial expression recognition application development using deep

convolutional neural network for children with autism spectrum disorder to help

identify human emotions,” Master’s Thesis, Engineering, Texas State University,

San Marcos, TX, USA, 2019.

[46] S. R. Livingstone and F. A. Russo, “The Ryerson Audio-Visual Database of

Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and

vocal expressions in North American English,” PloS one, vol. 13, pp. 1-35, 2018.

[47] “The Ryerson Audio-Visual Database of Emotional Speech and Song

(RAVDESS),” [Online] Available: https://zenodo.org/record/1188976. [Accessed:

18-Oct-2020].

[48] “Toronto emotional speech set (TESS),” [Online] Available:

https://tspace.library.utoronto.ca/handle/1807/24487. [Accessed: 18-Oct-2020].

[49] “Toronto emotional speech set (TESS) A dataset for training emotion (7 cardinal

emotions) classification in audio,” [Online] Available:

https://www.kaggle.com/ejlok1/toronto-emotional-speech-set-tess. [Accessed: 18-

Oct-2020].

[50] C. Houwei, D. G. Cooper, M. K. Keutmann, R. C. Gur, A. Nenkova and R. Verma,

“CREMA-D: Crowd-Sourced Emotional Multimodal Actors Dataset,” IEEE

Transactions on Affective Computing, vol. 5, pp. 377-390, Jan 2014.

[51] “CREMA-D (Crowd-sourced Emotional Mutimodal Actors Dataset),” [Online]

Available: https://github.com/CheyneyComputerScience/CREMA-D. [Accessed:

18-Oct-2020].

[52] “SoundBible.com,” [Online] Available: http://soundbible.com/. [Accessed: 18-Oct-

2020].

111

[53] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,

pp. 273-297, 1995.

[54] S. Raschka and V. Mirjalili, Python Machine Learning: Machine Learning and

Deep Learning with Python, scikit-learn, and TensorFlow, 2nd ed., Birmingham,

UK: Packt Pub., 2017.

[55] “Artificial neuron,” [Online] Available:

https://en.wikipedia.org/wiki/Artificial_neuron. [Accessed: 18-Oct-2020].

[56] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[57] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain,” Psychological review, vol. 65, pp. 386-408, 1958.

[58] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, pp. 1735-1780, 1997.

[59] “Bias-variance tradeoff,” [Online] Available:

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff. [Accessed: 18-

Oct-2020].

[60] “LEAP - High Performance Computing Cluster,” [Online] Available:

https://doit.txstate.edu/rc/leap.html. [Accessed: 18-Oct-2020].

[61] “Technology,” [Online] Available: http://hipe.wp.txstate.edu/technology/.

[Accessed: 18-Oct-2020].

[62] K. H. Lee, H. K. Choi, B. T. Jang and D. H. Kim, “A study on speech emotion

recognition using a deep neural network,” International Conference on Information

and Communication Technology Convergence (ICTC), pp. 1162-1165, 2019.

[63] F. A. Shaqra, R. Duwairi and M. Al-Ayyoub, “Recognizing emotion from speech

based on age and gender using hierarchical models,” Procedia Computer Science,

vol. 171, pp. 37-44, 2020.

[64] “The number of hidden layers,” [Online] Available:

https://www.heatonresearch.com/2017/06/01/hidden-layers.html. [Accessed: 22-

Oct-2020].

[65] A. A. A. Zamil, S. Hasan, S. M. Jannatul Baki, J. M. Adam and I. Zaman, “Emotion

detection from speech signals using voting mechanism on classified frames,”

International Conference on Robotics, Electrical and Signal Processing Techniques

(ICREST), pp. 281-285, 2019.

[66] Y. Zeng, H. Mao, D. Peng and Z. Yi, “Spectrogram based multi-task audio

classification,” Multimedia Tools and Applications: An International Journal, vol.

78, no. 3, pp. 3705-3722, 2019.

