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ABSTRACT 

In this thesis work, a robust speech emotion recognition system has been 

developed to be used by children with autism spectrum disorder (ASD). Children with 

ASD have difficulty identifying human emotions during social interactions, and the goal 

of this work was to develop a tool that could be used by these children to better 

understand the emotions of people around them. The speech emotion recognition solution 

was created using machine learning and deep learning techniques. A novel approach was 

taken, which involves joining multiple machine learning algorithms using ensemble 

learning to classify speech recordings in real-time. A support vector machine (SVM), a 

multilayer perceptron (MLP), and a recurrent neural network model were trained on the 

Ryerson Audio-Visual Database of Emotional Speech and Songs (RAVDESS), the 

Toronto Emotional Speech Set (TESS), the Crowd-sourced Emotional Multimodal Actors 

Dataset (CREMA-D), and a custom dataset which contains utterances from the three 

datasets with added background noise. Two separate audio feature sets were used, and 

their performances were compared. One of them was a custom feature set created 

specifically for this study and the other contained features from a popular speech emotion 

feature set. Furthermore, once the speech emotion recognizer was developed, it was 

joined with a facial expression recognition model to create a robust, multimodal emotion 

recognition system. The purpose was to get more accurate predictions of emotions by 

processing data from the audio and video mode.



 

1 

I. INTRODUCTION 

Human beings are social creatures. The concept of interdependence has been deeply 

rooted in society for centuries, and communication is the foundation of any community. 

It is through communication that valuable information is exchanged, and thoughts and 

feelings are shared with others. Emotional valence is a quantity that categorizes the 

different types of human emotions. Valence is measured over a spectrum, where 

emotions such as happiness and excitement are labeled as emotions with positive valence, 

while emotions like sadness and fear are considered emotions with negative valence.  By 

detecting the emotional valence in a social interaction, the listener can take appropriate 

actions [1]. Like valence, arousal is another quantity that is used when categorizing 

emotions. The arousal measures an emotion's intensity, so emotions such as calm and 

boredom have a low arousal, while emotions like nervousness and excitement have high 

arousal. Valence and arousal form the two dimensions of emotion classification in a 

dimensional model, such as the one shown in Figure 1. Researchers who agree with the 

dimensional model of emotions believe that every emotion falls somewhere in this two-

dimensional space. They believe that a standard neurophysiological system is responsible 

for creating all emotions. Other psychologists disagree with this categorization and think 

that every emotion is generated from a different neural system. In this work, this discrete 

categorization of emotions is used, which, by definition, excludes the measurement of 

valence and arousal. 
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Figure 1. The Circumplex Model – a dimensional model for emotions [2]. 

Human interactions can be either verbal or non-verbal. Non-verbal communication 

has two subcategories – communication through facial expressions and communication 

through body language. In the year 1971, Albert Mehrabian described the 7-38-55 rule of 

personal communication [3]. According to this rule, in any social interaction, 7 % of the 

information being conveyed comes from the spoken words, 38 % comes from the vocal 

tone, and 55 % comes from the speakers' body language. In that same year, the work in 

[4] published about the six universally recognized emotions observed throughout all 

cultures around the world.  These emotions are happiness, sadness, surprise, anger, fear, 

and disgust. For the research conducted in this work, seven affective states were 

considered, the six emotions listed in [4] along with the neutral emotion. 

The National Institute of Mental Health (NIMH) has described autism spectrum 

disorder (ASD) as “a development disorder that affects communication and behavior” 

[5]. For most people, understanding a person’s emotions in a conversation is a simple 

task. However, children who fall on the autism spectrum have difficulty identifying these 

emotional cues - the reason is still unclear [6]. ASD can be diagnosed within the first two 
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years of a child’s life, and doctors rely on the child’s behavior to diagnose since there are 

no medical tests that can be used to detect ASD as of now. Figure 2 shows all the medical 

conditions that are part of ASD. 

 

Figure 2 A list of every medical condition that is classified as autism spectrum disorder [7]. 
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Literature Review 

 Speech signal processing has made significant technological advancements. Some 

of its applications include speaker recognition [8], automatic speech recognition [9], 

language recognition [10], and mental stress detection [11]. Another huge area of 

application is speech emotion recognition (SER). A speech emotion recognition system 

can be used in call centers in order to assess customer satisfaction [12], or it can be used 

to improve the learning experience of users in e-learning platforms [13], or it can even be 

used in assistive robots to make them more empathetic towards humans [14]. 

Machine learning techniques in speech processing have become increasingly 

common, thanks to massive improvements in computational power over the past three 

decades. A few different machine learning and deep learning classifiers have proven to 

yield great results for emotion speech recognition. The three most common techniques 

include the support vector machine (SVM), the multilayer perceptron (MLP), and the 

recurrent neural network (RNN). The authors in [15] used three layers of binary SVM 

models for the multi-class emotion recognition task. Each model was trained on one 

emotion and classified that emotion against the other emotions in a one-versus-all (OVA) 

fashion. The Interactive Emotional Dyadic Motion Capture (IEMOCAP) was used as the 

dataset, and features such as energy, pitch, mel-frequency cepstral coefficients (MFCC), 

perceptual linear predictive (PLP), filter bank, and first and second derivatives of all 

features were extracted as a frame-based feature using the Kaldi toolkit.  

In [16], a multilayer perceptron (MLP) was trained on the Emotional Prosody Speech 

and Transcripts (EPST), an English speech emotion corpus, and KSUEmotions, an 

Arabic speech emotion corpus, to create a multi-lingual speech emotion classifier. Audio 
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features used include pitch, intensity, formants, jitter, shimmer, and speech rate. These 

features were extracted using the PRAAT software package, and different combinations 

of these audio features were tested and compared.  

The work in [17] used RECOLA, a speech emotion dataset in the French language, 

along with a cascaded deep learning architecture that consisted of a convolutional neural 

network (CNN) followed by recurrent long short-term memory (LSTM) layers. The CNN 

learned the audio features from raw utterances, which avoided the need for traditional 

hand-engineered feature extraction – a process dubbed “end-to-end speech emotion 

recognition.”  

The authors in [18] also implemented a cascaded system by studying various 

combinations of a support vector regression (SVR) model and a bidirectional long short-

term memory deep recurrent neural network (BLSTM-DRNN). One implementation, 

dubbed “dependent training,” used the first model's prediction output to be fed to the 

second model’s features, along with the other audio features. The other implementation, 

“independent training,” involved training the models separately but adding Gaussian 

white noise to the data used for training the first model to modify the true labels and 

create pseudo predictions. These pseudo predictions were then used as features for the 

second model along with the other audio features.  

In [19], the authors used six SVM classifiers in an OVA binary classification method. 

All SVM classifiers used the radial basis function (RBF) kernel, and each one gave 

confidence of an input utterance being the emotion it was trained upon with the input 

samples. The final prediction came from the SVM classifier that gave the highest 
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confidence. The LDC speech emotion corpus was used, and the final model performance 

was compared with naïve human coders. 

The authors in [20] created a virtual game for children with ASD. The goal was to 

teach these children how to recognize and express emotions in a game scenario through 

facial expressions, tone-of-voice and body gestures. The results of the study indicated 

that there was an improvement in the emotion recognition and socialization skills of the 

participating children. 

In this thesis, a speech emotion recognition system was developed using ensemble 

learning. Three machine learning algorithms – a SVM, an MLP, and a RNN were trained 

separately and combined using majority voting to give the final emotion class prediction. 

The datasets they were trained on include the Ryerson Audio-Visual Database of 

Emotional Speech and Songs (RAVDESS), the Toronto Emotional Speech Set (TESS), 

and the Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D). 

Additionally, a noise file was generated and added to the final pool of data samples used 

to train and evaluate the speech emotion recognition system for each clean speech 

utterance of the three datasets. The idea was to create a speech emotion classifier that 

would be impervious to environmental background noise that is present during 

conversations. After the speech emotion recognition model was evaluated, it was used to 

make predictions on speech recordings in real-time. Finally, the speech emotion 

recognition system was combined with a facial expression recognition system to create a 

multimodal emotion recognition solution for children with ASD. 
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II. AUDIO FEATURES 

Recording Audio 

Any sound is created by an object's vibration, which causes local air molecules to 

oscillate and produce a sound wave. Sound waves are a type of mechanical wave that 

requires a medium to transfer energy from one point to another. For sound waves, this 

medium is air. Sound waves that exist in nature are analog, continuous-time signals. It 

needs to be converted into a digital, discrete-time signal to record and store sound. The 

conversion is done by sampling the audio amplitudes at discrete points in time. The 

number of audio samples taken per second is defined as the sampling rate. Figure 3 

shows the result of using different sampling rates. 

 

Figure 3. Increasing the sampling rate of an audio signal, where the analog continuous-time signal is 

shown on the left-hand side of the equal sign [21]. 
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Even though increasing the sampling rate allows for a better approximation of the 

actual analog signal, it also increases data being recorded. A sampling rate of 16 kHz 

(16,000 samples/second) is usually used for most audio signal processing applications. 

Furthermore, since analog audio signals can have an infinite number of possible 

amplitude values, the amplitude needs to be discretized when converting into a digital 

signal. The bit depth is the number of possible amplitude values for a single sample of a 

discrete-time audio signal. Figure 4 shows an analog signal sampled at a bit depth of 4 

bits per sample, which gives a total of 24 or 16 possible amplitude values for each audio 

sample. Like the sampling rate, the higher the bit depth, the higher the discrete-time 

audio signal's resolution. Most audio recordings today are 16-bit audio, with 216 = 65,536 

possible amplitude values. 

 

Figure 4. An analog signal (shown in red) is sampled at a bit depth of 4 bits per sample [22]. 
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Audio Preprocessing 

 A speech signal is a result of a non-stationary process and therefore creates non-

stationary data. This means that the statistical properties of the data, such as mean 

amplitude, standard deviation, and other metrics, change over time. The speech signal is 

divided into multiple overlapping audio segments called frames to make the data 

statistically stationary in each frame so that fast Fourier transform (FFT) can be applied 

for spectral analysis. A typical audio frame is somewhere between 20 to 40 milliseconds 

long. Figure 5 shows an example of framing a continuous-time signal. 

 

Figure 5. Framing an audio signal [23]. 

 When FFT is applied to any signal, it is assumed that the signal is periodic. 

Speech signals are non-periodic by nature, and since they do not drop to zero amplitude 

at the end of each audio frame, the FFT will create high-frequency artifacts at these 

places. A window function is applied to the audio frames to avoid this issue. This 

technique is called windowing. A window function is a mathematical function that has an 

amplitude of zero outside some defined interval. When a window function is multiplied 

with the speech segment in an audio frame, the resulting speech segment will have an 

amplitude of zero outside the interval defined in the window function. This essentially 

smoothens out the edges of the signal in each audio frame. The overlapping regions in 

audio frames, which are around ten milliseconds long, ensure no audio segment is lost 

during preprocessing. Figure 6 shows an example of windowing. 
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Figure 6. Using a window function on a sinusoid [24]. 
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Features in Speech Emotion Recognition 

Audio features are essential in any audio classification task, whether it be speech 

emotion recognition, speaker recognition, automatic speech recognition, or mental stress 

detection. In machine learning, features are properties of data that help a machine learn to 

differentiate between data classes. Researchers have used a wide variety of audio features 

to classify emotions in speech. In this thesis, two feature sets have been studied. Some of 

the common low-level descriptors used in emotion speech recognition will be briefly 

described in the following paragraphs. 

 The mel-frequency cepstral coefficients (MFCCs) were first introduced in [25]. 

The first step in calculating the MFCCs is to frame the audio signal into small 

overlapping audio frames of length 25-40 ms. For a sampling rate of 16 kHz and a frame 

length of 32 ms, this results in a total of 16x32 = 512 audio samples per frame. Moreover, 

if the frame step size (hop length) is 16 ms, it results in 16x16 = 256 audio samples in the 

overlapping regions. Next, the periodogram estimate of the power spectrum is calculated 

for each audio frame. Then, the spectrum's powers are mapped onto the mel-scale using a 

mel-filterbank that contains a set of 20-40 triangular overlapping filters, as shown in 

Figure 7. These filters are spaced according to the mel-scale and give the filterbank 

energies when applied to the power spectrum. After getting the filterbank energies, the 

logarithm function is applied to them. This is done because human beings do not hear 

loudness on a linear scale. The log operation compresses the features so that they match 

more closely to what humans hear. The final step is to perform a discrete cosine 

transform (DCT) on the log mel-filterbank energies, which gives the mel-frequency 

cepstral coefficients. 
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Figure 7. Applying a mel-filterbank to the power spectrum of an audio frame [26]. 

The pitch of a sound is the perceived fundamental frequency F0, the frequency at 

which vocal cords vibrate in voiced sounds. Even though the pitch is a qualitative 

measure, for speech analysis purposes, it is considered to be equal to the logarithmic F0 

[27]. Just like pitch, loudness is another qualitative measure. Loudness is the perceived 

intensity of any sound [28]. 

Formants are specific peak frequencies of vocal tract resonance. They determine 

the quality of vowels in speech. The first three formant frequencies are labeled F1, F2, 

and F3. Formants usually occur at 1,000 Hz intervals [29]. Harmonics-to-noise ratio 

(HNR) is a measure that relates the energy in the periodic part of speech (harmonics) to 

the energy in the noise section measured in decibels (dB) [30]. 
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Jitter and shimmer are standard perturbation measures in speech analysis. Jitter is 

a measure of the instability of the fundamental frequency, while shimmer is a measure of 

amplitude instability in dB [31]. 

 

Feature Set 1: Custom 

 The first feature set used in this study is a custom feature set which was created 

specifically for this work. A trial-and-error method was used on a group of 

unconventional audio features. The result was a collection of 36 low-level descriptors. 

They are:  

• MFCCs: The first 26 MFCCs were extracted for each audio frame using the HTK 

implementation [32]. 

• Spectral contrast: It represents the relative spectral distribution [33]. Seven spectral 

contrast values were extracted per audio frame. 

• Polynomial coefficients: Coefficients of fitting an nth-order polynomial to the 

columns of a spectrogram. Two polynomial coefficients were extracted per audio 

frame for a polynomial of order one [34]. 

• RMS energy: The root-mean-square energy of each audio frame. One RMS energy 

was extracted per audio frame.  

 All 36 low-level descriptors mentioned above were extracted from speech data 

using Librosa, a Python library for music and audio analysis [35]. The Python library 

does all of the audio processing, including framing and windowing. For the final speech 

emotion recognition model, a sampling rate of 16 kHz was used along with a frame 

length of 32 ms (512 samples) and a step size of 16 ms (256 samples). For performing 
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FFT, 512 samples were considered per audio frame. Librosa is a reliable tool for audio 

feature extraction and has been used by researchers for various audio classification tasks. 

[36][37][38][39]. 

 Functionals are functions that are applied to a vector. Examples include the mean, 

standard deviation, maximum, minimum, median, mode, and other metrics. Since each 

low-level descriptor is extracted for each audio frame, applying functionals provides 

feature values for the entire audio signal. For the MFCCs, the mean and the standard 

deviation functionals were used. The mean functional was used for the spectral contrast, 

polynomial coefficients, and RMS energy. This resulted in a total of 62 audio features in 

the custom feature set, as listed in Table 1. 

Table 1. List of audio features used in the custom feature set. 

Low-level Descriptors Functionals Audio Features 

26 MFCCs Mean, standard deviation 52 

7 Spectral Contrasts Mean 7 

2 Polynomial Coefficients Mean 3 

1 RMS Energy Mean 1 

 

Feature Set 2: Partial GeMAPS 

 In [40], the authors proposed the Geneva Minimalistic Acoustic Parameter Set 

(GeMAPS) for affective computing. They state that there should be a standardized set of 

features used in speech emotion detection so that results from different publications can 

be compared. They also claim that large, “brute-force” feature sets lead to over-

adaptation of machine learning classifiers to the training data, as the high-dimensional 

feature sets may cause overfitting, which leads to lower generalization capability in 
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classification. The GeMAPS feature set contains a total of 62 audio features (including 

functionals of low-level descriptors). The extended GeMAPS feature set (eGeMAPS) 

contains an additional 26 audio features. The authors have compared the performance of 

the GeMAPS and eGEMAPS feature sets with other much larger feature sets, such as the 

one used in the INTERSPEECH Computational Paralinguistics Challenges (ComParE) 

[41] and found that the performances were very much comparable. 

 The GeMAPS feature set can be extracted using the OpenSMILE toolkit [42]. 

Since the speech emotion recognition model in this study will be deployed in the Python 

environment, and since there are currently no Python libraries that allow users to access 

the features of OpenSMILE, the GeMAPS feature set was not used in this study. 

However, some of the GeMAPS feature set's audio features were extracted using a 

Python library called Parselmouth [43]. It allows users to implement PRAAT features, a 

well-known computer software package among speech researchers [44]. By using 

Parselmouth, the following fifteen low-level descriptors were obtained from data: 

MFCCs: The first four mel-frequency cepstral coefficients were extracted per audio 

frame. 

Pitch:  One pitch (log F0) value was extracted per audio frame. 

Loudness:  One loudness (intensity) value was extracted per audio frame. 

Formants: The first three formant (F1, F2, and F3) frequencies were extracted per audio 

frame. 

Formant Bandwidths: The first three formant bandwidths were extracted per audio frame. 

HNR: One harmonics-to-noise ratio was extracted per audio frame. 

Jitter: One local absolute jitter value was computed for an entire audio file. 
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Shimmer: One local shimmer value was computed for an entire audio file. 

For pitch and loudness, the functionals used were the mean, the standard 

deviation, the 20th percentile, the 50th percentile, the 80th percentile, and the range of 20th 

to 80th percentile. For MFCCs, formant frequencies, formant bandwidths, and HNR, the 

mean and standard deviations were considered. This resulted in a total of 36 audio 

features in this partial GeMAPS feature set, as shows in Table 2. All previously 

mentioned settings were used for audio processing - sampling rate of 16 kHz, frame 

length of 32 ms (512 samples), step size of 16 ms (256 samples), and FFT of size 512 

samples per audio frame. 

Table 2. List of audio features used in the partial GeMAPS feature set. 

Low-level Descriptors Functionals Audio Features 

1 Pitch Mean, standard deviation, 20th, 50th, 80th percentile, 

range of 20th to 80th percentile 

6 

1 Loudness Mean, standard deviation, 20th, 50th, 80th percentile, 

range of 20th to 80th percentile 

6 

4 MFCCs Mean, standard deviation 8 

3 Formants Mean, standard deviation 6 

3 Formants BWs Mean, standard deviation 6 

1 HNR Mean, standard deviation 2 

1 Jitter Mean 1 

1 Shimmer Mean 1 
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III. DATASETS 

For this research work, three separate speech corpora were selected. They are the 

Ryerson Audio-Visual Database of Emotional Speech and Songs (RAVDESS), the 

Toronto Emotional Speech Set (TESS), and the Crowd-sourced Emotional Multimodal 

Actors Dataset (CREMA-D). All three datasets are available online to be used by 

researchers, free of cost. These datasets were designed and created specifically for speech 

emotion recognition and were evaluated and validated by multiple individuals. There are 

two main types of speech datasets that are used by researchers in this field. The first type 

contains recordings of people who express genuine emotions by being subjected to 

external influence, such as image, video, and audio; the second type contains recordings 

of professional actors reading outlines from a script while acting out the emotions. The 

former type of dataset is known in the literature as a spontaneous dataset, and the latter is 

known as a simulated dataset. Researchers usually use simulated speech data for speech 

emotion recognition task because they are accurately labeled, and actors are very good at 

expressing each emotion with reasonable accuracy. Also, most spontaneous datasets are 

limited in terms of the number of emotion classes. 

Out of the three speech corpora used, the RAVDESS and CREMA-D corpora 

contain multi-modal audio and video data. The thesis objective is to develop an emotion 

classifier for children who are North American English speakers, and all three datasets 

selected for this work contain recordings of actors for whom English is the first language. 

Furthermore, the datasets chosen had to include the same seven emotion classes used by 

that model as the final speech model is to be integrated with the High-Performance 

Engineering (HiPE) research group’s facial expression recognition model [45]. 
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Ryerson Audio-Visual Database of Emotional Speech and Songs 

 The Ryerson Audio-Visual Database of Emotional Speech and Songs 

(RAVDESS) was released in 2018 by researchers of the SMART lab at Ryerson 

University in Toronto, Ontario, Canada. It is a simulated, multi-modal dataset that 

contains both video data and audio data. For the audio data, the actors recorded the 

sentences both as normal speech and as songs. The song data was not considered for this 

thesis. The audio files were recorded at 16 bits per sample, at a sampling rate of 48 kHz, 

and in WAV audio format. A total of 24 actors of age range 21-33 years had taken part in 

creating this dataset, where half of the samples contain male actors and the other half are 

female actors. Each actor recorded two lexically matched sentences in eight different 

emotions. The two sentences are “Kids are talking by the door” and “Dogs are sitting by 

the door.” Moreover, the eight emotions are neutral, calm, happy, sad, anger, fear, 

disgust, and surprise. The emotion labels are included in the WAV audio file names. Out 

of the eight emotions, seven of them were recorded twice per sentence – once with 

normal intensity and the other time with stronger intensity. There was only one recording 

per sentence for the neutral emotion since there is no strong intensity for this emotion. 

Since the HiPE group’s facial expression recognition model was not trained on any calm 

emotion data, this class was excluded from the study. This gives a total of 1,440 

recording samples, with 24 actors x 2 sentences x 8 emotions x 2 repetitions x 2 

emotional intensity with the exception of the neutral emotion. Thus, seven emotions have 

192 data samples, and the neutral class has 96 data samples. Data resampling was used to 

match the neutral class count to the rest of the classes [46]. The RAVDESS speech 

corpus can be downloaded from [47]. 
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Toronto Emotional Speech Set 

 The second speech corpus used for this study was the Toronto Emotional Speech 

Set (TESS). This simulated dataset was created in 2010 by researchers from the 

University of Toronto Psychology Department. It contains recordings from two actors, 

both females. The younger actor was 26 years old at the time of recording, while the 

older actor was 64 years old. They have recorded 2,800 sentences in seven different 

emotions – anger, disgust, fear, happy, surprise, sad, and neutral. Unlike RAVDESS, this 

is a balanced dataset with each emotion class having 400 data samples. However, just like 

RAVDESS, the sentences spoken by the actors are lexically similar. Each actor recorded 

the phrase “Say the word___” followed by one of 200 different target words in each 

affective state. All audio files were recorded at 16-bits per sample, at a sampling rate of 

24,414 Hz, and saved in WAV audio file format. The emotion labels were extracted from 

the file names [48]. The TESS dataset can be downloaded from [49]. 
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Crowd-sourced Emotional Multimodal Actors Dataset 

 The Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D) was the 

third speech emotion dataset used to develop the speech model in this thesis. Just like 

RAVDESS and TESS, this is also a simulated speech corpus. It was released in 2014 as a 

collaboration between researchers from the University of Pennsylvania, Ursinus College 

and the University of Illinois at Chicago. Actors who participated had ages ranging from 

20 to 74 years old. There were 48 male actors and 43 female actors with a total of 91, and 

even though they came from different ethnic backgrounds, they were all English 

speakers. Like RAVDESS, it is also a multimodal dataset. The speech recordings were 

done at 16-bits per sample, at a sampling rate of 16 kHz, and saved in the WAV audio 

format. The actors recorded twelve different emotionally neutral sentences in six different 

emotions of anger, disgust, fear, happy, neutral, and sad, at four different intensity levels 

of low, medium, high, and unspecified. Examples phrases include “Don’t forget a 

jacket,” “I think I’ve seen this before,” “I think I have a doctor’s appointment.” Each 

emotion class has 1,271 data samples, except for the neutral class, which has 1,087 data 

samples. Resampling was used to create a balanced dataset [50]. The CREMA-D dataset 

can be accessed from [51]. Table 3 gives a summary of the three datasets used for this 

thesis work. 
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Table 3. Summary of all three speech emotion corpora 

Corpus Age of 

participants 

No. of 

sentences 

No. of 

participants 

Emotions Samples 

per class 

(balanced) 

Total 

(balanced) 

RAVDESS 21-33  

years old 

2  

(with 2 

repetitions 

& 

intensities) 

24  

(12 Males,  

12 Females) 

8  

(calm excluded) 

192 1,344  

(192 x 7) 

TESS 26 and 64 

years old 

200  

(3 common 

words, 1 

changing) 

2  

(0 Males,  

2 Females) 

7 400 2,800  

(400 x 7) 

CREMA-D 20-74  

years old 

12  

(four 

intensities) 

91  

(48 Males,  

43 Females) 

6  

(surprise missing) 

1,271 7,626 

(1,271 x 6) 
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Noise Addition 

 All speech recordings in the above-mentioned datasets were done in the absence 

of background noise, in a “noiseless” environment. The only noise that is audible in these 

recordings is a combination of the inherent static noise created by the recording 

equipment, and the echoes coming from the surroundings. In real-world applications, 

however, conversations in a “noiseless” environment are very rare because there is 

always some noise around people during a conversation in different environments. 

Therefore, it was important to take these background noises into consideration when 

constructing the final speech emotion recognition model. 

 The problem with training a machine learning model with “noiseless” data, or 

clean speech data, is that it trains and performs well when tested. However, in real-world 

applications, it will struggle to identify the emotions accurately because of undesired 

contributions of surrounding noises to the recorded audio. A new set of data was created 

from the clean speech recordings by introducing some background noise to them to 

address the background noises. Figure 8 shows the noise addition process, where a city 

center noise recording was added to a clean speech recording from the RAVDESS 

dataset. The RAVDESS recording is of actor ID:22 saying “Dogs are sitting by the door” 

with strong surprise emotion. 
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Figure 8. Waveforms of a RAVDESS utterance (top), a noise sample (middle), and their combination 

(bottom). 

 It is impossible to consider all possible types of background noises when creating 

the new dataset with added background noise. Therefore, three noise samples were 

selected for the purpose of this study. All three audio files were downloaded from the 

same website [52]. The first noise sample is a recording of children playing in a 

playground titled “Small Crowd”, the second noise sample is a recording of a shopping 

mall titled “Shopping Mall Ambiance”, and the third noise sample is a recording of cars 

passing by on the streets titled “Street”. The playground noise sample and the street noise 

sample were listed under an attribution 3.0 license, while the shopping mall noise sample 

was listed under a public domain license. The reason behind selecting these specific noise 

samples was to cover some of the general properties of common background noises. For 

example, the playground background noise is a variation of the cocktail party noise where 

the noise created is from people talking in the background. Also, as the speech emotion 

classifier is being built for children with ASD, it is expected that they will be in the 
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presence of other children in a similar setting. The shopping mall noise was selected 

because it has an echo effect created by the high ceilings which is also observed in some 

other environments such as airports and churches. Finally, the street noise was selected 

because the sound of cars is a common background noise outdoors. 

 After these three noise samples were selected, three signal-to-noise ratios (SNRs) 

were selected: 0 dB, 5 dB, and 10 dB. These SNRs were used to add the noise samples to 

the clean speech data. Noise was added to all data samples in all three datasets using the 

three noise types and three SNR values, as follows. This noise addition procedure was 

carried out using MATLAB. By randomly picking an SNR value out of the three and 

randomly picking a noise type out of the three, the noise was added to each data sample. 

To prevent the machine from learning the noise features, two precautions were taken. 

First, each noise sample is more than fifteen seconds long, with the shopping mall noise 

16-seconds long, playground noise 19-seconds long, and street noise 49 seconds long. 

The clean speech samples were roughly three to five seconds long for all datasets. The 

MATLAB code randomly took chunks of noise audio samples the size of the clean 

speech samples and added both together to create the noise-added samples. This ensured 

that the same part of the noise samples was not being added to the clean speech data. 

Second, also, for each clean speech sample, only one noise-added sample was generated, 

where noise type and SNR were randomly chosen as discussed above. Thus, the final 

dataset contained the same amounts of clean speech and noise-added samples. 

 Combining all three datasets without balancing the classes with utterances of 

1,248 from RAVDESS, 2,800 from TESS, and 7,442 from CREMA-D, 11,490 more data 

samples were created by noise addition. The resultant final dataset contains 22,980 audio 
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data samples. However, the final count of the dataset after resampling the neutral and 

surprise emotion classes from RAVDESS and CREMA-D is 26,082. Table 4 summarizes 

the details of the final dataset. 

Table 4. Summary of the final dataset 

Corpus Data Samples 

RAVDESS 1,248 

TESS 2,800 

CREMA-D 7,442 

Combined (RAVDESS + TESS + CREMA-D) 11,490 

Noise-added (RAVDESS + TESS + CREMA-D) 11,490 

Final (Combined + Noise-added) 22,980 

Final (balanced) 26,082 
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IV. MACHINE LEARNING ALGORITHMS 

 Machine learning is the science of teaching computer algorithms on how to make 

decisions without human’s involvement. It falls under the broader field that is artificial 

intelligence. In supervised machine learning, a learning algorithm is exposed to labeled 

data and learns the different data categories by matching the features to the labeled data 

samples. Once the algorithm has been trained on the data, it can make predictions on 

new, unseen data. The term ‘machine’ in machine learning refers to the computer that 

contains the learning algorithm. Deep learning is a subsection of machine learning that 

refers to the use of advanced neural network architectures with multiple layers of 

neurons. Classification and regression are the two branches of supervised learning. 

Classification is performed on discrete data, while regression is performed on continuous 

data. There are several types of learning algorithms in supervised learning. Each of these 

algorithms is applied to different types of data. For instance, the convolutional neural 

network (CNN) is designed to work like the human brain's visual cortex and is therefore 

solely used in image processing applications. A few algorithms have shown great 

performances with audio signal processing, more specifically, in speech emotion 

recognition tasks. In this work, three of these algorithms will be studied – the support 

vector machine (SVM), the multilayer perceptron (MLP), and the recurrent neural 

network (RNN). All three supervised learning algorithms have been used in this thesis to 

perform the classification of seven discrete affective states. 
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Support Vector Machine 

The support vector machine (SVM) is a supervised machine learning algorithm 

created by V. N. Vapnik and his colleagues at AT&T Bell Laboratories [53]. It can be 

considered as an extension to the perceptron learning algorithm. Figure 9 shows how an 

SVM classifies data samples in a binary classification problem.  

 

Figure 9. Plots showing the working principle of the support vector machine algorithm [54]. 

In the plots, the crosses and circle signs represent the data samples of two 

different outcome classes. The dotted line separating the data samples is called a 

hyperplane, and the data samples closest to the hyperplane are called the support vectors. 

Even though there are many possible ways to linearly separate the classes, as shown in 

the left-hand plot of Figure 9, the SVM algorithm creates a maximum-margin hyperplane, 

such that it maximizes the margin between the support vectors. This margin is the 

distance between the two parallel hyperplanes shown as solid lines in the right-hand plot 

of Figure 9. One is the positive hyperplane and the other is the negative hyperplane. The 

equations for these hyperplanes are given below. 

𝑤0 + 𝒘𝑇𝒙𝒑𝒐𝒔 = 1 (1) 

𝑤0 + 𝒘𝑇𝒙𝒏𝒆𝒈 = −1 (2) 
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In Equations (1) and (2), the term w0 is the weight of the bias term, the term wT 

indicates the transposed weight vector. Assuming that the two classes have labels +1 for 

the positive class, shown as “+”, and -1 for the negative class, shown as “o” in Figure 9. 

The xpos and xneg are the input feature vectors of the positive class and the negative class, 

respectively. The bold terms represent the vector dot product operation. Subtracting 

Equation (2) from (1) gives, 

𝒘𝑇(𝒙𝒑𝒐𝒔 − 𝒙𝒏𝒆𝒈) = 2 (3) 

 

The length of the vector w can be calculated as, 

||𝒘|| = √∑ 𝑤𝑗
2𝑚

𝑗=1  (4) 

 

Normalizing Equation (3) by dividing both sides by ||w|| yields the following equation, 

𝒘𝑇(𝒙𝒑𝒐𝒔−𝒙𝒏𝒆𝒈)

||𝒘||
=

2

||𝒘||
 (5) 

 

The left side of Equation (5) can be interpreted as the margin or distance between 

the positive and negative hyperplane. This margin will be maximum if the term on the 

right of the equal sign of Equation (5) is maximum. This maximization must be 

performed while correctly classifying the data samples. Therefore, for i = 0…N, where N 

is the total number of samples in the dataset, 

𝑤0 + 𝒘𝑇𝒙(𝑖) ≥ 1 𝑖𝑓 𝑦(𝑖) = 1 (6) 

𝑤0 + 𝒘𝑇𝒙(𝑖) ≤ −1 𝑖𝑓 𝑦(𝑖) = −1 (7) 
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Equation (6) means that if the true label y(i) of a data sample is +1 (the positive 

class), it must fall above the positive hyperplane. Similarly, Equation (7) means that if the 

true label y(i) of a data sample is -1 (the negative class), it must fall below the negative 

hyperplane. The hyperplane right at the middle of the two parallel hyperplanes, shown as 

a dotted line in the right-hand plot of Figure 9, is the optimal, maximum-margin 

hyperplane calculated by the SVM algorithm under the constraints defined by Equations. 

(6) and (7). Maximizing the margin is the objective function of the SVM algorithm. In 

practice, instead of maximizing the term 2/||w|| of Equation (5), it is more convenient to 

minimize its reciprocal ½*||w||2. 

Vapnik came up with the soft-margin classification to relax the linear constraints 

defined in Equations (6) and (7) for nonlinearly separable data. He introduced a slack 

variable ξ, which can be added to Equations (6) and (7), 

𝑤0 + 𝒘𝑇𝒙(𝑖) ≥ 1 − 𝜉(𝑖) 𝑖𝑓 𝑦(𝑖) = 1 (8) 

𝑤0 + 𝒘𝑇𝒙(𝑖) ≤ −1 + 𝜉(𝑖) 𝑖𝑓 𝑦(𝑖) = −1 (9) 

 

Now, the following term needs to be minimized to maximize the margin, 

1

2
||𝒘||

2
+ 𝐶(∑ 𝜉(𝑖)

𝑖 ) (10) 

 

Here, the C parameter is the penalty variable which the users can tweak. 

Increasing the value of C means increasing the error penalty, while decreasing its value 

means being more lenient when punishing the model for misclassification error. 

There are some problems where the classes are not linearly separable. In cases 

non-linearity solutions, the SVM can be kernelized and add dimensionality for the proper 
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hyperplane utilize supporting vectors for maximum separation. The basic idea of kernel 

SVM is to create nonlinear combination of the input features x to project the features 

onto a higher-dimensional space. This in turn allows for the data samples to be linearly 

separable by defining a hyperplane using the linear SVM algorithm. A mapping function 

ϕ is used to create higher-dimensional features from the input features. Figure 10 depicts 

the so-called “kernel trick” by using a mapping transformation to generate the hyperplane 

boundary and inverse transform to represent the classification boundary to the original 

sample space.  

 

Figure 10. A visual representation of mapping input features x1 and x2 to a higher-

dimensional space, allowing the kernel SVM to produce the hyperplane required to separate the two 

classes [54]. 

The radial basis function (RBF) is a very popular kernel function, and it is 

represented by, 

𝜅(𝒙(𝑖), 𝒙(𝑗)) = exp (−𝛾 ||𝒙(𝑖) − 𝒙(𝑗)||
2

) (11) 
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The SVM is one of the most widely used classifiers in machine learning due to its 

ability to work with multiple classes. It has also been extensively used in the field of 

emotion speech recognition and has yielded great results. That is why the SVM was 

selected as one of the machine learning classifiers in this study. In Equation (11), the 

term γ (gamma) is a free parameter that can be optimized by the user. For this thesis 

work, the C parameter and the γ parameter were tuned for the RBF kernel SVM. 
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Multilayer Perceptron 

The Perceptron 

Artificial neurons were inspired by the real biological neurons of the human body. 

Neurons, or nerve cells, are the building blocks of the human nervous system. Figure 11 

shows the body of a typical neuron. The dendrites collect electrical and chemical signals, 

synapses, from other neurons, which are combined at the nucleus. If the aggregate signal 

exceeds a threshold, the neuron fires a synapse through its axon to other neurons. 

 

Figure 11. The structure of a biological neuron [55]. 

In 1943, Warren McCulloch and Walter Pitts came up with the concept of the 

McCulloch-Pitts (MCP) neuron [56]. They described the MCP neuron to be a simple 

logic gate with a binary output. Just a few years later based on the same original concept, 

Frank Rosenblatt published about the perceptron learning algorithm [57]. According to 

Rosenblatt, the perceptron would automatically learn the optimal weights and then 

multiply them with their respective input features. It would then add the numbers and 

determine if the outcome reaches a threshold level to fire the neuron or not. This logical 

process mechanism is used in supervised learning to predict either one of more classes. 

For a binary classification problem, supervised learning, where the two classes are 

labeled +1 for the positive class or -1 for the negative class, there will be a set of input 
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features. Since each input feature xi has a corresponding weight coefficient wi so there 

will be two vectors, as shown below, 

𝒘 = [𝑤1 … . 𝑤𝑚] (12) 

𝒙 = [𝑥1 … . 𝑥𝑚] (13) 

 

 For classification, if the net input of a data sample x(i) is bigger than a threshold θ, 

the sample is classified as the positive class (+1); otherwise, the sample is predicted to be 

from the negative class (-1). This decision is made by the decision function, ϕ(), which is 

defined in Equation (14). 

𝜙(𝑧) = {
1 𝑖𝑓 𝑧 ≥ 𝜃

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

 

Bringing the threshold θ to the left side of the equal sign for simplifying Equation (14) 

creates an additional term w0x0, where w0 = -θ and x0 = 1. Thus, Equation (14) becomes: 

𝜙(𝑧) = {
1 𝑖𝑓 𝑧 ≥ 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (15) 

 

One of the vectors needs to be transposed to calculate the net input of a data 

sample, which is a vector dot product between w and x. Transposing w gives wT. 

Therefore, the net input can be expressed as, 

𝑧 = 𝑤0𝑥0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑚𝑥𝑚 = 𝒘𝑇𝒙 (16) 

  

The perceptron learning rule is quite simple. At first, the feature weights are 

initialized to either random values or simply zeroes. Then, for each input training sample 

the output is calculated. Then, based on the error calculated, all the weights are updated 
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simultaneously before the next training sample is fed to the perceptron. The weight vector 

can be written as, 

𝑤𝑗 ∶= 𝑤𝑗 + 𝛥𝑤𝑗 (17) 

 

The term Δwj is the weight update and is determined by: 

𝛥𝑤𝑗 = 𝜂(𝑦(𝑖) − 𝑦̂(𝑖))𝑥𝑗
(𝑖)

 (18) 

 

In Equation (18), y(i) is the true label of the ith training sample, 𝒚̂(i) is the predicted 

label, and η is the learning rate that has a floating-point number between 0.0 and 1.0. The 

learning rate determines how fast the algorithm learns the features of the training data. A 

high learning rate might cause the model to overshoot the global minimum of the loss 

function, while a low learning rate might take a long time to converge to a minimum loss. 

Figure 12 summarizes the idea behind the perceptron learning rule. 

 

Figure 12. The perceptron learning rule [54]. 

 

Feedforward Artificial Neural Networks 

The multilayer perceptron (MLP) is a feedforward artificial neural network 

consisting of multiple artificial neurons arranged into an input layer, one or more hidden 

layers, and an output layer. Figure 13 shows the architecture of a single hidden-layered 
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MLP. It shows a network with one input layer, one hidden layer, and one output layer. 

Neurons in each layer, shown as circles, are fully connected to the ones in the next layer 

by weight coefficients. Each neuron is an activation unit with an activation function, 

where ai
(in) refers to the ith value in the input layer. The units a0

(in) and a0
(h) are the bias 

units set to 1. The weight coefficient w0,1
(h) connects the 0th unit of the h layer, or the 1st 

hidden layer, to the 1st unit of the h+1 layer, or the 2nd hidden layer. 

 

Figure 13. Structure of a typical multilayer perceptron [54]. 

An MLP has three main steps to its learning procedure. From the input layer, the 

patterns of the training data are moved forward, forward propagation, until an output is 

calculated by the network. Then, the error is calculated using a cost function. The output 

labels need to be one-hot encoded, which essentially converts the labels into a binary 

representation using zeros and ones, creating a vector for each label. Without one-hot 

encoding, the machine will assume that the integer classes have a natural order 

(hierarchy). Figure 14 shows how class labels are one-hot encoded. The final step is to 

propagate the error through the weights in the network and calculating its derivative with 

respect to each weight and updating the model. 
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Figure 14. One-hot encoding of integer labels. 

The net output of the first hidden layer of Figure 13 can be calculated by using 

Equation (19). 

𝑧1
(ℎ)

= 𝑎0
(𝑖𝑛)

𝑤0,1
(ℎ)

+ 𝑎1
(𝑖𝑛)

𝑤1,1
(ℎ)

+ ⋯ + 𝑎𝑚
(𝑖𝑛)

𝑤𝑚,1
(ℎ)

 (19) 

 

, where, 

𝑎(𝑖𝑛) = [𝑎0
(𝑖𝑛)

𝑎1
(𝑖𝑛)

… 𝑎𝑚
(𝑖𝑛)

] = [1 𝑥1
(𝑖𝑛)

… 𝑥𝑚
(𝑖𝑛)

](20) 

 

Thus, the first activation unit of the first hidden layer can be calculated as, 

𝑎1
(ℎ)

= 𝜙(𝑧1
(ℎ)

)(21) 

 

Activation Function 

The function ϕ() is the notation for the activation function. It must be 

differentiable to learn the weights using gradient descent. A non-linear activation 

function is used to solve complex problems, such as the sigmoid function, tanh function, 

exponential function, or other potential functions. The Rectified Linear Unit (ReLU) is a 

non-linear activation function that is often used in deep neural networks. Any network 
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with two or more hidden layers is called a deep neural network. The ReLU activation has 

the following equation, 

(22) 

 

Optimization 

 The gradient descent is an optimization technique used in machine learning. 

Optimization is the process of framing a problem in order to maximize/minimize some 

goal or objective. In this case, the objective, or objective function, to be minimized is the 

cost function, or loss function J(w), where w is the weight vector. Figure 15 illustrates the 

process of gradient descent. The goal is to reach the minimum point of the curve, which 

represents the weight value with the lowest cost. 

 

Figure 15. Minimizing the cost function using gradient descent [54]. 

The new weight is calculated by subtracting the step size from the old weight 

(weights are percentages). This is done for each individual weight of the network. The 

step size is given as, 

𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 ×  𝜂 (23) 
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The error gradient is the sum of the partial derivatives of the cost function with 

respect to each weight. The error gradient becomes smaller and smaller the more layers 

are added to a network. For some non-linear activation functions, such as the tanh 

function, it might cause the error gradient to become very close to zero resulting in a slow 

learning process during training. This is known as the “vanishing gradient” problem. 

Using ReLU bypasses this issue since the derivative of ReLU with respect to its input is 

always 1 for positive input values. 

 

Backpropagation 

Backpropagation is the optimization technique used in artificial neural networks.  

For artificial neural networks, the cost function does not have a smooth convex shape as 

shown in Figure 16, but rather a rough surface with bumps, as shown in Figure 16. The 

goal is to avoid the local minimum and reach the global minimum. 

 

Figure 16. Cost function plot of an artificial neural network [54]. 

The network output is calculated using forward propagation through the dot-

product calculations and predictions decision by the Activation function. The 
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backpropagation technique is used to move the computed error backwards – from right to 

left of the neural network. The first step is to calculate the error vector, 

𝜹(𝑜𝑢𝑡) = 𝒂(𝑜𝑢𝑡) − 𝒚(24) 

 

Here, y is the vector containing true labels. Then, the error term of the hidden layer is 

calculated. The operator in Equation (25) indicates element-wise multiplication, and the 

term to the right of the operator is the derivative of the activation function.  

𝜹(ℎ) = 𝜹(𝑜𝑢𝑡)(𝑾(𝑜𝑢𝑡))
𝑇

⊙
𝜕𝜙(𝑧(ℎ))

𝜕𝑧(ℎ) (25) 

 

Next, the derivatives of the cost function with respect to the weights are calculated for 

every node of each layer. 

𝜕

𝜕𝑤𝑖,𝑗
(𝑜𝑢𝑡) 𝐽(𝑾) = 𝑎𝑗

(ℎ)
𝛿𝑖

(𝑜𝑢𝑡)
 (26) 

𝜕

𝜕𝑤𝑖,𝑗
(ℎ) 𝐽(𝑾) = 𝑎𝑗

(𝑖𝑛)
𝛿𝑖

(ℎ)
 (27) 

 

The partial derivate for each node and the error of the node in the next layer is 

aggregated. This gives the error gradient since the gradient is the sum of all partial 

derivatives. 

Δ(ℎ) = 𝛥(ℎ) + (𝑨(𝑖𝑛))
𝑇

𝛿(ℎ) (28) 

Δ(𝑜𝑢𝑡) = 𝛥(𝑜𝑢𝑡) + (𝑨(ℎ))
𝑇

𝛿(𝑜𝑢𝑡) (29) 

 

Then, the regularization term is added to the error gradient for layer l. 

Δ(𝑖) ∶= 𝛥(𝑖) + 𝜆(𝑖)(𝑒𝑥𝑐𝑒𝑝𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚) (30) 
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Finally, the weights are updated by taking an opposite step towards the gradient for each 

layer l. 

𝑾(𝑖)  ∶= 𝑾(𝑖) − 𝜂𝛥(𝑖) (31) 

 

The entire backpropagation method is depicted in Figure 17. The neurons with 1’s are the 

bias units. 

 

Figure 17. Error moving from right to left in backpropagation [54]. 

For this thesis, a variety of hyperparameters of the MLP were experimented and 

tested for accuracy performance and evaluation. The list includes the network 

architecture in the number of neurons and layers, activation unit, optimizer, cost or loss 

function, epochs, batch size, learning rates, regularization, and dropout. 
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Recurrent Neural Network 

Sequences 

Recurrent neural networks (RNNs) are a special class of artificial neural networks 

that are used with sequential data. RNN is a type of deep learning algorithm. The data 

used in the training process is assumed to be independent and identically distributed 

(IID), meaning that the order in which they are fed to the algorithm under the supervised 

learning approach is not relevant. However, the order of the input data matters for 

sequential data, or sequences. 

Standard neural network models such as the multilayer perceptron (MLP) or the 

convolutional neural network (CNN) cannot process ordered input data samples since 

these networks do not take past information into consideration during training RNNs are 

designed specifically for sequences because the technique can remember information 

from the previous data samples and learn the sequential patterns of the data. One 

common example of sequences is a time-series data, where each data sample x(t) belongs 

to a specific time t. 

 

Structure of an RNN 

 In a feedforward neural network like an MLP, the flow of information is from the 

input layer to the hidden layer(s), and then finally to the output layer for the calculated 

predicted values. In RNNs, the input to a hidden layer comes from both the input layer 

and the hidden layer from the previous time step. A simplified representation is 

demonstrated in Figure 18. 
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Figure 18. Comparing architectures of an MLP and an RNN with one hidden layer [54]. 

In Figure 18, x represents the input layer, h represents the hidden layer, and y 

represents the output layer. The looped arrow in the hidden layer h for the RNN structure 

is called the recurrent edge. It represents the flow of information in the hidden layer, 

from the previous time step t-1 to the current time step t. The units, artificial neurons, in 

each layer are not shown, but it is assumed that each layer is a vector of multiple neurons. 

Figure 19 shows the inner workings of a single layer RNN and a multilayer RNN. In both 

cases, each hidden layer receives two inputs – the pre-activation, z-input, from the input 

layer, and the activation of the same hidden layer but from the previous time step t-1. 
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Figure 19. Single layer RNN and multilayer RNN [54]. 

 

Learning Challenges of RNNs 

 RNNs learn using a technique described in [54] called backpropagation through 

time (BPTT). The loss L is defined as the sum of all the loss functions at times t=1 through 

t=T, where T is the last time step. 

𝐿 = ∑ 𝐿(𝑡)𝑇
𝑡=1   (32) 

 

The loss at time 1:t depends on the hidden units of all previous time steps, 1:t because 

there are long-range dependencies associated with sequences. The gradient of the loss is 

computed as follows, 

𝜕𝐿(𝑡)

𝜕𝑾ℎℎ
=

𝜕𝐿(𝑡)

𝜕𝒚(𝑡) ×
𝜕𝒚(𝑡)

𝜕𝒉(𝑡) × (∑
𝜕𝒉(𝑡)

𝜕𝒉(𝑘)
𝑡
𝑘=1 ×

𝜕𝒉(𝑘)

𝜕𝑾ℎℎ
) (33) 
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, where the multiplicative factor ∂h(t)/∂h(k) in Equation (33) is computed as a 

multiplication of adjacent time steps and has t-k multiplications. Thus, multiplying the 

weight t-k times results in wt-k. As a result, if |whh|<1, wt-k becomes very small when t-k is 

large.  

This causes the vanishing gradient problem. This creates the exploding gradient 

problem when |whh|>1, wt-k becomes very large when t-k is large. Therefore, these 

problems can be avoided if |whh|=1. In practice, the long short-term memory (LSTM) 

network is the most popular technique to avoid the vanishing gradient problem. 

 

Long Short-Term Memory 

 LSTMs were first introduced in 1997 [58]. The LSTM is made up of memory 

cells that are equivalent to hidden layer units. Each memory cell has a recurrent edge with 

weight |w|=1, which prevents the vanishing gradient and exploding gradient problem. The 

value associated with this recurrent edge is called the cell state Ck. Thus, along with a 

hidden state, hk, each LSTM cell maintains a cell state Ck. And unlike standard RNN cells 

which have one activation unit per cell, the LSTM has four activation units per cell. 

Figure 20 shows the structure of an LSTM cell. 
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Figure 20. Unfolded LSTM cell [54]. 

 The cell state in the current time step C(t) is calculated by modifying the cell state 

from the previous time step C(t-1) without multiplying with any weight factors. In Figure 

20, x(t) is the input at time t, and h(t-1) represents the hidden units at time t-1. The four 

yellow boxes contain an activation function along with a set of weights. The boxes with 

the sigmoid activation function (σ) are called gates. In an LSTM cell, there are three 

types of gates: 

1. The forget gate (ft) suppresses irrelevant information while letting useful information 

go through. This allows the cell to reset its state to zero without growing indefinitely. 

Equation (34) shows how the forget gate vector, ft, is calculated for an entire LSTM 

layer. The input weight vector of the forget gate, Wxf, is multiplied with the current input 

vector, x(t), and the hidden weight vector of the forget gate, Whf, is multiplied with the 

previous hidden state vector, h(t-1). Then, the results are added with the bias vector of the 
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forget gate, bf, and the summation is passed through a sigmoid activation function, σ, in 

order to get the output vector of the forget gate, ft. 

𝒇𝑡 = 𝜎(𝑾𝑥𝑓𝒙(𝑡) + 𝑾ℎ𝑓𝒉(𝑡−1) + 𝒃𝑓) (34) 

 

2. The input gate (it) and the input node (gt) work together and update the cell state. 

Equation (35) shows how the input gate vector, it, is calculated for an entire LSTM layer, 

and Equation (36) shows how the input node vector, gt, is calculated for an entire LSTM 

layer. The input weight vector of the input gate, Wxi, is multiplied with the current input 

vector, x(t), and the hidden weight vector of the input gate, Whi, is multiplied with the 

previous hidden state vector, h(t-1). Then, the results are added with the bias vector of the 

input gate, bi, and the summation is passed through a sigmoid activation function, σ, in 

order to get the output vector of the input gate, it. Similarly, the input weight vector of the 

input node, Wxg, is multiplied with the current input vector, x(t), and the hidden weight 

vector of the input node, Whg, is multiplied with the previous hidden state vector, h(t-1). 

Then, the results are added with the bias vector of the input node, bg, and the summation 

is passed through a hyperbolic tangent activation function, tanh, in order to get output 

vector of the input node, gt. 

𝒊𝑡 = 𝜎(𝑾𝑥𝑖𝒙
(𝑡) + 𝑾ℎ𝑖𝒉

(𝑡−1) + 𝒃𝑖) (35) 

𝒈𝑡 = tanh(𝑾𝑥𝑔𝒙(𝑡) + 𝑾ℎ𝑔𝒉(𝑡−1) + 𝒃𝑔)(36) 

 

, C(t), the current cell state vector for the entire LSTM layer is computed as shown in 

Equation (37). An element-wise multiplication is performed between the previous cell 

state vector, C(t-1), and the output vector of the forget gate, ft. Another element-wise 
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multiplication is performed between the output vector of the input gate, it, and the output 

vector of the input node, gt. The resulting vector elements are added by an element-wise 

summation operation. 

𝑪(𝑡) = (𝑪(𝑡−1) ⊙ 𝒇𝑡) ⊕ (𝒊𝑡 ⊙ 𝒈𝑡)(37) 

 

3. The output gate (ot) updates the values of the hidden units. The output gate vector, ot, 

for an entire LSTM layer is calculated as shown in Equation (38). The input weight 

vector of the output gate, Wxo, is multiplied with the current input vector, x(t), and the 

hidden weight vector of the output gate, Who, is multiplied with the previous hidden state 

vector, h(t-1). Then, the results are added with the bias vector of the output gate, bo, and 

the summation is passed through a sigmoid activation function, σ, in order to get the 

output vector of the output gate, ot. 

𝒐𝑡 = 𝜎(𝑾𝑥𝑜𝒙(𝑡) + 𝑾ℎ𝑜𝒉(𝑡−1) + 𝒃𝑜) (38) 

 

, h(t), the hidden state vector at the current time steps for an entire LSTM layer is 

calculated as shown in Equation (39). The current cell state vector, C(t), is passed through 

a hyperbolic tangent activation function, tanh. The resulting vector is multiplied with the 

output vector of the output gate, ot, by an element-wise multiplication operation. 

𝒉(𝑡) = 𝒐𝑡 ⊙ tanh(𝑪(𝑡)) (39) 

 

 Just like the MLP model, a list of different RNN hyperparameters were tuned for 

getting the best results. The list includes the network architecture for the number of 
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neurons and layers, activation unit, optimizer, cost or loss function, batch size, learning 

rates, regularization, and dropout. 
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V. RESEARCH METHODOLOGY 

Experimental Procedure 

Three speech emotion corpora were collected from the internet - the Ryerson 

Audio-Visual Database of Emotional Speech and Songs (RAVDESS), the Toronto 

Emotional Speech Set (TESS), the Crowd-sourced Emotional Multimodal Actors Dataset 

(CREMA-D) to create the speech emotion recognition system. At first, the RAVDESS 

corpus was selected for training and optimizing the support vector machine (SVM), the 

multilayer perceptron (MLP), and the recurrent neural network (RNN) model. The 

RAVDESS dataset contains data from all the seven emotion classes used in this work, 

and there is an equal number of male and female actors. Also, the recording quality in 

RAVDESS is better compared to CREMA-D. Furthermore, training the models on a 

single dataset was faster than training them on all three. All these factors made 

RAVDESS an excellent first choice. However, after using the RAVDESS 

hyperparameter settings on the other two datasets, the results were inferior. This was 

because the RAVDESS dataset had very few data, and so the machine had low 

generalization capability when tested on other datasets. For this reason, the model tuning 

strategy was changed to a new strategy described below. 

Three different noise samples were used in order to modify all three speech 

emotion corpora. This was done to train the models on speech data in the presence of 

noise. Most everyday conversations happen with some noise in the background. The 

characteristics of the background noise depend on the surrounding environment of the 

speakers. If the speech emotion system is only trained on clean speech data, it will not 

perform well in real-world applications because the system will pick up noise along with 
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the speech signal and try to process the audio with the added noise. The audio features 

extracted from the audio will be misleading as they will contain components of the noise. 

This will eventually lead to low classification accuracies. Therefore, the models were 

trained and evaluated with datasets containing background noise to create a robust speech 

emotion recognizer. The three background noises selected are the sound of children 

playing in a playground, the ambiance in a shopping mall, and the sound of cars passing 

by on the streets.  These three noise samples represent three completely different 

scenarios. Three different SNR values were selected for adding these noise samples to the 

clean speech – 0 dB, 5 dB, and 10 dB – which introduces a lot more variety to the 

original clean speech datasets. Different sections of the noise files were added to different 

clean speech files to avoid teaching the background noise's machine features during 

training. From RAVDESS, TESS, and CREMA-D, each clean speech file was combined 

with one of the three noise samples in one of the three SNRs to create a noise-added file. 

Thus, instead of training the three machine learning algorithms (SVM, MLP, and 

RNN) on only the RAVDESS dataset, they were trained on a bigger dataset that contains 

the RAVDESS recordings (clean speech), the TESS recordings (clean speech), and the 

CREMA-D recordings (clean speech), along with the noise-added versions of these 

clean-speech files. A special naming convention is used from this point forward to 

simplify referencing these different datasets. This naming convention is explained in 

Table 5. The neutral class in RAVDESS and CREMA-D had fewer data samples than the 

other classes, so it was resampled to match the other classes. The surprise class was 

missing in CREMA-D, so it was resampled when all three datasets were combined. 
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Table 5. Dataset naming convention followed in this research. 

Name Description Data Samples (balanced) 

RAVDESS_Clean Original RAVDESS corpus 1,344 

RAVDESS_Clean_Noise Original RAVDESS corpus 

along with the noise-added 

versions 

2,688 

TESS_Clean Original TESS corpus 2,800 

TESS_Clean_Noise Original TESS corpus along 

with the noise-added versions 

5,600 

CREMA-D_Clean Original CREMA-D corpus 7,626 

CREMA-D_Clean_Noise Original CREMA-D corpus 

along with the noise-added 

versions 

15,252 

Complete_Clean Original RAVDESS, TESS, 

and CREMA-D corpora 

13,041 

Complete_Clean_Noise Original RAVDESS, TESS, 

and CREMA-D corpora along 

with the noise-added versions 

26,082 
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Performance Metrics 

Individual performance metrics have been selected to assess the results of the 

experiments conducted in this research. They are listed below. 

 

Training, Validation, and Test Accuracy 

In machine learning, the dataset for the problem being worked on is initially split 

into two parts – the training set and the test set. The training set is the part of the dataset 

used for training the machine learning algorithm, while the test set is the part of the 

dataset used to get an unbiased evaluation of the model performance. The test set is 

separated from the model during the training process. There is another partition of the 

dataset that comes from the training set. It is called the validation set, and like the test set, 

it is also separated from the model during training. Figure 21 shows how data partitioning 

is done in machine learning. Common ratios for the partitions (training : validation : test) 

are 70:10:20, 75:10:15, and 80:10:10. For this thesis, all datasets were split in the 

80:10:10 ratio, with a 80% of data being reserved for training while the remaining 20% 

being equally split for the validation and test set. This was done to use most of the data 

for training. Also, all three splits were stratified, meaning that there were equal number 

of data samples per emotion class within a split. 

 

Figure 21. Splitting a dataset into the training set, the validation set, and the test set.  

The formula for calculating the training accuracy is given in Equation 40. The 

true labels are the ground truths, i.e., the actual labels of data classes included in the 
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dataset. The machine's number of correct predictions is simply calculated by comparing 

the predicted labels to the true labels. The training accuracy measures how well the 

machine performed when predicting samples from the training set. For computing the 

training accuracy, the machine makes predictions on the data it was trained on; the 

training accuracy is usually the highest among the three classification accuracies. 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐴𝑐𝑐. (%) =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡
× 100(40) 

 

The validation accuracy is computed using Equation (41). It measures the model 

performance on previously unseen data by dividing the total number of correct 

predictions made on the validation set data with the data samples' total number in the 

validation set. 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐. (%) =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡
× 100 (41) 

 

The test accuracy is given by Equation (42). Just like the validation accuracy, it 

measures how the model performs on previously unseen data. The main difference 

between the test accuracy and the validation accuracy is that after getting the validation 

accuracy score, the model can be re-tuned if the score is low or a big gap between 

training accuracy and validation accuracy (overfitting). On the other hand, the test 

accuracy is only computed once, after all the model parameters have been finalized. If a 

model is constantly re-tuned using the test accuracy instead of the validation accuracy, it 

will cause that model to overfit to the test data. The test accuracy is therefore, an 

unbiased representation of model performance. 

𝑇𝑒𝑠𝑡 𝐴𝑐𝑐. (%) =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡
× 100 (42) 
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These three classification accuracies are the most popular performance metrics for 

machine learning and deep learning. A good machine learning model has high scores for 

all three classification accuracies, indicating a strong prediction capability. Furthermore, 

the model has almost similar validation and test accuracies and does not have a large gap 

between the training accuracy and validation accuracy. 

 

Precision and Recall 

Even though the classification accuracy gives an idea of how well the model 

performs, it does not indicate how the model is performing when classifying individual 

classes. The metrics of precision and recall become relevant in evaluating different 

classification rates. The average precision score is calculated by dividing the sum of true 

positives across all classes by the sum of true positives and false positives. For example, 

when classifying the happy emotion, the true positives are the data samples that were 

correctly classified as “happy.” The false positives are the data samples classified as 

“happy,” but were, in fact, one of the other six emotions. The false negatives are the 

“happy” data samples that were misclassified as other emotions. Finally, the true 

negatives are the data samples that were correctly classified as other emotions. Equation 

43 shows the average precision score base on the true positive predictions over the 

aggregate of the true and false positive sample space. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (43) 
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The average recall score is calculated by dividing the sum of true positives by the sum of 

true positives and false negatives across all classes. Equation 44 summarizes this 

computation of the recall statistical metric. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (44) 

 

Therefore, the precision quantifies the number of correct predictions made on the 

test set out of all the predictions labeled by the machine as “true,” while the recall 

quantifies the number of correct predictions made on the test set out of all the actual 

“true” instances. These two metrics are beneficial for classification problems, especially 

when the classes are not balanced. In this work, the average precision and recall scores 

were calculated for models making predictions on the test set. 

 

Learning Curves 

In learning curves, the training accuracy and validation accuracy are plotted 

against the number of training samples. Figure 22 shows some examples of learning 

curves. The vertical axis (y-axis) represents the classification accuracy, while the 

horizontal axis (x-axis) represents the number of training samples used for training the 

model. Learning curves provide a visual cue for whether a model is underfitting or 

overfitting. In machine learning, the bias error is the error caused by the learning 

algorithm's wrong assumptions, and the variance error is the error caused by the model 

being over-sensitive to the small changes in the training set [59]. If a model is not 

complex enough to learn the data's properties, it is said to have high bias and will fail to 

correctly classify the inputs, which will result in inadequate training and validation 



 

56 

accuracy. This condition is called underfitting and can be rectified by increasing the 

number of parameters used in the model or decreasing the degree of regularization (error 

penalty). Figure 22(a) shows an example of an underfitted model.  

In contrast, if too many parameters are being used in training a model, that model 

will overly complicate the learning process and adapt to the training set. This results in 

high variance, and the model fails to generalize when introduced to previously unseen 

data from the validation set. This condition is called overfitting, and it can be corrected 

by either using more training data, reducing the number of parameters, or increasing the 

strength of regularization used. Overfitting is depicted in Figure 22(b). Figure 22(c) 

shows learning curves with a good balance between bias and variance. 

 

Figure 22. Learning curves showing (a) underfitting, (b) overfitting, and (c) good bias-variance 

trade-off [54]. 
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Accuracy Curves 

Another group of plots used to detect underfitting and overfitting are accuracy 

curves. They are very similar to learning curves, with the only difference being the 

quantity represented on the horizontal axis (x-axis). For accuracy curves, the horizontal 

axis shows the number of epochs, i.e., the number of passes over the training set. For 

example, if a model is trained over the entire training set ten times, the model is trained 

with ten epochs. Since artificial neural networks are trained using multiple epochs, these 

types of curves are useful for the MLP and RNN models used in this work. Figure 23. 

shows an example of accuracy curves for a well-performing model. 

 

Figure 23. Accuracy curves, showing the training and validation accuracies against the number of 

epochs.  

 

Loss Curves 

Loss curves are plots of the training and validation losses against the number of 

epochs used in model training. Like accuracy curves, loss curves are used to evaluate the 

MLP and RNN models' performance in this study. If the validation loss keeps increasing 
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with the number of epochs instead of decreasing, as seen in Figure 24, it indicates 

overfitting. The categorical cross-entropy loss is a loss function used in multiclass 

classification problems. This loss function calculates the cross-entropy loss between the 

class labels and the predictions made by the machine. In this work, the categorical cross-

entropy loss is the cost function that was minimized for both the MLP and the RNN 

model. 

 

Figure 24. Loss curves, showing the case of an overfitted model. 

 

Confusion Matrix 

A confusion matrix is a two-dimensional array of numbers. One of its axes 

represents the true labels of the validation data, while the other axis represents the 

predicted labels of the same data samples. Figure 25 demonstrates a typical confusion 

matrix. In this example, the vertical axis is for the true labels, and the horizontal axis is 

for the predicted labels. All seven classes are labeled on both axes. The diagonal numbers 

(from the top left corner to bottom right corner) represent the two axes’ labels. These 
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numbers represent the number of data samples that the machine was able to correctly 

classify because, for these numbers, the predicted labels match the true labels. All other 

numbers outside this diagonal represent the number of data samples misclassified by the 

machine. The total number of data samples belonging to any class in the validation set 

can be found by adding all the numbers on a straight line corresponding to that label on 

the true label axis (in this case, all numbers in a row). The confusion matrix gives an idea 

of how well the machine is predicting data from each class. 

 

Figure 25. A confusion matrix for a dataset with seven classes. 

 

K-fold Cross-validation 

In this study, all model hyperparameters were tuned by using the same data 

shuffle. This was done by setting the random_state variable in Python to zero. Doing this 

was to get the same output scores for running the same program multiple times. This 

way, when tuning a certain hyperparameter, different values of that hyperparameter were 

easily compared to see which gave the best results for the same data samples. Shuffling 

the data for each different value of the hyperparameter would have made the comparison 
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invalid since each model would have been trained, validated, and tested on different data 

samples. Another way of tuning hyperparameters is by using k-fold cross-validation [54]. 

In this technique, the training data is split into k folds (or sections), where k-1 folds are 

used as the training set while the remaining fold is used as the validation set. The model 

is trained and validated a total of k times, each using a different fold for the validation set. 

Figure 26 shows the concept of a 10-fold cross-validation. The final performance score, 

depicted as E in Figure 26, is the average score for all ten experiments. 

 

Figure 26. Partitioning the training set for 10-fold cross-validation [54]. 

K-fold cross-validation provides a useful model performance estimate. However, 

due to the large number of experiments performed in this study and the large number of 

hyperparameters tuned for each model, it would drastically increase the computation time 

in hyperparameter tuning. The only sets of experiments in this thesis where k-fold cross-

validation was used was when the SVM models' learning curves were computed and 

when the classification accuracy was calculated for the final models. 
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Methodology 

The flow diagram shown in Figure 27 explains how the model hyperparameters 

were tuned during the training phase of a model. At first, a speech emotion corpus was 

selected. Then framing and windowing were applied in data preprocessing. After that, the 

low-level descriptors were extracted from the audio files, and functionals, such as mean 

and standard deviations were computed across all audio frames. This resulted in the audio 

features that were then scaled using standardization. Standardization is performed by 

subtracting the mean of a feature from that feature value and then dividing it by the 

feature’s standard deviation. This ensures that the feature values have a mean of zero and 

has a standard deviation of one. Machine learning algorithms like SVM are sensitive to 

unscaled data. The next step was to partition the data into the training set, the validation 

set, and the test set. After that, the initial hyperparameter values were set, and the 

machine learning algorithm was trained on the training set. Once training was done, the 

model performance was evaluated on validation data. If the performance metrics 

indicated a case of either overfitting or underfitting, the hyperparameters were re-tuned, 

and the machine learning algorithm was trained again using the new hyperparameter 

values. This process was repeated until a fair bias-variance tradeoff was achieved. Once 

the model was finalized, an unbiased performance evaluation was obtained using the test 

set. The performance metrics from this final evaluation indicate of how the model will 

perform when exposed to previously unseen data. 
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Figure 27. Flow diagram showing the steps of model training and hyperparameter tuning. 

The hyperparameter tuning experiments were conducted on the 

Complete_Clean_Noise dataset using only the custom feature set. These hyperparameter 

values were also used when the algorithms were trained on all other datasets listed in 

Figure 28. Therefore, after the hyperparameter tuning experiments were completed, 48 

experiments were conducted to create the speech emotion recognition system – two 

feature sets by three machine learning classifiers by eight speech emotion datasets. All 

these combinations are shown in Figure 28.  

 

Figure 28. The 48 different experiments conducted for building the speech emotion classifier. 
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Once all 48 experiments were completed, one model was selected from each type 

of machine learning classifier. These were combined using ensemble learning. In 

supervised machine learning, ensemble learning is the procedure of combining multiple 

machine learning algorithms to classify the same data. There are different forms of 

ensemble learning. The one used in this study is called voting. In voting, each machine 

learning model's predictions are considered, and the final prediction of the system is the 

class, which occurs the most among the predictions. Once the speech emotion recognition 

system was finalized using ensemble learning, another round of ensemble learning was 

performed. This time, the facial expression recognition system created in [45] was 

combined with the speech emotion recognition system developed in this work to create a 

robust, multi-modal emotion recognition solution. 
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Computational Resources 

Programming 

For this thesis, the Python version 3.7.4 was used for the development of the 

machine learning models. MATLAB version R2018b was used for background noise 

addition and verification of results. Table 6 lists all the Python libraries used, along with 

their versions. The Python projects are susceptible to package versions due to the 

dependencies among packages. One way to avoid this is to create separate Python 

environments, i.e., install separate Python versions, for each project. 

Table 6. Python libraries used in this research. 

Library name Version 

scikit-learn 0.23.2 

joblib 0.14.1 

tensorflow 2.1.0 

tensorflow-estimator 2.1.0 

h5py 2.10.0 

numpy 1.18.5 

pandas 1.1.1 

matplotlib 3.1.3 

praat-parselmouth 0.3.3 

librosa 0.8.0 

numba 0.48.0 
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Hardware 

Besides personal workstations, Texas State University’s LEAP cluster and HiPE 

research group’s servers were used to run the experiments in this study. The majority of 

the experiments were run on the LEAP cluster. A cluster is a group of servers, and a 

server is a single workstation computer with high computational capabilities. Each server 

in LEAP has 28 processing cores, and there are 123 servers available for use. The 

specifications of the LEAP cluster are given in Table 7. 

Table 7. Specifications of the LEAP cluster [60]. 

CPU type Intel Xeon E5-2680v4 

Processor cores 3,532 

CPU speed 2.4 GHz 

Peak performance 135 TFlops 

CPU cores per node 28 (per compute-node) 

Nodes 123 

Memory 18 TB 

Memory per core 4.5 GB (compute) 

Disk 48 TB 

Operating system Linux (Cent OS) 

Batch system SLURM 

 

 The HiPE servers were used for running some of the experiments. These servers 

are accessible only to the HiPE research group members and proven to be very useful, 

mostly when the LEAP cluster was busy. One advantage of the HiPE servers over the 

LEAP servers is that the HiPE servers have graphics processing units (GPUs) equipped. 

This additional hardware accelerates model training when deep learning packages such as 
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TensorFlow are used.  TensorFlow is optimized to run on NVIDIA GPUs, making full 

use of NVIDIA’s CUDA cores. Table 8 summarizes the specifications of the HiPE 

servers. 

Table 8. Specifications of the HiPE servers [61]. 

 PowerEdge C4130 Rack Servers PowerEdge R740 Server 

CPU type Dual Intel Xeon E5-2640 v4 / 

2.4GHz / 25M Cache 

Dual Intel Xeon Gold / 2.3GHz / 

24.75M Cache 

CPU cores 20 Cores / 40 Threads 18 Cores / 36 Threads 

Memory 16 GB RDIMM x8 Data Width 

(128GB) 

16 GB RDIMM x12 Data Width 

(192GB) 

Disk Dual 800 GB Solid State Drive 

uSATA 

Dual 1.2TB Solid State Drive SATA 

Operating System Linux (CentOS 7) Linux (CentOS 7) 

Accelerator NVIDIA Tesla V100 for PCIe (x2) NVIDIA Tesla V100 for PCIe (x2) 
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VI. RESULTS AND DISCUSSION 

 The Complete_Clean dataset is comprised of all the original clean speech 

utterances of the Ryerson Audio-Visual Database of Emotional Speech and Songs 

(RAVDESS), the Toronto Emotional Speech Set (TESS), and the Crowd-sourced 

Emotional Multimodal Actors Dataset (CREMA-D). The Complete_Clean_Noise dataset 

was created by adding three noise samples in three different SNR values to the 

Complete_Clean dataset. The three noise samples used for background inclusion in the 

samples are a recording of children playing in a playground, a recording of a shopping 

mall, and a recording of cars passing by on the streets. SNRs values used are 0 dB, 5 dB, 

and 10 dB. The noise samples were added to the clean speech utterances using 

MATLAB, and for each clean speech, a noise sample, an SNR value, and a specific 

section of the noise file were randomly picked by the MATLAB code. Since the 

Complete_Clean_Noise corpora had class imbalance, the minority classes were 

resampled (with replacement) to match the sample count of the majority classes. The 

neutral class samples were lower in both RAVDESS and CREMA-D, and the surprise 

class was missing from CREMA-D. The hyperparameters of all the models discussed in 

this section were tuned while being trained on the Complete_Clean_Noise dataset. The 

data split of 80:10:10 was used, where 80% of the dataset was used in training the 

models, while 10% was used for validation and the other 10% was used for testing. Each 

data split was stratified, meaning that there were equal number of data samples per 

emotion class in each of the three data splits (training, validation, and test). 
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Experiments with Custom Feature Set 

 Python’s Librosa library was used to extract the custom feature set from all the data 

samples. The customization included 36 low-level audio descriptors - the Mel-frequency 

cepstral coefficients (MFCCs), the root-mean-square (RMS) energy, the spectral contrast, 

and the polynomial coefficients. Among these low-level descriptors, the MFCCs and the 

RMS energy were used in most of the prior speech emotion recognition related work. The 

other descriptors were mainly used in music classification tasks. However, they have 

shown to yield good classification accuracies when applied to emotion classification task 

in this work. A total of 62 audio features were created using the four low-level audio 

descriptors of the custom feature set for the SVM and MLP models. They are 26 mean 

values of first 26 MFCCs across all audio frames, 26 standard deviations of first 26 MFCCs 

across all audio frames, one mean RMS energy across all audio frames, seven mean values 

of spectral contrast across all audio frames, and two mean values of polynomial coefficients 

across all audio frames. No functionals were applied for the RNN model since the low-

level descriptors extracted per frame are the sequences that the RNN learns from. The low-

level descriptors were directly used as the audio features for the RNN. 

 

SVM Model with Custom Feature Set 

 In Figure 29, the learning curves were plotted for the SVM model trained on the 

Complete_Clean_Noise dataset using the custom feature set. Figure 30 shows the 

confusion matrix for this model, and Table 9 gives a summary of the results. For this 

model, the radial basis function (RBF) kernel was used, with C=10.0 and γ=0.01. The 

Scikit-learn library was utilized to develop the SVM model in Python. 
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Figure 29. Learning curves for the SVM model trained on the Complete_Clean_Noise corpus, using 

the custom feature set. 

 

 

 

Figure 30. Confusion matrix for the SVM model trained on the Complete_Clean_Noise corpus, using 

the custom feature set. 
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Table 9. Result summary for the SVM model trained on the Complete_Clean_Noise corpus, using the 

custom feature set. 

Data samples in corpus 26,082 

(3,726 samples * 7 emotion classes) 

Training : validation : test 80:10:10 

Model training time (LEAP) 1 minute and 13 seconds 

Training accuracy 75.0 % 

Validation accuracy 65.2 % 

Test accuracy 66.1 % 

Precision 66.4 % 

Recall 66.1 % 

  

The learning curves of this model show that the validation accuracy closely follows 

the training accuracy. This is due to the values picked for the C and γ parameters, which 

ensured that the model did not overfit the training data. In the confusion matrix of the 

experiment, if all numbers across a row are added, it gives the total number of data samples 

in the test set for the emotion label mentioned in that row’s name. Since the test set was 

equal to 10 % of the entire dataset, it contained a total of 2,604 data samples. For the 

stratified test set with seven emotion classes, this resulted in 2,604/7 = 372 data samples 

per emotion class, each is equal to the sum of the numbers in each row of the confusion 

matrix. From the confusion matrix, it can be seen that the surprise emotion was the most 

accurately detected emotion, followed by anger, sadness, and neutral. The time taken to 

train the SVM model on the LEAP server was only 1 minute and 13 seconds.  
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MLP Model with Custom Feature Set 

 The number of artificial neuron units used in an artificial neural network and the 

number of layers are hyperparameters that can be tuned for getting high accuracies. There 

is no golden rule for selecting the number of neurons or layers. Researchers usually 

experiment with these parameters and select values that provide the highest performance. 

A common convention among computer scientists is to use log BASE-2 number, like 64, 

128, and 256 [62]. Another convention is to use increments of 50 or hundred, like 50, 100, 

and 200 [63]. The number of input-layer neurons is equal to the number of input features, 

and the number of output-layer neurons is equal to the number of classes in the dataset. 

Even though there is no rule for selecting the number of neurons in the hidden layer(s), 

there are some rules-of-thumb that can be followed, according to [64]. To design the MLP 

architecture of this model, number of neurons, such as 10, 50, 100, 200, and 500, were 

selected for each layer. The rules-of-thumb described in [64] were used to select the final 

number of neurons and layers for the high-performing architectures. The architecture for 

the MLP model that used the custom feature set is shown in Figure 31. There are 62 units 

in the input layer, which correspond to the number of input features in the custom feature 

set. The first hidden layer has 105 units, which is 170% of the number of input units used. 

The second hidden layer has 62 units, which is equal to the number of input neurons. 

Finally, the output layer has seven units, corresponding to the seven emotion classes used 

in this work. 
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Figure 31. Architecture of the MLP used with the custom feature set. 

 The Adam optimizer was used in order to minimize the loss function, which in 

this case is the categorical cross-entropy loss for the MLP model. The rectified linear unit 

(ReLU) activation function was used and for the output units, the Softmax activation 

function was used, which provides the prediction accuracies for each class for the hidden 

layer units. Instead of using a fixed learning rate, a learning rate scheduler was used to 

change the learning rate as the training progressed. An inverse time decay function was 

used as the learning rate schedule, with an initial learning rate of 0.01, 1000 decay steps, 

and a decay rate of 80%. The training, validation, and testing data were each divided into 

batches of size sixteen, and 50 epochs were used during training. Dropout is a 

regularization technique where a fraction of the connections between the hidden layer 

neurons are randomly dropped during training. This ensures that the model is not 

overfitting to the training data. During the validation and testing phases, however, all the 

neurons are connected, i.e., no dropout is used. After trying out different dropouts at 

different positions, the best combination was used. A dropout of 30% was used between 
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the two hidden layers, and a 10 % dropout was used between the second hidden layer and 

the output layer. The accuracy curves for the MLP model are plotted in Figure 32 while 

the loss curves are plotted in Figure 33. Figure 34 shows the confusion matrix of this 

model. The result summary is given in Table 10. The model was created using the Keras 

API from the TensorFlow library in Python. 

 

Figure 32. Accuracy curves for the MLP model trained on the Complete_Clean_Noise corpus, using 

the custom feature set. 
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Figure 33. Loss curves for the MLP model trained on the Complete_Clean_Noise corpus, using the 

custom feature set. 

 

 

 

Figure 34. Confusion matrix for the MLP model trained on the Complete_Clean_Noise corpus, using 

the custom feature set. 
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Table 10. Result summary for the MLP model trained on the Complete_Clean_Noise corpus, using 

the custom feature set. 

Data samples in corpus 26,082 

(3,726 samples * 7 emotion classes) 

Training : validation : test 80:10:10 

Model training time (LEAP) 1 minute and 29 seconds 

Training accuracy 68.1 % 

Validation accuracy 65.9 % 

Test accuracy 65.7 % 

Precision 83.3 % 

Recall 50.2 % 

 

 For this MLP model, the accuracy curves are very close, and the same can be 

observed for the loss curves. This is a sign of a properly tuned neural network. During the 

first round of experiments, the model was trained without any regularization. The resulting 

curves and classification scores indicated a huge overfitting issue. After introducing 

dropout between the layers, the gap between the validation accuracy and the training 

accuracy was reduced. Also, the learning rate was kept constant during the first few 

experiments. The problem with that was the optimizer kept overshooting the minimum loss 

due to the fixed learning rate being unnecessarily high at that stage of the training. This 

was visible from the rising loss curves. After using a learning rate scheduler, which slowly 

reduced the learning rate as training progressed, the losses seemed to decrease consistently. 

The test accuracy of this model was about one percent less than that of the SVM model. 

However, the precision score was higher in this model. The training of this MLP model 

was halted after 50 epochs because the validation loss was almost steady after the 50th 
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epoch. Again, the surprise emotion was the most accurately classified emotion, followed 

by anger and sadness, looking at the confusion matrix. The training time of this model was 

similar to that of the SVM. 

 

RNN Model with Custom Feature Set 

 The RNN layers created using Keras requires a tensor as the input, compared to 

the 2D-structured inputs in MLP (batch, features). A tensor is a three-dimensional array 

of numbers. For RNNs, the three dimensions are the number of data samples, the number 

of features, and the number of time steps (batch, time steps, features). The audio frames 

were used as the time steps, while the features were the low-level descriptors extracted 

per frame to process the sequential data. For this reason, all the low-level descriptors 

extracted using the custom feature set were used as the audio features. In this case, each 

low-level descriptor value is extracted for each audio frame, which forms a sequence of 

data suitable to be processed by an RNN. The audio frames represent the time steps of the 

input data. Meaning, once the current audio frame has been processed, with all the low-

level descriptors extracted and fed to the network, the next audio frame is processed. 

Using a sampling rate of 16 kHz and a frame length of 512 samples (32 ms), around 150 

audio frames were processed per audio file. The technique used to determine the number 

of neurons in each layer was similar to the one used in the MLP model trained on the 

Complete_Clean_Noise dataset using the custom feature set. However, since LSTM 

layers are used instead of standard RNN layers, each hidden recurrent unit is an LSTM 

cell. Figure 7 shows the architecture for the RNN network used in this model. The input 

layer has 36 units, corresponding to the 36 low-level descriptors of the custom feature set. 
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The first LSTM has 36 cells, and the second LSTM layer has 12 cells. The output layer 

has seven units. Figure 35 shows the architecture of the RNN model. The LSTM cells are 

represented by a recurrent edge on the units. 

 

Figure 35. Architecture of the RNN used with the custom feature set. 

 The Adam optimizer was used along with the categorical cross-entropy loss 

function. The hyperbolic tangent (tanh) function was the activation function for the 

LSTM cells, and the sigmoid (σ) function was the recurrent activation function. The 

Softmax function was used as the activation for the output units. The inverse time decay 

function is the learning rate scheduler, with 0.01 as the initial learning rate, 1,000 as the 

decay steps, and 80% as the decay rate. A batch size of sixteen was used, and the total 

number of epochs used during training was 50. A 30% dropout was placed between the 

two LSTM layers and a 30% dropout between the second LSTM layer and the output. A 

20% recurrent dropout was placed for the LSTM cells in the first layer. Figure 36 shows 

the accuracy curves of the RNN model, and Figure 37 shows the loss curves. The 
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confusion matrix for this model is shown in Figure 38. Table 11 gives the result 

summary. 

 

Figure 36. Accuracy curves for the RNN model trained on the Complete_Clean_Noise corpus, using 

the custom feature set. 

 

 

 

Figure 37. Loss curves for the RNN model trained on the Complete_Clean_Noise corpus, using the 

custom feature set. 



 

79 

 

Figure 38. Confusion matrix for the RNN model trained on the Complete_Clean_Noise corpus, using 

the custom feature set. 

 

 

Table 11. Result summary for the RNN model trained on the Complete_Clean_Noise corpus, using 

the custom feature set. 

Data samples in corpus 26,082 

(3,726 samples * 7 emotion classes) 

Training : validation : test 80:10:10 

Model training time (LEAP) 46 minute and 37 seconds 

Training accuracy 67.9 % 

Validation accuracy 64.9 % 

Test accuracy 63.7 % 

Precision 75.3 % 

Recall 53.7 % 
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 Just as it was for the MLP model, the validation loss for the RNN model stopped 

decreasing after the 50th epoch, which is why the training was stopped at that point. Using 

more epochs would overexpose the model to the training data, resulting in a higher training 

accuracy but lower generalizing ability to previously unseen data. The RNN model took 

over 46 minutes to train, which is the longest training time among all three models. The 

average precision of this model was higher than that for the SVM model. Compared to the 

MLP model, the classification accuracies and precision score were slightly lower in this 

model – the RNN model had a higher average recall. Like the SVM model, the top four 

most accurately predicted emotions for this model were surprise, anger, sad, and neutral. 
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Experiments with Partial GeMAPS Feature Set 

 The Geneva Minimalist Acoustic Parameter Set (GeMAPS) contains a total of 62 

audio features. An extended version of the feature set, extended GeMAPS (eGeMAPS), 

contains 88 audio features. The GeMAPS features can be extracted using the OpenSMILE 

toolkit. The use of any external toolkits was avoided for feature extraction since this 

study aimed to build a speech emotion recognition system using Python. Even if it is 

possible to use both OpenSMILE and Python to predict real-time emotions, the cross-

platform implementation would likely increase the computation time. Just like 

OpenSMILE, PRAAT is another useful software package that allows users to perform 

various types of audio processing. The Parselmouth library in Python allows the users to 

use PRAAT's functionality in Python scripts directly. This library was used to extract the 

features from this feature set. Since it was not possible to extract all the features of 

GeMAPS using Parselmouth, a total of 36 audio features were selected from the 

eGeMAPS feature set and used in this work – hence the reason for calling it the “partial” 

GeMAPS feature set. These 36 features were obtained using functionals on fifteen low-

level descriptors – pitch (log F0), loudness (intensity), the first three formants frequencies 

(F1, F2, and F3), the bandwidths of the first three formants, the first four MFCCs, 

harmonics-to-noise ratio (HNR), jitter, and shimmer. For the SVM and MLP models, 36 

features were used to train the algorithms. These 36 features include the mean, the 

standard deviation, the 20th percentile, the 50th percentile, the 80th percentile, and the 

range of 20th to 80th percentile of the pitch and loudness, and the mean and standard 

deviations for the MFCCs, formant frequencies, formant bandwidths, and HNR, and local 
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absolute jitter, and local shimmer. For the RNN model, the fifteen low-level descriptors, 

extracted per audio frame, were used as the audio features. 

 

SVM Model with Partial GeMAPS Feature Set 

 In Figure 39, the learning curves were plotted for the support vector machine 

(SVM) model trained on the Complete_Clean_Noise dataset using the partial GeMAPS 

set. Figure 40 shows the confusion matrix for this model, and Table 12 summarizes the 

results. This model, just like the SVM model created using the custom feature set, uses 

the RBF kernel, with C=10.0 and γ=0.01. Using these hyperparameter values yielded the 

best bias-variance tradeoff out of all values used. 

 

Figure 39. Learning curves for the SVM model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 
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Figure 40. Confusion matrix for the SVM model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 

 

 

Table 12. Result summary for the SVM model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 

Data samples in corpus 26,082 

(3,726 samples * 7 emotion classes) 

Training : validation : test 80:10:10 

Model training time (LEAP)  55 seconds 

Training accuracy 68.0 % 

Validation accuracy 58.7 % 

Test accuracy 58.7 % 

Precision 58.2 % 

Recall 58.7 % 
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The SVM model trained using the partial GeMAPS feature set showed an overall 

lower performance than the SVM model trained using the custom feature set. However, 

despite being around half the custom feature set's size, the differences in the two feature 

set models' performance metrics were only about ten percent. This validates the usefulness 

of the partial GeMAPS features in speech emotion recognition. The lower training time is 

due to the lower number of features used during training. Furthermore, just like the 

previous SVM model, this model could predict the surprise emotion samples with the 

highest accuracy, followed by anger, sad, and neutral. The learning curves show no signs 

of overfitting. 

 

MLP Model with Partial GeMAPS Feature Set 

 For the MLP model, the network’s architecture was constructed similarly to the 

one constructed for the MLP model that used the custom feature set. The network was 

scaled down to account for the lower number of input features. The input layer had 36 

units. The first hidden layer had 61 units, and the second hidden layer had 36 units. The 

output layer had seven units. All other hyperparameter values were kept the same from 

the MLP model that used the custom feature set, as this gave the best bias-variance 

tradeoff. The accuracy curves for this MLP model are plotted in Figure 41, while the loss 

curves are plotted in Figure 42. Figure 43 shows the confusion matrix of this model. The 

result summary is given in Table 13. It can be noticed that the validation loss is lower 

than the training loss. This can be attributed to the use of dropout during training.  
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Figure 41. Accuracy curves for the MLP model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 

 

 

 

Figure 42. Loss curves for the MLP model trained on the Complete_Clean_Noise corpus, using the 

partial GeMAPS feature set. 
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Figure 43. Confusion matrix for the MLP model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 

 

 

Table 13. Result summary for the MLP model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 

Data samples in corpus 26,082 

(3,726 samples * 7 emotion classes) 

Training : validation : test 80:10:10 

Model training time (LEAP) 1 minute and 23 seconds 

Training accuracy 58.3 % 

Validation accuracy 58.2 % 

Test accuracy 57.9 % 

Precision 79.5 % 

Recall 38.2 % 

 



 

87 

Comparing this model with the SVM model created using the partial GeMAPS 

feature set, it can be seen that the model performs better overall. The top four correctly 

classified emotions remain to be surprise, anger, sad, and neutral. However, the anger class 

was more correctly classified than the surprise class, and the neutral class was more 

correctly classified than the sad class. For this model, the accuracy curves are very similar, 

indicating a well-tuned model, although most of the hyperparameter values were imported 

from the MLP model trained using the custom feature set. Moreover, even though the 

performance scores of this MLP model were lower than the performance scores of the MLP 

model trained using the custom feature set, the average precision value of this model is 

very close to the other MLP model. The MLP model trained using the partial GeMAPS 

could predict more neutral class samples than the MLP model trained using the custom 

feature set.  

 

RNN Model with Partial GeMAPS Feature Set 

 The RNN model developed using partial GeMAPS features on the 

Complete_Clean_Noise had fifteen input neurons, corresponding to the fifteen low-level 

descriptors extracted per audio frame (time step). The first LSTM layer had fifteen cells, 

and the second LSTM layer had twelve cells. The output layer had seven units. The 

dropouts were reduced from the previous RNN model to 20 %. All other hyperparameter 

values were imported from the RNN model that used the custom feature set. The 

accuracy curves for this RNN model are shown in Figure 44, and the loss curves are 

shown in Figure 45. Figure 46 shows the confusion matrix, and Table 14 shows list the 

result summary. 
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Figure 44. Accuracy curves for the RNN model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 

 

 

 

Figure 45. Loss curves for the RNN model trained on the Complete_Clean_Noise corpus, using the 

partial GeMAPS feature set. 
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Figure 46. Confusion matrix for the RNN model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 

 

 

Table 14. Result summary for the RNN model trained on the Complete_Clean_Noise corpus, using 

the partial GeMAPS feature set. 

Data samples in corpus 26,082 

(3,726 samples * 7 emotion classes) 

Training : validation : test 80:10:10 

Model training time (LEAP) 16 minutes 

Training accuracy 60.2 % 

Validation accuracy 59.9 % 

Test accuracy 57.9 % 

Precision 75.7 % 

Recall 41.9 % 
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 Two interesting occurrences can be seen for the performance measures of this RNN 

model. The first is that this model had a higher average precision score than the RNN model 

trained using the custom feature set. Secondly, the validation and test accuracies are only 

5 % lower than for the RNN model trained using the custom feature set.  
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Comparing Custom Feature Set Models 

 The SVM model created using the custom feature set was tested on the other 

datasets used in this work. The results are given in Table 15. Similarly, the performances 

of the MLP and RNN models using a custom feature set was also compared in Tables 16 

and 17, respectively. It can be observed from these tables that the MLP models had the 

highest precision score, while the SVM models showed the lowest precision score. The 

SVM, MLP, and RNN models performed extraordinarily well with the TESS dataset. The 

TESS dataset had only two female participants who recorded 200 similar-sounding 

sentences in all seven emotions, with no intensity change. This lack of variation did not 

pose the models quickly picked up any problems for the models during prediction as to 

the data samples' features. All models had the lowest performance metrics for the 

CREMA-D dataset. This speech emotion corpus had the highest number of participants - 

a total of 91 actors. Furthermore, each recording was done in four different emotional 

intensities. The models struggled to learn all the variations in the data.  

Also, some of the models were overfitting to the training data. This is mainly 

because the hyperparameters were tuned on the Complete_Clean_Noise dataset and were 

not specifically tuned to other datasets. Tuning the hyperparameters for each speech 

corpus would make the comparison between the models invalid. 
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Table 15. Comparing the performance of the SVM model created using the custom feature set on 

different datasets. 

Corpus Training % Valid. % Test % Precision Recall 

RAVDESS_Clean 99.0 % 85.8 % 80.6 % 81.8 % 80.6 % 

RAVDESS_Clean_Noise 87.0 % 61.6 % 58.2 % 58.9 % 58.2 % 

TESS_Clean 100 % 99.6% 100 % 100 % 100 % 

TESS_Clean_Noise 99.0 % 98.6 % 97.7 % 97.7 % 97.7 % 

CREMA-D_Clean 86.0 % 54.9 % 57.6 % 57.7 % 57.6 % 

CREMA-D_Clean_Noise 79.0 % 51.1 % 52.1 % 51.9 % 52.1 % 

Complete_Clean 81.0 % 71.9 % 73.0 % 74.3 % 73.0 % 

Complete_Clean_Noise 75.0 % 65.2 % 66.1 % 66.4 % 66.1 % 

 

 

Table 16. Comparing the performance of the MLP model created using the custom feature set on 

different datasets. 

Corpus Training % Valid. % Test % Precision Recall 

RAVDESS_Clean 94.5 % 82.8 % 77.6 % 77.9 % 76.1 % 

RAVDESS_Clean_Noise 80.6 % 64.2 % 56.7 % 66.3 % 50.0 % 

TESS_Clean 99.9 % 100.0 % 100.0 % 100.0 % 100.0 % 

TESS_Clean_Noise 99.5 % 98.0 % 98.8 % 98.8 % 98.8 % 

CREMA-D_Clean 72.7 % 54.5 % 54.7 % 61.5 % 44.5 % 

CREMA-D_Clean_Noise 60.7 % 51.9 % 54.5 % 65.7 % 36.2 % 

Complete_Clean 75.9 % 70.8 % 69.5 % 80.5 % 60.0 % 

Complete_Clean_Noise 68.1 % 65.9 % 65.7 % 83.3 % 50.3 % 
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Table 17. Comparing the performance of the RNN model created using the custom feature set on 

different datasets. 

Corpus Training % Valid. % Test % Precision Recall 

RAVDESS_Clean 94.6 % 76.1 % 61.2 % 61.2 % 59.0 % 

RAVDESS_Clean_Noise 85.0 % 59.3 % 51.5 % 55.9 % 49.6 % 

TESS_Clean 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 

TESS_Clean_Noise 99.8 % 99.3 % 99.6 % 99.6 % 99.6 % 

CREMA-D_Clean 67.7 % 49.0 % 55.0 % 58.3 % 47.1 % 

CREMA-D_Clean_Noise 59.9 % 51.2 % 51.0 % 58.7 % 40.5 % 

Complete_Clean 74.3 % 66.5 % 64.5 % 72.1 % 57.3 % 

Complete_Clean_Noise 67.9 % 64.9 % 63.7 % 75.4 % 53.7 % 
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Comparing Partial GeMAPS Feature Set Models 

 The performances of the SVM, MLP, and RNN models created using the partial 

GeMAPS feature set were compared when used with other datasets used in this work. 

The results are given in Tables 18, 19, and 20, respectively. The results obtained from 

these models were similar to those obtained from the models trained using the custom 

feature set, except that the classification accuracies were lower. The SVM models had the 

worst precision scores, and the MLP models had the highest precision scores. The SVM, 

MLP, and RNN models performed best on the TESS corpus and struggled the most on 

the CREMA-D corpus. 

Table 18. Comparing the performance of the SVM model created using the partial GeMAPS feature 

set on different datasets. 

Corpus Training % Valid. % Test % Precision Recall 

RAVDESS_Clean 90.0 % 66.4 % 56.7 % 57.7 % 56.7 % 

RAVDESS_Clean_Noise 76.0 % 52.2 % 52.6 % 54.3 % 52.6 % 

TESS_Clean 99.0 % 97.1 % 99.3 % 99.3 % 99.3 % 

TESS_Clean_Noise 97.0 % 91.4 % 94.5 % 94.5 % 94.5 % 

CREMA-D_Clean 69.0 % 52.1 % 54.2 % 53.4 % 54.2 % 

CREMA-D_Clean_Noise 61.0 % 50.5 % 49.6 % 49.4 % 49.6 % 

Complete_Clean 76.0 % 62.7 % 65.2 % 65.9 % 65.2 % 

Complete_Clean_Noise 68.0 % 58.7 % 58.7 % 58.2 % 58.7 % 
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Table 19. Comparing the performance of the MLP model created using the partial GeMAPS feature 

set on different datasets. 

Corpus Training % Valid. % Test % Precision Recall 

RAVDESS_Clean 80.7 % 68.7 % 55.2 % 59.8 % 50.0 % 

RAVDESS_Clean_Noise 64.9 % 52.2 % 52.6 % 65.8 % 50.0 % 

TESS_Clean 99.5 % 98.6 % 98.6 % 98.6 % 98.6 % 

TESS_Clean_Noise 94.8 % 92.9 % 94.5 % 94.8 % 93.9 % 

CREMA-D_Clean 59.6 % 53.0 % 54.9 % 64.4 % 36.4 % 

CREMA-D_Clean_Noise 52.1 % 49.3 % 49.1 % 61.3 % 25.8 % 

Complete_Clean 67.6 % 62.3 % 62.2 % 79.9 % 48.1 % 

Complete_Clean_Noise 58.3 % 58.2 % 57.9 % 79.5% 38.2 % 

 

 

Table 20. Comparing the performance of the RNN model created using the partial GeMAPS feature 

set on different datasets. 

Corpus Training % Valid. % Test % Precision Recall 

RAVDESS_Clean 86.5 % 50.8 % 47.0 % 50.0 % 43.3 % 

RAVDESS_Clean_Noise 72.6 % 50.0 % 39.2 % 44.7 % 34.3 % 

TESS_Clean 99.7 % 98.2 % 99.3 % 99.3 % 99.3 % 

TESS_Clean_Noise 99.8 % 98.4 % 98.8 % 98.8 % 98.8 % 

CREMA-D_Clean 61.1 % 48.2 % 45.7 % 52.4 % 36.4 % 

CREMA-D_Clean_Noise 52.9 % 45.3 % 46.0 % 55.2 % 26.8 % 

Complete_Clean 67.3 % 61.3 % 59.3 % 70.0 % 48.0 % 

Complete_Clean_Noise 60.2 % 59.9 % 57.9 % 75.7 % 41.9 % 
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Comparing Models from Both Feature Sets 

 Table 21 shows the performance metrics for the models created using the custom 

feature set and the models created using the partial GeMAPS feature set. The models 

listed in this table were trained and evaluated on the Complete_Clean_Noise dataset. 

From Table 21, it can be seen that the custom feature set models have outperformed the 

partial GeMAPS feature set in all metrics. This can be attributed to the significantly 

lower number of features in the partial GeMAPS feature set since the lower number of 

features could not capture the variations in the training data. The model that showed the 

best performance among all the models studied in this work was the MLP model trained 

on the Complete_Clean_Noise dataset using the custom feature set. It showed the highest 

classification accuracies and good average precision and average recall scores as well. 

Figure 47 shows the results of stratified 10-fold cross-validation for the models on the 

Complete_Clean_Noise dataset. After separating the test set from the training set, the 

training set was split into ten equal parts or folds. The model evaluation was performed 

ten times, and each time one out of the ten parts was used as the validation set while the 

remaining nine parts were used for the test set. Each time, a different fold was selected 

for validation split, and the training and validation accuracy were calculated for the ten 

experiments. The accuracy scores shown in the bar plot of Figure 47 were calculated by 

computing the mean of all the classification accuracies over the ten experiments. 
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Table 21. Comparing the models created using the two different feature sets, for the 

Complete_Clean_Noise corpus. 

Classifier Feature Set Training % Valid. % Test % Precision Recall 

SVM Custom 75.0 % 65.2 % 66.1 % 66.4 % 66.1 % 

SVM P.GeMAPS 68.0 % 58.7 % 58.7 % 58.2 % 58.7 % 

MLP Custom 68.1 % 65.9 % 65.7 % 83.3 % 50.3 % 

MLP P.GeMAPS 58.3 % 58.2 % 57.9 % 79.5% 38.2 % 

RNN Custom 67.9 % 64.9 % 63.7 % 75.4 % 53.7 % 

RNN P.GeMAPS 60.2 % 59.9 % 57.9 % 75.7 % 41.9 % 

 

 

Figure 47. 10-fold cross-validation results on the Complete_Clean_Noise corpus for the models listed 

on the vertical axis. 

When comparing the confusion matrices for the models trained on the 

Complete_Clean_Noise dataset, it can be seen that the surprise emotion was the class that 

was most accurately predicted. This can be due to the fact that the surprise class was 

missing from the CREMA-D dataset, and when the three datasets were joined to create 

the Complete_Clean_Noise dataset, this class was heavily resampled from RAVDESS 
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and TESS. Also, the neutral class samples were lower in the RAVDESS and CREMA-D 

datasets, so it was also resampled when all three datasets were joined. However, 

resampling was done after the training, validation, and test samples were separated, 

which prevented the repetition of minority data samples in the three splits. Besides 

surprise and neutral emotions, the top two most accurately classified emotions were sad 

emotions and anger. For the RAVDESS dataset, the surprise emotion was the most 

accurately predicted class. For the CREMA-D dataset, the anger emotion was the most 

accurately predicted class. For TESS, the neutral emotion was the most accurately 

predicted class. For all models, the two most challenging emotions to classify were the 

happy and the fear emotion. 

Overall, the models developed in this work yielded classification performances 

typical of speech emotion recognition models in the literature. For example, authors in 

[65] used the Logistic Model Tree (LMT) classifier and the lower thirteen MFCCs as 

features and achieved a classification accuracy of 67.14% when using the RAVDESS 

dataset to train and test their model. Similarly, authors in [66] managed to get a 

classification accuracy of 64.48% on the RAVDESS corpus using the GResNet classifier 

and spectrogram images. The models used in this work did not learn the emotions well 

enough to have a higher classification score. It could be because the models were trained 

only on 20,866 training samples. It could also be because of the low number of features 

used in both feature sets – a potential underfitting case. Using only Python for this thesis 

limited the number of features extracted from the audio data since there are very few 

Python libraries available for audio processing, and the available ones are not very rich in 

terms of functionality. 
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Creating a Multimodal Emotion Recognition System 

 Once all the analysis was done, the SVM, MLP, and RNN models created using 

the custom feature set, and the Complete_Clean_Noise corpus were saved to being used 

for real-time speech emotion recognition. A second model was saved, containing the 

SVM, MLP, and RNN models created using the custom feature set and the 

Complete_Clean corpus. This was done so that the first model can be used in outdoor 

settings, while the second model can be used indoors. If the speech emotion recognition 

system is implemented in a mobile application, it will allow the user to pick either of the 

two models based on their surrounding environment.  

 Ensemble learning is a branch of machine learning that refers to combining 

multiple machine learning algorithms to make a prediction. There are several methods of 

ensemble learning. The voting technique was applied to join the SVM, MLP, and RNN 

models. In voting, the input data is fed to all the classifiers, and predictions are made 

separately. The class, which was predicted the most, is selected as the final prediction of 

the system.  

Along with the three machine learning models, the means and standard deviations of 

all the features were also saved. These parameters were then used for scaling the features 

of the input. When an utterance is recorded, the system first performs feature extraction 

by extracting the low-level descriptors. It then applies the required functionals to create 

the audio features. All audio features are standardized using the means and standard 

deviations of the features from training. After that, the scaled low-level descriptors are 

fed to the RNN model, while the scaled audio features are fed to the SVM and MLP 

algorithms. Once the models have made the predictions, the most common class among 
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the three predictions is classified as the input’s final emotion label. If all three models 

predict different classes, the MLP model’s performance is selected as the final prediction 

since it had the highest precision score. The Python program is written so that three-

second audio is recorded continuously and fed to the speech emotion recognition system 

when it is running. The user can stop the code anytime by pressing a keyboard interrupt. 

The pseudo-code for the speech emotion recognition system is given below: 

  

Run a loop indefinitely until user presses keyboard interrupt: 

Record microphone audio for three seconds 

Extract low-level descriptors from audio 

Apply functionals to low-level descriptors 

Standardize low-level descriptors with mean and standard deviation from training 

Standardize output of functionals with mean and standard deviation from training 

Feed low-level descriptors to RNN 

Feed output of functionals to SVM and MLP 

Get predictions from all three models 

Compute mode of all three prediction labels 

If no mode available:  

Display emoji corresponding to the predicted label of MLP model 

If mode exists: 

Display emoji corresponding to the mode of the three predicted labels 

Repeat 
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Table 22 compares the ensemble learning model with the individual classifier models 

trained on the Complete_Clean_Noise dataset using the custom feature set. The same test 

set was used. It can be seen that the ensemble model achieved 0.8 % higher accuracy than 

the MLP model, which had the best overall scores. This 0.8 % increase translates to 

twenty more accurately classified samples out of the 2,607 test samples. 

Table 22. Test accuracies of the three individual classifier models and the ensemble learning 

model. All models were trained on the Complete_Clean_Noise dataset using the custom feature set. 

Model Test Accuracy 

SVM 66.1 % 

MLP 65.7 % 

RNN 63.7 % 

Ensemble 66.5 % 

 

The final step to completing this thesis work was integrating the speech emotion 

recognition system with a facial expression recognition system. The pre-trained facial 

expression recognition model was imported into the Python program that contained the 

speech emotion recognition model. The facial expression recognition model uses the 

computer’s webcam to get the image data from the user. The Python script was written so 

that majority voting was used to predict the facial expression recognition model, and the 

predictions made by the SVM, MLP, and RNN models trained on the 

Complete_Clean_Noise and custom feature dataset to decide the final prediction of the 

model. This process is shown in the flow diagram of Figure 48. 
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Figure 48. Flow diagram of the multi-modal emotion recognition system. 

If this multimodal emotion recognition system is implemented on a mobile 

application, the user can choose which modality to use. The user can wish to use both 

models at once, which will improve predictions’ confidence. The user can also choose 

either one of the two models. For example, the facial expression recognition model might 

perform better when the communication partner is not audible due to excessive 

background noise. The speech emotion recognition model might be a better choice when 

the communication partner is not visible due to poor lighting conditions. Figure 49 shows 

the schematic of the approach that was taken to implement the multi-modal system. 
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Figure 49. Schematic of the multimodal emotion recognition system. 
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VII. CONCLUSION 

In this thesis, a speech emotion recognition solution was created for helping children 

with autism spectrum disorder (ASD) identify emotions in social interactions. Children 

with ASD have difficulty identifying emotional cues in social interactions. The objective 

was to develop a tool that could help these children better detect emotions when 

conversing with people around them. The speech emotion recognizer was developed in 

Python using ensemble learning, a technique used to combine multiple machine learning 

algorithms to get a more accurate prediction.  

Three machine learning algorithms were used – a support vector machine (SVM), a 

multilayer perceptron (MLP), and a recurrent neural network (RNN). The datasets used to 

train these algorithms include the Ryerson Audio-Visual Database of Emotional Speech 

and Songs (RAVDESS), the Toronto Emotional Speech Set (TESS), the Crowd-sourced 

Emotional Multimodal Actors Dataset (CREMA-D), and the noise-added versions of the 

three datasets. Three noise samples were selected - a noise file containing a recording of 

children playing in the background, a noise file containing a recording of shopping mall 

ambiance, and a noise file containing a recording of cars passing by on the streets. Each 

clean speech utterance was added to one of the three types of noise files using MATLAB, 

in one of three SNR values – 0 dB, 5 dB, or 10 dB.  

The final dataset contained an equal number of clean speech and noise-added files. 

Two separate audio feature sets were studied in this work. One feature set comprised of 

audio features that were handpicked based on their performances on the RAVDESS 

dataset, and the other feature set contained some of the features from the Geneva 

Minimalist Acoustic Parameter Set (GeMAPS). The performances of the models created 
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using these two different feature sets were compared. The models developed using the 

custom feature set outperformed the models developed using the partial GeMAPS feature 

set. Therefore, the customer feature set models were used in order to construct the speech 

emotion recognition solution.  

Two separate speech emotion recognition models were developed – one to be used 

indoors and the other to be used outdoors. The model created for indoor use was trained 

on only clean speech data from all three datasets, and the model created to be used 

outdoors was trained on the final dataset, which included clean speech and noise-added 

files from all three datasets. This was done so that if the speech emotion model was 

implemented on a mobile application, users could select the model they want to use based 

on their environment. Finally, a multimodal emotion classifier was created by joining the 

speech emotion recognition model with a facial expression recognition model. This 

produced four emotion recognition classifiers – three speech emotion recognition 

classifiers and one facial expression recognition classifier. The Python program was 

written so that if predictions from the four classifiers are unique, the facial expression 

recognition solution's prediction would be used, as it had better classification accuracy 

than the speech emotion recognition models. 

 

 

 

 

 

 



 

106 

Future Work 

 There are specific techniques that could be used to improve the speech emotion 

recognition system's performance. The most effective technique is to gather more data. 

The more data is used in training a machine learning model, the more variations in data 

samples are experienced and learned by the machine. However, it is essential to collect 

properly labeled data, as data that are wrongly labeled can worsen the model 

performance. The three datasets used in this work were easily accessible to the public, 

free of cost. However, most speech emotion corpus is not easily accessible, as they 

require permission from the creators or some fee. Plus, there is a limited number of North 

American speech emotion recognition datasets. Therefore, gathering more data is a 

challenging task. This work did not include any speech corpora containing recordings of 

children; such datasets could be used to train the speech emotion recognition system. 

Another way to get better prediction accuracies is to utilize more features for the design, 

development, and training of the deep learning model. In most of the models used in this 

work, the classification accuracies did not exceed 70%. Using more features will increase 

the machine's learning capability and improve the classification accuracy, given that the 

current features are incapable of learning all the complexities of the data. However, there 

is a risk of overfitting the model to the training data when using more features. Thus, 

more features should be added with caution.  

 Lastly, the speech emotion recognition system and the multimodal emotion 

recognition system can be implemented in mobile applications. The application will 

allow parents of children with ASD to download and use these applications on their 

favorite portable devices. 
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