
DEEP BLOC: A GAME THEORETIC APPROACH TO ORCHESTRATE CPS

AGAINST CYBER ATTACKS

by

Alireza Tahsini, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
August 2019

Committee Members:

Mina Guirguis, Chair

Jelena Tešić

Qijun Gu

COPYRIGHT

by

Alireza Tahsini

2019

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgement.
Use of this material for financial gain without the author’s express written
permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Alireza Tahsini, refuse permission to copy
in excess of the "Fair Use" exemption without my written permission.

DEDICATION

In dedication to my wonderful Parents, whose unending love and support has

allowed me grow more than I could ever imagine.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor

Professor Guirguis for his encouragement, patience and plentiful guidance. It

would be impossible to count all the ways that you have helped me to grow step

by step during this three years. I do appreciate the honor that you granted me to

work under your supervision.

Next, I would like to praise Professor Eftekhari, who supported me through my

undergraduate studies both technically and spiritually. Without your hints I

never would have embarked on this wonderful journey in the first place. Lastly, I

want to thank you for directing my research path deliberately, which provided

me further opportunities and achievements.

A very special thanks to my coauthor, colleague and friend Noah Dunstatter. We

had a tense but fun adventure together. DNQN works after all of hard work,

discussions, disappoints, long nights and hours spent on complicated equations.

than you! Everyday of working with you was a blast for me and I hope some day

I work with my inspiring, kind and intelligent friend again.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

CHAPTER

I. INTRODUCTION . 1

Problem Statement . 2

Contributions . 2

II. RELATED WORK . 4

III.BLOC FRAMEWORK . 8

The CPS model . 8

The Adversary Model . 8

The Check Blocks . 9

The BLOC Framework . 9

IV.MARKOV MODEL . 12

V. METHODOLOGY . 15

Fictitious Play . 17

VI.PERFORMANCE EVALUATION 20

Environments . 20

Hyper Parameters . 21

vi

Features . 22

Training and Stability . 22

Main Evaluation . 23

VII.CONCLUSION . 29

REFERENCES . 30

vii

LIST OF TABLES

Table Page

VI.1 Sample Environment Settings . 20

viii

LIST OF FIGURES

Figure Page

III.1 A general block diagram for a CPS. 8

V.1 Diagram of the DNQN learning process 19

VI.1 Convergence of average Q value in Dynamic Programming method . . 23

VI.2 Loss value obtained from DNQN training - ENV-SMALL 23

VI.3 Loss value obtained from DNQN training - ENV-MID-E 24

VI.4 Cumulative utilities obtained by each attacker policy against defender

policies ENV-SMALL . 24

VI.5 Cumulative utilities obtained by each defender policy against attacker

policies on ENV-SMALL . 25

VI.6 Cumulative utilities obtained by each attacker policy against defender

policies on ENV-MID . 26

VI.7 Cumulative utilities obtained by each defender policy against attacker

policies on ENV-MID . 26

VI.8 Cumulative utilities obtained by each attacker policy against defender

policies on ENV-MID-E . 27

VI.9 Cumulative utilities obtained by each defender policy against attacker

policies on ENV-MID-E . 27

VI.10 Cumulative utilities obtained by each attacker policy against defender

policies on ENV-LARGE . 27

VI.11 Cumulative utilities obtained by each defender policy against attacker

policies on ENV-LARGE . 28

ix

ABSTRACT

One important aspect in protecting CPS is ensuring that the proper control and

measurement signals are propagated within the control loop. The CPS research

community has been developing a large set of check blocks that can be

integrated within the control loop to check signals against various types of

attacks (e.g., false data injection attacks). Unfortunately, it is not possible to

integrate all these "checks" within the control loop as the overhead in checking

signals may violate the delay constraints dedicated by the control loop.

Moreover, these blocks do not completely operate in isolation of each other, but

dependencies exist among them in terms of their effectiveness against detecting a

subset of attacks. Thus, it becomes a challenging and a complex problem to

assign the proper checks, specially with the presence of a rational adversary who

can observe the check blocks assigned and optimizes her own attack strategies

accordingly. This paper tackles the inherent state-action space explosion that

arise in securing CPS through developing a unifying framework in which Deep

Reinforcement Learning algorithms are utilized to provide optimal/sub-optimal

assignments of check blocks to signals. The framework models stochastic games

between the adversary and the CPS defender and derives mixed strategies for

assigning check blocks to ensure the integrity of the propagated signals, while

abiding to the real-time constraints dictated by the control loop. Furthermore,

the strategies obtained reflect various factors such as the aggressiveness and risk

associated to the players in taking defense/attack actions. Our results show that

our framework can obtain assignment strategies that outperform other strategies

and heuristics.

x

I. INTRODUCTION

Cyber Physical Systems (CPS) will be an essence to our daily activities, as we

can already see applications of CPS in a variety of domains such as

transportation, power, healthcare, and manufacturing systems. These systems

are mounted on critical foundations, which directly touch human lives and

governments’ establishments.

Compromising the operation of such strategic infrastructures is fascinating for

any adversaries. This adversaries can be arbitrary ones who use classic attack

strategies (e.g., DoS and ransomeware) to gain some immediate pay offs.

Conversely, they can be sophisticated ones capable of running attacks that can

mitigate the normal operation of the underlying infrastructure, in order to slowly

drive the system into an insecure stage and, still, stay hidden. We have already

witnessed incidents stemmed from such forms of attacks like stuxnet worm to the

recent attacks on the Ukrainian power grid[1]. Soon we will encounter more

instances of these attacks that cause vehicles to veer off the road, manipulate

devices responsible for power generation and consumption and exploit

robotics/drone systems for malicious and terrorism-related activities.

This is while, the vast majority of the CPS built are validated through ad hoc

trial-and-error approaches. Photographs of CPS engineers in hard hats with

laptops debugging their CPS attached to buildings and bridges dominate the

general opinion of CPS. A recent empirical study of verification and validation

techniques used by CPS experts [2] has demonstrated a pervasive frustration

with the lack of rigorous tools; confirming that in situ trial-and-error debugging

is the most commonly used approach.

Despite the recent (and rich) research efforts in identifying attacks on CPS and

developing resilient defense mechanisms against them, a coherent approach in

which these mechanisms can be "put" together is lacking. Blindly throwing more

checks and defenses at the CPS may not just be unnecessary, but could

1

negatively impact the stability margins of the system allowing more attacks to

be mounted.

Problem Statement

Ensuring the correctness, timing and integrity of the control and measurement

signals requires orchestrating the control loop with various "check blocks" – such

as threshold checks, model predictors, learning modules, assertions and action

blocks. Due to their different timing, overhead and effectiveness characteristics,

it becomes challenging to choose the right one(s), specially against a rational

adversary who is aware of the blocks present and seeks to inflict the maximum

damage. Moreover, they must abide by the capacity constraints dictated by the

process controlled. In this work, we present a game-theoretic framework – which

we coin BLOC – that dynamically equips the control loop with the appropriate

blocks at the right location(s) to protect it against a rational adversary. Through

an intelligent orchestration of blocks that are the results of mixed strategies, the

system can be defended against an adversary that can choose the best attack

method against the system. BLOC considers the range of possible attacks, the

importance of each measurement and control signal, the nature of each block

(e.g., stateless or stateful) as well as the effectiveness and timing of each block.

Contributions

We summarize our contributions below:

1. We present the BLOC framework, which orchestrates the CPS with various

check blocks in a coherent manner. These blocks are enabled at four

strategic locations with access to the intended control and measurement

signals.

2. We introduce Deep Nash Q-Network(DNQN), to derive the near optimal

policy on Markov games. This algorithm is capable of handling

2

environments with exponentially large and discrete action spaces in

presence of asymmetric agents.

3. We develop a Markov game model to capture the CPS dynamics, agents’

behavior and security measurements. On top of that, we apply DQNQ to

find the a policy for the defender, in order to assign/remove check blocks

during the horizon to properly protect the system. At the same time,

DQNQ approximates the attacker’s optimal policy to choose the best

attack method and targets to attack.

3

II. RELATED WORK

There has been a lot of research efforts in securing CPS and networked control

systems against spoofing (e.g., [3, 4, 5, 6, 7, 8]) and jamming/delaying attacks

(e.g., [9, 10, 11]). These studies differ in their assumptions about the attacker’s

knowledge and the types of signals that can be attacked. In [4], the authors show

false data injection attacks on state estimators in power grids. The idea is to

craft an attack vector – in which each element corresponds to an injected

measurement from a meter – that when combined with the state estimators,

would still pass detection. The authors assume the attacker knows the

configuration of the power system but may not have access to all the meters. The

work in [5] generalizes false data injection attacks on control systems with

specific controllers (e.g., Kalman) and shows that these attacks can cause the

system to become unstable. In [7], the authors illustrate a scheme in which the

control signals can be spoofed in tandem with the measurement signals to hide

the effect of the attack. This scheme in effect hijacks the operation of the CPS.

In terms of jamming attacks, the authors in [12] study the performance of a

linear control system subject to various Denial of Service (DoS) attack models on

the measurements and control signals (e.g., random, Bernoulli, constrained and

general). Wireless jamming has been shown to cause severe effects that may

cripple the entire system (e.g., [13, 14]).

To defend against these attacks, in [6], the authors construct a safety envelope

from the measurements obtained under the normal operation of the system

(without attacks). Attack detectors are then constructed that compare the

measurements received during the operation of the system to the ones

maintained by the safety envelope. The authors in [8] assume knowledge of the

state of the system and derive correlation graphs without attacks to study how

that information impacts decisions. In [3] the authors prevent an adversary from

finding attack vectors through identifying two sets: a set of sensors to protect

4

and a set of state variables that can be independently verified. While the authors

in [15] investigate the combination and configuration of various defense

mechanisms using stateless and stateful detection schemes for CPS, they do not

consider a game-theoretic approach. In our work, we present a framework in

which these defenses – in addition to other blocks – can be orchestrated through

rigorous game-theoretic approaches. The use of game theory has been

instrumental in advancing the state-of-the-art in security games and their wide

range of applications (e.g., as it operates under the worst-case scenario).

In [16], authors represent a human-CPS interaction model in a smart city, where

the CPS elements are considered to form a graph. In that graph, the cyber and

physical elements are interdependent nodes; consequently, each node is a

battlefield in the proposed Colonel Blotto game, where the attacker and defender

assign recourses to win a battle. Although that formulation is a very general one,

it does not explicitly take into account the specific interaction of resources in

each battlefield. The authors in [17] investigate the process of transmitting data

from a sensor to a controller in a CPS, while the attacker tries to strike this

communication with a jamming attack. By considering power constraints for

both players, a static and a dynamic game is formulated for finding the optimal

transmission and attack strategies for the players, given a time horizon.

Another effort in [18] presents a model for assuring the security in a CPS by

solving a parametric game matrix. Those specified parameters express the cost,

loss and benefit of players after taking an action. They have defined a small state

space to capture the dynamic behavior of the system in normal situation and

under attacks.

The work in [19] presents a receding-horizon methodology to approximate an

infinite-horizon dynamic Stackelberg game to securely control a CPS. The model

assumes two attackers: one can attack the measurement signals and the other

one can attack the control signals. The model is a two-level Stackelberg game,

where the measurement jammer makes a decision before the operator and the

5

control jammer. In the first-level, the measurement jammer is the leader and the

operator (controller) and the control jammer are the followers. In the second one,

the operator is the leader and the control jammer is the follower. The attackers

try to manipulate the signals to destabilize the system, while minimizing the cost

of the attack by solving a quadratic program. On the other hand, the operator

tries to find a control law that maintains the stability of the system. Our work is

different from the above works as it considers a different formulation in which

the defender is seeking an assignment of concrete check blocks – that have

varying effectiveness to protect against various attack methods while abiding to

the delay constraints imposed by the control loop as well as accounting for the

uncertainty in the number of signals received.

In [20], the authors propose a hybrid game-theoretic approach for resilient

system control that also considers the system security and robustness. The

scenario is stated as a cross-layer design in which two games are intertwined – a

zero-sum differential game is used for robust control and a stochastic one is used

for the design of the defense mechanisms. Unlike this work, our framework

captures details about the exact blocks used, their effectiveness and impact on

the signals propagated in the network.

Aside from CPS, security games have been instrumental in improving security of

other cyber domains and non-cyber domains. The work in [21] framed the airport

passenger screening problem as a Stackelberg game and solved for optimal

allocation strategies that were then implemented at LAX international airport.

Similarly, [22] used a Stackelberg game formulation to optimize fare inspection

points in Los Angeles’ metro system in an attempt to deter fare evasion. The

authors in [23] provide an overview of game-theory’s various successes in the

physical domain and end with a discussion of possible applications and

challenges in the cyber domain. Recent works applied game-theoretic screening

strategies to the cyber-alert assignment problem faced by network security teams

with [24, 25] solving for static screening strategies and [26] employing a dynamic

6

screening strategy that considers a temporal element of play.

Incidentally, if we wish to derive time-dependent policies for defense we could use

self-play as discussed in [27, 28, 29]. In these, methods agents are trained one at

a time, in the way a player approximates the best response on a Markov Decision

Process (MDP), which is made by the other players’ strategy profile.

Interchangeably, frame the problem in the context of multi-agent reinforcement

learning (MARL) on a Markov game as suggested in [30]. It has been shown in

[31] that such systems can be proven to converge to Nash values under certain

settings and provides us with a reliable way to derive game-theoretic and

time-dependent policies. In fact, this is exactly what was done in [26] where

dynamic programming was used to perform value-iteration and arrive at optimal

defense strategies. However, such solution methods do not scale well to larger

more realistic state spaces.

7

III. BLOC FRAMEWORK

In this section, we present a general model for CPS, the adversary model, the

check blocks, and the BLOC framework.

Plant

Controller

Network

Control

Signals (u)

Measurement

signals (y)

Network

Cyber

 attacks

Cyber

 attacks

Check

Blocks

Check

Blocks

Check

Blocks

Check

Blocks

[Uin]

[Yin][Uout]

[Yout]

Figure III.1: A general block diagram for a CPS.

The CPS model

Figure III.1 shows a generic block diagram of a CPS composed of a plant and a

controller. Let xk denote the state of the system at time k. A vector of

measurement signals yk is generated from the CPS and is fed to decision making

entities (e.g., controllers that are centralized or distributed systems). The yk

signals intend to capture the state xk in as representative way as possible, for

instance by sensing the xk values directly or by inferring the desired components

from other dependent ones. The decision making entities process the yk

(measurement signals) and take control decisions uk that change the state of the

CPS. The dynamics of the plant and the controller can be captured through

various models such as linear time invariant, linear time variant, non-linear or

hybrid models. We assume that measurement signals and/or control signals

traverse network components that are subject to cyber attacks.

The Adversary Model

We consider an adversary who is choosing different attack vectors on the

measurement and control signals. If we let Γu(u) and Γy(y) denote the attack

function on the control and measurement signals, respectively, then ū = Γu(u)

8

and ȳ = Γy(y) are the bad control and measurement signals received and acted

upon by the CPS components. In case of a jamming attack, the attacked signal

is simply omitted from the vector. Such “attacks” could just as easily be

non-malicious but just as dangerous errors or unknowns, whether in the

communication medium, in sensing, in actuation, or in some combination. We

adopt a rational adversary model who is effectively selecting the Γu() and/or

Γy() to bypass the check mechanisms in place to achieve the maximum damage.

The Check Blocks

Check blocks are the components that check signals and take actions (e.g.,

watermark, encrypt, alert, etc). In general, depending on their operation, these

blocks would need to maintain and utilize a state of previous values. For

example, a cusum (cumulative sum for change detection) check block is an

example of a stateful one that is required to keep a history and can have different

effectiveness based on the threshold chosen; whereas a simple threshold check

would be considered stateless. Our models treat these checks as parameterized

components in which their operations and parameters impact their effectiveness.

Check blocks include differentiators, aggregators, model predictors, state

estimators, etc. as well as more sophisticated elements that utilize machine

learning methods. We present examples of them within our BLOC framework.

The BLOC Framework

BLOC orchestrates the CPS control loop with various “check blocks" within four

major locations as depicted in Fig. III.1. The four major locations are: [Yin],

[Yout], [Uin] and [Uout]. Due to their unique locations, each one processes different

types of signals—some are guaranteed to be valid (e.g., because of a tight

coupling to a physical component), while some may be spoofed or distorted by

noise.

9

• The [Yin] location: This location has access to all the previous

measurement signals received ȳ1, ȳ2, ... ȳk (which could have been spoofed

or otherwise exhibit errors) and uses these historical values and the most

recent measurements to calculate a current best estimate of the actual

physical state. A common check that fits in this block is to measure the

standardized residual using the χ2 statistic which ensures that the received

measurements do not deviate from the estimated state based on a

threshold typically chosen based on a hypothesis testing criterion [32]. As

illustrated in [4], such a check would not be enough to protect against

spoofing attacks.

Another component that fits in this location is a safety envelope test in

which the new measurement signals received, ȳk, are compared against a

measurement data model obtained under no attack using machine learning

algorithms [6].

• The [Uin] location: This location receives all the new control signals, ū1,

ū2, ..., ūk (which could have been spoofed) and also has access to the

current state of the physical system. It is also reasonable to assume that

this component knows the initial state of the system, x0, and thus can

track the evolution of the state based on the control signals received

(subject to the computational capabilities available). One of the primary

goals of this block is to assert that the control signals received will not

cause immediate violations of any of the system’s target invariant

properties if the actions embedded in the ūk are applied to the system (i.e.,

it simulates the result of applying the control signal). Because it has access

to the historical state, this component can also verify properties relating to

control signals changing too fast or too slow.

• The [Yout] Location: This location has access to all the previously

generated measurements, y1, y2, ..., yk and it can compare the new

10

measurements to previous ones to detect immediate inconsistencies—in

essence ensuring that the applied control did not violate any of the

system’s constraints. This location can also infer across elements within yk

over time to determine whether the vector of measurement signals is

internally consistent. Finally, and perhaps the most useful against spoofing

attacks, a check block can watermark yk deliberately, so that the Yin block

can detect any tampering [33].

• The [Uout] Location: This location can run/utilize a predictor (e.g.,

Model Predictive Control [34, 35]), given the current state estimate and the

new control signal generated. Doing so, this block predicts the expected

state of the physical elements of the system and verifies that this expected

state does not violate any of the system properties. It assumes that a

component in this location has access to the state space parameters, which

is reasonable. Much of what is possible in this block is analogous to that in

the [Uin] block, but blocks in this location operate before the signals have

traversed the network, where errors and attacks can happen.

As in the [Yout] location, a block in the [Uout] location can watermark the

control signals and have a block in the [Uin] location verify their presence

to protect against spoofing attacks.

11

IV. MARKOV MODEL

We consider a game-theoretic formulation of a 2-player Markov game between

the defender and the adversary. The defender seeks to protect the CPS against

various attacks through enabling a set of check blocks. The adversary seeks to

attack the CPS through selecting a set of target signals (e.g., a measurement or

a control signal) to attack and a particular attack method to employ (e.g., spoof,

jam, delay). Given a certain performance budget that the CPS can tolerate in

the presence of these blocks, the defender seeks to assign blocks within the [U]

and [Y] locations to maximize their utility subject to the adversary choosing her

best response. In this problem we have:

• Signal Targets T : The adversary can choose to attack different target

signals – measurements or control. We let Ut denote the utility the

defender loses after an attack on target t, when t is unprotected.

• Attacks Methods M : The adversary can choose one attack method m

from a set of available attacks M to target the CPS.

• Check Blocks B: The defender can choose to protect signals from attacks

by enabling check blocks. We let Em
b denote the effectiveness (i.e., the

probability) of block b in protecting a target against attack m. We assume

that each block imposes some delay on the system when checking signals,

therefore we let Ct denote the number of check blocks target t can tolerate

before violating the delay constraints on the control loop. To address the

statefulness property of check blocks, we define the maximum warm-up

period Wb to be the number of time steps check block b needs to observe

the signals before being fully functional.

We model this problem as a two-player zero-sum Markov game, in which a

sub-game is played in every time-step during an infinite horizon. This Markov

game is represented by the tuple 〈S,Aa,Ad, T ,R, β〉 where:

12

• S is the finite set of system states, where each s ∈ S describes the

assignment of blocks to targets and the attacker budget.

– Block assignment N represents assignment status of blocks on

targets. Each entry, nb,t, demonstrates number of times steps needed

by b to be fully effective on t.

– Predictability p is a measure to capture the versatility of the

defender’s policy. Every state’s Block Assignment is compared with its

predecessor and p will be the number of blocks that have remained

fully active.

– Attacker budget ψ is an integer bounded by Ψ, which conceptually

represents the attacker capabilities for striking the system, e.g.

amount of attacker resources, her knowledge about the aimed CPS

and the risk level she is willing to take.

• Aa is a finite set of actions the attacker can choose from in order to attack

the system. Each action contains an attack method m and a vector v

specifying for every target whether it is attacked (1) or not (0).

• Defender’s actions Ad is, also, a finite set. Actions include adding or

removing one block, or making no changes to the block assignment.

• T : S ×Aa ×Ad× ⇒ Π(S) is the state evolution function based on the

agents action pair, where Π is a discrete probability distribution over S.

Accordingly, we let T (s, a, d, s′) denote the probability of transitioning into

state s′ from state s when the attacker and the defender take actions

a ∈ Aa and d ∈ Ad, respectively.

Based on the adversary’s action a, her budget ψ is either decremented

based on the number of attacked targets, or incremented by a unit value ψ0.

Block assignment matrix will be altered, as well; for partially active blocks

the warm up time gets decremented by one. In a case, the defender decides

13

to deploy a block on a target, the corresponding element in N will be set to

Wb. Additionally, if he decides to remove a block, the corresponding

element will be deactivated. Beside that, N is exposed to modification due

to the environment uncertainty Π(S), which is set to carry the uncertainty

in the physical part of the CPS. In every transition, with probability λ,

system will be affected by a shock, where some blocks get removed or

assigned in a random scenario.

• R : S ×Aa ×Ad × S ⇒ IR is the reward obtained by the defender. We let

R(s, a, d, s′) denote the reward received from transitioning from state s to

s′ under actions a ∈ Aa and d ∈ Ad. In this environment due to the

zero-sum nature of the game, one reward function suffices for both agents.

Equation IV.1 captures the protection of the targets (first term) and

predictability of block assignment (second term), where γ is a constant to

punish the defender for a stagnant assignment.

R(s, a, d, s′) = −
∑
t∈v

xm,tUt − γp (IV.1)

xm,t =
∏
b∈B

(1− Em
b × (1− nb,t

Wb

)) (IV.2)

p =
∑
b∈B

∑
t∈T

1nb,t = 0 in s and s′ (IV.3)

In equation IV.2, xa,t is the overall effectiveness of the check block

assignment against attack action m on target t. As shown in the equation,

partially effective blocks have an effectiveness proportional to the number

of remaining time steps to become fully effective. Equation IV.3 captures

the stagnancy of the assignment, where 1Z is an indicator function

associated with event Z. In essence, it counts the number of check blocks

which remain fully active between two successive states.

• β : is the discount factor such that 0 < β < 1.

14

V. METHODOLOGY

In this section we propose, Deep Nash Q-Network (DNQN), a new approach for

inferring suboptimal policies for multi-agent environments. We extended Deep

Q-Networks (DQN) in a similar manner the authors in [36, 31] introduced Nash

Q-learning as a version of Q-learning [37].

As shown in V.1, Q-learning uses Bellman’s equation to seek a policy with the

maximum expected discounted reward:

Q(stat) = (1− α)Q(st, at) + α(r + βmax
at+1

Q(st+1, at+1)), (V.1)

where α is the learning factor, r is the immediate reward, β is the discount factor

and Q(st, at) is the quality of action at in state st. The equation iteratively

updates Q(st, at) with regards to the best action available in the next state, st.

When it comes to multi-agent environments, the best action has a more

complicated meaning, as all agents should agree upon the quality of the chosen

action. Therefore, depending on the nature of the environment, max operator

would need to be replaced with more complicated ones, as in Nash Q-learning,

Nash is the substitute for the max operator when agents are non-cooperative:

Q(st, at, dt) = (1− α)Q(st, at, dt) + α(r + βNash(st+1))

Nash calculates a one stage Nash equilibrium strategy profile and the

corresponding utility of the sub-game generated based on players’ actions, where

each entry of the game matrix is the Q-value of the corresponding action pair.

DQN, introduced in [38, 39], is a Q-learning method, with the capability of

operating in environments with exponentially large state and/or actions spaces

(e.g., Atari games). Utilizing a deep neural network, DQN can generalize

Q-values over a smaller number of observations; we let Q(st, at; θ) denote the

15

predication of the neural network with parameters θ about the quality of at in st.

To ensure the convergence of DQNs, a second neural network – called the target

network – is typically defined that takes advantage of experience replay. Target

network estimates the target Q-values, Q(st, at; θ
−), that will be used to compute

the Bellman error and will only be updated periodically with the training

network’s parameters. Furthermore, experience replay buffer is used to keep the

historic interaction of the agent with the environment. The agent randomly

samples this buffer to learn from diverse past experiences, instead of focusing on

the recent events. Random sampling breaks the data correlation in the

mini-batch, as well, which is a highly preferred event by the neural network.

As represented in Algorithm 1, with same concept as Q-learning, DQN uses the

max operator to choose the action with the highest Q-value to minimize the

Bellman error. To take an advantage of DQN in multi-agent environments, such

as our proposed BLOC framework, we replace the max operator with Nash, as

shown in Algorithm 2.

The training starts, with initializing the target and training networks, as well as

the Experience Replay with random transitions. In every state, a game matrix

will be generated based on the available actions to the defender and the attacker,

where the value of each entry is estimated by the training network Q(st, at, dt; θ).

Then, agents transit to the next state regarding the strategy profile derived from

Nash(s) or a random policy with probability ε. After adding the transition to

the replay buffer, a mini-batch of transitions is randomly sampled from the

buffer. At this point, for every sample in the mini-batch a game matrix gets

generated for the next state st+1 using the target network and Nash computes

the games’ Nash value. Afterwards, the training network gets updated using the

inferred Bellman error.

16

Algorithm 1 Deep Q-learning with Experience Replay
Initialize i = 0
Initialize learning network with random weights θi
Initialize target network weights θ− = θi
Initialize τ to desired update cycle
Initialize replay memory Z to capacity N
for episode= 1, E do

Randomize starting state s1 ∈ S
for t = 1, T do

With probability ε select random action at
otherwise select at = argmaxaQ(st, at; θ)

Execute at and observe reward rt and next state st+1

Store transition (st, at, rt, st+1) in Z
Sample minibatch of transitions (sj, aj, rj, sj+1) ∈ D
Set yj = rj + βmaxa′ Q(sj, a

′; θ−)
Perform gradient descent step on (yj −Q(sj, aj; θ))

2

Set i = i+ 1
if i mod τ = 0, then

θ− = θi
end if

end for
end for

Fictitious Play

Theoretically, DNQN is capable of finding Nash Equilibrium on Markov games,

however, in practice implementation of Nash determines if it is feasible to use

DNQN in realistic environments. Deterministic solutions (e.g. linear program)

are not able to solve the game matrix in a timely manner, especially in the case

of environments with large actions spaces. Therefore, we need to approximate

the Nash Equilibrium in environments similar to BLOC.

Introduced in [40] Fictitious Play is an iterative approach for learning in normal

form games. In this algorithm, players play the game repeatedly tracking the

other players’ behavior, then they react with the best response strategy

regarding the historic information, Algorithm 3.

The fact that Fictitious Play is not precise does not essentially imply a

disadvantage. In line 10 of Algorithm 2, Fictitious Play outputs the Nash

strategy profile, this is while in line 11 and 13 agents get a chance to explore the

17

Algorithm 2 Deep Nash Q-Network with Experience Replay
1: Initialize i = 0
2: Initialize learning network with random weights θi
3: Initialize target network weights θ− = θi
4: Initialize τ to desired update cycle
5: Initialize replay memory Z to capacity N
6: for episode = 1, E do
7: Randomize starting state s1 ∈ S
8: for t = 1, T do
9: Qs = GetQMatrix(s, θi)

10: 〈πA, πD〉 = Nash(Qs)
11: With probability ε select a random action at
12: otherwise sample at ∼ πA
13: With probability ε select a random action dt
14: otherwise sample dt ∼ πD
15: Execute actions 〈at, dt〉 in and observe reward rt and next state st+1

16: Store transition (st, at, dt, rt, st+1) in Z
17: Sample random mini-batch of transitions (sj, aj, dj, rj, sj+1) from Z
18: Qsj+1

= GetQMatrix(sj+1, θ
−)

19: 〈vsj+1
〉 = Nash(Qsj+1

)
20: Set yj = rj + βvsj+1

21: Take gradient descent step on
(
yj −Q(sj, aj, dj; θi)

)2
22: Set i = i+ 1
23: if i mod τ = 0, then
24: θ− = θi
25: end if
26: end for
27: end for

environment. To justify, we can argue the small inaccuracy in strategy profile

would be seen as a part of the exploration process.

With that being said DNQN is capable of estimating Nash Equilibrium in 2

player zeros-sum games for symmetric or asymmetric agents. This process is

depicted in V.1.

18

s = random state

Build Q-Matrix for s
using learning

network
Game
Solver

Execute Nash
Strategies in s

Query
Environment

Store transition in
replay memory

Sample mini-batch
of transitions

Use learning network to
calculate

Q-estimate
Use target network

to calculate y

Calculate average
loss in mini-batch

Backprop loss through
learning network

START s = s'

Trajectory
over?

Yes No

s, a, d s, a, d, r, s'

For each
transition

Have
learning steps

occurred?

Update target network
with learning

network
Yes

No

Figure V.1: Diagram of the DNQN learning process

Algorithm 3 Iterative Fictitious Play
R is an m× n matrix of rewards
rowReward and rowCnt are m-length arrays of zeros
colReward and colCnt are n-length arrays of zeros
Initialize bestResponse to any random row action
for iterations do

colReward = colReward + R[bestResponse, ·]
bestResponse = argmin(colReward)
colCnt = colCnt + 1
rowReward = rowReward + R[· , bestResponse]
bestResponse = argmax(rowReward)
rowCnt = rowCnt + 1

end for
gameV alue =

((
max(rowReward) + min(colReward)

)
/ 2
)
/ iterations

rowMixedStrat = rowCnt / iterations
colMixedStrat = colCnt / iterations

19

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our intelligent block assignment

method. We show that BLOC framework will provide the highest protection

level comparing to other common heuristics.

Environments

We assessed the performance of BLOC on four different instances of the

environment, Table VI.1.

Table VI.1: Sample Environment Settings

Name ENV-SMALL ENV-MID ENV-MID-E ENV-LARGE
|T| 3 5 5 8

|B| 3 6 6 10

|M| 3 6 6 10

C [2, 2, 1] [4, 3, 6, 2, 5] [4, 3, 6, 2, 5]
[4, 8, 6, 4,
8, 5, 9, 7]

U [25, 15, 40]
[35, 25, 40,

30, 32]
[35, 25, 40,

30, 32]

[36, 16, 47,
10, 20, 30,

15, 8]

W [1, 2, 4] [1, 12, 6, 2, 10, 5] [1, 12, 6, 2, 10, 5]

[2, 12, 1, 12,
1, 6, 14, 13,

10, 4]

E Random(0, 1) Random(0, 0.5) Hand Crafted Random(0, 0.4)

Ψ 9 15 15 48

|S| ∼ 2E + 5 ∼ 7E + 18 ∼ 7E + 18 ∼ 3E + 89

λ 0 0.1 0.1 0.1

ENV-SMALL is moderately a simple environment, on which we could calculate

the optimal policy. This environment is helpful as we could show the policies

derived from DNQN are very close to the optimal polices inferred from Dynamic

Programming (DP). Next, we approached two mid-size environments, ENV-MID

and ENV-MID-E, since we could assess the impact of blocks’ effectiveness on the

behavior of our agents. Lastly, we trained our agents on ENV-LARGE to show

the scalability of our approach on notably large environments.

20

Hyper Parameters

Neural Network

One of the main challenges that we faced was identifying a consistent neural

network architecture and hyper parameters that would capture different

environment sizes. Due to the complexity of DNQN, a pure "trial and error"

process in identifying quality features and proper hyper parameters is not

feasible. Therefore, we designed a supervised learning problem, where we fitted a

neural network to the reward function on the data gathered from the random

interaction of agents with the environment. This process is almost similar to

what happens in DNQN before the first update of the target network. When

combined with a trial and error process, we decided on a fully connected neural

network with 6 layers with the following number of neurons in each layer:

[30, 30, 20, 20, 60, 1]. We chose the activation function, loss function, optimizer,

batch size and learning factor to be RELU, Mean Square Error, Adam, 32 and

0.005, respectively. It is worth mentioning that this architecture have yielded

strong results across all environments and experiments.

DNQN

To find proper values for the hyper parameters in DNQN, we run many instances

of this expensive algorithm. Eventually, we set the size of the replay buffer to

3200, ψ0 to 1 and the discount factor β to 0.99. We also found that fixing the

number of iterations in the Fictitious Play algorithm to 500 gave us a good

balance between accuracy and running time. After generating and solving 10,000

random games, Fictitious Play was found to be approximately 20 times faster

and has the accuracy of almost 94%.

21

Features

We set φ(s, a, d) to be a function that maps the state s and the action pair a, d

to a set of features that is recognizable by the neural network. For the state, N is

represented in a way that each entry shows the extent to which a block is

effective (i.e., 1− nt,b

Wb
). The Predictability and Attacker Budget are passed

directly as features without any changes. The defender’s action is formulated

with an integer that indicates the type of action (assignment, removal or no

change) together with the utility of the affected target and a vector showing the

effectiveness of chosen block b against all attack methods, Eb. Finally, the

attacker’s action is shown with a one hot vector with the chosen attack method

set to 1 in conjunction with a vector resulted from element wise product of v and

U .

Training and Stability

After finalizing the features and finding the proper parameters we trained our

agents on the described environments. On ENV-SMALL, we trained two pair of

agents; first we used DP, similar to [41], to find the optimal policy for the

attacker and defender, which took about 10 hours, running in parallel on a

machine with 18 2.2GHz CPU cores. Figure VI.1 shows the convergence of

average Q-values across all states during the training process. Then, we trained

the agents using DNQN; this process took about 32 hours on an IBM PowerPC

equipped with Tesla p100− sxm2 GPUs and Intel(R) Xeon(R)

E5− 2698v4@2.20GHz CPUs. Figure VI.2 demonstrates the obtained loss value

through the training, which is computed in line 21 of Algorithm 2.

Also, figure VI.3 depicts the obtained loss values during the training process of

ENV-MID-E, which lasted for 7 days on the specified IBM machine. It worth

mentioning, due to the size of state space it was not feasible to obtain the

optimal strategies with dynamic programming in this environment.

22

0 20 40 60 80 100 120 140 160 180
Time Steps

-1500

-1000

-500

0

A
ve

ra
ge

 Q
 V

al
ue

Figure VI.1: Convergence of average Q value in Dynamic Programming method

0

0.
04

0.
08

0.
12

0.
16 0.

2

0.
24

0.
28

0.
32

0.
36 0.

4

0.
44

0.
48

0.
52

0.
56 0.

6

0.
64

0.
68

0.
72

0.
76 0.

8

0.
84

0.
88

0.
92

0.
96

1

1.
04

1.
08

1.
12

1.
16 1.

2

1.
24

1.
28

1.
32

1.
36 1.

4

1.
44

1.
48

1.
52

1.
56 1.

6

1.
64

1.
68

1.
72

1.
76 1.

8

1.
84

1.
88

1.
92

1.
96

2

Time Steps 105

0

50

100

150

200

250

300

Lo
ss

Figure VI.2: Loss value obtained from DNQN training - ENV-SMALL

Main Evaluation

Once the agents were trained, we simulated the system and assessed the behavior

of the learned strategies against random and greedy strategies. Random players

pick actions at random. The greedy defender picks an action that assigns the

block with highest average effectiveness relative to its max warm-up time,

mean(Eb)/Wb, on the target with the highest utility. The greedy attacker

chooses the action with the highest immediate reward.

To compare between policies, we ran 300 simulations with 400 time steps for

each policy pair and averaged the achieved cumulative discounted reward,

Utility, in every time step. Figures VI.4 and VI.5 show the simulation results on

BLOC-SMALL. As we can see in VI.4 DP defender can achieve the highest

utility against Greedy, DNQN and DP attackers. This implies that BLOC

framework protects the system the most compare to other heuristics. Yet, DP

defender is not the best policy against the random attacker. We argue although

23

0
0.

03
0.

06
0.

09
0.

12
0.

15
0.

18
0.

21
0.

24
0.

27 0.
3

0.
33

0.
36

0.
39

0.
42

0.
45

0.
48

0.
51

0.
54

0.
57 0.

6
0.

63
0.

66
0.

69
0.

72
0.

75
0.

78
0.

81
0.

84
0.

87 0.
9

0.
93

0.
96

0.
99

1.
02

1.
05

1.
08

1.
11

1.
14

1.
17 1.

2
1.

23
1.

26
1.

29
1.

32
1.

35
1.

38
1.

41
1.

44
1.

47 1.
5

1.
53

1.
56

1.
59

1.
62

1.
65

1.
68

1.
71

1.
74

1.
77 1.

8
1.

83
1.

86
1.

89
1.

92
1.

95
1.

98
2.

01
2.

04
2.

07 2.
1

2.
13

2.
16

2.
19

2.
22

2.
25

2.
28

2.
31

2.
34

2.
37 2.

4
2.

43
2.

46
2.

49
2.

52
2.

55
2.

58
2.

61
2.

64
2.

67 2.
7

2.
73

2.
76

2.
79

2.
82

2.
85

2.
88

2.
91

2.
94

2.
97

3

Time Steps 105

0

50

100

150

200

250

300

350

400

450

500

Lo
ss

 V
al

ue

Figure VI.3: Loss value obtained from DNQN training - ENV-MID-E

DP defender can be exploited by some policies, it still achieves the highest

worst-case utility among other polices. In VI.4 we compared performance of

different attack methods. ENV-SMALL is a simple environment and the attacker

task is straightforward, as such the greedy attacker can achieve a comparable

utility to the DP attacker. Besides that, it can be observed DNQN agents have a

very similar behavior as DP agents, so we can determine that DNQN is a

legitimate approximator for DP.

0 50 100 150 200 250 300 350 400

Time Step

-1500

-1000

-500

0

A
vr

g
U

til
ity

Random Attacker

0 50 100 150 200 250 300 350 400

Time Step

-2500

-2000

-1500

-1000

-500

0

A
vr

g
U

til
ity

Greedy Attacker

Random Defender
Greedy Defender
DNQN Defender
DP Defender

0 50 100 150 200 250 300 350 400

Time Step

-2500

-2000

-1500

-1000

-500

0

A
vr

g
U

til
ity

DNQN Attacker

0 50 100 150 200 250 300 350 400

Time Step

-2500

-2000

-1500

-1000

-500

0

A
vr

g
U

til
ity

DP Attacker

Figure VI.4: Cumulative utilities obtained by each attacker policy against defender poli-
cies ENV-SMALL

Likewise, we evaluated the performance of trained agents using DNQN on

ENV-MID and ENV-MID-E. As shown in figure VI.6 and VI.7, the attacker

trained by DNQN have a considerably better performance in all cases, however

24

0 50 100 150 200 250 300 350 400

Time Step

0

500

1000

1500

2000

A
vr

g
U

til
ity

Random Defender

Random Attacker
Greedy Attacker
DNQN Attacker
DP Attacker

0 50 100 150 200 250 300 350 400

Time Step

0

500

1000

1500

2000

2500

A
vr

g
U

til
ity

Greedy Defender

0 50 100 150 200 250 300 350 400

Time Step

0

500

1000

1500

2000

A
vr

g
U

til
ity

Approximate Defender

0 50 100 150 200 250 300 350 400

Time Step

0

500

1000

1500

2000

A
vr

g
U

til
ity

Dynamic Defender

Figure VI.5: Cumulative utilities obtained by each defender policy against attacker poli-
cies on ENV-SMALL

DNQN’s defender is marginally better. In ENV-MID-E, we handcrafted the

effectiveness matrix in order to show how our approach can capitalize on certain

patterns in contrast to other strategies. This is because a random policy does not

consider E at all; the greedy policy does not incorporate the elements in E and

decisions are just based on the average effectiveness of blocks. As shown in

figures VI.6 and VI.7 both DNQN agents in ENV-MID-E have a significantly

better performance than other heuristics. Unlike BLOC-SMALL, ENV-MID and

ENV-MID-E have the uncertainty component, which leads to a particular

behavior. Through out the simulations we observed that the DNQN defender

does not max out the capacity constraints, as opposed to the greedy defender.

This helps DNQN to recover easier from the impact of uncertainty, since when

the capacity is reached, block removal is more probable than an assignment. On

the other hand, the DNQN attacker usually accumulates her budget and strikes

the system right after the occurrence uncertainty in consecutive time steps.

To demonstrate the scalability of our proposed BLOC framework in large

environments, we conducted our last experiment on ENV-LARGE. This

environment is fairly challenging to operate on, especially for the defender as he

needs to consider the uncertainty while keeping his behavior unpredictable on a

very large state space. Figures VI.10 and VI.11 show that DNQN achieves the

highest utility in all cases. Furthermore, the potential of our methodology in

25

0 50 100 150 200 250 300 350 400

Time steps

-2000

-1500

-1000

-500

0

A
vr

g
U

til
ity

Random Attacker

0 50 100 150 200 250 300 350 400

Time steps

-2500

-2000

-1500

-1000

-500

0

A
vr

g
U

til
ity

Greedy Attacker

Random Defender
Greedy Defender
DNQN Defender

0 50 100 150 200 250 300 350 400

Time Steps

-2500

-2000

-1500

-1000

-500

0

A
vr

g
U

til
ity

DNQN Attacker

Figure VI.6: Cumulative utilities obtained by each attacker policy against defender poli-
cies on ENV-MID

0 50 100 150 200 250 300 350 400

Time Steps

0

500

1000

1500

2000

2500

A
vr

g
U

til
ity

Random Defender

Random Attacker
Greedy Attacker
DNQN Attacker

0 50 100 150 200 250 300 350 400

Time Steps

0

500

1000

1500

2000

2500

A
vr

g
U

til
ity

Greedy Defender

0 50 100 150 200 250 300 350 400

Time Steps

0

500

1000

1500

2000

2500

A
vr

g
U

til
ity

DNQN Defender

Figure VI.7: Cumulative utilities obtained by each defender policy against attacker poli-
cies on ENV-MID

obtaining higher average utility in comparison to other heuristics increases the

size of the state space increases.

26

0 50 100 150 200 250 300 350 400
Time Steps

-1500

-1000

-500

0

A
vr

g
U

til
ity

Random Attacker

0 50 100 150 200 250 300 350 400
Time Steps

-1500

-1000

-500

0

A
vr

g
U

til
ity

Greedy Attacker

Random Defender
Greedy Defender
DNQN Defender

0 50 100 150 200 250 300 350 400
Time Steps

-2000

-1500

-1000

-500

0

A
vr

g
U

til
ity

DNQN Attacker

Figure VI.8: Cumulative utilities obtained by each attacker policy against defender poli-
cies on ENV-MID-E

0 50 100 150 200 250 300 350 400
Time Steps

0

500

1000

1500

2000

A
vr

g
U

til
ity

Random Defender

Random Attacker
Greedy Attacker
DQNQ Attacker

0 50 100 150 200 250 300 350 400
Time Steps

0

500

1000

1500

2000
A

vr
g

U
til

ity
Greedy Defender

0 50 100 150 200 250 300 350 400
Time Steps

0

500

1000

1500

2000

A
vr

g
U

til
ity

DNQN Defender

Figure VI.9: Cumulative utilities obtained by each defender policy against attacker poli-
cies on ENV-MID-E

0 50 100 150 200 250 300 350 400

Time Steps

-3000

-2000

-1000

0

A
vr

g
U

til
ity

Random Attacker

0 50 100 150 200 250 300 350 400

Time Steps

-4000

-3000

-2000

-1000

0

A
vr

g
U

til
ity

Greedy Attacker

Random Defender
Greedy Defender
DNQN Defender

0 50 100 150 200 250 300 350 400

Time Steps

-4000

-3000

-2000

-1000

0

A
vr

g
U

til
ity

DNQN Attacker

Figure VI.10: Cumulative utilities obtained by each attacker policy against defender poli-
cies on ENV-LARGE

27

0 50 100 150 200 250 300 350 400

Time Steps

0

1000

2000

3000

4000

A
vr

g
U

til
ity

Random Defender

DNQN Attacker
Greedy Attacker
DNQN Attacker

0 50 100 150 200 250 300 350 400

Time Steps

0

1000

2000

3000

4000
A

vr
g

U
til

ity
Greedy Defender

0 50 100 150 200 250 300 350 400

Time Steps

0

1000

2000

3000

A
vr

g
U

til
ity

DNQN Defender

Figure VI.11: Cumulative utilities obtained by each defender policy against attacker poli-
cies on ENV-LARGE

28

VII. CONCLUSION

Cyber attacks on CPS are becoming more sophisticated and the defense

mechanisms to check against have not just become largely specific – but

increasingly more computationally expensive (e.g., using deep learning). This

work presents a coherent framework – BLOC – that orchestrates the CPS at

runtime with the proper "check blocks" that are assigned through game-theoretic

approaches. Additionally, they are randomized through the mixed-strategy of the

defender and operate within the delay bound dictated by the CPS control loop.

We developed a Markov game model that captures agent’s behavior and the

environment characteristics. Later, we derived sub-optimal policies despite the

combinatorial nature of the problem, using DNQN. We introduced DNQN as a

novel Deep Reinforcement Learning algorithm to operate in adversarial

multi-agent environments, where a single reward function suffices all agents. We

showed the defender policy obtained from DNQN could protect the system %15

and %25 more than random and greedy approaches respectively, in a case of

environment with more than 3E + 89 states.

29

REFERENCES

[1] J. Finkle, “U.S. official sees more cyber attacks on industrial control
systems,” 2016.

[2] X. Zheng, C. Julien, M. Kim, and S. Khurshid, “Perceptions on the state of
the art in verification and validation in cyber-physical systems,” IEEE
Systems Journal, vol. 11, no. 4, pp. 2614–2627, 2017.

[3] R. Bobba, K. Rogers, Q. Wang, H. Khurana, K. Nahrstedt, and T. Overbye,
“Detecting False Data Injection Attacks on DC State Estimation,” in The
First Workshop on Secure Control Systems, CPS Week, 2010.

[4] Y. Liu, P. Ning, and M. Reiter, “False Data Injection Attacks against State
Estimation in Electric Power Grids,” in the 18th ACM Conference on
Computer and Communications Security, (Chicago, IL), November 2009.

[5] Y. Mo and B. Sinopoli, “False Data Injection Attacks in Control Systems,”
in Proceedings of the 1st workshop on Secure Control Systems, pp. 1–6, 2010.

[6] A. Tiwari, B. Dutertre, D. Jovanović, T. de Candia, P. Lincoln, J. Rushby,
D. Sadigh, and S. Seshia, “Safety Envelope for Security,” in Proceedings of
the 3rd international conference on High confidence networked systems,
pp. 85–94, ACM, 2014.

[7] N. Trcka, M. Moulin, S. Bopardikar, and A. Speranzon, “A Formal
Verification Approach to Revealing Stealth Attacks on Networked Control
Systems,” in Proceedings of the 3rd International Conference on High
Confidence Networked Systems, (Chicago, IL), April 2014.

[8] Y. Wang, Z. Xu, J. Zhang, L. Xu, H. Wang, and G. Gu, “SRID: State
Relation Based Intrusion Detection for False Data Injection Attacks in
SCADA,” in Computer Security-ESORICS, Springer, 2014.

[9] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A Survey of Recent Results in
Networked Control Systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, 2007.

[10] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. Sastry,
“Foundations of Control and Estimation Over Lossy Networks,” IEEE,
vol. 95, no. 1, p. 163, 2007.

[11] T. Yang, “Networked Control System: A Brief Survey,” IEE Proceedings
Control Theory and Applications, vol. 153, no. 4, pp. 403–412, 2006.

[12] S. Amin, A. Cárdenas, and S. Sastry, “Safe and Secure Networked Control
Systems under Denial-of-Service Attacks,” Hybrid Systems: Computation
and Control, pp. 31–45, 2009.

[13] K. Pelechrinis, M. Iliofotou, and V. Krishnamurthy, “Denial of Service
Attacks in Wireless Networks: The Case of Jammers,” IEEE
Communications Surveys & Tutorials, vol. 13, no. 2, 2011.

30

[14] M. Wilhelm, I. Martinovic, J. Schmitt, and V. Lenders, “Short Paper:
Reactive Jamming in Wireless Networks: How Realistic is the Threat?,” in
ACM conference on Wireless network security, 2011.

[15] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Valente,
M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Limiting the impact of
stealthy attacks on industrial control systems,” in ACM CCS, 2016.

[16] A. Ferdowsi, W. Saad, B. Maham, and N. B. Mandayam, “A colonel blotto
game for interdependence-aware cyber-physical systems security in smart
cities,” in Proceedings of the 2nd International Workshop on Science of
Smart City Operations and Platforms Engineering, pp. 7–12, ACM, 2017.

[17] Y. Li, L. Shi, P. Cheng, J. Chen, and D. E. Quevedo, “Jamming attacks on
remote state estimation in cyber-physical systems: A game-theoretic
approach,” IEEE Transactions on Automatic Control, vol. 60, no. 10,
pp. 2831–2836, 2015.

[18] H. Orojloo and M. A. Azgomi, “A game-theoretic approach to model and
quantify the security of cyber-physical systems,” Computers in Industry,
vol. 88, pp. 44–57, 2017.

[19] M. Zhu and S. Martinez, “Stackelberg-game analysis of correlated attacks in
cyber-physical systems,” in American Control Conference (ACC), 2011,
pp. 4063–4068, IEEE, 2011.

[20] Q. Zhu and T. Basar, “Game-theoretic methods for robustness, security, and
resilience of cyberphysical control systems: Games-in-games principle for
optimal cross-layer resilient control systems,” IEEE control systems, vol. 35,
no. 1, pp. 46–65, 2015.

[21] A. S. M. T. M. Brown, A. Sinha, “One size does not fit all: A game-theoretic
approach for dynamically and effectively screening for threats,” AAAI
conference, 2016.

[22] Z. Yin, A. Jiang, M. Tambe, C. Kiekintveld, K. Leyton-Brown,
T. Sandholm, and J. Sullivan, “Trusts: Scheduling randomized patrols for
fare inspection in transit systems using game theory,” in Proceedings of the
24th IAAI, (Palo Alto, CA), 2012.

[23] D. K. M. B. M. T. A. Sinha, T. Nguyen and A. Jiang, “From physical
security to cybersecurity,” Journal of Cybersecurity, 2015.

[24] A. Schlenker, H. Xu, M. Guirguis, M. Tambe, A. Sinha, C. Kiekintveld,
S. Sonya, N. Dunstatter, and D. Balderas, “Towards a game-theoretic
framework for intelligent cyber-security alert allocation,” in Proceedings of
the 3rd IJCAI workshop on Algorithmic Game Theory, Melbourne,
Australia, 2017.

[25] A. Schlenker, H. Xu, M. Guirguis, M. Tambe, A. Sinha, C. Kiekintveld,
S. Sonya, N. Dunstatter, and D. Balderas, “Don’t bury your head in
warnings: A game-theoretic approach for intelligent allocation of

31

cyber-security alerts,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pp. 381–387, 2017.

[26] N. Dunstatter, M. Guirguis, and A. Tahsini, “Allocating security analysts to
cyber alerts using markov games,” 2018.

[27] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-play in extensive-form
games,” in International Conference on Machine Learning, pp. 805–813,
2015.

[28] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in
imperfect-information games,” arXiv preprint arXiv:1603.01121, 2016.

[29] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat,
D. Silver, and T. Graepel, “A unified game-theoretic approach to multiagent
reinforcement learning,” in Advances in Neural Information Processing
Systems, pp. 4190–4203, 2017.

[30] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Machine Learning Proceedings 1994,
pp. 157–163, Elsevier, 1994.

[31] M. L. Littman, “Value-function reinforcement learning in markov games,”
Cognitive Systems Research, vol. 2, no. 1, pp. 55–66, 2001.

[32] A. Wood and B. Wollenberg, Power Generation, Operation, and Control.
John Wiley & Sons, 2012.

[33] R. Chabukswar, “Secure Detection in Cyberphysical Control Systems,”
Ph.D. Thesis – CMU, 2014.

[34] E. Camacho and C. Alba, Model Predictive Control. Springer Science &
Business Media, 2013.

[35] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
2000.

[36] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic
games,” Journal of machine learning research, vol. 4, no. Nov,
pp. 1039–1069, 2003.

[37] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, p. 529, 2015.

32

[40] G. W. Brown, “Iterative solution of games by fictitious play,” in Activity
Analysis of Production and Allocation (T. C. Koopmans, ed.), New York:
Wiley, 1951.

[41] M. Guirguis, A. Tahsini, K. Siddique, C. Novoa, J. Moore, C. Julien, and
N. Dunstatter, “Bloc: A game-theoretic approach to orchestrate cps against
cyber attacks,” in 2018 IEEE Conference on Communications and Network
Security (CNS), pp. 1–9, 2018.

33

