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COMPACTNESS OF THE SET OF SOLUTIONS TO ELLIPTIC

EQUATIONS IN 2 DIMENSIONS

SAMY SKANDER BAHOURA

Abstract. We study the behavior of solutions to elliptic equations in 2 di-

mensions. In particular, we show that the set of solutions is compact under a

Lipschitz condition.

1. Introduction

Let us define the operator

eLε := ∆ + ε(x1∂1 + x2∂2) =
div[aε(x)∇]

aε(x)
, with aε(x) = eε|x|

2/2.

We consider the equation

−∆u− ε(x1∂1u+ x2∂2u) = −Lεu = V eu in Ω ⊂ R2,

u = 0 in ∂Ω ,
(1.1)

where Ω is a starshaped set, u ∈W 1,1
0 (Ω), eu ∈ L1(Ω), 0 ≤ V ≤ b, 1 ≥ ε ≥ 0.

For ε = 0 equation (1.1) has been studied by many authors with and without the
boundary condition. This equation also has been studied in Riemann surfaces; see
[1]–[20], where one can find some existence and compactness results. Also we have
a nice formulation in the sense of the distributions of this problem in [7]. Among
the known results we find the following Theorem.

Theorem 1.1 (Brezis-Merle [6]). If (ui) and (Vi) are two sequences of functions
in problem (1.1) with ε = 0, and

0 < a ≤ Vi ≤ b < +∞,

then for all compact subset K of Ω it holds

sup
K
ui ≤ c,

with c depending on a, b,K and Ω.

We can find an interior estimate if we assume a = 0, but we need an assumption
on the integral of eui .
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Theorem 1.2 (Brezis-Merle [6]). Let (ui) and (Vi) two sequences of functions in
problem (1.1) with

0 ≤ Vi ≤ b < +∞ and

∫
Ω

euidy ≤ C.

Then, for all compact subset K of Ω it holds

sup
K
ui ≤ c,

with c depending on b, C,K and Ω.

The condition
∫

Ω
euidy ≤ C is a necessary in Problem (1.1) as showed by the

following statement for ε = 0.

Theorem 1.3 (Brezis-Merle [6]). There are sequences (ui) and (Vi) in problem
(1.1) with

0 ≤ Vi ≤ b < +∞,
∫

Ω

euidy ≤ C,

such that supΩ ui → +∞.

To obtain Theorems 1.1 and 1.2 Brezis and Merle used an inequality [6, Theorem
1] obtained by an approximation argument, Fatou’s lemma, and the maximum

principle in W 1,1
0 (Ω), which arises from Kato’s inequality. Also this weak form of

the maximum principle is used to prove the local uniform boundedness result by
comparing a certain function and the Newtonian potential. We refer the reader to
[5] for information about the weak form of the maximum principle.

Note that for problem (1.1), by using the Pohozaev identity, we can prove that∫
Ω
eui is uniformly bounded when 0 < a ≤ Vi ≤ b < +∞, ‖∇Vi‖L∞ ≤ A, and Ω

starshaped. When a = 0 and ∇ log Vi is uniformly bounded, we can find a uniform
bound for

∫
Ω
Vie

ui .
Ma-Wei [17] proved that those results remain valid for all open sets not neces-

sarily starshaped when a > 0. Chen-Li [9] proved that if a = 0,
∫

Ω
eui is uniformly

bounded, and ∇ log Vi is uniformly bounded, then (ui) is bounded near the bound-
ary and we have directly the compactness result for the problem (1.1). Ma-Wei [17]
extend this result in the case where a > 0.

When ε = 0 and if we assume V more regular we can have another type of
estimates called sup + inf type inequalities. It was proved by Shafrir [19] that, if
(ui), (Vi) are two sequences of solutions to Problem (1.1), without assumption on
the boundary and 0 < a ≤ Vi ≤ b < +∞, then it holds

C
(a
b

)
sup
K
ui + inf

Ω
ui ≤ c = c(a, b,K,Ω).

We find in [10] the explicit value C(a/b) =
√
a/b. In his proof, Shafrir [19] used

the blow-up function, the Stokes formula and an isoperimetric inequality. Chen-Lin
[10] used the blow-up analysis combined with some geometric type inequality for
obtaining the integral curvature.

Now, if we assume (Vi) is uniformly Lipschitzian with constant A, then C(a/b) =
1 and c = c(a, b, A,K,Ω) see Brezis-Li-Shafrir [4]. This result was extended for
Hölderian sequences (Vi) by Chen-Lin [10]. Also we have in [15], an extension
of the Brezis-Li-Shafrir result to compact Riemannian surfaces without boundary.
One can see in [17] an explicit form, (8πm,m ∈ N∗ exactly), for the numbers in
front of the Dirac masses when the solutions blow-up. Here the notion of isolated
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blow-up point is used. Also one can find in [11] refined estimates near the isolated
blow-up points and the bubbling behavior of the blow-up sequences.

Here we study the behavior of the blow-up points on the boundary, and give a
compactness result with Lipschitz condition. Note that our problem is an extension
of the Brezis-Merle Problem.

Brezis-Merle Problem [6]. Suppose that Vi → V in C0(Ω̄) with 0 ≤ Vi, and
consider a sequence of solutions (ui) of (1.1) relative to (Vi) such that∫

Ω

eui dx ≤ C.

Is it possible to have

‖ui‖L∞ ≤ C = C(b, C, V,Ω) ?

Here we give a blow-up analysis on the boundary when Vi are nonnegative and
bounded (similar to the prescribed curvature when ε = 0). On the other hand, if
we add the assumption that these functions (similar to the prescribed curvature)
are uniformly Lipschitzian, we have a compactness of the solutions of problem (1.1)
for ε small enough. (In particular we can take a sequence of εi tending to 0).

For the behavior of the blow-up points on the boundary, the following condition
is sufficient,

0 ≤ Vi ≤ b,

The condition Vi → V in C0(Ω̄) is not necessary. But for the compactness of the
solutions we add the condition

‖∇Vi‖L∞ ≤ A.

Our main results read as follows.

Theorem 1.4. Assume that maxΩ ui → +∞, where (ui) are solutions of (1.1)
with ε = εi and

0 ≤ Vi ≤ b,
∫

Ω

eui dx ≤ C, εi → 0 .

Then, after passing to a subsequence, there are a function u, a number N ∈ N, and
N points x1, . . . , xN ∈ ∂Ω, such that

∂νui → ∂νu+

N∑
j=1

αjδxj , αj ≥ 4π,

in the sense of measures on ∂Ω, and

ui → u in C1
loc(Ω̄− {x1, . . . , xN}).

Theorem 1.5. Assume that (ui) are solutions of (1.1) with ε = εi, and

0 ≤ Vi ≤ b, ‖∇Vi‖L∞ ≤ A,
∫

Ω

eui ≤ C, εi → 0.

Then

‖ui‖L∞ ≤ c(b, A,C,Ω) .
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2. Proofs of main results

Proof of Theorem 1.4. First we remark that

−∆ui = εi(x1∂1ui + x2∂2ui) + Vie
ui ∈ L1(Ω) in Ω ⊂ R2,

ui = 0 in ∂Ω.
(2.1)

and ui ∈W 1,1
0 (Ω).

By [6, Corollary 1] we have eui ∈ Lk(Ω) for all k > 2 and the elliptic estimates
of Agmon and the Sobolev embedding see [1] imply that

ui ∈W 2,k(Ω) ∩ C1,ε(Ω̄).

Also we remark that for two positive constants Cq = C(q,Ω) and C1 = C1(Ω), we
have

‖∇ui‖Lq ≤ Cq‖∆ui‖L1 ≤ (C ′q + εC1‖∇ui‖L1), ∀i and 1 < q < 2.

(see [7]). Thus, if ε > 0 is small enough and by Holder’s inequality,

‖∇ui‖Lq ≤ C ′′q , ∀i and 1 < q < 2.

Step 1: Interior estimate. First we consider the equation

−∆wi = εi(x1∂1ui + x2∂2ui) ∈ Lq, 1 < q < 2 in Ω ⊂ R2,

wi = 0 in ∂Ω.
(2.2)

If we consider vi as the Newtonnian potential of εi(x1∂1ui + x2∂2ui), we have

vi ∈ C0(Ω̄), ∆(wi − vi) = 0.

By the maximum principle wi − vi ∈ C0(Ω̄) and thus wi ∈ C0(Ω̄).
Also we have by elliptic estimates that wi ∈W 2,1+ε ⊂ L∞, and we can write the

equation of the Problem as

−∆(ui − wi) = Ṽie
ui−wi in Ω ⊂ R2,

ui − wi = 0 in ∂Ω,
(2.3)

with

0 ≤ Ṽi = Vie
wi ≤ b̃,

∫
Ω

eui−wi ≤ C̃.

We apply the Brezis-Merle theorem to ui−wi to have ui−wi ∈ L∞loc(Ω), and, thus
ui ∈ L∞loc(Ω).

Step2: Boundary estimate. Let ∂νui be the inner derivative of ui. By the
maximum principle ∂νui ≥ 0. Then we have∫

∂Ω

∂νuidσ ≤ C.

We have the existence of a nonnegative Radon measure µ such that∫
∂Ω

∂νuiφdσ → µ(φ), ∀φ ∈ C0(∂Ω).

We take an x0 ∈ ∂Ω such that µ(x0) < 4π. Set B(x0, ε) ∩ ∂Ω := Iε. We choose a
function ηε such that

ηε ≡ 1, on Iε, 0 < ε < δ/2,

ηε ≡ 0, outside I2ε,
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0 ≤ ηε ≤ 1,

‖∇ηε‖L∞(I2ε) ≤
C0(Ω, x0)

ε
.

We take a η̃ε such that

−∆η̃ε = 0 in Ω ⊂ R2,

η̃ε = ηε in ∂Ω.

Remark 2.1. We use the following steps in the construction of η̃ε, taking a cutoff
function η0 in B(0, 2) or in B(x0, 2):
(1) We set ηε(x) = η0(|x− x0|/ε) in the case of the unit disk it is sufficient.

(2) Or, in the general case: we use a chart (f, Ω̃) with f(0) = x0 and we take
µε(x) = η0(f(|x|/ε)) to have connected sets Iε and we take ηε(y) = µε(f

−1(y)).
Because f, f−1 are Lipschitz, |f(x)−x0| ≤ k2|x| ≤ 1 for |x| ≤ 1/k2 and |f(x)−x0| ≥
k1|x| ≥ 2 for |x| ≥ 2/k1 > 1/k2, the support of η is in I(2/k1)ε.

ηε ≡ 1, on f(I(1/k2)ε), 0 < ε < δ/2,

ηε ≡ 0, outside f(I(2/k1)ε),

0 ≤ ηε ≤ 1,

‖∇ηε‖L∞(I(2/k1)ε) ≤
C0(Ω, x0)

ε
.

(3) Also, we can take: µε(x) = η0(|x|/ε) and ηε(y) = µε(f
−1(y)), we extend it

by 0 outside f(B1(0)). We have f(B1(0)) = D1(x0), f(Bε(0)) = Dε(x0) and
f(B+

ε ) = D+
ε (x0) with f and f−1 smooth diffeomorphism.

ηε ≡ 1, on the connected set Jε = f(Iε), 0 < ε < δ/2,

ηε ≡ 0, outside J ′ε = f(I2ε),

0 ≤ ηε ≤ 1,

‖∇ηε‖L∞(J′
ε)
≤ C0(Ω, x0)

ε
.

And H1(J ′ε) ≤ C1H1(I2ε) = C14ε, because f is Lipschitz. Here H1 is the Hausdorff
measure. We solve the Dirichlet Problem

∆η̄ε = ∆ηε in Ω ⊂ R2,

η̄ε = 0 in ∂Ω.

and finally we set η̃ε = −η̄ε + ηε. Also, by the maximum principle and the elliptic
estimates we have

‖∇η̃ε‖L∞ ≤ C(‖ηε‖L∞ + ‖∇ηε‖L∞ + ‖∆ηε‖L∞) ≤ C1

ε2
,

with C1 depending on Ω.

As we said in the beginning, see also [3, 7, 13, 20], we have

‖∇ui‖Lq ≤ Cq, ∀i, 1 < q < 2.

We deduce from the above estimate that, (ui) converge weakly in W 1,q
0 (Ω), almost

everywhere to a function u ≥ 0 and
∫

Ω
eu < +∞ (by Fatou lemma). Also, Vi
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weakly converge to a nonnegative function V in L∞. The function u is in W 1,q
0 (Ω)

solution of

−∆u = V eu ∈ L1(Ω) in Ω ⊂ R2,

u = 0 in ∂Ω.

According to [6, Ccorollary 1], we have eku ∈ L1(Ω), k > 1. By the elliptic esti-
mates, we have u ∈W 2,k(Ω) ∩ C1,ε(Ω̄).

We denote by f · g the inner product of any two vectors f and g of R2. Then we
can write

−∆((ui − u)η̃ε) = (Vie
ui − V eu)η̃ε − 2∇(ui − u) · ∇η̃ε + εi(∇ui · x)η̃ε. (2.4)

We use the interior estimate in Brezis-Merle [6].

Step 1: Estimate of the integral of the first term of the right-hand side of (2.4).
We use Green’s formula between η̃ε and u, to obtain∫

Ω

V euη̃ε dx =

∫
∂Ω

∂νuηε ≤ Cε = O(ε) (2.5)

then we have

−∆ui − εi∇ui · x = Vie
ui in Ω ⊂ R2,

u = 0 in ∂Ω.

We use Green’s formula between ui and η̃ε to have∫
Ω

Vie
ui η̃ε dx =

∫
∂Ω

∂νuiηεdσ − εi
∫

Ω

(∇ui · x)η̃ε

=

∫
∂Ω

∂νuiηεdσ + o(1)

→ µ(ηε) ≤ µ(J ′ε) ≤ 4π − ε0, ε0 > 0

(2.6)

From (2.5) and (2.6) we have that for all ε > 0 there is i0 such that, for i ≥ i0,∫
Ω

|(Vieui − V eu)η̃ε| dx ≤ 4π − ε0 + Cε (2.7)

Step 2.1: Estimate of integral of the second term of the right hand side of (2.4).
Let Σε = {x ∈ Ω, d(x, ∂Ω) = ε3} and Ωε3 = {x ∈ Ω, d(x, ∂Ω) ≥ ε3}, ε > 0. Then,
for ε small enough, Σε is an hypersurface.

The measure of Ω− Ωε3 is k2ε
3 ≤ meas(Ω− Ωε3) = µL(Ω− Ωε3) ≤ k1ε

3.

Remark 2.2. For the unit ball B̄(0, 1), our new manifold is B̄(0, 1− ε3). To prove
this fact, we consider consider d(x, ∂Ω) = d(x, z0), z0 ∈ ∂Ω, which implies that
(d(x, z0))2 ≤ (d(x, z))2 for all z ∈ ∂Ω. This is equivalent to (z−z0)·(2x−z−z0) ≤ 0
for all z ∈ ∂Ω. Let us consider a chart around z0 and γ(t) a curve in ∂Ω, we have
(γ(t)−γ(t0) · (2x−γ(t)−γ(t0)) ≤ 0 if we divide by (t− t0) (with the sign and tend
t to t0), we have γ′(t0) · (x− γ(t0)) = 0. This implies that x = z0 − sν0 where ν0 is
the outward normal of ∂Ω at z0)

From the above remark, we can say that

S = {x, d(x, ∂Ω) ≤ ε} = {x = z0 − sνz0 , z0 ∈ ∂Ω, −ε ≤ s ≤ ε}.
It is sufficient to work on ∂Ω. Let us consider charts (z,D = B(z, 4εz), γz) with
z ∈ ∂Ω such that ∪zB(z, εz) is cover of ∂Ω . One can extract a finite cover
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(B(zk, εk)), k = 1, . . . ,m, by the area formula the measure of S ∩ B(zk, εk) is less
than a kε (a ε-rectangle). For the reverse inequality, it is sufficient to consider one
chart around one point of the boundary). We write∫

Ω

|∇(ui−u)·∇η̃ε| dx =

∫
Ωε3

|∇(ui−u)·∇η̃ε| dx+

∫
Ω−Ωε3

|∇(ui−u)·∇η̃ε| dx. (2.8)

Step 2.1.1: Estimate of
∫

Ω−Ωε3
|∇(ui − u) · ∇η̃ε| dx. First, we know from elliptic

estimates that ‖∇η̃ε‖L∞ ≤ C1/ε
2, C1 depends on Ω.

We know that (|∇ui|)i is bounded in Lq, 1 < q < 2, we can extract from this
sequence a subsequence which converge weakly to h ∈ Lq. But, we know that we
have locally the uniform convergence to |∇u| (by Brezis-Merle’s theorem), then,
h = |∇u| a.e. Let q′ be the conjugate of q.

We have that for all f ∈ Lq′(Ω),∫
Ω

|∇ui|f dx→
∫

Ω

|∇u|f dx

If we take f = 1Ω−Ωε3
, for each ε > 0 there exists i1 = i1(ε) ∈ N, such that i ≥ i1

implies ∫
Ω−Ωε3

|∇ui| ≤
∫

Ω−Ωε3

|∇u|+ ε3.

Then, for i ≥ i1(ε),∫
Ω−Ωε3

|∇ui| ≤ meas(Ω− Ωε3)‖∇u‖L∞ + ε3 = ε3(k1‖∇u‖L∞ + 1) = O(ε3).

Thus, we obtain∫
Ω−Ωε3

|∇(ui − u) · ∇η̃ε| dx ≤ εC1(2k1‖∇u‖L∞ + 1) = O(ε) (2.9)

The constant C1 does not depend on ε but on Ω.

Step 2.1.2: Estimate of
∫

Ωε3
|∇(ui − u) · ∇η̃ε| dx. We know that, Ωε ⊂⊂ Ω, and

(because of Brezis-Merle’s interior estimates) ui → u in C1(Ωε3). We have

‖∇(ui − u)‖L∞(Ωε3 ) ≤ ε3, for i ≥ i3.
We write∫

Ωε3

|∇(ui − u) · ∇η̃ε| dx ≤ ‖∇(ui − u)‖L∞(Ωε3 )‖∇η̃ε‖L∞ = C1ε = O(ε)

for i ≥ i3. For ε > 0, and i ∈ N, with i ≥ i′, we have∫
Ω

|∇(ui − u) · ∇η̃ε| dx ≤ εC1(2k1‖∇u‖L∞ + 2) = O(ε) (2.10)

From (2.7) and (2.10), for ε > 0, there is i′′ such that i ≥ i′′, we have∫
Ω

|∆[(ui−u)η̃ε]|dx ≤ 4π−ε0 +ε2C1(2k1‖∇u‖L∞ +2+C) = 4π−ε0 +O(ε) (2.11)

Now we choose ε > 0 small enough to have a good estimate of (2.4). Indeed, we
have

−∆[(ui − u)η̃ε] = gi,ε textinΩ ⊂ R2,

(ui − u)η̃ε = 0 in ∂Ω.
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with ‖gi,ε‖L1(Ω) ≤ 4π − ε0/2.
We can use [6, Theorem 1] to conclude that there are q ≥ q̃ > 1 such that∫

Vε(x0)

eq̃|ui−u| dx ≤
∫

Ω

eq|ui−u|η̃ε dx ≤ C(ε,Ω),

where, Vε(x0) is a neighborhood of x0 in Ω̄. Here we have used that in a neighbor-
hood of x0 by the elliptic estimates, 1− Cε ≤ η̃ε ≤ 1.

Thus, for each x0 ∈ ∂Ω− {x̄1, . . . , x̄m} there is ε0 > 0, q0 > 1 such that∫
B(x0,ε0)

eq0ui dx ≤ C, ∀i.

By elliptic estimates see [14], we have

‖ui‖C1,θ[B(x0,ε)] ≤ c3 ∀i.

We have proved that there is a finite number of points x̄1, . . . , x̄m such that the
sequence (ui) is locally uniformly bounded in C1,θ, (θ > 0) on Ω̄− {x̄1, . . . , x̄m}.

Proof of theorem 1.5. The Pohozaev identity gives∫
∂Ω

1

2
(x·ν)(∂νui)

2dσ+ε

∫
Ω

(x·∇ui)2 dx+

∫
∂Ω

(x·ν)Vie
uidσ =

∫
Ω

(x·∇Vi+2Vi)e
ui dx .

We use the boundary condition, that Ω is starshaped, and that ε > 0 to have∫
∂Ω

(∂νui)
2 dx ≤ c0(b, A,C,Ω). (2.12)

Thus we can use the weak convergence in L2(∂Ω) to have a subsequence ∂νui, such
that ∫

∂Ω

∂νuiφdx→
∫
∂Ω

∂νuφ dx, ∀φ ∈ L2(∂Ω),

Thus, αj = 0, j = 1, . . . , N and (ui) is uniformly bounded.

Remark 2.3. If we assume the open set bounded starshaped and Vi uniformly
Lipschitzian and between two positive constants we can bound, by using the inner
normal derivative

∫
Ω
eui .

If we assume the open set bounded starshaped and ∇ log Vi uniformly bounded,
by the previous Pohozaev identity (we consider the inner normal derivative) one
can bound

∫
Ω
Vie

ui uniformly.
One can consider the problem on the unit ball and an ellipse. These two problems

are different, because:

(1) if we use a linear transformation, (y1, y2) = (x1/a, x2/b), the Laplcian is
not invariant under this map.

(2) If we use a conformal transformation, by a Riemann theorem, the quantity
x · ∇u is not invariant under this map.

We can not use, after using those transformations, the Pohozaev identity.
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3. A counterexample

We start with the notation of the counterexample of Brezis and Merle. The
domain Ω is the unit ball centered in x0 = (1, 0). Consider zi (obtained by the
variational method), such that

−∆zi − εi(x− x0) · ∇zi = −L̃εi(zi) = fεi ,

with Dirichlet condition. By the regularity theorem, zi ∈ C1(Ω̄). Then we have

‖fεi‖1 = 4πA.

Thus by the duality theorem of Stampacchia or Brezis-Strauss, we have

‖∇zi‖q ≤ Cq, 1 ≤ q < 2.

We solve
−∆wi = εi(x− x0) · ∇zi,

with Dirichlet boundary condition.
By elliptic estimates, wi ∈ C1(Ω̄) and wi ∈ C0(Ω̄) uniformly. By the maximum

principle we have
zi − wi ≡ ui.

Where ui is the function of the counterexemple of Brezis Merle. Then we write

−∆zi − εi(x− x0) · ∇zi = fεi = Vie
zi .

Thus, we have ∫
Ω

ezi ≤ C1, 0 ≤ Vi ≤ C2,

zi(ai) ≥ ui(ai)− C3 → +∞, ai → O .

To have a counterexample on the unit disk, we do a translation x→ x− x0 in the
previous counterexample.

Acknowledgments. The author would like to tank the anonymous reviewers.

References

[1] T. Aubin; Some Nonlinear Problems in Riemannian Geometry. Springer-Verlag 1998.

[2] C. Bandle; Isoperimetric Inequalities and Applications. Pitman, 1980.
[3] L. Boccardo, T. Gallouet; Nonlinear elliptic and parabolic equations involving measure data.

J. Funct. Anal. 87 no. 1, (1989), 149–169.

[4] H. Brezis, Y.Y. Li, I. Shafrir; A sup+inf inequality for some nonlinear elliptic equations

involving exponential nonlinearities. J. Funct. Anal. 115 (1993), 344–358.
[5] H. Brezis, M. Marcus, A. C. Ponce; Nonlinear elliptic equations with measures revisited.

Mathematical aspects of nonlinear dispersive equations, 55–109, Ann. of Math. Stud., 163,
Princeton Univ. Press, Princeton, NJ, 2007.

[6] H. Brezis, F. Merle; Uniform estimates and Blow-up behavior for solutions of −∆u = V (x)eu

in two dimension. Comm. Part. Diff. Equations, 16 (8 and 9) (1991), 1223–1253.
[7] H. Brezis, W. A. Strauss; Semi-linear second-order elliptic equations in L1. J. Math. Soc.

Japan 25 (1973), 565–590.

[8] A. Sun-Yung Chang, Matthew J. Gursky, Paul C. Yang; Scalar curvature equation on 2- and
3-spheres. Calc. Var. Partial Differential Equations 1 (1993), no. 2, 205–229.

[9] W. Chen, C. Li; A priori estimates for solutions to nonlinear elliptic equations. Arch. Ra-

tional. Mech. Anal., 122 (1993) 145–157.
[10] C.-C. Chen, C-S. Lin; A sharp sup+inf inequality for a nonlinear elliptic equation in R2.

Comm. Anal. Geom. 6, no.1 (1998), 1–19.

[11] C.-C.Chen, C-S. Lin; Sharp estimates for solutions of multi-bubbles in compact Riemann
surfaces. Comm. Pure Appl. Math. 55 (2002), no. 6, 728–771.



10 S. S. BAHOURA EJDE-2022/14

[12] D. G. De Figueiredo, P. L. Lions, R. D. Nussbaum; A priori Estimates and Existence of

Positive Solutions of Semilinear Elliptic Equations, J. Math. Pures et Appl., vol 61, 1982,

pp.41–63.
[13] W. Ding, J. Jost, J. Li, G. Wang; The differential equation ∆u = 8π − 8πheu on a compact

Riemann surface. Asian J. Math. 1 (1997), no. 2, 230–248.

[14] D. Gilbarg, N. S, Trudinger; Elliptic Partial Differential Equations of Second order, Berlin
Springer-Verlag.

[15] Y. Y. Li; Harnack Type Inequality: the method of moving planes. Commun. Math. Phys. 200

(1999), 421–444.
[16] Y. Y. Li, I. Shafrir; Blow-up analysis for solutions of −∆u = V eu in dimension two. Indiana.

Math. J. Vol 3, no. 4 (1994). 1255–1270.

[17] L. Ma, J.-C. Wei; Convergence for a Liouville equation. Comment. Math. Helv. 76 (2001),
506–514.

[18] K. Nagasaki, T. Suzuki; Asymptotic analysis for two-dimensional elliptic eigenvalue problems
with exponentially dominated nonlinearities. Asymptotic Anal. 3 (1990), no. 2, 173–188.

[19] I. Shafrir; A sup+inf inequality for the equation −∆u = V eu. C. R. Acad.Sci. Paris Sér. I

Math. 315 (1992), no. 2, 159–164.
[20] G. Tarantello; Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math.

Phys. 37 (1996), no. 8, 3769–3796.

Samy Skander Bahoura

Department of Mathematics, Pierre et Marie Curie University, 4 Place Jussieu, 75005,
Paris, France

Email address: samybahoura@gmail.com


	1. Introduction
	Brezis-Merle Problem b5

	2. Proofs of main results
	Proof of Theorem ??
	Proof of theorem ??

	3. A counterexample
	Acknowledgments

	References

