
AUTOMATICALLY SELECTING PROFITABLE THREAD

BLOCK SIZES USING MACHINE LEARNING

HONORS THESIS

Presented to the Honors College of
Texas State University
in Partial Fulfillment
of the Requirements

for Graduation in the Honors College

by

Tiffany A. Connors

San Marcos, Texas
May 2017

AUTOMATICALLY SELECTING PROFITABLE THREAD

BLOCK SIZES USING MACHINE LEARNING

by

Tiffany A. Connors

Thesis Supervisor:

Apan Qasem, Ph.D.
Department of Computer Science

Approved:

Heather C. Galloway, Ph.D.
Dean, Honors College

ABSTRACT

Graphics processing units (GPUs) provide high performance at low power consump-

tion as long as resources are well utilized. Thread block size is one factor in determin-

ing a kernel’s occupancy, which is a metric for measuring GPU utilization. A general

guideline is to find the block size that leads to the highest occupancy. However, many

combinations of block and grid sizes can provide highest occupancy, but performance

can vary significantly between different configurations. This is because variation in

thread structure yields different utilization of hardware resources. Thus, optimizing for

occupancy alone is insufficient and thread structure must also be considered. It is the

programmer’s responsibility to set block size, but selecting the right size is not always

intuitive. In this paper, we propose using machine learning to automatically select prof-

itable block sizes. Additionally, we show that machine learning techniques coupled with

performance counters can provide insight into the underlying reasons for performance

variance between different configurations.

TABLE OF CONTENTS

CHAPTER

I. INTRODUCTION . 1

1.1 Introduction . 1

II. BACKGROUND . 4

2.1 CUDA . 5
2.2 Thread Hierarchy . 5
2.3 Memory Hierachy . 6
2.4 Machine Learning . 7

III. RELATED WORK . 8

3.1 Optimizations for Thread Configuration 9
3.2 Machine Learning in Performance Modeling 10

IV. DESIGN AND IMPLEMENTATION 12

4.1 Configuration . 13
4.2 Training Data Generatator . 13
4.3 ML Engine . 14
4.4 Analyzer . 14

4.4.1 Cluster-PCA plots . 14
4.4.2 PCA-VR segment plots 15
4.4.3 Decision tree analysis 16

V. MODEL FORMULATION . 16

5.1 Determining Legal Thread Block Dimensions 16
5.2 ML Algorithm Selection . 17

VI. TRAINING DATA GENERATION . 18

6.1 Feature Extraction . 18
6.1.1 Memory Divergence . 19
6.1.2 Control Divergence . 19
6.1.3 Event Collection . 20

6.1.4 Labeling . 21
6.2 Feature Selection . 22

VII. EXPERIMENTAL SETUP . 23

7.1 Devices . 24
7.2 Benchmarks . 24

VIII. RESULTS . 25

8.1 Model Evaluation . 25
8.2 Visualization . 27

8.2.1 Training Space Characterization 28
8.2.2 Decision Tree Visual Analysis 29

8.3 Performance and Energy Gains 30

IX. CONCLUSIONS . 30

REFERENCES . 32

I. INTRODUCTION

1.1 Introduction

Graphics Processing Units (GPUs) can provide great performance at low power con-

sumption as long as there is good utilization of resources. Thread block size is a key

factor in determining a kernel’s occupancy. Occupancy is the ratio of the number of

active warps running on a GPU to the maximum number of warps that can be sched-

uled. Occupancy provides intuition into how well a parallel kernel utilizes the GPU

and is closely related to resource allocation. A general guideline is to find the thread

configuration that leads to the highest occupancy. However, it has been shown that for

some kernels the highest occupancy does not always yield the best performance[28].

High occupancy leads to increased resource contention, as more threads compete for

limited hardware resources such as registers and shared memory. Low occupancy pro-

vides each thread with more resources but this can have a negative impact due to low

latency hiding.

Furthermore, multiple block sizes can provide highest occupancy for a given kernel,

but their performance can vary at these different configurations. This is because vari-

ation in thread configuration yields different utilization of hardware resources. Thus,

optimizing for occupancy alone is insufficient and the thread geometry must also be

taken into consideration.

Current practice dictates that programmers choose the grid and block size to op-

timize their GPU applications. Selecting a good thread configuration is not always

intuitive. Small variations in the thread block size can have huge performance impact.

Consider the performance variations of four kernels shown in Fig. 1.1. The perfor-

1

1.0

1.5

2.0

2.5

3.0

3.5

0 32 128 256 512 768 1024

Block Size

E
x
e

c
u

tio
n

 T
im

e
 (

s
e

c
o

n
d

s
)

bilateral depthvertex integrate mriq

Figure 1.1: Execution time of four applications with varying block sizes.

mance can vary by as much as a factor of three when selecting different block sizes

for the same kernel (depthvertex). Although larger block sizes yields better perfor-

mance on average, the largest block sizes do not necessarily produce the best results.

For instance, for mriq, it is most profitable to select a relatively smaller block size of

128.

Navigating the different choices for thread block configuration can prove time con-

suming for the programmer. It may require the programmer to manually change the

thread configuration, re-run the program, and collect performance results for each change

until the desired performance level has been reached. Additionally, the space that needs

to be considered when finding an optimal thread block size is multi-dimensional, as

seen in Fig. 1.2. This complex search space can prove to be difficult to evaluate as

many heuristic searches can easily become stuck in local optima. As the size of this

search space increases, it soon becomes unfeasible to perform an exhaustive search.

2

Figure 1.2: A 3D mapping of the search space for determining optimal thread block

size.

Features of this search space include the size of input data and the number of reg-

isters allocated, both of which are correlated to the kernel’s performance under a given

block size. Another factor that can cause variance is the grid size. Grid size reflects the

total amount of work to be done in terms of the number of threads launched. When a

large grid size is used, this results in less work for each thread to perform and increased

contention for limited hardware resources.

Using machine learning, performance and power consumption of GPU kernels can

be improved through automatic selection of profitable thread configurations. This re-

duces the number of kernel runs necessary and allows for a more efficient evaluation

of the complex search space. In addition, machine learning techniques coupled with

3

hardware performance counters can help provide insight into the underlying reasons for

performance variance between different thread configurations.

In this paper we present a strategy for selecting profitable blocks sizes in GPU ker-

nels using supervised machine learning. Our machine learning model uses dynamic

performance events as features.Given a GPU kernel, our framework profiles the kernel

and extracts the relevant dynamic features. The model then predicts if a change in block

size will improve the performance of the given kernel.

Our framework automates all major steps in the machine learning workflow, includ-

ing feature extraction, feature selection, and training data labeling. In order to ensure a

sufficient sample size for the training data, we generate multiple code variants from a

single base program. These variants all exhibit distinct behavior on the target platform,

allowing for a range of program characteristics for the machine learning model to learn

from.

To summarize, the main contributions of this paper are as follows:

• the construction of a machine learning based heuristic for selecting profitable
thread block sizes.

• a general framework for developing ML-based performance heuristics and au-
tomating the ML workflow.

• an analysis of the underlying causes of performance anomalies due to thread
block variation.

II. BACKGROUND

A graphics processing unit (GPU) is a highly parallel processor that is traditionally

used for rendering computer graphics. However, modern GPUs are commonly used for

4

performing computations in scientific and engineering applications. A GPU consists of

a set of Streaming Multiprocessors (SMs), and each SM contains a number of execution

units called Stream Processors (SPs). Modern GPUs contain thousands of SPs. An

SM is designed to execute hundreds of threads concurrently and follows the single

instruction, multiple data (SIMD) model of execution. The compute capability of a

NVIDIA GPU identifies the features supported by the GPU hardware [2].

2.1 CUDA

CUDA is a programming interface which allows direct programming of NVIDIA

GPUs. CUDA C is an extension to the C programming language that allows developers

to write parallel functions, called kernels, for execution on the GPU. In the CUDA pro-

graming model, GPUs can achieve high-performance by executing massively parallel

threads simultaneously.

2.2 Thread Hierarchy

The most basic unit of execution in CUDA is a thread. Warps, which are sets of

32 threads that are simultaneously executed together, are divided into thread blocks.

Thread blocks execute independently of one another, allowing them to be scheduled in

any order across any number of cores. Warps within the same thread block are executed

on the same multiprocessor and access the same shared memory unit. Each thread block

is assigned to a single SM during the execution of a kernel. A grid is a collection of

thread blocks. The number of thread blocks in a grid is typically based on the size of the

data being processed. The thread blocks within a grid are mapped across multiple SMs.

This thread hierarchy is illustrated in Fig. 2.1. The maximum number of threads which

can be assigned to each block varies depending on the GPU’s architecture and compute

5

capability. Likewise, the maximum blocks per SM and maximum threads per SM also

depends on the compute capability. Limiting factors include the number of registers

and shared memory required by the kernel and the number of registers and amount of

shared memory available on the multiprocessor [2].

Grid
Block	(0,0) Block	(1,0) Block	(2,0)

Block	(0,1) Block	(1,1) Block	(2,1)

Block	(2,1)
Thread	

0
Thread	

1
Thread	

2
Thread	

3

Thread	
4

Thread	
5

Thread	
6

Thread	
7

Thread	
8

Thread	
9

Thread	
10

Thread	
11

Figure 2.1: Threads are organized into groups called warps, which are organized into

blocks, and blocks into grids.

2.3 Memory Hierarchy

A CUDA enabled GPU has six different memory components: register, shared

memory, local memory, global memory, texture memory and constant memory. Ev-

ery thread has its own private local memory. Each block has its own shared memory,

which is shared among all the threads within that block. Global memory, constant mem-

ory, and texture memory can be accessed by all threads. Constant and texture memory

are read-only, while the other memory types are read/write. A generalized diagram of

this memory hierarchy is depicted in Fig. 2.2.

6

Shared	Memory

Reg

Thread

Local	
Mem

Block

Kernel	(Grid)

Device

Reg

Thread

Local	
Mem

Shared	Memory

Reg

Thread

Local	
Mem

Block

Reg

Thread

Local	
Mem

Global	Memory

Constant	Memory

Host
(CPU)

Figure 2.2: Generalized GPU memory diagram

2.4 Machine Learning

Machine learning is a method of data analysis that uses algorithms that iteratively

learn from data, allowing computers to find hidden patterns without being explicitly pro-

grammed. If a computer program is able to improve its performance of accomplishing a

task by using previous experience then it is said to have learned[18]. One of the biggest

strengths of machine learning is the ability to automatically apply complex mathemati-

cal calculations to large sets of data with minimal effort from the user. Aside from the

field of computer science, machine learning techniques have been widely adopted in

many data-intensive fields, such as medicine and biology.

The two most commonly used machine learning methods are supervised and un-

supervised learning. In unsupervised learning, the input data is not labeled with the

7

correct output. The goal of unsupervised learning is to discover similarities and find

structure within the data.

Supervised learning ML algorithms are trained using labeled instances. The learn-

ing algorithm is provided with a set of inputs and the corresponding correct output,

typically referred to as the training set. The goal of the learning algorithm is to infer a

function that minimizes the error with respect to these inputs. Put briefly, the purpose of

supervised ML algorithms is to learn a mapping X 7→ Y , where x εX is some instance

and y ε Y is a class label.

A decision boundary is the hypersurface that partitions the learning space into sets,

one for each class. A decision boundary is the region of the learning space in which the

output label is ambiguous. The learning space is linearly separable if the classes of the

space can be separated with a single linear surface 2.3a.

X1

X
2

(a) linearly separable points

X1

X
2

(b) non-linearly separable points

Figure 2.3: Examples of linearly and non-linearly separable spaces

8

III. RELATED WORK

3.1 Optimizations for Thread Configuration

Seo et al. developed a heuristic for work group size selection for OpenCL kernels

running on multicore processors [23]. They use a combination of static estimation and

runtime feedback to fine-tune the workgroup size for improved locality at L1 and L2

caches and the TLB and balances load across CPU cores. They compare their numbers

to an exhaustive search of all possible workgroup configurations. These results show

that their strategy can get the same performance at a much lower cost. Their experi-

ments do show significant variation in performance for the NAS SP kernel for different

workgroup sizes. They do not extend this technique to GPUs, where the performance

issues are much different.

Tran et al. proposed a tuning model for calculating candidate grid and block sizes to

achieve optimal performance based on highest occupancy [27]. Their approach is able

to calculate a set of candidate grid and block sizes faster than using exhaustive search.

However, their model relies solely on the thresholds of the block and grid sizes enforced

by a GPU architecture. They do not consider the characteristics of the kernel, which is

be essential in determining optimal thread configuration. Their model is mainly used to

reduce the search space rather than using a machine learning predictor and may output

a list of multiple candidate configurations.

Magniet al. implemented thread-coarsening compiler transformations by develop-

ing a LLVM-based OpenCL compiler [16]. Additionally, they utilized regression trees

and hardware performance counters to identify performance features that are affected

by thread-coarsening. They evaluated the effect of the coarsening factor on performance

9

across 5 different GPU devices and found that regression trees are able to identify the

hardware features relevant to performance for each of the 5 devices.

Gupta et al. designed STATuner, which identifies a feature set of static metrics

that characterize a CUDA kernel and builds a Support Vector Machine classifier to pre-

dict which block size provides the best performance [11]. Static metrics are obtained

by compiling CUDA kernels in LLVM. Static analysis of the generated LLVM binary

code and IR is performed to get metrics for instruction mix, loops, register usage, shared

memory per block, and thread synchronization. Our approach differs in that our frame-

work uses dynamic kernel features as input to the machine learning model.

3.2 Machine Learning in Performance Modeling

A study of recent applications of ML techniques in performance modeling and tun-

ing in HPC shows a pattern of incoming challenges and how ML practitioners have

tackled them. The initial application of MLMT emerged as a response to prohibitively

long tuning times for search-based autotuning. As such, some of the earliest work

in this area were based on using heuristic modeling, pruning and empirical search in

order to reduce the parameter space and find early stopping criteria [29]. As neural

networks and logistic regression models gained popularity, they were applied to auto-

tuning problems in HPC. Cavazos et al. led the charge in this venture beginning with

their work on identifying optimal compiler optimization sequences using multiple lo-

gistic regression models [4]. Estimating the performance gain or loss of applying a

particular optimization as a reduction of the larger problem of finding an optimal set

of optimizations worked well for a multitude of scenarios. This technique, however,

overlooks the possibility of synergistic and antagonistic behavior between multiple op-

10

timizations. Moreover, as the number of optimizations available remains large, the time

to generate training data and the number of classifiers required also remains large. For

instance, GCC 4.8.2 has 193 optimizations and choosing an optimal sequence essen-

tially means creating an array of 193 classifiers and training data sets for each classifier.

Furthermore, the widely changing architectures in HPC landscape has posed the chal-

lenge of adaptability. Fursin et al. turned to crowd-sourcing to address this challenge

by gathering collective optimization knowledge across architectures [9].

Similar to many ML problems, success of ML techniques hinges on accurate input

characterization. Researchers have attempted to characterize programs using program

control flow graph [7, 20], static program features [3, 9] and hardware performance

counters [4, 22]. Hardware performance counters have the added benefit of being dy-

namic and are able to capture architecture-specific system response. However, there is a

large number of performance events and it is difficult to pick effective ones. Many have

resorted to hand-picking them [17, 25], while some have employed statistical methods

to select events that vary most across different program executions [13, 22]. Wu et

al. designed a model that uses neural networks and k-means clustering to estimate the

performance and power of a kernel on other hardware configurations [30]. Hardware

performance counter values collected on one hardware configuration are used as input

to the model for predicting the performance of the kernel on the other configurations.

The focus on their work is not on optimizing a kernel for a given system, but rather

determining how well the kernel will perform on other systems.

In spite of challenges faced by HPC researchers in their application of ML, the evo-

lution of ML in HPC has been impressive. Many variants of popular ML techniques

have been successfully applied to different branches of HPC - in performance opti-

11

mization through code changes [6, 25], predicting optimal build configurations [14],

runtime configurations [8, 15, 21, 26], identifying performance bottlenecks [12, 13]

and recently, also in efficient energy management [5, 10, 24].

IV. DESIGN AND IMPLEMENTATION

a

Training
m(fv)
→ d0

Training
Data

M(fv)
→ D

Feature
Extraction

Feature
Selection

Labeling

Variant
Generation

user
apps

Validation

Evaluation

Composition

Training Data Generator

ML Engine

Evaluator

Configuration

user

Analyzer
R

Invocation

Analysis

Visualization

Model
Formulation

Script
Generation

Input
Processing

custom
scripts

Tuning

proglist

varlist

m(fv)
→ dn

Figure 4.1: Overview of our machine learning framework

Fig. 4.1 gives an overview of our framework. To begin, our framework generates

custom scripts that drive the tasks of feature extraction, feature selection, training data

generation, model training, evaluation, and selection. The newly created model is stored

12

as an R script and provides an interface for the user to invoke it on unseen programs.

An interactive mode is also supported to perform subtasks selectively.

A feature f is a dynamic runtime attribute of a code variant that is measured or

estimated using hardware performance event counters. A runtime attribute is one that

can be measured or estimated via hardware. All features are numeric. fv = {f0, ..., fn}

denotes a feature vector. The training data set consists of instances of the form I =

{f0, f1, ..., fn, l}, where {f0, f1, ..., fn} are feature values collected for some kernel, k,

and l is a label that specifies the direction of change for a variant of k.

4.1 Configuration

We provide a simple interface which allows users to specify the directory of the pro-

grams to be used as input for the training data generation. This configuration interface

sets environment paths, detects CUDA enabled devices, and creates customized build

and execute scripts that are tailored to the user’s environment. In this phase, instructions

for generating training data are specified in a file called proglist.

4.2 Training Data Generatator

After generating the custom makefiles and execute scripts the configurer creates

a proglist file that encapsulates necessary information for generating training data on

the target platform. Each line of the file contains information for executing each pro-

gram that is to be used in the training set. This file serves as input into a script called

varlist gen.sh. varlist gen.sh reads each line of the proglist and outputs a file, named

varlist, containing instructions for creating program variants for each baseline program

that was listed in the proglist. These variants include modifying the -maxrregcount

flag, thread block size in the kernel launch, and differing program input data (when

13

available). The varlist is sent to a script that generates, builds, and executes each pro-

gram variant. In this phase, the runtime features of each program contained in varlist

is collected using nvprof. The collection and processing of data in this phase is ex-

plained in more detail in Section VI.

4.3 ML Engine

In the Machine Learning Engine phase, the training data is supplied to an R script.

Within this script, the training dataset is randomly partitioned into training and testing

sets. An SVM model is trained using the training set and its performance is evalu-

ated using cross-fold validation. This process is repeated 10 times, adjusting tuning

parameters each time, and the model yielding the highest accuracy during validation

is selected. The final model’s performance is further evaluated using the testing set in

order to ensure that overfitting has not occurred.

4.4 Analyzer

It can be difficult for humans to extract meaningful information from raw data,

especially when large quantities of data are presented in plain text or tabular form.

Visualizations aid users in exploratory data analysis through visual exploration. The

framework currently supports three types of analysis visualizations to provide insight

to the user about the training data and the generated model.

4.4.1 Cluster-PCA plots

Cluster-PCA plots are used to examine properties of the training data. k-means

clustering is applied on the feature space, where the value of k is determined via the

silhouette method. We perform principal component analysis (PCA) on the feature

14

space and the clustering results are visualized on scatter plots by projecting the clusters

onto the two principal components (PCs) that explain the most variation in the data. A

point in the plot represents a code variant. Points can be annotated to show base pro-

gram, class label, or threshold-delineated PCA values. Ellipses represent clusters and

two points falling within the same cluster indicates that they exhibit similar behavior.

Cluster-PCA plots can provide intuition about the training data in several ways. The

number of clusters is a reflection of the the number of different types of codes present.

Too few clusters implies the classifier is not exposed to sufficiently diverse program

characteristics, which may limit its learning.

4.4.2 PCA-VR segment plots

Although PCAs are primarily used for dimensionality reduction, in MLMT they can

be useful in other ways. We can think of a PC as a compound feature that describes a

broad performance pattern. For instance, a PC might represent memory-bound behav-

ior and contain related features such as LLC miss rate, DRAM accesses and stalled

cycles. In general, however, the relationship between many of the performance events

is either unknown or not obvious to the user. Identifying major performance events that

comprise a PC can provide valuable insight about both program performance and archi-

tectural characteristics. The challenge, however, is that PCs are not amenable to direct

visualization. To address this, we apply Varimax Rotation on the sub-space discovered

through PCA and then use a segment plot to visualize the contribution of each feature to

the top k PCs. These segment plots provide the practitioner with a quick way to identify

related features (although the nature of the relationship is not revealed) in the feature

15

space. This knowledge can be used to optimize code independent of the model being

generated.

4.4.3 Decision tree analysis

Decision trees are prone to overfitting and their ability to learn complex spaces is

limited. Despite these shortcomings, decision trees are easy to visualize and can provide

an intuitive way to understand the learning behind the predictions.

V. MODEL FORMULATION

Our model uses machine learning to provide the user with suggestions on how to

modify the thread block size of their code. Given a kernel, our model will determine if

the thread block size should be increased or decreased to achieve better performance.

5.1 Determining Legal Thread Block Dimensions

When determining legal thread block dimensions, several factors need to be taken

into consideration:

• The hardware constraints of the GPU

• The original thread block dimensions

• The correctness of the kernel’s results

Often the kernel has been coded such that the correctness of the results is dependent on

the block size. This means that while a given block size is legal in CUDA, it may not be

valid in context of the program in question. It can be determined whether or not a block

size is valid by checking the results of a program run using the new block size with

16

the original results. Note that this approach only works for programs whose output is

deterministic. For these reasons, we have chosen to create a model that suggests relative

changes in block size rather than giving absolute numbers, with the assumption that the

programmer knows their kernel well enough to be able to know what block sizes will

produce valid results.

5.2 ML Algorithm Selection

We employ several machine learning techniques in our model, one for providing

predictions and others for providing insight. To make predictions on the direction of

change in block size for a given kernel, we use Support Vector Machines (SVMs). In

selecting which machine learning algorithm to use for prediction, we took into consid-

eration what type of decision boundaries we expected in our feature space. Specifically,

whether or not the feature space is linearly separable is important in selecting which

machine learning model to use.

Although our data includes only three classifications, the feature space is much more

complex. Because of this, our data does not exhibit a linearly separable decision bound-

ary. Thus, we opted to use an algorithm capable of learning complex spaces that are not

linearly separable. We selected SVMs due to their high accuracy and ability to learn

complex search spaces. Other strengths of SVMs are that they aren’t overly influenced

by noisy data and are not prone to overfitting. While SVMs essentially can only learn

linearly separable boundaries, SVMs can be expanded to include techniques for dealing

with nonlinearly separable decision boundaries by using the kernel trick. This is done

by mapping the feature space into higher dimensional space. To enable learning more

17

than two classifications, we employ the all-versus-all strategy which combines several

binary SVMs to make multi-class predictions.

Additionally, we also rely on clustering to evaluate the feature space and decision

trees to provide meaningful insight into the reasons why some kernels perform better

with smaller block sizes over larger block sizes. We selected decision trees due to the

fact that they have a quick training time and are easy to visualize and interpret.

VI. TRAINING DATA GENERATION

Our framework is able to manipulate the max register allocation and block size of

CUDA kernels in order to generate multiple code variants from the same base program.

Next, dynamic metrics of each of the kernel variations are collected using performance

counters. This set of metrics becomes the input feature vector for the machine learning

model.

6.1 Feature Extraction

Our framework uses runtime events as features. To collect runtime events, we read

values from hardware performance counters using nvprof. There are over 150 different

available events exposed by nvprof. Profiling every event would be time consuming and

require many program runs as not all events can be read together. We selected events

which we believe are closely related to thread block size. We created a shell script which

reads a list of the selected events from a text file and passes them to nvprof. To reduce

the time required for collection of these events, we take of advantage of multiplexing

18

and divide the events into groups that can be measured during a single program run

without causing conflicts in hardware counters.

6.1.1 Memory Divergence

Memory access can greatly impact a kernel’s performance. Memory divergence oc-

curs when memory requests for some threads take longer than those of other threads

within the same warp. Coalescing is a memory access technique in which memory

requests to the same cache line are grouped together to create a single transaction. Coa-

lescing is typically performed at the warp level, with 32 requests from threads in a warp

being combined into one single transaction and returned. With a greater number of

warps, more coalesced memory accesses can occur at a time. Additionally, increasing

the number of warps can hide memory latency, but if this number is increased too far

performance can degrade due to increased resource contention, frequent bank conflicts,

and more cache misses. For these reasons, kernels which are memory-bound tend to be

more sensitive to changes in block size.

6.1.2 Control Divergence

Control divergence is another factor that can influence a kernel’s performance. Fre-

quent branch instructions and branch divergence can degrade performance. A control

instruction is divergent if it forces threads within a warp to take different execution

paths. In CUDA, divergence results in serialization of the execution paths, thereby in-

creasing the total number of instructions executed. Additionally, threads within a warp

cannot continue until all threads of the warp have exited the conditional path. Smaller

block sizes can reduce the overhead of control divergence by reducing the number of

instructions executed per warp and limiting the number of threads that must wait due

19

to divergence. However, if too few threads are launched, it may be insufficient to hide

instruction latency.

6.1.3 Event Collection

Based on the aforementioned considerations, we selected a subset of available events

from nvprof, listed in table 6.1. The baseline version of each kernel is considered to be

the one executed with the default thread block size and register pressure. For each base-

line version, we modified the kernel by changing the block size in the kernel launch

configuration of the code. We executed the baseline and all variants and collected run-

time events and kernel execution time using nvprof. Next, we computed the speedup

of each instance over the baseline version. Labels were added to each instance in the

dataset based on the speedup and block size.

20

Table 6.1: Events Collected

Events Collected

gld request fb read sectors

gst request fb write sectors

l1 local load hit l1 local load miss

l1 local store hit l1 local store miss

l1 global load hit l1 global load miss

uncached gld transaction global store transaction

gld inst 32bit inst issued

gst inst 32bit inst executed

not predicated off thread inst executed thread inst executed

l2 write sector misses l2 read sector misses

l2 read l1 hit sectors l2 total read sector queries

l2 total write sector queries shared load replay

global ld mem divergence replays global st mem divergence replays

6.1.4 Labeling

To train the machine learning model, we must provide it with labeled instances

that it will learn from. Manually labeling each instance in the training dataset is time

consuming. To alleviate the user of this task, our framework automates the process

using scripts and a simple algorithm to determine the labels. For each instance in the

training data set, the speedup over the baseline is computed. We consider a speedup <

1 to be bad, a speedup = 1 to be neutral, and a speedup > 1 to be good. Next, the block

21

size of the variant is compared to the baseline block size and the label is assigned as

follows:

for all d ∈D do

if speedup < 1 and newBlock < origBlock then

new.Label← increase.

orig.Label← noChange.

else if speedup < 1 and newBlock > origBlock then

new.Label← decrease.

orig.Label← noChange.

else if speedup > 1 and newBlock < origBlock then

new.Label← noChange.

orig.Label← decrease.

else if speedup > 1 and newBlock > origBlock then

new.Label← no Change.

orig.Label← increase.

end if

end for

6.2 Feature Selection

Feature selection is important for improving accuracy of a machine learning model.

Features which are redundant or provide no additional information to the model should

be removed. First, we removed any events that had a value of 0 for all program runs.

Next, we evaluated the association between the remaining features by calculating the

22

correlation coefficients using the Pearson correlation formula, which measures a linear

dependence between two variables:

r =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑
(y −my)2

Features with a correlation coefficient greater than 0.9 were removed from the set.

Features which are highly correlated to all other features do not add any additional

information to the data, hence they are redundant and can reduce model prediction

accuracy. The remaining features and their correlation are shown in Fig. 6.1. These

features are estimated to provide the highest predictive power.

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

b
lo
c
k
s
_
p
e
r_
g
ri
d

g
s
t_
re
q
u
e
s
t

l1
_
g
s
t_
tr
a
n
s

g
s
t_
in
s
t_
3
2
b
it

fb
_
re
a
d
_
s
e
c
to
rs

th
rd
s
_
p
e
r_
b
lo
c
k

g
ld
_
in
s
t_
3
2
b
it

in
s
t_
is
s
u
e
d
1

n
o
t_
p
re
d
_
o
ff
_
th
rd
_
in
s
t

u
n
c
a
c
h
e
d
_
g
ld
_
tr
a
n
s

g
ld
_
m
e
m
_
d
iv

blocks_per_grid
gst_request
l1_gst_trans

gst_inst_32bit
fb_read_sectors
thrds_per_block
gld_inst_32bit
inst_issued1

not_pred_off_thrd_inst
uncached_gld_trans

gld_mem_div

Figure 6.1: The correlation matrix of the remaining features.

23

VII. EXPERIMENTAL SETUP

7.1 Devices

We evaluated our model using a Nvidia Tesla K40c GPU on a Linux system that had

CUDA 7.5 installed. The K40c has a compute capability of 3.5, supports a maximum

of 1024 threads per block, and a maximum of 2048 threads per SM.

7.2 Benchmarks

We used kernels from the Parboil [1] and SLAMBench [19] benchmark suites to

demonstrate the effectiveness of our framework. The kernels, the benchmark suite they

are from and their default block sizes are shown in Table 7.1.

24

Table 7.1: Kernels Used

Kernel Name Benchmark Suite Default Block Size

sgemm parboil 256

spmv parboil 32

stencil parboil 127

tpacf parboil 256

bilateral SLAMBench 512

depthvertex SLAMBench 512

integrate SLAMBench 512

halfsample SLAMBench 512

raycast SLAMBench 512

renderdepth SLAMBench 512

rendertrack SLAMBench 512

rendervolume SLAMBench 512

track SLAMBench 512

VIII. RESULTS

8.1 Model Evaluation

We evaluated our model’s accuracy using 10-fold cross validation. We split the

training set in 10 groups of approximately the same size, then iteratively train a SVM

using 9 groups and make a prediction on the group which was excluded. We set the

25

value of k to be 10. Our SVM model had an accuracy rate of 83.7%. Our decision tree

model had an accuracy rate of 81.4%. The breakdown of the performance statistics by

class is shown in Table 8.1.

Table 8.1: Performance Statistics by Class

SVM

Metric Decrease Increase No Change

Sensitivity 0.89 0.50 0.92

Specificity 1.00 0.91 0.76

Balanced Accuracy 0.94 0.71 0.84

Decision Tree

Metric Decrease Increase No Change

Sensitivity 0.89 1.00 0.73

Specificity .88 0.91 0.94

Balanced Accuracy 0.89 0.96 0.84

Additionally, we tested the model on unseen kernels that were not contained in the

training or validation data. For these kernels, we followed the model’s suggestions

of adjusting the block size and collected the execution time. We then compared the

execution time of the unmodified kernel to that of the modified kernel to determine the

speedup.

26

8.2 Visualization

The SVM decision boundary is shown in Fig. [?]. This figure illustrates the non-

linear properties of our training data.

0

500000

1000000

1500000

0 30000 60000 90000

gst_request

l1
_

g
s
t_

tr
a

n
s label

decrease

increase

noChange

svm: kernel=radial
Train: mmce=0.28; CV: mmce.test.mean=0.402

Figure 8.1: The decision boundaries of our SVM model. For ease of plotting, x and y

are held constant as the first two variables of the feature vector.

Fig. 8.2 shows a VR-PCA segment plot for our training dataset. We can see that

the fourth principle component, shown in red, is dominated by features related to global

load memory transactions. This further demonstrates that memory access patterns and

memory divergence is a primary factor in determining a kernel’s classification and se-

lecting a good block size. Another principal component worth noting is the second

principal component, shown in blue, in which features related to instruction execution

27

have the most contribution. The first and third principal components, in purple and

green respectively, appear to be less significant.

gld_request

gst_request

l1_gld_trans

uncached_gld_trans

gld_inst_32bit

gst_inst_32bit

inst_issued2

inst_exec

thrd_inst_exec

not_pred_off_thrd_inst

l2_read_l1_hit_sectors

l2_total_read_sector_queries

gld_mem_div

Figure 8.2: The segment plot shows the contribution of each attribute to the principal

components.

8.2.1 Training Space Characterization

The complexity of the feature space can be evaluated by performing principle com-

ponent analysis (PCA) and k-means clustering on our training dataset. As we can see in

Fig. 8.3, in which many different block sizes are contained within the same cluster, the

best thread block size is not always easy to determine. This implies that even though

two programs may be very similar, subtle differences can lead to variance in resource

utilization and the need for different block sizes.

28

+

+

++

++
O__

O

OO
OOOOOOOOOO
++
_
OOOOO
_
OOOOOOOOOO

O
OOOOOOOOOOOOOO
_
OOOOOOOOOOOOOOOO

+
++++++
+++O++++
________O________

OO
+++O+_O_______

+OO
OOOOO_O

OO
OOO

+O
+++++O_
__OOOOO

OO_OOOO

+
+
O

++
O_

_

_

OOO+O
+

+
_

_

__
O

_
_

_
_

OO
OOOOO
__OOOOOOO

-6

-3

0

3

-10 -5 0 5

PCA1 (33.9%)

P
C

A
2

 (
2

8
.7

%
)

Label
_

+

O

decrease
increase
noChange

Figure 8.3: A plot of clustering analysis on our training dataset.

8.2.2 Decision Tree Visual Analysis

We created a visualization of the splitting criteria used by the decision tree in order

to understand which variables of the feature vector were used to make predictions. As

seen in Fig. 8.4, the choice of the thread block size is sensitive to memory divergence,

L1 cache behavior, and reading from DRAM.

not_pred_off_thrd_inst >= 41e+6

gld_mem_div < 107e+3

l1_gst_trans >= 177e+3

fb_read_sectors < 113e+3

inst_issued1 < 52e+6

gld_mem_div < 1564

fb_read_sectors >= 45e+3

noChange

decrease

decrease

increase

decrease

increase

increase

decrease increase increase

noChange

noChange

decrease noChange noChange

yes no

Figure 8.4: The decision tree’s splitting criteria.

29

8.3 Performance and Energy Gains

When we adjusted the block size in accordance with the suggestions provided by

our model, we were able to obtain up to 1.8x speedup over the baseline versions. The

tuning results of 6 programs is shown in Fig. 8.5. In regards to energy, we found that

adjustments in thread block size provided no significant change in a kernel’s power

consumption.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

bilateral depthvertex halfsample integrate rendertrack vertexnorm

Performance	Gains

baseline tuned

Figure 8.5: The speedup gained in relation to the baseline from using our model to tune

6 programs.

IX. CONCLUSIONS

This paper presents the construction of a machine learning based heuristic for select-

ing profitable block sizes. Using supervised machine learning algorithms and dynamic

performance events as features, our machine learning model predicts if a change in

block size will improve the performance of a given kernel. The framework presented in

this paper introduces strategies for automating time consuming aspects of training data

30

generation and building a machine learning model, such as feature extraction, feature

selection, and labeling. We address the common issue of not having enough programs

to build a sufficiently large and diverse training dataset by generating multiple code

variants for a single base program.

We demonstrated the effectiveness of our ML model on a mix of programs from the

SLAMBench and Parboil benchmark suites. We show that our framework can produce

accurate models for making predictions. The visualizations allowed us to better analyze

the training dataset and results of the machine learning models in order to identify

underlying causes of performance anomalies when varying thread block size. We found

that subtle differences in a kernel’s runtime behavior can result in the need for different

block sizes. Additionally, the choice of thread block size is sensitive to memory access

patterns, especially memory divergence.

By using our machine learner on 6 unseen kernels that were excluded from the

training data generation phase, we were able to achieve up to 1.8x speedup over the

baseline versions.

31

REFERENCES

[1] “Parboil Benchmark Suite,”, http://impact.crhc.illinois.edu/parboil.php.

[2] CUDA Programming Guide, Version 3.0, NVIDIA, 2010.

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thom-
son, M. Toussaint, and C. Williams, “Using machine learning to focus iterative
optimization,” International Symposium on Code Generation and Optimization,
2006. (CGO 2006)., New York, NY, 2006.

[4] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam,
“Rapidly Selecting Good Compiler Optimizations using Performance Counters,”
Proceedings of the International Symposium on Code Generation and Optimiza-
tion (CGO ’07), Washington, DC, USA, 2007, pp. 185–197, IEEE Computer So-
ciety.

[5] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & Cap: adaptive
DVFS and thread packing under power caps,” Proceedings of the 44th annual
IEEE/ACM international symposium on microarchitecture. ACM, 2011, pp. 175–
185.

[6] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R. De Supinski,
and M. Schulz, “Prediction models for multi-dimensional power-performance
optimization on many cores,” Proceedings of the 17th international conference
on Parallel architectures and compilation techniques. ACM, 2008, pp. 250–259.

[7] J. Demme and S. Sethumadhavan, “Approximate graph clustering for program
characterization,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 8, no. 4, 2012, p. 21.

[8] M. K. Emani and M. F. P. O’Boyle, “Celebrating diversity: a mixture of experts
approach for runtime mapping in dynamic environments,” Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, Portland, OR, USA, June 15-17, 2015, 2015, pp. 499–508.

[9] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam, M. Namolaru,
E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois, F. Bodin, P. Barnard, E. Ashton,
E. Bonilla, J. Thomson, C. Williams, and M. O’Boyle, “Milepost GCC: Machine
Learning Enabled Self-Tuning Compiler,” International Journal of Parallel Pro-
gramming, vol. 39, 2011.

32

[10] Y. Ge and Q. Qiu, “Dynamic Thermal Management for Multimedia Applications
Using Machine Learning,” Proceedings of the 48th Design Automation Confer-
ence, New York, NY, USA, 2011, DAC ’11, pp. 95–100, ACM.

[11] R. Gupta, I. Laguna, D. Ahn, T. Gamblin, S. Bagchi, and F. Lin, “STATuner:
Efficient Tuning of CUDA Kernels Parameters,” Supercomputing Conference (SC
2015), poster, Nov 2015.

[12] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale, “Predicting Ap-
plication Performance Using Supervised Learning on Communication Features,”
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, New York, NY, USA, 2013, SC ’13, pp. 95:1–
95:12, ACM.

[13] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe, H. De Silva,
S. Rathnayake, X. Meng, and Y. Liu, “Detection of false sharing using machine
learning,” Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 30.

[14] Y. Kashnikov, J. C. Beyler, and W. Jalby, “Compiler Optimizations: Machine
Learning versus O3,” Languages and Compilers for Parallel Computing, 25th
International Workshop, LCPC 2012, Tokyo, Japan, September 11-13, 2012, Re-
vised Selected Papers, 2012, pp. 32–45.

[15] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Machine
Learning-Based Prefetch Optimization for Data Center Applications,” Proceed-
ings of the Conference on High Performance Computing Networking, Storage and
Analysis, 2009, SC ’09, pp. 56:1–56:10.

[16] A. Magni, C. Dubach, and M. F. P. O’Boyle, “A Large-scale Cross-architecture
Evaluation of Thread-coarsening,” Proc. of the 2013 ACM/IEEE conf. on Super-
computing, 2013.

[17] C. McCurdy, G. Marin, and J. S. Vetter, “Characterizing the impact of prefetching
on scientific application performance,” High Performance Computing Systems.
Performance Modeling, Benchmarking and Simulation, Springer, 2013, pp. 115–
135.

[18] T. M. Mitchell, Machine Learning, 1 edition, McGraw-Hill, Inc., New York, NY,
USA, 1997.

[19] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly, A. J. Davison,
M. Luján, M. F. P. O’Boyle, G. Riley, N. Topham, and S. Furber, “Introduc-
ing SLAMBench, a performance and accuracy benchmarking methodology for
SLAM,” IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2015.

[20] E. Park, J. Cavazos, and M. A. Alvarez, “Using graph-based program characteriza-
tion for predictive modeling,” Proceedings of the Tenth International Symposium
on Code Generation and Optimization. ACM, 2012, pp. 196–206.

33

[21] K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kalogeraki, “FACT: A Frame-
work for Adaptive Contention-aware Thread Migrations,” Proceedings of the 8th
ACM International Conference on Computing Frontiers, New York, NY, USA,
2011, CF ’11, pp. 35:1–35:10, ACM.

[22] S. Rahman, M. Burtscher, Z. Zong, and A. Qasem, “Maximizing Hardware
Prefetch Effectiveness with Machine Learning,” 17th IEEE International Con-
ference on High Performance Computing and Communications (HPCC15), Aug
2015.

[23] S. Seo, J. Lee, G. Jo, and J. Lee, “Automatic OpenCL Work-group Size Selec-
tion for Multicore CPUs,” Proceedings of the 22Nd International Conference on
Parallel Architectures and Compilation Techniques, 2013.

[24] H. Shen, J. Lu, and Q. Qiu, “Learning based DVFS for simultaneous temperature,
performance and energy management,” Quality Electronic Design (ISQED), 2012
13th International Symposium on, 2012, pp. 747–754.

[25] M. Stephenson and S. Amarasinghe, “Predicting Unroll Factors Using Supervised
Classification,” CGO, San Jose, CA, USA, March 2005.

[26] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a holistic
approach to auto-parallelization: integrating profile-driven parallelism detection
and machine-learning based mapping,” Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation, 2009.

[27] N. P. Tran and M. Lee, “Parameter Tuning Model for Optimizing Application
Performance on GPU,” 2016 IEEE 1st International Workshops on Foundations
and Applications of Self* Systems (FAS*W), Sept 2016, pp. 78–83.

[28] V. Volkov, “Better Performance at Lower Occupancy,” 2010.

[29] R. Vuduc, J. Demmel, and J. Bilmes, “Statistical Models for Empirical Search-
Based Performance Tuning,” International Journal of High Performance Com-
puting Applications, vol. 18, no. 1, 2004, pp. 65–94.

[30] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou, “GPGPU per-
formance and power estimation using machine learning,” 2015 IEEE 21st Inter-
national Symposium on High Performance Computer Architecture (HPCA), Feb
2015, pp. 564–576.

34

